1
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Kleb SS, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Fibroblast-Mediated Macrophage Recruitment Supports Acute Wound Healing. J Invest Dermatol 2024:S0022-202X(24)02956-7. [PMID: 39581458 DOI: 10.1016/j.jid.2024.10.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single-nuclei RNA sequencing, we defined changes in gene expression associated with inflammation 1 day after wounding in mouse skin. Compared with those in keratinocytes and myeloid cells, we detected enriched expression of proinflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL-33, compared with SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound-bed macrophages and monocytes during injury-induced inflammation, with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M Amuso
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - MaryEllen R Haas
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Paula O Cooper
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Sana Hafiz
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Shatha Salameh
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Miguel F Mazumder
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Violet Josephson
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Sarah S Kleb
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Khatereh Khorsandi
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Anelia Horvath
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Brett A Shook
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; The Department of Dermatology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| |
Collapse
|
2
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Deep skin fibroblast-mediated macrophage recruitment supports acute wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607357. [PMID: 39149286 PMCID: PMC11326280 DOI: 10.1101/2024.08.09.607357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single nuclei RNA-sequencing, we defined changes in gene expression associated with inflammation at 1-day post-wounding (dpw) in mouse skin. Compared to keratinocytes and myeloid cells, we detected enriched expression of pro-inflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL33 compared to SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound bed macrophages and monocytes during injury-induced inflammation with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of deep skin fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M. Amuso
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - MaryEllen R. Haas
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Paula O. Cooper
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Sana Hafiz
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Shatha Salameh
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Miguel F. Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Violet Josephson
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Khatereh Khorsandi
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Brett A. Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
3
|
Shao J, Wang M, Zhang A, Liu Z, Jiang G, Tang T, Wang J, Jia X, Lai S. Interference of a mammalian circRNA regulates lipid metabolism reprogramming by targeting miR-24-3p/Igf2/PI3K-AKT-mTOR and Igf2bp2/Ucp1 axis. Cell Mol Life Sci 2023; 80:252. [PMID: 37587272 PMCID: PMC11071982 DOI: 10.1007/s00018-023-04899-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
White adipose tissue (WAT) is important for regulating the whole systemic energy homeostasis. Excessive WAT accumulation further contributes to the development of obesity and obesity-related illnesses. More detailed mechanisms for WAT lipid metabolism reprogramming, however, are still elusive. Here, we report the abnormally high expression of a circular RNA (circRNA) mmu_circ_0001874 in the WAT and liver of mice with obesity. mmu_circ_0001874 interference achieved using a specific adeno-associated virus infects target tissues, down-regulating lipid accumulation in the obesity mice WAT, and liver tissues. Mechanistically, miR-24-3p directly interacts with the lipid metabolism effect of mmu_circ_0001874 and participates in adipogenesis and lipid accumulation by targeting Igf2/PI3K-AKT-mTOR axis. Moreover, mmu_circ_0001874 binds to Igf2bp2 to interact with Ucp1, up-regulating Ucp1 translation and increasing thermogenesis to decrease lipid accumulation. In conclusion, our data highlight a physiological role for circRNA in lipid metabolism reprogramming and suggest mmu_circ_0001874/miR-24-3p/Igf2/PI3K-AKT-mTOR and mmu_circ_0001874/Igf2bp2/Ucp1 axis may represent a potential mechanism for controlling lipid accumulation in obesity.
Collapse
Affiliation(s)
- Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anjing Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Genglong Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Lee H, Lee JH, Kim D, Hwang D, Lee M, Chung H, Kim TJ, Kim HS. Micro-Current Stimulation Can Modulate the Adipogenesis Process by Regulating the Insulin Signaling Pathway in 3T3-L1 Cells and ob/ ob Mice. Life (Basel) 2023; 13:404. [PMID: 36836760 PMCID: PMC9958996 DOI: 10.3390/life13020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Obesity is a disease in which fat is abnormally or excessively accumulated in the body, and many studies have been conducted to overcome it with various techniques. In this study, we evaluated whether micro-current stimulation (MCS) can be applied to prevent obesity by regulating the adipogenesis through 3T3-L1 cells and ob/ob mice. To specify the intensity of MCS, Oil Red O staining was conducted with various intensities of MCS. Based on these, subsequent experiments used 200 and 400 μA for the intensity of MCS. The expressions of insulin signaling pathway-related proteins, including phosphorylation of IGF-1 and IR, were decreased in all MCS groups, and in turn, downstream signals such as Akt and ERK were decreased. In addition, MCS reduced the nucleus translocation of PPAR-γ and decreased the protein expression of C/EBP-α. In the ob/ob mouse model, MCS reduced body weight gain and abdominal adipose tissue volume. In particular, the concentration of triglycerides in serum was also decreased. Taken together, our findings showed that MCS inhibited lipid accumulation by regulating insulin signaling in 3T3-L1, and it was effective at reducing body weight and adipose tissue volume in ob/ob mice. These suggest that MCS may be a useful treatment approach for obesity.
Collapse
Affiliation(s)
- Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Donghyun Hwang
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Minjoo Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Halim Chung
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
5
|
Wong SK, Ramli FF, Ali A, Ibrahim N‘I. Genetics of Cholesterol-Related Genes in Metabolic Syndrome: A Review of Current Evidence. Biomedicines 2022; 10:biomedicines10123239. [PMID: 36551995 PMCID: PMC9775320 DOI: 10.3390/biomedicines10123239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MetS) refers to a cluster of metabolic dysregulations, which include insulin resistance, obesity, atherogenic dyslipidemia and hypertension. The complex pathogenesis of MetS encompasses the interplay between environmental and genetic factors. Environmental factors such as excessive nutrients and sedentary lifestyle are modifiable and could be improved by lifestyle modification. However, genetic susceptibility to MetS, a non-modifiable factor, has attracted the attention of researchers, which could act as the basis for future diagnosis, prognosis, and therapy for MetS. Several cholesterol-related genes associated with each characteristic of MetS have been identified, such as apolipoprotein, lipoprotein lipase (LPL), cholesteryl ester transfer protein (CETP) and adiponectin. This review aims to summarize the genetic information of cholesterol-related genes in MetS, which may potentially serve as biomarkers for early prevention and management of MetS.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
- Clinical Psychopharmacology Research Unit, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Adli Ali
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
- Correspondence: ; Tel.: +60-39145-9545
| |
Collapse
|
6
|
Yang L, Jia X, Fang D, Cheng Y, Zhai Z, Deng W, Du B, Lu T, Wang L, Yang C, Gao Y. Metformin Inhibits Lipid Droplets Fusion and Growth via Reduction in Cidec and Its Regulatory Factors in Rat Adipose-Derived Stem Cells. Int J Mol Sci 2022; 23:ijms23115986. [PMID: 35682666 PMCID: PMC9181043 DOI: 10.3390/ijms23115986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Metformin is still being investigated due to its potential use as a therapeutic agent for managing overweight or obesity. However, the underlying mechanisms are not fully understood. Inhibiting the adipogenesis of adipocyte precursors may be a new therapeutic opportunity for obesity treatments. It is still not fully elucidated whether adipogenesis is also involved in the weight loss mechanisms by metformin. We therefore used adipose-derived stem cells (ADSCs) from inguinal and epididymal fat pads to investigate the effects and mechanisms of metformin on adipogenesis in vitro. Our results demonstrate the similar effect of metformin inhibition on lipid accumulation, lipid droplets fusion, and growth in adipose-derived stem cells from epididymal fat pads (Epi-ADSCs) and adipose-derived stem cells from inguinal fat pads (Ing-ADSCs) cultures. We identified that cell death-inducing DFFA-like effector c (Cidec), Perilipin1, and ras-related protein 8a (Rab8a) expression increased ADSCs differentiation. In addition, we found that metformin inhibits lipid droplets fusion and growth by decreasing the expression of Cidec, Perilipin1, and Rab8a. Activation of AMPK pathway signaling in part involves metformin inhibition on Cidec, Perilipin1, and Rab8a expression. Collectively, our study reveals that metformin inhibits lipid storage, fusion, and growth of lipid droplets via reduction in Cidec and its regulatory factors in ADSCs cultures. Our study supports the development of clinical trials on metformin-based therapy for patients with overweight and obesity.
Collapse
Affiliation(s)
- Lijing Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Xiaowei Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Dongliang Fang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Yuan Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Zhaoyi Zhai
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Wenyang Deng
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Baopu Du
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Lulu Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Chun Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Department of Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Correspondence: (C.Y.); (Y.G.)
| | - Yan Gao
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Department of Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Correspondence: (C.Y.); (Y.G.)
| |
Collapse
|
7
|
Zhang Y, Tian Z, Ye H, Sun X, Zhang H, Sun Y, Mao Y, Yang Z, Li M. Emerging functions of circular RNA in the regulation of adipocyte metabolism and obesity. Cell Death Dis 2022; 8:268. [PMID: 35595755 PMCID: PMC9122900 DOI: 10.1038/s41420-022-01062-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
As noncoding RNAs, circular RNAs (circRNAs) are covalently enclosed endogenous biomolecules in eukaryotes that have tissue specificity and cell specificity. circRNAs were once considered a rare splicing byproduct. With the development of high-throughput sequencing, it has been confirmed that they are expressed in thousands of mammalian genes. To date, only a few circRNA functions and regulatory mechanisms have been verified. Adipose is the main tissue for body energy storage and energy supply. Adipocyte metabolism is a physiological process involving a series of genes and affects biological activities in the body, such as energy metabolism, immunity, and signal transmission. When adipocyte formation is dysregulated, it will cause a series of diseases, such as atherosclerosis, obesity, fatty liver, and diabetes. In recent years, many noncoding RNAs involved in adipocyte metabolism have been revealed. This review provides a comprehensive overview of the basic structure and biosynthetic mechanism of circRNAs, and further discusses the circRNAs related to adipocyte formation in adipose tissue and liver. Our review will provide a reference for further elucidating the genetic regulation mechanism of circRNAs involved in adipocyte metabolism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Zhichen Tian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Haibo Ye
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Xiaomei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Huiming Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Yongjiang Mao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China. .,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
| | - Mingxun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China. .,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
| |
Collapse
|
8
|
Kawamura M, Goda N, Hariya N, Kimura M, Ishiyama S, Kubota T, Mochizuki K. Medium-chain fatty acids enhance expression and histone acetylation of genes related to lipid metabolism in insulin-resistant adipocytes. Biochem Biophys Rep 2022; 29:101196. [PMID: 35028437 PMCID: PMC8741418 DOI: 10.1016/j.bbrep.2021.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022] Open
Abstract
Background The expressions of genes related to lipid metabolism are decreased in adipocytes with insulin resistance. In this study, we examined the effects of fatty acids on the reduced expressions and histone acetylation of lipid metabolism-related genes in 3T3-L1 adipocytes treated with insulin resistance induced by tumor necrosis factor (TNF)-α. Methods Short-, medium-, and long-chain fatty acid were co-administered with TNF-α in 3T3-L1 adipocytes. Then, mRNA expressions and histone acetylation of genes involved in lipid metabolism were determined using mRNA microarrays, qRT-PCR, and chromatin immunoprecipitation assays. Results We found in microarray and subsequent qRT-PCR analyses that the expression levels of several lipid metabolism-related genes, including Gpd1, Cidec, and Cyp4b1, were reduced by TNF-α treatment and restored by co-treatment with a short-chain fatty acid (C4: butyric acid) and medium-chain fatty acids (C8: caprylic acid and C10: capric acid). The pathway analysis of the microarray showed that capric acid enhanced mRNA levels of genes in the PPAR signaling pathway and adipogenesis genes in the TNF-α-treated adipocytes. Histone acetylation around Cidec and Gpd1 genes were also reduced by TNF-α treatment and recovered by co-administration with short- and medium-chain fatty acids. General significance Medium- and short-chain fatty acids induce the expressions of Cidec and Gpd1, which are lipid metabolism-related genes in insulin-resistant adipocytes, by promoting histone acetylation around these genes. Expressions of lipid metabolism genes are reduced in insulin-resistant adipocytes. Short- and medium-chain fatty acids inhibit lipid metabolism gene downregulation. Capric acid enhances expressions of PPAR signaling and adipogenesis genes. This mechanism involves recovery of histone acetylation in lipid metabolism genes.
Collapse
Affiliation(s)
- Musashi Kawamura
- Graduate School of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Naoki Goda
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Natsuyo Hariya
- Department of Nutrition, Faculty of Health and Nutrition, Yamanashi Gakuin University, 2-4-5, Sakaori, Kofu, Yamanashi, 400-8575, Japan
| | - Mayu Kimura
- Graduate School of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Shiori Ishiyama
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Takeo Kubota
- Department of Child Studies, Faculty of Child Studies, Seitoku University, 550, Iwase, Matsudo, Chiba, 271-8555, Japan
| | - Kazuki Mochizuki
- Graduate School of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan.,Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| |
Collapse
|
9
|
Zhang Y, Bobe G, Miranda CL, Lowry MB, Hsu VL, Lohr CV, Wong CP, Jump DB, Robinson MM, Sharpton TJ, Maier CS, Stevens JF, Gombart AF. Tetrahydroxanthohumol, a xanthohumol derivative, attenuates high-fat diet-induced hepatic steatosis by antagonizing PPARγ. eLife 2021; 10:e66398. [PMID: 34128467 PMCID: PMC8205491 DOI: 10.7554/elife.66398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
We previously reported xanthohumol (XN), and its synthetic derivative tetrahydro-XN (TXN), attenuates high-fat diet (HFD)-induced obesity and metabolic syndrome in C57Bl/6J mice. The objective of the current study was to determine the effect of XN and TXN on lipid accumulation in the liver. Non-supplemented mice were unable to adapt their caloric intake to 60% HFD, resulting in obesity and hepatic steatosis; however, TXN reduced weight gain and decreased hepatic steatosis. Liver transcriptomics indicated that TXN might antagonize lipogenic PPARγ actions in vivo. XN and TXN inhibited rosiglitazone-induced 3T3-L1 cell differentiation concomitant with decreased expression of lipogenesis-related genes. A peroxisome proliferator activated receptor gamma (PPARγ) competitive binding assay showed that XN and TXN bind to PPARγ with an IC50 similar to pioglitazone and 8-10 times stronger than oleate. Molecular docking simulations demonstrated that XN and TXN bind in the PPARγ ligand-binding domain pocket. Our findings are consistent with XN and TXN acting as antagonists of PPARγ.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Gerd Bobe
- Department of Animal Sciences, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Cristobal L Miranda
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Malcolm B Lowry
- Department of Microbiology, Oregon State UniversityCorvallisUnited States
| | - Victor L Hsu
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Christiane V Lohr
- Department of Biomedical Science, Carlson College of Veterinary MedicineCorvallisUnited States
| | - Carmen P Wong
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Donald B Jump
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, Kinesiology Program, Oregon State UniversityCorvallisUnited States
| | - Thomas J Sharpton
- Department of Microbiology, Department of Statistics, Oregon State UniversityCorvallisUnited States
| | - Claudia S Maier
- Department of Chemistry, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Adrian F Gombart
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| |
Collapse
|
10
|
Desoye G, Herrera E. Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity. Prog Lipid Res 2020; 81:101082. [PMID: 33383022 DOI: 10.1016/j.plipres.2020.101082] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
During development, the human fetus accrues the highest proportion of fat of all mammals. Precursors of fat lobules can be found at week 14 of pregnancy. Thereafter, they expand, filling with triacylglycerols during pregnancy. The resultant mature lipid-filled adipocytes emerge from a developmental programme of embryonic stem cells, which is regulated differently than adult adipogenesis. Fetal triacylglycerol synthesis uses glycerol and fatty acids derived predominantly from glycolysis and lipogenesis in liver and adipocytes. The fatty acid composition of fetal adipose tissue at the end of pregnancy shows a preponderance of palmitic acid, and differs from the mother. Maternal diabetes mellitus does not influence this fatty acid profile. Glucose oxidation is the main source of energy for the fetus, but mitochondrial fatty acid oxidation also contributes. Indirect evidence suggests the presence of lipoprotein lipase in fetal adipose tissue. Its activity may be increased under hyperinsulinemic conditions as in maternal diabetes mellitus and obesity, thereby contributing to increased triacylglycerol deposition found in the newborns of such pregnancies. Fetal lipolysis is low. Changes in the expression of genes controlling metabolism in fetal adipose tissue appear to contribute actively to the increased neonatal fat mass found in diabetes and obesity. Many of these processes are under endocrine regulation, principally by insulin, and show sex-differences. Novel fatty acid derived signals such as oxylipins are present in cord blood with as yet undiscovered function. Despite many decades of research on fetal lipid deposition and metabolism, many key questions await answers.
Collapse
Affiliation(s)
- G Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
| | - E Herrera
- Faculties of Pharmacy and Medicine, University CEU San Pablo, Madrid, Spain.
| |
Collapse
|
11
|
Sharma R, Kopchick JJ, Puri V, Sharma VM. Effect of growth hormone on insulin signaling. Mol Cell Endocrinol 2020; 518:111038. [PMID: 32966863 PMCID: PMC7606590 DOI: 10.1016/j.mce.2020.111038] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) is a pleiotropic hormone that coordinates an array of physiological processes, including effects on bone, muscle, and fat, ultimately resulting in growth. Metabolically, GH promotes anabolic action in most tissues except adipose, where its catabolic action causes the breakdown of stored triglycerides into free fatty acids (FFA). GH antagonizes insulin action via various molecular pathways. Chronic GH secretion suppresses the anti-lipolytic action of insulin and increases FFA flux into the systemic circulation; thus, promoting lipotoxicity, which causes pathophysiological problems, including insulin resistance. In this review, we will provide an update on GH-stimulated adipose lipolysis and its consequences on insulin signaling in liver, skeletal muscle, and adipose tissue. Furthermore, we will discuss the mechanisms that contribute to the diabetogenic action of GH.
Collapse
Affiliation(s)
- Rita Sharma
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - John J Kopchick
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA
| | - Vishva M Sharma
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
12
|
Pereira B, Amaral AL, Dias A, Mendes N, Muncan V, Silva AR, Thibert C, Radu AG, David L, Máximo V, van den Brink GR, Billaud M, Almeida R. MEX3A regulates Lgr5 + stem cell maintenance in the developing intestinal epithelium. EMBO Rep 2020; 21:e48938. [PMID: 32052574 PMCID: PMC7132344 DOI: 10.15252/embr.201948938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal stem cells (ISCs) fuel the lifelong self‐renewal of the intestinal tract and are paramount for epithelial repair. In this context, the Wnt pathway component LGR5 is the most consensual ISC marker to date. Still, the effort to better understand ISC identity and regulation remains a challenge. We have generated a Mex3a knockout mouse model and show that this RNA‐binding protein is crucial for the maintenance of the Lgr5+ISC pool, as its absence disrupts epithelial turnover during postnatal development and stereotypical organoid maturation ex vivo. Transcriptomic profiling of intestinal crypts reveals that Mex3a deletion induces the peroxisome proliferator‐activated receptor (PPAR) pathway, along with a decrease in Wnt signalling and loss of the Lgr5+ stem cell signature. Furthermore, we identify PPARγ activity as a molecular intermediate of MEX3A‐mediated regulation. We also show that high PPARγ signalling impairs Lgr5+ISC function, thus uncovering a new layer of post‐transcriptional regulation that critically contributes to intestinal homeostasis.
Collapse
Affiliation(s)
- Bruno Pereira
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Ana L Amaral
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Alexandre Dias
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Nuno Mendes
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Tytgat Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Ana R Silva
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Chantal Thibert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Anca G Radu
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Leonor David
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
| | - Valdemar Máximo
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Tytgat Institute, University of Amsterdam, Amsterdam, The Netherlands.,Medicines Research Center, GSK, Stevenage, UK
| | - Marc Billaud
- Clinical and Experimental Model of Lymphomagenesis, INSERM U1052, CNRS UMR5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Raquel Almeida
- i3S - Institute for Research and Innovation in Health (Instituto de Investigação e Inovação em Saúde), University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal.,Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Martins FF, Aguila MB, Mandarim-de-Lacerda CA. Eicosapentaenoic and docosapentaenoic acids lessen the expression of PPARγ/Cidec affecting adipogenesis in cultured 3T3-L1 adipocytes. Acta Histochem 2020; 122:151504. [PMID: 31955908 DOI: 10.1016/j.acthis.2020.151504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have benefits in the metabolism of adipose tissue. However, its contribution to the adipogenesis is not entirely elucidated. The study aimed to evaluate the effects of EPA and DHA on adipogenesis, especially in the PPARγ (peroxisome proliferator-activated receptor-gamma) and Cidec (cell death-inducing DFFA-like effector c) pathway. Twenty-four hours after confluence, 3T3-L1 adipocytes were treated with EPA (100 μM), DHA (50μM) and EPA (100μM) + DHA (50μM) and at the end of differentiation (day 11) the cells were collected for analysis. Cell viability analysis indicated that the concentrations used for EPA and DHA did not cause cytotoxicity in cultured 3T3l1 adipocytes. The treatments have lessened the triacylglycerol accumulation in the adipocyte cytoplasm that, compared to the control group, were EPA-32%, DHA-38%, EPA + DHA -24%. The double-labeling immunofluorescence showed a signal attenuation of protein expressions of PPARγ, CIDEC, and SREBP-1c (sterol regulatory element-binding protein). EPA and DHA had a significant impact on the expression of cleaved CASPASE 3, which increases cell apoptosis and gene expressions of Pparγ and Cidec in the treated groups. Also, there was a reduction of C/ebpα (CCAAT/enhancer-binding protein alpha), Cd36 (cluster differentiation 36), and Foxo1 (forkhead box O). In conclusion, the study determined the ability of both EPA and DHA, alone or combined, in the adipogenesis modulation in cultured 3T3-L1 adipocytes, affecting the cell differentiation, maturation, and consequently, reducing adipogenesis via PPARγ-CIDEC suppression.
Collapse
|
14
|
Schrijver B, Kooiman MA, Kasteleijn E, van Holten-Neelen C, Virakul S, Paridaens D, Peeters RP, van Hagen PM, Dalm VASH, Dik WA. Basic Fibroblast Growth Factor Induces Adipogenesis in Orbital Fibroblasts: Implications for the Pathogenesis of Graves' Orbitopathy. Thyroid 2019; 29:395-404. [PMID: 30724135 DOI: 10.1089/thy.2018.0544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Basic fibroblast growth factor (bFGF) has been implicated in the pathogenesis of Graves' orbitopathy (GO). It stimulates several processes, including hyaluronan synthesis, involved in orbital tissue volume expansion and may act synergistically with platelet-derived growth factor (PDGF)-BB. PDGF-BB is known to stimulate adipogenesis in orbital fibroblasts, but the effect of bFGF on adipogenesis in orbital fibroblasts is so far unknown. This study was conducted to determine whether (i) bFGF induces adipogenesis in orbital fibroblasts, (ii) bFGF and PDGF-BB together exert an additive or synergistic effect on adipogenesis, and (iii) treatment directed at bFGF- and PDGF-BB signaling may potentially be of interest for the treatment of GO. METHODS Orbital fibroblasts from GO patients and controls were cultured in adipocyte differentiation medium with or without bFGF and/or PDGF-BB at different concentrations. Adipogenesis was determined by Oil Red O staining and messenger RNA expression of the late adipocyte differentiation markers cell death-inducing DFFA-like effector C (CIDEC) and adiponectin (ADIPOQ). To demonstrate involvement of FGF-receptor and PDGF-receptor signaling, experiments were also conducted in the presence of dasatinib (inhibitor of PDGF-receptor) or nintedanib (inhibitor of PDGF-receptor and FGF-receptor). RESULTS bFGF significantly stimulated adipogenesis by orbital fibroblasts, as shown by increased Oil Red O staining and CIDEC and ADIPOQ expression after 14 days of differentiation. Furthermore, an additive effect of bFGF/PDGF-BB co-stimulation on adipogenesis was observed at the lowest concentration (12.5 ng/mL) of the growth factors tested. Nintedanib completely inhibited bFGF-, PDGF-BB-, and bFGF/PDGF-BB-induced adipogenesis, while dasatinib only fully abrogated PDGF-BB-induced adipogenesis. CONCLUSION bFGF induces adipogenesis in orbital fibroblasts and as such may contribute to GO. The additive effect of bFGF and PDGF-BB on adipogenesis, along with the observed inhibitory effects of dasatinib and nintedanib, point at independent receptor-mediated effects. This supports the hypothesis that multi-target directed therapy might be more efficient in the treatment of GO.
Collapse
Affiliation(s)
- Benjamin Schrijver
- 1 Department of Immunology, Laboratory Medical Immunology; Rotterdam, The Netherlands
| | - Merel A Kooiman
- 1 Department of Immunology, Laboratory Medical Immunology; Rotterdam, The Netherlands
| | - Esmee Kasteleijn
- 1 Department of Immunology, Laboratory Medical Immunology; Rotterdam, The Netherlands
| | | | - Sita Virakul
- 2 Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Dion Paridaens
- 4 Academic Center for Thyroid Diseases; Rotterdam, The Netherlands
- 3 Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Robin P Peeters
- 4 Academic Center for Thyroid Diseases; Rotterdam, The Netherlands
- 5 Department of Internal Medicine; Erasmus MC, Rotterdam, The Netherlands
| | - P Martin van Hagen
- 1 Department of Immunology, Laboratory Medical Immunology; Rotterdam, The Netherlands
- 4 Academic Center for Thyroid Diseases; Rotterdam, The Netherlands
- 5 Department of Internal Medicine; Erasmus MC, Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- 1 Department of Immunology, Laboratory Medical Immunology; Rotterdam, The Netherlands
- 4 Academic Center for Thyroid Diseases; Rotterdam, The Netherlands
- 5 Department of Internal Medicine; Erasmus MC, Rotterdam, The Netherlands
| | - Willem A Dik
- 1 Department of Immunology, Laboratory Medical Immunology; Rotterdam, The Netherlands
- 4 Academic Center for Thyroid Diseases; Rotterdam, The Netherlands
| |
Collapse
|
15
|
Sharma R, Luong Q, Sharma VM, Harberson M, Harper B, Colborn A, Berryman DE, Jessen N, Jørgensen JOL, Kopchick JJ, Puri V, Lee KY. Growth hormone controls lipolysis by regulation of FSP27 expression. J Endocrinol 2018; 239:289-301. [PMID: 30400015 PMCID: PMC6226059 DOI: 10.1530/joe-18-0282] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 01/10/2023]
Abstract
Growth hormone (GH) has long been known to stimulate lipolysis and insulin resistance; however, the molecular mechanisms underlying these effects are unknown. In the present study, we demonstrate that GH acutely induces lipolysis in cultured adipocytes. This effect is secondary to the reduced expression of a negative regulator of lipolysis, fat-specific protein 27 (FSP27; aka Cidec) at both the mRNA and protein levels. These effects are mimicked in vivo as transgenic overexpression of GH leads to a reduction of FSP27 expression. Mechanistically, we show GH modulation of FSP27 expression is mediated through activation of both MEK/ERK- and STAT5-dependent intracellular signaling. These two molecular pathways interact to differentially manipulate peroxisome proliferator-activated receptor gamma activity (PPARγ) on the FSP27 promoter. Furthermore, overexpression of FSP27 is sufficient to fully suppress GH-induced lipolysis and insulin resistance in cultured adipocytes. Taken together, these data decipher a molecular mechanism by which GH acutely regulates lipolysis and insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Rita Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Quyen Luong
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Vishva M. Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Mitchell Harberson
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Brian Harper
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Andrew Colborn
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Darlene E. Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Denmark
| | - Jens Otto Lunde Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - John J. Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
- Edison Biotechnology Institute, Ohio University, Athens, OH
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| | - Kevin Y. Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- The Diabetes Institute, Ohio University, Athens, OH
| |
Collapse
|
16
|
Zhang P, Du J, Wang L, Niu L, Zhao Y, Tang G, Jiang Y, Shuai S, Bai L, Li X, Wang J, Zhang S, Zhu L. MicroRNA-143a-3p modulates preadipocyte proliferation and differentiation by targeting MAPK7. Biomed Pharmacother 2018; 108:531-539. [PMID: 30243086 DOI: 10.1016/j.biopha.2018.09.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/08/2023] Open
Abstract
Adipogenesis plays a key role in increasing fat mass, which is a main characteristic for obesity, and involves preadipocyte proliferation and differentiation. Recently, more and more evidences suggested that microRNAs (miRNAs) is an important member of the regulatory network of adipogenesis. In this study, miR-143a-3p was highly expressed in adipose tissues of obese mice, and was up-regulated at the middle and last stage of 3T3-L1 adipocyte differentiation. Using mouse 3T3-L1 cells line, which is an ideal model in vitro for the study of adipogenesis, we observed that overexpression of miR-143a-3p inhibited the preadipocyte proliferation, and enhanced the preadipocyte differentiation. In contrast, the inhibition of miR-143a-3p expression promoted the preadipocyte proliferation, and inhibited the preadipocyte differentiation. Further analysis suggested that miR-143a-3p mediating preadipocyte differentiation might be involved in fatty acid metabolism. In addition, we found that miR-143-3p and PPARγ, an activator of miR-143a-3p transcription, could regulate each other. Compared with miR-143a-3p, MAPK7 played an opposite role in the proliferation and differentiation of adipocyte. Further analysis indicated that MAPK7 is a target gene of miR-143a-3p in 3T3-L1 cells, and inhibition of MAPK7 recede the effect of miR-143a-3p on preadipocyte proliferation and differentiation. Taken together, these results indicated that as a regulator of PPARγ, miR-143a-3p play an important role in adipogenesis via regulating MAPK7 and fatty acid.
Collapse
Affiliation(s)
- Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Linghui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanzhi Jiang
- College of Life and Biology Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Surong Shuai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuewi Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, 402460, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Zaiou M, El Amri H, Bakillah A. The clinical potential of adipogenesis and obesity-related microRNAs. Nutr Metab Cardiovasc Dis 2018; 28:91-111. [PMID: 29170059 DOI: 10.1016/j.numecd.2017.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 02/07/2023]
Abstract
Obesity is a growing health problem commonly associated with numerous metabolic disorders including type 2 diabetes, hypertension, cardiovascular disease, and some forms of cancer. The burden of obesity and associated cardiometabolic diseases are believed to arise through complex interplay between genetics and epigenetics predisposition, nutrition, environment, and lifestyle. However, the molecular basis and the repertoire of obesity-affecting factors are still unknown. Emerging evidence is connecting microRNAs (miRNAs) dysregulation with adipogenesis and obesity. Alteration in miRNAs expression could result in changes in the pattern of genes controlling a range of biological processes including inflammation, lipid metabolism, insulin resistance and adipogenesis. Hence, understanding exact roles of miRNAs as well as the degree of their contribution to the regulation of adipogenesis and fat cell development in obesity would provide new therapeutic targets for the development of novel and effective anti-obesity drugs. The objective of the current review is to: (i) discuss some of the latest development on relevant miRNAs dysregulation mainly in human adipogenesis and obesity, (ii) emphasize the role of circulating miRNAs as new promising therapeutics and attractive potential biomarkers for treating obesity and associated risk factor diseases, (iii) describe how dietary factors may influence obesity through modulation of miRNAs expression, (iv) highlight some of the actual limitations to the promise of miRNAs as novel therapeutics as well as to their translation for the benefit of patients, and finally (v) provide recommendations for future research on miRNA-based therapeutics that could lead to a breakthrough in the treatment of obesity and its associated pathologies.
Collapse
Affiliation(s)
- M Zaiou
- Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, 54000, Nancy, France.
| | - H El Amri
- Laboratoire de Génétique de la Gendarmerie Royale, Avenue Ibn Sina, Agdal, Rabat, Morocco
| | - A Bakillah
- State University of New York, Downstate Medical Center, Department of Medicine, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| |
Collapse
|
18
|
Kim DH, Kim J, Kwon JS, Sandhu J, Tontonoz P, Lee SK, Lee S, Lee JW. Critical Roles of the Histone Methyltransferase MLL4/KMT2D in Murine Hepatic Steatosis Directed by ABL1 and PPARγ2. Cell Rep 2017; 17:1671-1682. [PMID: 27806304 DOI: 10.1016/j.celrep.2016.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/12/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022] Open
Abstract
The pathophysiologic continuum of non-alcoholic fatty liver disease begins with steatosis. Despite recent advances in our understanding of the gene regulatory program directing steatosis, how it is orchestrated at the chromatin level is unclear. PPARγ2 is a hepatic steatotic transcription factor induced by overnutrition. Here, we report that the histone H3 lysine 4 methyltransferase MLL4/KMT2D directs overnutrition-induced murine steatosis via its coactivator function for PPARγ2. We demonstrate that overnutrition facilitates the recruitment of MLL4 to steatotic target genes of PPARγ2 and their transactivation via H3 lysine 4 methylation because PPARγ2 phosphorylated by overnutrition-activated ABL1 kinase shows enhanced interaction with MLL4. We further show that Pparg2 (encoding PPARγ2) is also a hepatic target gene of ABL1-PPARγ2-MLL4. Consistently, inhibition of ABL1 improves the fatty liver condition of mice with overnutrition by suppressing the pro-steatotic action of MLL4. Our results uncover a murine hepatic steatosis regulatory axis consisting of ABL1-PPARγ2-MLL4, which may serve as a target of anti-steatosis drug development.
Collapse
Affiliation(s)
- Dae-Hwan Kim
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Janghyun Kim
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ji-Sun Kwon
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Soo-Kyung Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA; Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 08826 Seoul, Korea.
| | - Jae W Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
19
|
de la Rosa Rodriguez MA, Kersten S. Regulation of lipid droplet-associated proteins by peroxisome proliferator-activated receptors. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1212-1220. [DOI: 10.1016/j.bbalip.2017.07.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
20
|
Bae IS, Park PJ, Lee JH, Cho EG, Lee TR, Kim SH. PPARγ-mediated G-protein coupled receptor 120 signaling pathway promotes transcriptional activation of miR-143 in adipocytes. Gene 2017; 626:64-69. [PMID: 28495174 DOI: 10.1016/j.gene.2017.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/16/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs), the small noncoding RNAs, regulate various biological processes such as adipogenesis. MicroRNA-143 (miR-143) promotes adipocyte differentiation, and is correlated with obesity in mice fed a high-fat diet. However, the transcriptional regulation of miR-143 is largely unknown. In this study, we identified that miR-143 is a target of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor in adipogenesis. Four putative peroxisome proliferator response elements (PPREs) were identified in the miR-143 promoter region. Using chromatin immune-precipitation, we observed that PPARγ was bound with two PPRE regions of the miR-143 promoter in 3T3-L1 adipocytes. A luciferase reporter assay showed that the PPRE1 region (-1330/-1309) of the miR-143 promoter played an important role in PPARγ transcriptional activation. In addition, we determined that G-protein coupled receptor 120 (GPR 120), which functions as an omega 3 fatty acid receptor, affected miR-143 expression in adipocytes. GPR120 silencing in adipocytes inhibited the expression of PPARγ and miR-143, whereas GPR120 overexpression led to increased expressions of PPARγ and miR-143. Silencing of PPARγ inhibited the induction of miR-143 by GPR-120. These results suggested that a PPARγ-mediated GPR120 signaling pathway promotes transcriptional activation of miR-143 in adipocytes.
Collapse
Affiliation(s)
- In-Seon Bae
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil June Park
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Jeong Hwa Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun-Gyung Cho
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 17074, Republic of Korea.
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
21
|
Yasumoto J, Kasai H, Yoshimura K, Otoguro T, Watashi K, Wakita T, Yamashita A, Tanaka T, Takeda S, Moriishi K. Hepatitis B virus prevents excessive viral production via reduction of cell death-inducing DFF45-like effectors. J Gen Virol 2017; 98:1762-1773. [PMID: 28745269 DOI: 10.1099/jgv.0.000813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The relationship between hepatitis B virus (HBV) infection and lipid accumulation remains largely unknown. In this study, we investigated the effect of HBV propagation on lipid droplet growth in HBV-infected cells and HBV-producing cell lines, HepG2.2.15 and HBV-inducible Hep38.7-Tet. The amount of intracellular triglycerides was significantly reduced in HBV-infected and HBV-producing cells compared with HBV-lacking control cells. Electron and immunofluorescent microscopic analyses showed that the average size of a single lipid droplet (LD) was significantly less in the HBV-infected and HBV-producing cells than in the HBV-lacking control cells. Cell death-inducing DFF45-like effectors (CIDEs) B and C (CIDEB and CIDEC), which are involved in LD expansion for the improvement of lipid storage, were expressed at a significantly lower level in HBV-infected or HBV-producing cells than in HBV-lacking control cells, while CIDEA was not detected in those cells regardless of HBV production. The activity of the CIDEB and CIDEC gene promoters was impaired in HBV-infected or HBV-producing cells compared to HBV-lacking control cells, while CIDEs potentiated HBV core promoter activity. The amount of HNF4α, that can promote the transcription of CIDEB was significantly lower in HBV-producing cells than in HBV-lacking control cells. Knockout of CIDEB or CIDEC significantly reduced the amount of supernatant HBV DNA, intracellular viral RNA and nucleocapsid-associated viral DNA, while the expression of CIDEB or CIDEC recovered HBV production in CIDEB- or CIDEC-knockout cells. These results suggest that HBV regulates its own viral replication via CIDEB and CIDEC.
Collapse
Affiliation(s)
- Jun Yasumoto
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Teruhime Otoguro
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| |
Collapse
|
22
|
Bijsmans ITGW, Milona A, Ijssennagger N, Willemsen ECL, Ramos Pittol JM, Jonker JW, Lange K, Hooiveld GJEJ, van Mil SWC. Characterization of stem cell-derived liver and intestinal organoids as a model system to study nuclear receptor biology. Biochim Biophys Acta Mol Basis Dis 2016; 1863:687-700. [PMID: 27956139 DOI: 10.1016/j.bbadis.2016.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/31/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors regulating a large variety of processes involved in reproduction, development, and metabolism. NRs are ideal drug targets because they are activated by lipophilic ligands that easily pass cell membranes. Immortalized cell lines recapitulate NR biology poorly and generating primary cultures is laborious and requires a constant need for donor material. There is a clear need for development of novel preclinical model systems that better resemble human physiology. Uncertainty due to technical limitations early in drug development is often the cause of preclinical drugs not reaching the clinic. Here, we studied whether organoids, mini-organs derived from the respective mouse tissue's stem cells, can serve as a novel model system to study NR biology and targetability. We characterized mRNA expression profiles of the NR superfamily in mouse liver, ileum, and colon organoids. Tissue-specific expression patterns were largely maintained in the organoids, indicating their suitability for NR research. Metabolic NRs Fxrα, Lxrα, Lxrβ, Pparα, and Pparγ induced expression of and binding to endogenous target genes. Transcriptome analyses of wildtype colon organoids stimulated with Rosiglitazone showed that lipid metabolism was the highest significant changed function, greatly mimicking the PPARs and Rosiglitazone function in vivo. Finally, using organoids we identify Trpm6, Slc26a3, Ang1, and Rnase4, as novel Fxr target genes. Our results demonstrate that organoids represent a framework to study NR biology that can be further expanded to human organoids to improve preclinical testing of novel drugs that target this pharmacologically important class of ligand activated transcription factors.
Collapse
Affiliation(s)
- Ingrid T G W Bijsmans
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexandra Milona
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Noortje Ijssennagger
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ellen C L Willemsen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - José M Ramos Pittol
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan W Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Katja Lange
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Tan X, Cao Z, Li M, Xu E, Wang J, Xiao Y. TNF-α downregulates CIDEC via MEK/ERK pathway in human adipocytes. Obesity (Silver Spring) 2016; 24:1070-80. [PMID: 27062372 DOI: 10.1002/oby.21436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/01/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Cell death-inducing DFF45-like effector C (CIDEC) is a lipid droplet-coating protein that promotes triglyceride accumulation and inhibits lipolysis. TNF-α downregulates CIDEC levels to enhance basal lipolysis, whereas CIDEC overexpression could block this effect. This study aimed to investigate the signaling pathway of TNF-α-mediated CIDEC downregulation in human adipocytes. METHODS First CIDEC expression was detected in adipose tissue of lean and human subjects with obesity. Next, the temporal- and dose-dependent effects of TNF-α on CIDEC expression in human SW872 adipocytes were investigated. Selective inhibitors or RNAi or constitutively active MEK1 mutant was used to suppress or stimulate MEK/ERK cascade. Immunofluorescence and subcellular fractionation technique were used to study PPARγ redistribution after TNF-α treatment. Reporter assay was performed to confirm the direct effects of TNF-α on CIDEC transcription. RESULTS CIDEC expression decreased in adipose tissue of subjects with obesity and negatively correlated with adipose TNF-α levels and systemic lipolysis. TNF-α reduced CIDEC expression in vitro, but suppression of MEK/ERK cascade prevented TNF-α-mediated CIDEC downregulation. PPARγ, the transcription factor of CIDEC, was phosphorylated and redistributed by TNF-α in a MEK/ERK-dependent manner. Reporter assay confirmed that TNF-α reduced CIDEC transcription. CONCLUSIONS TNF-α downregulates CIDEC expression through phosphorylation and nuclear export of PPARγ by MEK/ERK cascade.
Collapse
Affiliation(s)
- Xinrui Tan
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Zhenzhen Cao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Min Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Erdi Xu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Jingjing Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| |
Collapse
|
24
|
Ruan J, Zhang Y, Yuan J, Xin L, Xia J, Liu N, Mu Y, Chen Y, Yang S, Li K. A long-term high-fat, high-sucrose diet in Bama minipigs promotes lipid deposition and amyotrophy by up-regulating the myostatin pathway. Mol Cell Endocrinol 2016; 425:123-32. [PMID: 26850224 DOI: 10.1016/j.mce.2016.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Abstract
Skeletal muscle is as an important regulator of blood glucose and glycolipid metabolism and is closely related to motor ability. The underlying mechanisms by which dietary ectopic lipids in skeletal muscle prevents muscle growth remain elusive. We utilized miniature Bama swine as a model to mimic human obesity using prolonged dietary induction. After 23 months on a high-fat, high-sucrose diet, metabolic disorders were induced in the animals, which exhibited increased body weight, extensive lipid deposition in the skeletal muscle and amyotrophy. Microarray profiles demonstrated the up-regulation of genes related to fat deposition and muscle growth inhibition. We outline a clear potential pathway that in combination with increased 11β-hydroxysteroid dehydrogenase type 1, promotes expression of a major inhibitor, myostatin, by converting corticosterone to cortisol, which leads to the growth inhibition of skeletal muscle. This research provides new insights into the treatment of muscle diseases induced by obesity.
Collapse
Affiliation(s)
- Jinxue Ruan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun, 130012, PR China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jing Yuan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; College of Animal Science, Yangtz University, Jinzhou, 434023, Hubei, PR China
| | - Leilei Xin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jihan Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Nan Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; Agricutural Genomes Institute at Shenzhen, CAAS, Shenzhen, 518120, PR China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China.
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; Agricutural Genomes Institute at Shenzhen, CAAS, Shenzhen, 518120, PR China
| |
Collapse
|
25
|
Reynolds TH, Banerjee S, Sharma VM, Donohue J, Couldwell S, Sosinsky A, Frulla A, Robinson A, Puri V. Effects of a High Fat Diet and Voluntary Wheel Running Exercise on Cidea and Cidec Expression in Liver and Adipose Tissue of Mice. PLoS One 2015; 10:e0130259. [PMID: 26176546 PMCID: PMC4503728 DOI: 10.1371/journal.pone.0130259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
Abstract
Cidea and Cidec play an important role in regulating triglyceride storage in liver and adipose tissue. It is not known if the Cidea and Cidec genes respond to a high fat diet (HFD) or exercise training, two interventions that alter lipid storage. The purpose of the present study was to determine the effect of a HFD and voluntary wheel running (WR) on Cidea and Cidec mRNA and protein expression in adipose tissue and liver of mice. A HFD promoted a significant increase in Cidea and Cidec mRNA levels in adipose tissue and liver. The increase in Cidea and Cidec mRNAs in adipose tissue and liver in response to a HFD was prevented by WR. Similar to the changes in Cidea mRNA, Cidea protein levels in adipose tissue significantly increased in response to a HFD, a process that was, again, prevented by WR. However, in adipose tissue the changes in Cidec mRNA did not correspond to the changes in Cidec protein levels, as a HFD decreased Cidec protein abundance. Interestingly, in adipose tissue Cidea protein expression was significantly related to body weight (R=.725), epididymal adipose tissue (EWAT) mass (R=.475) and insulin resistance (R=.706), whereas Cidec protein expression was inversely related to body weight (R=-.787), EWAT mass (R=-.706), and insulin resistance (R=-.679). Similar to adipose tissue, Cidea protein expression in liver was significantly related to body weight (R=.660), EWAT mass (R=.468), and insulin resistance (R=.599); however, unlike adipose tissue, Cidec protein levels in liver were not related to body weight or EWAT mass and only moderately associated with insulin resistance (R=-.422, P=0.051). Overall, our findings indicate that Cidea is highly associated with adiposity and insulin resistance, whereas Cidec is related to insulin sensitivity. The present study suggests that Cide proteins might play an important functional role in the development of obesity, hepatic steatosis, as well as the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Thomas H. Reynolds
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY, 12866, United States of America
- * E-mail:
| | - Sayani Banerjee
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University, Boston, MA, 02118, United States of America
| | - Vishva Mitra Sharma
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University, Boston, MA, 02118, United States of America
| | - Jacob Donohue
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY, 12866, United States of America
| | - Sandrine Couldwell
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY, 12866, United States of America
| | - Alexandra Sosinsky
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY, 12866, United States of America
| | - Ashton Frulla
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY, 12866, United States of America
| | - Allegra Robinson
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY, 12866, United States of America
| | - Vishwajeet Puri
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University, Boston, MA, 02118, United States of America
| |
Collapse
|
26
|
Raza-Iqbal S, Tanaka T, Anai M, Inagaki T, Matsumura Y, Ikeda K, Taguchi A, Gonzalez FJ, Sakai J, Kodama T. Transcriptome Analysis of K-877 (a Novel Selective PPARα Modulator (SPPARMα))-Regulated Genes in Primary Human Hepatocytes and the Mouse Liver. J Atheroscler Thromb 2015; 22:754-72. [PMID: 26040752 DOI: 10.5551/jat.28720] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM Selective PPARα modulators (SPPARMα) are under development for use as next-generation lipid lowering drugs. In the current study, to predict the pharmacological and toxicological effects of a novel SPPARMα K-877, comprehensive transcriptome analyses of K-877-treated primary human hepatocytes and mouse liver tissue were carried out. METHODS Total RNA was extracted from the K-877 treated primary human hepatocytes and mouse liver and adopted to the transcriptome analysis. Using a cluster analysis, commonly and species specifically regulated genes were identified. Also, the profile of genes regulated by K-877 and fenofibrate were compared to examine the influence of different SPPARMα on the liver gene expression. RESULTS Consequently, a cell-based transactivation assay showed that K-877 activates PPARα with much greater potency and selectivity than fenofibric acid, the active metabolite of clinically used fenofibrate. K-877 upregulates the expression of several fatty acid β-oxidative genes in human hepatocytes and the mouse liver. Almost all genes up- or downregulated by K-877 treatment in the mouse liver were also regulated by fenofibrate treatment. In contrast, the K-877-regulated genes in the mouse liver were not affected by K-877 treatment in the Ppara-null mouse liver. Depending on the species, the peroxisomal biogenesis-related gene expression was robustly induced in the K-877-treated mouse liver, but not human hepatocytes, thus suggesting that the clinical dose of K-877 may not induce peroxisome proliferation or liver toxicity in humans. Notably, K-877 significantly induces the expression of clinically beneficial target genes (VLDLR, FGF21, ABCA1, MBL2, ENPEP) in human hepatocytes. CONCLUSION These results indicate that changes in the gene expression induced by K-877 treatment are mainly mediated through PPARα activation. K-877 regulates the hepatic gene expression as a SPPARMα and thus may improve dyslipidemia as well as metabolic disorders, such as metabolic syndrome and type 2 diabetes, without untoward side effects.
Collapse
Affiliation(s)
- Sana Raza-Iqbal
- Laboratory for Systems Biology and Medicine (LSBM), Research Center for Advanced Science and Technology (RCAST), University of Tokyo
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Xu X, Park JG, So JS, Lee AH. Transcriptional activation of Fsp27 by the liver-enriched transcription factor CREBH promotes lipid droplet growth and hepatic steatosis. Hepatology 2015; 61:857-69. [PMID: 25125366 PMCID: PMC4329115 DOI: 10.1002/hep.27371] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/10/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Fat-specific protein 27 (Fsp27) is a lipid droplet-associated protein that promotes lipid droplet (LD) growth and triglyceride (TG) storage in white adipocytes. Fsp27 is also highly expressed in the steatotic liver and contributes to TG accumulation. In this study we discovered that the liver produces Fsp27β, an alternative Fsp27 isoform, which contains 10 additional amino acids at the N-terminus of the original Fsp27 (Fsp27α). White adipose tissue (WAT) and the liver specifically expressed Fsp27α and Fsp27β transcripts, respectively, which were driven by distinct promoters. The Fsp27β promoter was activated by the liver-enriched transcription factor cyclic-AMP-responsive-element-binding protein H (CREBH) but not by peroxisome proliferator-activated receptor gamma (PPARγ), which activated the Fsp27α promoter. Enforced expression of the constitutively active CREBH strongly induced Fsp27β and the human ortholog CIDEC2 in mouse hepatocytes and HepG2 cells, respectively. In contrast, loss of CREBH decreased hepatic Fsp27β in fasted mice, suggesting that CREBH plays a critical role in Fsp27β expression in the liver. Similar to Fsp27α, Fsp27β localized on the surface of lipid droplets and suppressed lipolysis. Consequently, enforced expression of Fsp27β or CREBH promoted lipid droplet enlargement and TG accumulation in the liver. CONCLUSION The CREBH-Fsp27β axis is important for regulating lipid droplet dynamics and TG storage in the liver.
Collapse
Affiliation(s)
| | | | | | - Ann-Hwee Lee
- To whom correspondence should be addressed: Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA. Tel: 1-212-746-9087
| |
Collapse
|
28
|
Nie YQ, Cao J, Zhou YJ, Liang X, Du YL, Wan YJY, Li YY. The effect of miRNA-122 in regulating fat deposition in a cell line model. J Cell Biochem 2014; 115:839-46. [PMID: 24288170 DOI: 10.1002/jcb.24725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/19/2013] [Indexed: 12/17/2022]
Abstract
Accumulating evidence supports the role of miR-122 in fatty liver disease. We investigated miR-122 expression in a steatotic hepatocyte model, the effect of miR-122 over-expression and inhibition in the pathogenesis. Human hepatic cell line L02 was induced with oleic acid to establish the steatotic hepatocyte model. Intracellular lipid content was observed with laser scanning confocal microscope (LSCM), and triglyceride content was determined with kits. Total RNA was extracted and reversely transcribed into cDNA. miR-122 expression was measured using qRT-PCR. Subsequently, miR-122 mimic and miR-122 inhibitor were transfected into steatotic hepatocytes to observe their effect on intracellular lipid content. The lipid fluorescence intensity and triglyceride content within the steatotic hepatocytes were significantly higher than those in normal control (860.01 ± 26.52 vs. 257.77 ± 29.69 and 3.47 ± 0.12 vs. 1.85 ± 0.02 at 24 h) (P < 0.01). miR-122 expression in steatotic hepatocytes was down-regulated compared with that in control (2-ΔCt value: 0.0286 ± 0.0078 vs. 0.0075 ± 0.0012) (P ≪ 0.01). After transfection, miR-122 expression (2-ΔCt value) in the miR-122 mimic group increased 2.96-fold compared with that in control, and its lipid fluorescence intensity was significantly lower than that in control (790.92 ± 46.72 vs. 1,022.16 ± 49.66) (P < 0.01). Nevertheless, miR-122 expression decreased 3.45-fold in the miR-122 inhibitor group compared with that in control, and its fluorescence intensity was significantly higher than that in control (1,386.49 ± 40.34 vs 1,022.16 ± 49.66)(P ≪ 0.01). We concluded that miR-122 was down-regulated in steatotic hepatocytes model. The pathogenesis of hepatocyte steatosis was enhanced by miR-122 mimic and reduced with miR-122 inhibitor.
Collapse
Affiliation(s)
- Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Institute of Digestive Disease, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The ever growing prevalence of childhood obesity is being accompanied by an increase in the pediatric population of diseases once believed to be exclusive of the adulthood such as the metabolic syndrome (MS). The MS has been defined as the link between insulin resistance, hypertension, dyslipidemia, impaired glucose tolerance, and other metabolic abnormalities associated with an increased risk of atherosclerotic cardiovascular diseases in adults. In this review, we will discuss the peculiar aspects of the pediatric MS and the role of novel molecules and biomarkers in its pathogenesis.
Collapse
|
30
|
Effects of pioglitazone mediated activation of PPAR-γ on CIDEC and obesity related changes in mice. PLoS One 2014; 9:e106992. [PMID: 25210844 PMCID: PMC4161383 DOI: 10.1371/journal.pone.0106992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/08/2014] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Obesity is a metabolic disorder that can lead to high blood pressure, increased blood cholesterol and triglycerides, insulin resistance, and diabetes mellitus. The aim was to study the effects of pioglitazone mediated sensitization of peroxisome proliferator-activated receptor gamma (PPAR-γ) on the relationship of Cell death-inducing DFFA-like effector C (CIDEC) with obesity related changes in mice. METHODS Sixty C57B/L6 mice weighing 10-12g at 3 weeks of age were randomly divided into 3 groups. Mice in Group 1 were fed on normal diet (ND) while Group 2 mice were given high fat diet (HFD), and Group 3 mice were given high fat diet and treated with Pioglitazone (HFD+P). Body weight, length and level of blood sugar were measured weekly. Quantitative real-time PCR, fluorescence microscopy, and ELISA were performed to analyze the expression of CIDEC and PPAR-γ in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). RESULTS Body weight and length of mice increased gradually with time in all groups. Blood sugar in HFD mice started to increase significantly from the mid of late phase of obesity while pioglitazone attenuated blood sugar level in HFD+P mice. The mRNA expressions and protein levels of PPAR-γ and CIDEC genes started to increase in HFD mice as compared to ND mice and decreased gradually during the late phase of obesity in VAT. Pioglitazone enhanced the expression of PPAR-γ and CIDEC genes in HFD+P mice even during the late phase of obesity. CONCLUSION It is insinuated that VAT is associated with late phase obesity CIDEC decrease and insulin resistance, while pioglitazone enhances CIDEC through activation of PPAR-γ, increases its expression, and decreases lipolysis, hence preventing an increase of blood sugar in mice exposed to HFD.
Collapse
|
31
|
Amaro CAB, González-Cortazar M, Herrera-Ruiz M, Román-Ramos R, Aguilar-Santamaría L, Tortoriello J, Jiménez-Ferrer E. Hypoglycemic and hypotensive activity of a root extract of Smilax aristolochiifolia, standardized on N-trans-feruloyl-tyramine. Molecules 2014; 19:11366-84. [PMID: 25090124 PMCID: PMC6271314 DOI: 10.3390/molecules190811366] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/20/2022] Open
Abstract
The metabolic syndrome (MS) is a condition consisting of various metabolic abnormalities that are risk factors for developing kidney failure, cardiovascular, vascular and cerebrovascular diseases, among others. The prevalence of this syndrome shows a marked increase. The aim of this study was to investigate the pharmacological effect of Smilax aristolochiifolia root on some components of MS and obtain some of the active principle using chromatographic techniques. The compound isolated was N-trans-feruloyl tyramine NTF (1), and its structure was determined by spectroscopic and spectrometric analyses. The whole extract and the standardized fractions were able to control the weight gain around 30%; the fraction rich in NTF was able to decrease the hypertriglyceridemia by 60%. The insulin resistance decreased by approximately 40%; the same happened with blood pressure, since the values of systolic and diastolic pressure fell on average 31% and 37% respectively, to levels comparable to normal value. The treatment also had an immunomodulatory effect on the low-grade inflammation associated with obesity, since it significantly decreased the relative production of pro-inflammatory cytokines regarding anti-inflammatory cytokines, both kidney and adipose tissue. Therefore it can be concluded that the extract and fractions of Smilax aristolochiifolia root with NTF are useful to counteract some symptoms of MS in animal models.
Collapse
Affiliation(s)
- Carol Arely Botello Amaro
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, C.P. 62790 Xochitepec, Morelos, Mexico.
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, C.P. 62790 Xochitepec, Morelos, Mexico.
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, C.P. 62790 Xochitepec, Morelos, Mexico.
| | - Rubén Román-Ramos
- Departamento de Farmacología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina C.P. 09340, Iztapalapa, México D.F., Mexico.
| | - Lucia Aguilar-Santamaría
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, C.P. 62790 Xochitepec, Morelos, Mexico.
| | - Jaime Tortoriello
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, C.P. 62790 Xochitepec, Morelos, Mexico.
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, C.P. 62790 Xochitepec, Morelos, Mexico.
| |
Collapse
|
32
|
Kakinoki S, Sakai Y, Takemura T, Hanagata N, Fujisato T, Ishihara K, Yamaoka T. Gene chip/PCR-array analysis of tissue response to 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer surfaces in a mouse subcutaneous transplantation system. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1658-72. [DOI: 10.1080/09205063.2014.939917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Abstract
In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.
Collapse
|
34
|
Brosens JJ, Salker MS, Teklenburg G, Nautiyal J, Salter S, Lucas ES, Steel JH, Christian M, Chan YW, Boomsma CM, Moore JD, Hartshorne GM, Sućurović S, Mulac-Jericevic B, Heijnen CJ, Quenby S, Koerkamp MJG, Holstege FCP, Shmygol A, Macklon NS. Uterine selection of human embryos at implantation. Sci Rep 2014; 4:3894. [PMID: 24503642 PMCID: PMC3915549 DOI: 10.1038/srep03894] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/08/2014] [Indexed: 12/15/2022] Open
Abstract
Human embryos frequently harbor large-scale complex chromosomal errors that impede normal development. Affected embryos may fail to implant although many first breach the endometrial epithelium and embed in the decidualizing stroma before being rejected via mechanisms that are poorly understood. Here we show that developmentally impaired human embryos elicit an endoplasmic stress response in human decidual cells. A stress response was also evident upon in vivo exposure of mouse uteri to culture medium conditioned by low-quality human embryos. By contrast, signals emanating from developmentally competent embryos activated a focused gene network enriched in metabolic enzymes and implantation factors. We further show that trypsin, a serine protease released by pre-implantation embryos, elicits Ca2+ signaling in endometrial epithelial cells. Competent human embryos triggered short-lived oscillatory Ca2+ fluxes whereas low-quality embryos caused a heightened and prolonged Ca2+ response. Thus, distinct positive and negative mechanisms contribute to active selection of human embryos at implantation.
Collapse
Affiliation(s)
- Jan J Brosens
- Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX, UK
| | - Madhuri S Salker
- 1] Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX, UK [2] Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 ONN, UK
| | - Gijs Teklenburg
- Department for Reproductive Medicine and Gynecology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Jaya Nautiyal
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 ONN, UK
| | - Scarlett Salter
- Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX, UK
| | - Emma S Lucas
- Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX, UK
| | - Jennifer H Steel
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 ONN, UK
| | - Mark Christian
- Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX, UK
| | - Yi-Wah Chan
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Carolien M Boomsma
- Department for Reproductive Medicine and Gynecology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Jonathan D Moore
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Geraldine M Hartshorne
- Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX, UK
| | - Sandra Sućurović
- Department of Physiology and Immunology, Medical School, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Biserka Mulac-Jericevic
- Department of Physiology and Immunology, Medical School, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Cobi J Heijnen
- Department for Reproductive Medicine and Gynecology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Siobhan Quenby
- Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX, UK
| | - Marian J Groot Koerkamp
- Molecular Cancer Research, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Frank C P Holstege
- Molecular Cancer Research, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Anatoly Shmygol
- Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX, UK
| | - Nick S Macklon
- 1] Department for Reproductive Medicine and Gynecology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands [2] Division of Developmental Origins of Adult Diseases (DOHaD), University of Southampton, Coxford Road, Southampton SO16 5YA, UK
| |
Collapse
|
35
|
An Asp7Gly substitution in PPARG is associated with decreased transcriptional activation activity. PLoS One 2014; 9:e86954. [PMID: 24466299 PMCID: PMC3900691 DOI: 10.1371/journal.pone.0086954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 12/18/2013] [Indexed: 11/21/2022] Open
Abstract
As the master regulator of adipogenesis, peroxisome proliferator-activated receptor gamma (PPARG) is required for the accumulation of adipose tissue and hence contributes to obesity. A previous study showed that the substitution of +20A>G in PPARG changed the 7th amino acid from Asp to Gly, creating a mutant referred to as PPARG Asp7Gly. In this study, association analysis indicated that PPARG Asp7Gly was associated with lower body height, body weight and heart girth in cattle (P<0.05). Overexpression of PPARG in NIH3T3-L1 cells showed that the Asp7Gly substitution may cause a decrease in its adipogenic ability and the mRNA levels of CIDEC (cell death-inducing DFFA-like effector c) and aP2, which are all transcriptionally activated by PPARG during adipocyte differentiation. A dual-luciferase reporter assay was used to analyze the promoter activity of CIDEC. The results confirmed that the mutant PPARG exhibited weaker transcriptional activation activity than the wild type (P<0.05). These findings likely explain the associations between the Asp7Gly substitution and the body measurements. Additionally, the Asp7Gly mutation may be used in molecular marker assisted selection (MAS) of cattle breeding in the future.
Collapse
|
36
|
Barneda D, Frontini A, Cinti S, Christian M. Dynamic changes in lipid droplet-associated proteins in the "browning" of white adipose tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:924-33. [PMID: 23376222 DOI: 10.1016/j.bbalip.2013.01.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/18/2012] [Accepted: 01/23/2013] [Indexed: 12/30/2022]
Abstract
The morphological and functional differences between lipid droplets (LDs) in brown (BAT) and white (WAT) adipose tissues will largely be determined by their associated proteins. Analysing mRNA expression in mice fat depots we have found that most LD protein genes are expressed at higher levels in BAT, with the greatest differences observed for Cidea and Plin5. Prolonged cold exposure, which induces the appearance of brown-like adipocytes in mice WAT depots, was accompanied with the potentiation of the lipolytic machinery, with changes in ATGL, CGI-58 and G0S2 gene expression. However the major change detected in WAT was the enhancement of Cidea mRNA. Together with the increase in Cidec, it indicates that LD enlargement through LD-LD transference of fat is an important process during WAT browning. To study the dynamics of this phenotypic change, we have applied 4D confocal microscopy in differentiated 3T3-L1 cells under sustained β-adrenergic stimulation. Under these conditions the cells experienced a LD remodelling cycle, with progressive reduction on the LD size by lipolysis, followed by the formation of new LDs, which were subjected to an enlargement process, likely to be CIDE-triggered, until the cell returned to the basal state. This transformation would be triggered by the activation of a thermogenic futile cycle of lipolysis/lipogenesis and could facilitate the molecular mechanism for the unilocular to multilocular transformation during WAT browning. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.
Collapse
Affiliation(s)
- David Barneda
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 ONN, UK
| | | | | | | |
Collapse
|
37
|
Donigan KA, Tuck D, Schulz V, Sweasy JB. DNA polymerase β variant Ile260Met generates global gene expression changes related to cellular transformation. Mutagenesis 2012; 27:683-91. [PMID: 22914675 DOI: 10.1093/mutage/ges034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Maintenance of genomic stability is essential for cellular survival. The base excision repair (BER) pathway is critical for resolution of abasic sites and damaged bases, estimated to occur 20,000 times in cells daily. DNA polymerase β (Pol β) participates in BER by filling DNA gaps that result from excision of damaged bases. Approximately 30% of human tumours express Pol β variants, many of which have altered fidelity and activity in vitro and when expressed, induce cellular transformation. The prostate tumour variant Ile260Met transforms cells and is a sequence-context-dependent mutator. To test the hypothesis that mutations induced in vivo by Ile260Met lead to cellular transformation, we characterized the genome-wide expression profile of a clone expressing Ile260Met as compared with its non-induced counterpart. Using a 1.5-fold minimum cut-off with a false discovery rate (FDR) of <0.05, 912 genes exhibit altered expression. Microarray results were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and revealed unique expression profiles in other clones. Gene Ontology (GO) clusters were analyzed using Ingenuity Pathways Analysis to identify altered gene networks and associated nodes. We determined three nodes of interest that exhibited dysfunctional regulation of downstream gene products without themselves having altered expression. One node, peroxisome proliferator-activated protein γ (PPARG), was sequenced and found to contain a coding region mutation in PPARG2 only in transformed cells. Further analysis suggests that this mutation leads to dominant negative activity of PPARG2. PPARG is a transcription factor implicated to have tumour suppressor function. This suggests that the PPARG2 mutant may have played a role in driving cellular transformation. We conclude that PPARG induces cellular transformation by a mutational mechanism.
Collapse
Affiliation(s)
- Katherine A Donigan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
38
|
Wen J, Friedman JR. miR-122 regulates hepatic lipid metabolism and tumor suppression. J Clin Invest 2012; 122:2773-6. [PMID: 22820284 DOI: 10.1172/jci63966] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this issue of JCI, two independent groups describe the effects of germline and liver-specific deletion of Mir122a, the predominant liver miRNA. Their findings reveal a critical role for miR-122 in fat and cholesterol metabolism but suggest that other metabolic actions of the liver are independent of miR-122. Knockout mice also displayed hepatic inflammation, fibrosis, and a high incidence of hepatocellular carcinoma, suggesting that miR-122 has a tumor suppressor role in hepatocytes.
Collapse
|
39
|
Zhou L, Xu L, Ye J, Li D, Wang W, Li X, Wu L, Wang H, Guan F, Li P. Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology 2012; 56:95-107. [PMID: 22278400 DOI: 10.1002/hep.25611] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/17/2012] [Indexed: 01/09/2023]
Abstract
UNLABELLED High levels of dietary saturated fat have been closely associated with the development of hepatic steatosis, but the factors that mediate this process remain elusive. Here, we observed that the level of cell death-inducing DNA fragmentation factor-alpha-like effector a (Cidea) expression was highly correlated with the severity of hepatic steatosis in humans. Overexpression of Cidea in mouse liver resulted in increased hepatic lipid accumulation and the formation of large lipid droplets (LDs). In contrast, mice with a Cidea deficiency had decreased lipid accumulation and alleviated hepatic steatosis when they received a high-fat-diet feeding or in ob/ob mice. Furthermore, the knockdown of Cidea in livers of ob/ob mice resulted in significantly reduced hepatic lipid accumulation and smaller LDs. Importantly, we observed that Cidea expression in hepatocytes was specifically induced by saturated fatty acids (FAs), and such induction was reduced when sterol response element-binding protein (SREBP)1c was knocked down. In contrast, the overexpression of SREBP1c restored the saturated FA-induced expression of Cidea. In addition, we observed that the stability of Cidea protein in hepatocytes increased significantly in response to treatment with FAs. CONCLUSION Cidea plays critical roles in promoting hepatic lipid accumulation and in the development of hepatic steatosis by acting as a sensor that responds to diets that contain FAs.
Collapse
Affiliation(s)
- Linkang Zhou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Karbowska J, Kochan Z. Intermittent fasting up-regulates Fsp27/Cidec gene expression in white adipose tissue. Nutrition 2011; 28:294-9. [PMID: 21996045 DOI: 10.1016/j.nut.2011.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/08/2011] [Accepted: 06/28/2011] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Fat-specific protein of 27 kDa (FSP27) is a novel lipid droplet protein that promotes triacylglycerol storage in white adipose tissue (WAT). The regulation of the Fsp27 gene expression in WAT is largely unknown. We investigated the nutritional regulation of FSP27 in WAT. METHODS The effects of intermittent fasting (48 d, eight cycles of 3-d fasting and 3-d refeeding), caloric restriction (48 d), fasting-refeeding (3-d fasting and 3-d refeeding), and fasting (3 d) on mRNA expression of FSP27, peroxisome proliferator-activated receptor γ (PPARγ2), CCAAT/enhancer binding protein α (C/EBPα), and M isoform of carnitine palmitoyltransferase 1 (a positive control for PPARγ activation) in epididymal WAT and on serum triacylglycerol, insulin, and leptin levels were determined in Wistar rats. We also determined the effects of PPARγ activation by rosiglitazone or pioglitazone on FSP27 mRNA levels in primary rat adipocytes. RESULTS Long-term intermittent fasting, in contrast to other dietary manipulations, significantly up-regulated Fsp27 gene expression in WAT. Moreover, in rats subjected to intermittent fasting, serum insulin levels were elevated; PPARγ2 and C/EBPα mRNA expression in WAT was increased, and there was a positive correlation of Fsp27 gene expression with PPARγ2 and C/EBPα mRNA levels. FSP27 mRNA expression was also increased in adipocytes treated with PPARγ agonists. CONCLUSION Our study demonstrates that the transcription of the Fsp27 gene in adipose tissue may be induced in response to nutritional stimuli. Furthermore, PPARγ2, C/EBPα, and insulin may be involved in the nutritional regulation of FSP27. Thus intermittent fasting, despite lower caloric intake, may promote triacylglycerol deposition in WAT by increasing the expression of genes involved in lipid storage, such as Fsp27.
Collapse
Affiliation(s)
- Joanna Karbowska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
| | | |
Collapse
|
41
|
Ranjit S, Boutet E, Gandhi P, Prot M, Tamori Y, Chawla A, Greenberg AS, Puri V, Czech MP. Regulation of fat specific protein 27 by isoproterenol and TNF-α to control lipolysis in murine adipocytes. J Lipid Res 2010; 52:221-36. [PMID: 21097823 DOI: 10.1194/jlr.m008771] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The lipid droplet-associated fat specific protein 27 (FSP27) suppresses lipolysis and thereby enhances triglyceride accumulation in adipocytes. We and others have recently found FSP27 to be a remarkably short-lived protein (half-life, 15 min) due to its rapid ubiquitination and proteasomal degradation. Thus, we tested the hypothesis that lipolytic agents such as tumor necrosis factor-α (TNF-α) and isoproterenol modulate FSP27 levels to regulate FFA release. Consistent with this concept, we showed that the lipolytic actions of TNF-α, interleukin-1β (IL-1β), and IFN-γ are accompanied by marked decreases in FSP27 expression and lipid droplet size in mouse adipocytes. Similar depletion of FSP27 using short interfering RNA (siRNA) mimicked the lipolysis-enhancing effect of TNF-α, while maintaining stable FSP27 levels using expression of hemagglutinin epitope-tagged FSP27 blocked TNF-α-mediated lipolysis. In contrast, we show the robust lipolytic action of isoproterenol is paradoxically associated with increases in FSP27 levels and a delayed degradation rate corresponding to decreased ubiquitination. This catecholamine-mediated increase in FSP27 abundance, probably a feedback mechanism for restraining excessive lipolysis by catecholamines, is mimicked by forskolin or 8-bromo-cAMP treatment and is prevented by the protein kinase A (PKA) inhibitor KT5720 or by PKA depletion using siRNA. Taken together, these data identify the regulation of FSP27 as an important intermediate in the mechanism of lipolysis in adipocytes in response to TNF-α and isoproterenol.
Collapse
Affiliation(s)
- Srijana Ranjit
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li F, Gu Y, Dong W, Li H, Zhang L, Li N, Li W, Zhang L, Song Y, Jiang L, Ye J, Li Q. Cell death-inducing DFF45-like effector, a lipid droplet-associated protein, might be involved in the differentiation of human adipocytes. FEBS J 2010; 277:4173-83. [PMID: 20945533 DOI: 10.1111/j.1742-4658.2010.07806.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell death-inducing DFF45-like effector (CIDE) family proteins, including cell death-inducing DFF45-like effector A (CIDEA), cell death-inducing DFF45-like effector B (CIDEB) and cell death-inducing DFF45-like effector C (CIDEC) [fat-specific protein of 27 kDa in rodent (FSP27) in rodents], were originally identified by their sequence homology to the N-terminal region of DNA fragmentation factor DFF40/45. Recent reports have revealed that CIDE family proteins play important roles in lipid metabolism. Several studies involving knockdown mice revealed that FSP27 is a lipid droplet-targeting protein that can promote the formation of lipid droplets. However, the detailed roles of human CIDEC in the differentiation of human adipocytes remain unknown. In the present study, we found that the expression of CIDEC increased during the differentiation of fetal adipose tissues, but decreased during the de-differentiation of adipocytic tumors, suggesting that the expression of CIDEC should be positively correlated with the differentiation of adipocytes. Furthermore, we verified that human CIDEC was localized on the surface of lipid droplets. Using human primary pre-adipocytes, we confirmed that the expression of CIDEC was elevated during the differentiation of pre-adipocytes, and knockdown of CIDEC in human primary pre-adipocytes resulted in differentiation defects. These data demonstrate that CIDEC is essential for the differentiation of adipose tissue. Together with regulating adipocyte lipid metabolism, CIDEC should be a potential target for regulating adipocyte differentiation and reducing fat cell mass.
Collapse
Affiliation(s)
- Fanfan Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yonezawa T, Kurata R, Kimura M, Inoko H. Which CIDE are you on? Apoptosis and energy metabolism. MOLECULAR BIOSYSTEMS 2010; 7:91-100. [PMID: 20967381 DOI: 10.1039/c0mb00099j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Around 1998, cell death-inducing DNA fragmentation factor-alpha (DFFA)-like effector (CIDE) proteins including CIDEA, CIDEB and CIDEC/fat specific protein 27 (Fsp27) were first identified by their sequence homology with the N-terminal domain of the DNA fragmentation factor (DFF). Indeed, in vitro analysis revealed that all three CIDE proteins are involved in apoptosis. However, recent gene-targeting studies have provided novel insights into the physiological function of CIDE proteins. Mice deficient in each CIDE protein exhibit lean phenotypes, a reduction of lipid droplet size in white adipose tissue and increased metabolic rate. Thus, all CIDE proteins play an important role in energy metabolism and lipid droplet formation. More recently, a glycoproteomics approach has shown that post-translational regulation of CIDE proteins via glycosylation modulates transforming growth factor (TGF)-beta 1-dependent apoptosis. Another recent study using mouse embryonic fibroblasts derived from CIDEA-deficient mice revealed that 5'AMP-activated protein kinase (AMPK) activity is regulated by CIDEA-mediated ubiquitin-dependent proteasomal degradation via a protein interaction with the AMPK beta subunit. Even after a decade of study, the physiological roles of CIDE proteins have still not been completely elucidated. This review aims to shed light on the novel functions of CIDE proteins and their physiological roles.
Collapse
Affiliation(s)
- Tomo Yonezawa
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Bohseidai, Ishehara, Kanagawa 259-1193, Japan.
| | | | | | | |
Collapse
|
44
|
Jeninga EH, Kalkhoven E. Central players in inherited lipodystrophies. Trends Endocrinol Metab 2010; 21:581-8. [PMID: 20621503 DOI: 10.1016/j.tem.2010.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 06/11/2010] [Accepted: 06/11/2010] [Indexed: 02/02/2023]
Abstract
Common obesity and inherited lipodystrophies, rare disorders characterized by a partial (familial partial lipodystrophy; FPLD) or complete (congenital generalized lipodystrophy; CGL) lack of adipose tissue, are both associated with metabolic complications such as insulin resistance and type 2 diabetes. Mutations in the transcription factor peroxisome proliferator activated receptor (PPAR)γ and a number of its downstream target genes result in lipodystrophy. We hypothesize that signalling by another transcription factor, sterol response element binding protein (SREBP)1c, also needs to be intact to prevent lipodystrophy. The future challenge is to understand how inactivation of such central players or of their upstream regulators or downstream effectors can affect adipose tissue in a depot-specific fashion.
Collapse
Affiliation(s)
- Ellen H Jeninga
- Department of Metabolic and Endocrine Diseases, UMC Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | |
Collapse
|
45
|
Rakhshandehroo M, Knoch B, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res 2010; 2010:612089. [PMID: 20936127 PMCID: PMC2948931 DOI: 10.1155/2010/612089] [Citation(s) in RCA: 565] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/09/2010] [Indexed: 12/11/2022] Open
Abstract
The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.
Collapse
Affiliation(s)
- Maryam Rakhshandehroo
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Bianca Knoch
- Food, Metabolism & Microbiology, Food & Textiles Group, AgResearch, Palmerston North 4442, New Zealand
- Institute of Food, Nutrition & Human Health, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Michael Müller
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| |
Collapse
|
46
|
Wu Y, Ge C, Zeng W, Zhang C. Induced multilineage differentiation of chicken embryonic germ cells via embryoid body formation. Stem Cells Dev 2010; 19:195-202. [PMID: 19548770 DOI: 10.1089/scd.2008.0383] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although the pluripotent and proliferative capacity of embryonic germ (EG) cells is thought to be equivalent to that of embryonic stem (ES) cells, there has been far less attention focused on the potential use of EG cells for applications in developing novel strategies of tissue transplantation in the treatment of degenerative diseases. In this study, EG cells were derived from primordial germ cells (PGCs) of genital ridges of 4-day-old chicken embryos. These cells satisfied the criteria previously used for defining chicken EG cells by using the expression of markers characteristic to ES cells. When injected subcutaneously, chicken EG cells could form teratomas that enable differentiation into a wide range of tissue types of all three primary cell lineages including neural cells, cartilage, forming bone, adipocytes, blood vessels, smooth muscle, and secretory epithelia in the recipients. Furthermore, cells in embryoid bodies (EBs) expressed lineage-specific markers of three germ layers and could be induced to differentiate into more advanced stages of various committed cell types, including dopamine and cholinergic neurons, astrocytes, oligodendrocytes, adipocytes, and hepatocytes, which were demonstrated by immunocytochemical staining or RT-PCR analysis. These findings support the multilineage differentiation capability of chicken pluripotent EG cells, thus confirming the presumption that chicken embryos may be used as a potential model for better understanding the mechanisms of tissue-specific differentiation and regeneration that will help to devise strategies based on the transplantation of stem cell-derived tissues for restoring function to damaged or diseased tissues.
Collapse
Affiliation(s)
- Yanqun Wu
- Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of the Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Shen YN, Kim YM, Yun CH, Moon YS, Kim SH. Transcriptional activation of pref-1 by E2F1 in 3T3 L1 cells. BMB Rep 2010; 42:691-6. [PMID: 19874716 DOI: 10.5483/bmbrep.2009.42.10.691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The E2F gene family appears to regulate the proliferation and differentiation of events that are required for adipogenesis. Pref-1 is a transmembrane protein that inhibits adipocyte differentiation in 3T3-L1 cells. In this study, we found that the expression of pref-1 is regulated by the transcription factor E2F1. The expression of pref-1 and E2F1 was strongly induced in preadipocytes and at the late differentiation stage. Using luciferase reporter assay, ChIP assay and EMSA, we found that the -211/-194 region of the pref-1 promoter is essential for the binding of E2F1 as well as E2F1-dependent transcriptional activation. Knockdown of E2F1 reduced both pref-1 promoter activity and the level of pref-1 mRNA. Taken together, our data suggest that transcriptional activation of pref-1 is stimulated by E2F1 protein in adipocytes.
Collapse
Affiliation(s)
- Yan Nan Shen
- Department of Biology, Kyung Hee University, Seoul, Korea
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Abstract
PURPOSE OF REVIEW The cell death-inducing DFF45-like effector (CIDE) family proteins, comprising three members, Cidea, Cideb, and Fsp27 (Cidec), have emerged as important regulators for various aspects of metabolism. This review summarizes our current understanding about the physiological roles of CIDE proteins, their transcriptional regulations, and their underlying mechanism in controlling the development of metabolic disorders. RECENT FINDINGS Animals with deficiency in Cidea, Cideb, and Fsp27 all display lean phenotypes with higher energy expenditure and are resistant to diet-induced obesity and insulin resistance. CIDE proteins, localized to lipid droplets and endoplasmic reticulum, control lipid metabolism in adipocytes and hepatocytes through regulating AMP-activated protein kinase stability and influencing lipogenesis or lipid droplet formation. The expression of CIDE proteins is controlled at both transcriptional and posttranslational levels and positively correlates with the development of obesity, liver steatosis, and insulin sensitivity in both rodents and humans. SUMMARY CIDE proteins are important regulators of energy homeostasis and are closely linked to the development of metabolic disorders including obesity, diabetes, and liver steatosis. They may serve as potential molecular targets for the screening of therapeutic drugs for these diseases.
Collapse
Affiliation(s)
- Jingyi Gong
- Protein Science Laboratory of Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|