1
|
Chen L, Wang R, Hu X, Wang D, Wang Y, Xue R, Wu M, Li H. Overexpression of wheat C2H2 zinc finger protein transcription factor TaZAT8-5B enhances drought tolerance and root growth in Arabidopsis thaliana. PLANTA 2024; 260:126. [PMID: 39466433 DOI: 10.1007/s00425-024-04559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
MAIN CONCLUSION TaZAT8-5B, a C2H2 zinc finger protein transcription factor, positively regulates drought tolerance in transgenic Arabidopsis. It promotes root growth under drought stress via the Aux/IAA-ARF module in the auxin signaling pathway. C2H2 zinc finger proteins (C2H2-ZFPs) represent the largest but relatively unexplored family of transcription factors in plants. This is particularly evident in wheat, where the functions of only a few C2H2-ZFP genes have been confirmed. In this study, we identified a novel C2H2-ZFP gene, TaZAT8-5B. This gene shows high expression in roots and flowers and is significantly induced by heat, drought, and salt stress. Under drought stress, overexpressing TaZAT8-5B in Arabidopsis resulted in increased proline content and superoxide dismutase (SOD) activity in leaves. It also led to reduced stomatal aperture and water loss, while inducing the expression of P5CS1, RD29A, and DREB1A. Consequently, it alleviated drought stress-induced malondialdehyde (MDA) accumulation and improved drought tolerance. Additionally, TaZAT8-5B promoted lateral root initiation under mannitol stress and enhanced both lateral and primary root growth under long-term drought stress. Moreover, TaZAT8-5B was induced by indole-3-acetic acid (IAA). Overexpressing TaZAT8-5B under drought stress significantly inhibited the expression of auxin signaling negative regulatory genes IAA12 and IAA14. Conversely, downstream genes (ARF7, LBD16, LBD18, and CDKA1) of IAA14 and IAA12 were upregulated in TaZAT8-5B overexpressing plants compared to wild-type (WT) plants. These findings suggest that TaZAT8-5B regulates root growth and development under drought stress via the Aux/IAA-ARF module in the auxin signaling pathway. In summary, this study elucidates the role of TaZAT8-5B in enhancing drought tolerance and its involvement in root growth and development through the auxin signaling pathway. These findings offer new insights into the functional analysis of homologous genes of TaZAT8-5B, particularly in Gramineae species.
Collapse
Affiliation(s)
- Lulu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Run Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoqing Hu
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dan Wang
- Puyang Academy of Agricultural and Forestry Sciences, Puyang, 457000, China
| | - Yuexia Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruili Xue
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Mingzhu Wu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| | - Hua Li
- College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Cheng L, Zhao S, Li F, Ni X, Yang N, Yu J, Wang X. Overexpression of EgrZFP6 from Eucalyptus grandis increases ROS levels by downregulating photosynthesis in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108972. [PMID: 39067106 DOI: 10.1016/j.plaphy.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
In plants, abiotic stressors are frequently encountered during growth and development. To counteract these challenges, zinc finger proteins play a critical role as transcriptional regulators. The EgrZFP6 gene, which codes for a zinc finger protein of the C2H2 type, was shown to be considerably elevated in the leaves of Eucalyptus grandis seedlings in the current study when they were subjected to a variety of abiotic stimuli, including heat, salinity, cold, and drought. Analysis conducted later showed that in EgrZFP6 transgenic Arabidopsis thaliana, EgrZFP6 was essential for causing hyponastic leaves and controlling the stress response. Furthermore, the transgenic plants showed elevated levels of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide (H2O2). Additionally, in EgrZFP6-overexpressing plants, transcriptome sequencing analysis demonstrated a considerable downregulation of many genes involved in photosynthesis, decreasing electron transport efficiency and perhaps promoting the buildup of ROS. Auxin levels were higher and auxin signal transduction was compromised in the transgenic plants. Stress-related genes were also upregulated in Arabidopsis as a result of EgrZFP6 overexpression. It is hypothesized that EgrZFP6 can downregulate photosynthesis, which would cause the production of ROS in chloroplasts. As a result, this protein may alter plant stress responses and leaf morphology via a retrograde mechanism driven by ROS. These results highlight the significance of zinc finger proteins in this sophisticated process and advance our understanding of the complex link between gene regulation, ROS signaling, and plant stress responses.
Collapse
Affiliation(s)
- Longjun Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Shuang Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Fangyan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaoxiang Ni
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ning Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jianfeng Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
3
|
Deng H, Zhang Y, Manzoor MA, Sabir IA, Han B, Song C. Genome-scale identification, expression and evolution analysis of B-box members in Dendrobium huoshanense. Heliyon 2024; 10:e32773. [PMID: 38975129 PMCID: PMC11225821 DOI: 10.1016/j.heliyon.2024.e32773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 07/09/2024] Open
Abstract
B-box (BBX) proteins have been recognized as vital determinants in plant development, morphogenesis, and adaptive responses to a myriad of environmental stresses. These zinc-finger proteins play a pivotal role in various biological processes. Their influence spans photomorphogenesis, the regulation of flowering, and imparting resilience to a wide array of challenges, encompassing both biotic and abiotic factors. Chromosome localization, gene structure and conserved motifs, phylogenetic analysis, collinearity analysis, expression profiling, fluorescence quantitative analysis, and tobacco transient transformation methods were used for functional localization and expression pattern analysis of the DhBBX gene. A total of 23 DhBBX members were identified from Dendrobium huoshanense. Subsequent phylogenetic evaluations effectively segregated these genes into five discrete evolutionary subsets. The predictions of subcellular localizations revealed that all these proteins were localized in the nucleus. The genetic composition and patterns showed that the majority of these genes consisted of several exons, with a few variations that could be attributed to transposon insertion. A comprehensive analysis using qRT-PCR was conducted to unravel the expression patterns of these genes in D. huoshanense, with a specific concentration on their responses to various hormone treatments and cold stress. Subcellular localization reveals that DhBBX21 and DhBBX9 are located in the nucleus. Our results provide a deep comprehension of the complex regulatory mechanisms of BBXs in response to various environmental and hormonal stimuli. These discoveries encourage further detailed and focused investigations into the operational dynamics of the BBX gene family in a wider range of plant species.
Collapse
Affiliation(s)
- Hui Deng
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 201109, China
| | - Irfan Ali Sabir
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Bangxing Han
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| |
Collapse
|
4
|
Liu H, Liu Y, Liu F, Zeng L, Xu Y, Jin Q, Wang Y. Genome-wide identification of the Q-type C2H2 zinc finger protein gene family and expression analysis under abiotic stress in lotus (Nelumbo nucifera G.). BMC Genomics 2024; 25:648. [PMID: 38943098 PMCID: PMC11214253 DOI: 10.1186/s12864-024-10546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Lotus (Nelumbo nucifera G.) is an important aquatic plant with high ornamental, economic, cultural and ecological values, but abiotic stresses seriously affect its growth and distribution. Q-type C2H2 zinc finger proteins (ZFPs) play an important role in plant growth development and environmental stress responses. Although the Q-type C2H2 gene family has been identified in some plants, limited reports has been carried out it in lotus. RESULTS In this study, we identified 45 Q-type NnZFP members in lotus. Based on the phylogenetic tree, these Q-type NnZFP gene family members were divided into 4 groups, including C1-1i, C1-2i, C1-3i and C1-4i. Promoter cis-acting elements analysis indicated that most Q-type NnZFP gene family members in lotus were associated with response to abiotic stresses. Through collinearity analyses, no tandem duplication gene pairs and 14 segmental duplication gene pairs were identified, which showed that duplication events might play a key role in the expansion of the Q-type NnZFP gene family. The synteny results suggested that 54 and 28 Q-type NnZFP genes were orthologous to Arabidopsis and rice, respectively. The expression patterns of these Q-type NnZFP genes revealed that 30 Q-type NnZFP genes were expressed in at least one lotus tissue. Nn5g30550 showed relatively higher expression levels in all tested tissues. 12 genes were randomly selected with at least one gene from each phylogenetic clade, and the expression of these selected genes were confirmed by qRT-PCR (quantitative real-time polymerase chain reaction). The results indicated that Q-type NnZFP genes were extensively involved in cadmium, drought, salt and cold stresses responses. Among them, 11 genes responded to at least three different stress treatments, especially Nn2g12894, which induced by all four treatments. CONCLUSIONS These results could increase our understanding of the characterization of the Q-type NnZFP gene family and provide relevant information for further functional analysis of Q-type NnZFP genes in plant development, and abiotic stress tolerance in lotus.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yidan Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Fangyu Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lihong Zeng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, Jiangsu Province, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
5
|
Wang Y, Wang H, Zhang L, Wang Y, Wei S, Wang L. Mechanism Analysis of OsZF8-Mediated Regulation of Rice Resistance to Sheath Blight. Int J Mol Sci 2024; 25:5787. [PMID: 38891973 PMCID: PMC11171851 DOI: 10.3390/ijms25115787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Transcription factors are key molecules involved in transcriptional and post-transcriptional regulation in plants and play an important regulatory role in resisting biological stress. In this study, we identified a regulatory factor, OsZF8, mediating rice response to Rhizoctonia solani (R. solani) AG1-IA infection. The expression of OsZF8 affects R. solani rice infection. OsZF8 knockout and overexpressed rice plants were constructed, and the phenotypes of mutant and wild-type (WT) plants showed that OsZF8 negatively regulated rice resistance to rice sheath blight. However, it was speculated that OsZF8 plays a regulatory role at the protein level. The interacting protein PRB1 of OsZF8 was screened using the yeast two-hybrid and bimolecular fluorescence complementation test. The results showed that OsZF8 effectively inhibited PRB1-induced cell death in tobacco cells, and molecular docking results showed that PRB1 had a strong binding effect with OsZF8. Further, the binding ability of OsZF8-PRB1 to ergosterol was significantly reduced when compared with the PRB1 protein. These findings provide new insights into elucidating the mechanism of rice resistance to rice sheath blight.
Collapse
Affiliation(s)
- Yan Wang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (H.W.); (L.Z.); (Y.W.)
| | - Haining Wang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (H.W.); (L.Z.); (Y.W.)
| | - Liangkun Zhang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (H.W.); (L.Z.); (Y.W.)
| | - Yiming Wang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (H.W.); (L.Z.); (Y.W.)
| | - Songhong Wei
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (H.W.); (L.Z.); (Y.W.)
| | - Lili Wang
- Liaoning Academy of Agricultural Sciences, Shenyang 110101, China
| |
Collapse
|
6
|
Thapa R, Tabien RE, Thomson MJ, Septiningsih EM. Genetic factors underlying anaerobic germination in rice: Genome-wide association study and transcriptomic analysis. THE PLANT GENOME 2024; 17:e20261. [PMID: 36169134 DOI: 10.1002/tpg2.20261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The success of rice (Oryza sativa L.) germination and survival under submerged conditions is mainly determined by the rapid growth of the coleoptile to reach the water surface. Previous reports have shown the presence of genetic variability within rice accessions in the levels of flooding tolerance during germination or anaerobic germination (AG). Although many studies have focused on the physiological mechanisms of oxygen stress, few studies have explored the breadth of natural variation in AG tolerance-related traits in rice. In this study, we evaluated the coleoptile lengths of a geographically diverse rice panel of 241 accessions, including global accessions along with elite breeding lines and released cultivars from the United States, under the normal and flooded conditions in laboratory and greenhouse environments. A genome-wide association study (GWAS) was performed using a 7K single-nucleotide polymorphism (SNP) array and the phenotypic data of normal coleoptile length, flooded coleoptile length, flooding tolerance index, and survival at 14 d after seeding (DAS). Out of the 30 significant GWAS quantitative trait loci (QTL) regions identified, 14 colocalized with previously identified candidate genes of AG tolerance, whereas 16 were potentially novel. Two rice accessions showing contrasting phenotypic responses to AG stress were selected for the transcriptomics study. The combined approach of GWAS and transcriptomics analysis identified 77 potential candidate genes related to AG tolerance. The findings of our study may assist rice improvement programs in developing rice cultivars with robust tolerance under flooding stress during germination and the early seedling stage.
Collapse
Affiliation(s)
- Ranjita Thapa
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell Univ., Ithaca, NY, 14853, USA
| | | | - Michael J Thomson
- Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843, USA
| | | |
Collapse
|
7
|
De Pascali M, Greco D, Vergine M, Carluccio G, De Bellis L, Luvisi A. A Physiological and Molecular Focus on the Resistance of "Filippo Ceo" Almond Tree to Xylella fastidiosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:576. [PMID: 38475423 DOI: 10.3390/plants13050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The impact of Xylella fastidiosa (Xf) subsp. pauca on the environment and economy of Southern Italy has been devastating. To restore the landscape and support the local economy, introducing new crops is crucial for restoring destroyed olive groves, and the almond tree (Prunus dulcis Mill. D. A. Webb) could be a promising candidate. This work focused on the resistance of the cultivar "Filippo Ceo" to Xf and evaluated its physiological and molecular responses to individual stresses (drought or pathogen stress) and combined stress factors under field conditions over three seasons. Filippo Ceo showed a low pathogen concentration (≈103 CFU mL-1) and a lack of almond leaf scorch symptoms. Physiologically, an excellent plant water status was observed (RWC 82-89%) regardless of the stress conditions, which was associated with an increased proline content compared to that of the control plants, particularly in response to Xf stress (≈8-fold). The plant's response did not lead to a gene modulation that was specific to different stress factors but seemed more indistinct: upregulation of the LEA and DHN gene transcripts by Xf was observed, while the PR transcript was upregulated by drought stress. In addition, the genes encoding the transcription factors (TFs) were differentially induced by stress conditions. Filippo Ceo could be an excellent cultivar for coexistence with Xf subps. pauca, confirming its resistance to both water stress and the pathogen, although this similar health status was achieved differently due to transcriptional reprogramming that results in the modulation of genes directly or indirectly involved in defence strategies.
Collapse
Affiliation(s)
- Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Giambattista Carluccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
8
|
Bouard W, Ouellet F, Houde M. Modulation of the wheat transcriptome by TaZFP13D under well-watered and drought conditions. PLANT MOLECULAR BIOLOGY 2024; 114:16. [PMID: 38332456 PMCID: PMC10853348 DOI: 10.1007/s11103-023-01403-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 02/10/2024]
Abstract
Maintaining global food security in the context of climate changes will be an important challenge in the next century. Improving abiotic stress tolerance of major crops such as wheat can contribute to this goal. This can be achieved by the identification of the genes involved and their use to develop tools for breeding programs aiming to generate better adapted cultivars. Recently, we identified the wheat TaZFP13D gene encoding Zinc Finger Protein 13D as a new gene improving water-stress tolerance. The current work analyzes the TaZFP13D-dependent transcriptome modifications that occur in well-watered and dehydration conditions to better understand its function during normal growth and during drought. Plants that overexpress TaZFP13D have a higher biomass under well-watered conditions, indicating a positive effect of the protein on growth. Survival rate and stress recovery after a severe drought stress are improved compared to wild-type plants. The latter is likely due the higher activity of key antioxidant enzymes and concomitant reduction of drought-induced oxidative damage. Conversely, down-regulation of TaZFP13D decreases drought tolerance and protection against drought-induced oxidative damage. RNA-Seq transcriptome analysis identified many genes regulated by TaZFP13D that are known to improve drought tolerance. The analysis also revealed several genes involved in the photosynthetic electron transfer chain known to improve photosynthetic efficiency and chloroplast protection against drought-induced ROS damage. This study highlights the important role of TaZFP13D in wheat drought tolerance, contributes to unravel the complex regulation governed by TaZFPs, and suggests that it could be a promising marker to select wheat cultivars with higher drought tolerance.
Collapse
Affiliation(s)
- William Bouard
- Département des Sciences biologiques, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - François Ouellet
- Département des Sciences biologiques, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada
| | - Mario Houde
- Département des Sciences biologiques, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|
9
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
10
|
Hu S, Xie B, Hou Y, Zhao L, Zheng Y, Jin P. Postharvest 24-epibrassinolide treatment improves chilling resistance of peach fruit via PpHDT1 modulating brassinosteroid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108116. [PMID: 39491268 DOI: 10.1016/j.plaphy.2023.108116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Brassinosteroids (BRs) exhibit a positive effect on facilitating chilling resistance in fruits and vegetables. However, the change and regulatory mechanism of BR metabolism in fruits and vegetables are poorly understood. This study aimed to explore the underlying relationship among chilling injury (CI), BR metabolism and regulatory factor PpHDT1. The results showed that exogenous 24-epibrassinolide (EBR) retarded peaches CI, reduced endogenous brassinolide (BL) accumulation, repressed the transcriptions of BR synthesis-related genes, promoted expression of BR signal-related genes. The results of molecular assays in vivo demonstrated that PpHDT1 down-regulated BR synthesis gene PpDWF4 and up-regulated BR signal transduction gene PpBZR1. Moreover, EBR treatment enhanced PpHDT1 expression, revealing that EBR treatment might alleviate peaches CI through PpHDT1 modulating BL metabolism and signal pathway. Our study provides a new insight into the underlying mechanism of EBR on regulating chilling resistance in postharvest peaches.
Collapse
Affiliation(s)
- Shunqing Hu
- Shandong Institute of Pomology, Taian, 271000, PR China
| | - Bing Xie
- College of Food Science and Technology, Tarim University, Alaer, 843300, PR China
| | - Yuanyuan Hou
- College of Life Sciences and Technology, Xinjiang University, Urumqi, 830046, PR China
| | - Liangyi Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
11
|
Zhao S, Zhang Q, Xiao W, Chen D, Hu J, Gao N, Huang M, Ye X. Comparative transcriptome analysis reveals key genes and coordinated mechanisms in two rice cultivars differing in cadmium accumulation. CHEMOSPHERE 2023; 338:139489. [PMID: 37451631 DOI: 10.1016/j.chemosphere.2023.139489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Although Cd accumulation varies among rice varieties is recognized, the underlying mechanisms are not well clarified. In this study, comparative transcriptome analysis were performed by hydroponic culture system with two rice varieties, Y1540 (high Cd accumulator) and Y15 (low Cd accumulator) under 20 μM Cd stress. Results revealed 17,320 differentially expressed genes (DEGs) in roots of Y15 (7,655 upregulated and 9,665 downregulated) and 17,386 DEGs in roots of Y1540 (8,823 upregulated and 8,563 downregulated) expose to 20 μM Cd stress. Gene ontology (GO) analysis enriched 24 and 26 terms in Y15 and Y1540 respectively, including 23 common terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed 27 and 28 significant pathways in Y15 and Y1540 respectively, with 19 common pathways. Different responses to Cd stress between cultivars were not only reflected in differently enriched GO terms and KEGG pathways but also in different DEGs of 23 common GO terms and significant sequences represented by p-values of 19 common KEGG pathways. Both cultivars resist Cd through common processes with different weights; hence glutathione metabolism, mineral absorption, biosynthesis of secondary metabolites, and degradation of aromatic compounds could be playing a more important role in Y1540, whereas ribosome biogenesis in eukaryotes, mismatch repair, aminoacyl-tRNA biosynthesis, and the cell cycle maybe playing a more important role in Y15. Weighted gene co-expression network analysis (WGCNA) showed that five and three modules were clustered in Y15 and Y1540, respectively, with yellow and brown modules in Y15 and brown modules in Y1540 being significantly related to Cd stress. Further analysis showed that most of hub genes in Y15 were related to signal transduction or transcription factors, while most of hub genes in Y1540 were related to binding, metabolic, and secondary metabolic processes, which demonstrated their different response patterns at transcriptomic level to Cd stress.
Collapse
Affiliation(s)
- Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
12
|
Singh V, Gupta K, Singh S, Jain M, Garg R. Unravelling the molecular mechanism underlying drought stress response in chickpea via integrated multi-omics analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1156606. [PMID: 37287713 PMCID: PMC10242046 DOI: 10.3389/fpls.2023.1156606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023]
Abstract
Drought stress affects growth and productivity significantly in chickpea. An integrated multi-omics analysis can provide a better molecular-level understanding of drought stress tolerance. In the present study, comparative transcriptome, proteome and metabolome analyses of two chickpea genotypes with contrasting responses to drought stress, ICC 4958 (drought-tolerant, DT) and ICC 1882 (drought-sensitive, DS), was performed to gain insights into the molecular mechanisms underlying drought stress response/tolerance. Pathway enrichment analysis of differentially abundant transcripts and proteins suggested the involvement of glycolysis/gluconeogenesis, galactose metabolism, and starch and sucrose metabolism in the DT genotype. An integrated multi-omics analysis of transcriptome, proteome and metabolome data revealed co-expressed genes, proteins and metabolites involved in phosphatidylinositol signaling, glutathione metabolism and glycolysis/gluconeogenesis pathways, specifically in the DT genotype under drought. These stress-responsive pathways were coordinately regulated by the differentially abundant transcripts, proteins and metabolites to circumvent the drought stress response/tolerance in the DT genotype. The QTL-hotspot associated genes, proteins and transcription factors may further contribute to improved drought tolerance in the DT genotype. Altogether, the multi-omics approach provided an in-depth understanding of stress-responsive pathways and candidate genes involved in drought tolerance in chickpea.
Collapse
Affiliation(s)
- Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Khushboo Gupta
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Shubhangi Singh
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
13
|
Thapa R, Tabien RE, Johnson CD, Septiningsih EM. Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress. BMC Genomics 2023; 24:185. [PMID: 37024819 PMCID: PMC10080786 DOI: 10.1186/s12864-023-09262-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Rice is one of the most important cereals consumed worldwide. Two major abiotic factors affecting rice plants in different growth stages are flooding stress and cold stress. These abiotic stresses can take place independently or simultaneously and significantly affect rice plants during germination and seedling growth. Fortunately, a wide array of phenotypic responses conferring flooding stress and chilling stress tolerance exist within the rice germplasm, indicating the presence of different molecular mechanisms underlying tolerance to these stresses. Understanding these differences may assist in developing improved rice cultivars having higher tolerance to both stresses. In this study, we conducted a comparative global gene expression analysis of two rice genotypes with contrasting phenotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination. RESULTS The differential gene expression analysis revealed that 5571 differentially expressed genes (DEGs), 7206 DEGs, and 13279 DEGs were identified under anaerobic stress, cold stress, and combined stress, respectively. Genes involved in the carbohydrate metabolic process, glucosyltransferase activity, regulation of nitrogen compound metabolic process, protein metabolic process, lipid metabolic process, cellular nitrogen compound biosynthetic process, lipid biosynthetic process, and a microtubule-based process were enriched across all stresses. Notably, the common Gene Ontology (GO) analysis identified three hub genes, namely Os08g0176800 (similar to mRNA-associated protein mrnp 41), Os11g0454200 (dehydrin), and OS10g0505900 (expressed protein). CONCLUSION A large number of differentially expressed genes were identified under anaerobic, cold conditions during germination and the combination of the two stress conditions in rice. These results will assist in the identification of promising candidate genes for possible manipulation toward rice crops that are more tolerant under flooding and cold during germination, both independently and concurrently.
Collapse
Affiliation(s)
- Ranjita Thapa
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Present address: Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Endang M Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Moulick D, Bhutia KL, Sarkar S, Roy A, Mishra UN, Pramanick B, Maitra S, Shankar T, Hazra S, Skalicky M, Brestic M, Barek V, Hossain A. The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 13:1083960. [PMID: 36684752 PMCID: PMC9846276 DOI: 10.3389/fpls.2022.1083960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Karma Landup Bhutia
- Department of Agricultural Biotechnology & Molecular Breeding, College of Basic Science and Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Udit Nandan Mishra
- Department of Crop Physiology and Biochemistry, Sri University, Cuttack, Odisha, India
| | - Biswajit Pramanick
- Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, PUSA, Samastipur, Bihar, India
- Department of Agronomy and Horticulture, University of Nebraska Lincoln, Scottsbluff, NE, United States
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Tanmoy Shankar
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Akbar Hossain
- Division of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
15
|
Unique and Shared Proteome Responses of Rice Plants ( Oryza sativa) to Individual Abiotic Stresses. Int J Mol Sci 2022; 23:ijms232415552. [PMID: 36555193 PMCID: PMC9778788 DOI: 10.3390/ijms232415552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Food safety of staple crops such as rice is of global concern and is at the top of the policy agenda worldwide. Abiotic stresses are one of the main limitations to optimizing yields for sustainability, food security and food safety. We analyzed proteome changes in Oryza sativa cv. Nipponbare in response to five adverse abiotic treatments, including three levels of drought (mild, moderate, and severe), soil salinization, and non-optimal temperatures. All treatments had modest, negative effects on plant growth, enabling us to identify proteins that were common to all stresses, or unique to one. More than 75% of the total of differentially abundant proteins in response to abiotic stresses were specific to individual stresses, while fewer than 5% of stress-induced proteins were shared across all abiotic constraints. Stress-specific and non-specific stress-responsive proteins identified were categorized in terms of core biological processes, molecular functions, and cellular localization.
Collapse
|
16
|
Bao C, Qin G, Cao F, He J, Shen X, Chen P, Niu C, Zhang D, Ren T, Zhi F, Ma L, Ma F, Guan Q. MdZAT5 regulates drought tolerance via mediating accumulation of drought-responsive miRNAs and mRNAs in apple. THE NEW PHYTOLOGIST 2022; 236:2131-2150. [PMID: 36161284 DOI: 10.1111/nph.18512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Drought limits apple yield and fruit quality. However, the molecular mechanism of apple in response to drought is not well known. Here, we report a Cys2/His2 (C2H2)-type zinc-finger protein, MdZAT5, that positively regulates apple drought tolerance by regulating drought-responsive RNAs and microRNAs (miRNAs). DNA affinity purification and sequencing and yeast-one hybrid analysis identified the binding motifs of MdZAT5, T/ACACT/AC/A/G. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and electrophoretic mobility shift assays (EMSAs) showed that MdZAT5 directly binds to the promoters of the drought-responsive genes including MdRHA2a, MdLEA14, MdTPX1, and MdCAT3, and activates their expression under drought stress. MdZAT5 interacts with and directly targets HYPONASTIC LEAVES1 (MdHYL1). MdZAT5 may facilitate the interaction of MdHYL1 with pri-miRNAs or MdDCL1 by activating MdHYL1 expression, thereby regulating the biogenesis of drought-responsive miRNAs. Genetic dissection showed that MdHYL1 is essential for MdZAT5-mediated drought tolerance and miRNA biogenesis. In addition, ChIP-qPCR and EMSA revealed that MdZAT5 binds directly to the promoters of some MIR genes including Mdm-miR171i and Mdm-miR172c, and modulates their transcription. Taken together, our findings improve our understanding of the molecular mechanisms of drought response in apple and provide a candidate gene for the breeding of drought-tolerant cultivars.
Collapse
Affiliation(s)
- Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gege Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuguo Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyu Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
17
|
Genome-Wide Identification of C2H2 ZFPs and Functional Analysis of BRZAT12 under Low-Temperature Stress in Winter Rapeseed (Brassica rapa). Int J Mol Sci 2022; 23:ijms232012218. [PMID: 36293086 PMCID: PMC9603636 DOI: 10.3390/ijms232012218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Zinc-finger protein (ZFP) transcription factors are among the largest families of transcription factors in plants. They participate in various biological processes such as apoptosis, autophagy, and stemness maintenance and play important roles in regulating plant growth and development and the response to stress. To elucidate the functions of ZFP genes in the low-temperature response of winter (Brassica rapa L.) B. rapa, this study identified 141 members of the C2H2 ZFP gene family from B. rapa, which are heterogeneously distributed on 10 chromosomes and have multiple cis-acting elements related to hormone regulation and abiotic stress of adversity. Most of the genes in this family contain only one CDS, and genes distributed in the same evolutionary branch share mostly the same motifs and are highly conserved in the evolution of cruciferous species. The genes were significantly upregulated in the roots and growth cones of ‘Longyou-7’, indicating that they play a role in the stress-response process of winter B. rapa. The expression level of the Bra002528 gene was higher in the strongly cold-resistant varieties than in the weakly cold-resistant varieties after low-temperature stress. The survival rate and BrZAT12 gene expression of trans-BrZAT12 Arabidopsis thaliana (Arabidopsis) were significantly higher than those of the wild-type plants at low temperature, and the enzyme activities in vivo were higher than those of the wild-type plants, indicating that the BrZAT12 gene could improve the cold resistance of winter B. rapa. BrZAT12 expression and superoxide dismutase and ascorbate peroxidase enzyme activities were upregulated in winter B. rapa after exogenous ABA treatment. BrZAT12 expression and enzyme activities decreased after the PD98059 treatment, and BrZAT12 expression and enzyme activities were higher than in the PD98059 treatment but lower than in the control after both treatments together. It is speculated that BrZAT12 plays a role in the ABA signaling process in which MAPKK is involved. This study provides a theoretical basis for the resolution of cold-resistance mechanisms in strong winter B. rapa.
Collapse
|
18
|
Li X, Cao X, Li J, Niu Q, Mo Y, Xiao L. Genome-wide characterization of C2H2 zinc-finger gene family provides insight into the mechanisms and evolution of the dehydration-rehydration responses in Physcomitrium and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:953459. [PMID: 36262662 PMCID: PMC9574186 DOI: 10.3389/fpls.2022.953459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Dehydration tolerance is a vital factor for land plant evolution and world agricultural production. Numerous studies enlightened that the plant-specific C2H2-type zinc-finger proteins (C2H2-ZFPs) as master regulators played pivotal roles in the abiotic stress responses of plants. However, a comprehensive understanding of the evolution of C2H2-ZFPs in terrestrial plants and its regulatory mechanism in dehydration and rehydration response remains a mystery. In this study, the genome-wide identification of C2H2-ZFP genes revealed 549 homologs in the representatives of terrestrial plant lineages from liverwort to angiosperms. Based on the characteristics of the conserved C2H2-ZF domains, four major C2H2-ZF types (M-, Z-, Q-, and D-type) were identified in the C2H2-ZFPs, with the dominants of M-type in all selected species and followed by Z-type in non-seed plants and Q-type in seed plants, respectively. Phylogenetic analyses of the identified C2H2-ZFPs supported four major groups in the land plant representatives, among which the members from the desiccation-tolerant Physcomitrium patens and the dehydration-sensitive Arabidopsis thaliana displayed different topological relationships in the phylogenies reconstructed for a single species. C2H2-ZFPs clustered in the same subclades shared similar features in their conserved domains and gene structures. Approximately, 81% of the C2H2-ZFP promoters of all 549 identified C2H2-ZFPs harbored the conserved ABA-responsive elements (ABREs) and/or dehydration-responsive elements (DREs). Comparative transcriptomic analyses showed that 50 PpZFPs and 56 AtZFPs significantly changed their transcripts abundance. Interestingly, most of the dehydration- and rehydration-responsive PpZPFs and AtZFPs had been predicted to contain the ABRE and DRE elements in their promoter regions and with over half of which phylogenetically belonging to group III. The differences in the expression patterns of C2H2-ZFPs in responses to dehydration and rehydration between P. patens and A. thaliana reflected their different strategies to adapt to dehydration. The identified candidate PpZFPs were specifically induced by moderate dehydration and reached the peak transcript abundance in severe dehydration. Our study lays the foundations for further functional investigation of C2H2-ZFPs in dehydration responses from an evolutionary perspective in land plants. The findings will provide us with genetic resources and potential targets for drought tolerance breeding in crops and beyond.
Collapse
|
19
|
Chen S, Li D, Chen S, He J, Wang Z, Yang G, Lu Z. Identifying and expression analysis of WD40 transcription factors in walnut. THE PLANT GENOME 2022; 15:e20229. [PMID: 35904050 DOI: 10.1002/tpg2.20229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Walnut (Juglans regia L.) is an important woody oil plant and will be affected by abiotic and biological stress during its growth and development. The WD-repeat (WD40) protein is widely involved in plant growth, development, metabolism, and abiotic stress response. To explore the stress response mechanism of walnut, based on the complete sequencing results of the walnut genome, this study identified and analyzed the physiological, biochemical, genetic structure, and conservative protein motifs of 42 JrWD40 genes, whose expression to abnormal temperature were tested to predict the potential biological function. The results showed that the open reading frame (ORF) of theseWD40 genes were 807-2,460 bp, encoding peptides were 29,610.55-90,387.98 Da covering 268-819 amino acids, as well as 12-112 phosphorylation sites. JrWD40 proteins were highly conserved with four to five WD40 domains and shared certain similarity to WD40 proteins from Arabidopsis thaliana (L.) Heynh. JrWD40 genes can be induced to varying degrees by low and high temperature treatments. JrWD40-32, JrWD40-27, JrWD40-35, and JrWD40-21 are affected by high temperature more seriously and their expression levels are higher; while JrWD40-37, JrWD40-26, JrWD40-20, JrWD40-24, and other genes are inhibited under low temperature stress. JrWD40-40, JrWD40-28, and JrWD40-18 were first suppressed with low expression, while as the treatment time prolonging, the expression level was increased under cold condition. JrWD40-14, JrWD40-18, JrWD40-34, and JrWD40-3 displayed strong transcriptions response to both heat and cold stress. These results indicated that JrWD40 genes can participate in walnut adaptation to adversity and can be used as important candidates for walnut resistance molecular breeding.
Collapse
Affiliation(s)
- Shuwen Chen
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Dapei Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Sisi Chen
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Jianing He
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Zengbin Wang
- College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| | - Zhoumin Lu
- College of Forestry, Northwest A & F Univ., Yangling, Shaanxi, 712100, China
| |
Collapse
|
20
|
Yu H, Yang Q, Fu F, Li W. Three strategies of transgenic manipulation for crop improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:948518. [PMID: 35937379 PMCID: PMC9354092 DOI: 10.3389/fpls.2022.948518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Heterologous expression of exogenous genes, overexpression of endogenous genes, and suppressed expression of undesirable genes are the three strategies of transgenic manipulation for crop improvement. Up to 2020, most (227) of the singular transgenic events (265) of crops approved for commercial release worldwide have been developed by the first strategy. Thirty-eight of them have been transformed by synthetic sequences transcribing antisense or double-stranded RNAs and three by mutated copies for suppressed expression of undesirable genes (the third strategy). By the first and the third strategies, hundreds of transgenic events and thousands of varieties with significant improvement of resistance to herbicides and pesticides, as well as nutritional quality, have been developed and approved for commercial release. Their application has significantly decreased the use of synthetic pesticides and the cost of crop production and increased the yield of crops and the benefits to farmers. However, almost all the events overexpressing endogenous genes remain at the testing stage, except one for fertility restoration and another for pyramiding herbicide tolerance. The novel functions conferred by the heterologously expressing exogenous genes under the control of constitutive promoters are usually absent in the recipient crops themselves or perform in different pathways. However, the endogenous proteins encoded by the overexpressing endogenous genes are regulated in complex networks with functionally redundant and replaceable pathways and are difficult to confer the desirable phenotypes significantly. It is concluded that heterologous expression of exogenous genes and suppressed expression by RNA interference and clustered regularly interspaced short palindromic repeats-cas (CRISPR/Cas) of undesirable genes are superior to the overexpression of endogenous genes for transgenic improvement of crops.
Collapse
Affiliation(s)
| | | | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
21
|
Liu Y, Khan AR, Gan Y. C2H2 Zinc Finger Proteins Response to Abiotic Stress in Plants. Int J Mol Sci 2022; 23:ijms23052730. [PMID: 35269875 PMCID: PMC8911255 DOI: 10.3390/ijms23052730] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
Abiotic stresses have already exhibited the negative effects on crop growth and development, thereby influencing crop quality and yield. Therefore, plants have developed regulatory mechanisms to adopt against such harsh changing environmental conditions. Recent studies have shown that zinc finger protein transcription factors play a crucial role in plant growth and development as well as in stress response. C2H2 zinc finger proteins are one of the best-studied types and have been shown to play diverse roles in the plant abiotic stress responses. However, the C2H2 zinc finger network in plants is complex and needs to be further studied in abiotic stress responses. Here in this review, we mainly focus on recent findings on the regulatory mechanisms, summarize the structural and functional characterization of C2H2 zinc finger proteins, and discuss the C2H2 zinc finger proteins involved in the different signal pathways in plant responses to abiotic stress.
Collapse
Affiliation(s)
- Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Y.L.); (Y.G.)
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (Y.L.); (Y.G.)
| |
Collapse
|
22
|
Huang X, Huang L, Zhao X, Jia J, Zhang G, Zhang M, Jiang M. A J-Protein OsDjC46 Interacts with ZFP36 to Participate in ABA-Mediated Antioxidant Defense in Rice. Antioxidants (Basel) 2022; 11:antiox11020207. [PMID: 35204090 PMCID: PMC8868554 DOI: 10.3390/antiox11020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
ZFP36 has been shown to be involved in ABA-induced antioxidant defense and enhance rice tolerance to drought, salt stress and oxidative stress. Using ZFP36 as bait, a yeast two-hybrid system was used to obtain the interacting protein OsDjC46, which belongs to heat shock protein and usually exists in the form of molecular chaperone, was identified. Further Co-IP (co-immunoprecipitation), BiFC (bimolecular fluorescence complement) and GST (glutathione-S-transferase) pull-down experiments verified that ZFP36 interacted with OsDjC46 in vivo and in vitro. Heat shock protein has been shown to increase plant resistance to stresses, but whether OsDjC46 was a key factor in plant response to various stresses has not been reported. Here, various stimuli, such as abscisic acid (ABA), hydrogen peroxidase (H2O2), polyethylene (PEG) and sodium chloride (NaCl) markedly induced the expression of OsDjC46 in the seedlings. Overexpression of OsDjC46 in rice can enhance the tolerance to salinity and drought; in contrast, knockout of OsDjC46 rice plants was more sensitive to salt stress and drought. Further investigation revealed that OsDjC46 could participate in regulating the expression and activities of antioxidant of SOD and CAT under drought and salt stress. Taken together, these findings reveal a novel function of OsDjC46 in adjusting ABA-induced antioxidant defense.
Collapse
Affiliation(s)
- Xingxiu Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
| | - Liping Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Xixi Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
| | - Jing Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
| | - Gang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
| | - Mengyao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (X.H.); (L.H.); (X.Z.); (J.J.); (G.Z.); (M.Z.)
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-84396372
| |
Collapse
|
23
|
A C2H2-Type Zinc-Finger Protein from Millettia pinnata, MpZFP1, Enhances Salt Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2021; 22:ijms221910832. [PMID: 34639173 PMCID: PMC8509772 DOI: 10.3390/ijms221910832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023] Open
Abstract
C2H2 zinc finger proteins (ZFPs) play important roles in plant development and response to abiotic stresses, and have been studied extensively. However, there are few studies on ZFPs in mangroves and mangrove associates, which represent a unique plant community with robust stress tolerance. MpZFP1, which is highly induced by salt stress in the mangrove associate Millettia pinnata, was cloned and functionally characterized in this study. MpZFP1 protein contains two zinc finger domains with conserved QALGGH motifs and targets to the nucleus. The heterologous expression of MpZFP1 in Arabidopsis increased the seeds' germination rate, seedling survival rate, and biomass accumulation under salt stress. The transgenic plants also increased the expression of stress-responsive genes, including RD22 and RD29A, and reduced the accumulation of reactive oxygen species (ROS). These results indicate that MpZFP1 is a positive regulator of plant responses to salt stress due to its activation of gene expression and efficient scavenging of ROS.
Collapse
|
24
|
Si W, Liang Q, Chen L, Song F, Chen Y, Jiang H. Ectopic Overexpression of Maize Heat Stress Transcription Factor ZmHsf05 Confers Drought Tolerance in Transgenic Rice. Genes (Basel) 2021; 12:1568. [PMID: 34680963 PMCID: PMC8536174 DOI: 10.3390/genes12101568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Drought is a key factor affecting plant growth and development. Heat shock transcription factors (Hsfs) have been reported to respond to diverse abiotic stresses, including drought stress. In the present study, functional characterization of maize heat shock transcription factor 05 (ZmHsf05) gene was conducted. Homologous analysis showed that ZmHsf05 belongs to Class A2 Hsfs. The mRNA expression level of ZmHsf05 can be affected by drought, high temperature, salt, and abscisic acid (ABA) treatment. Ectopic overexpression of ZmHsf05 in rice (Oryza sativa) could significantly enhance the drought tolerance. Faced with drought stress, transgenic rice exhibited better phenotypic performance, higher survival rate, higher proline content, and lower leaf water loss rate, compared with wild-type plant Zhonghua11. Additionally, we assessed the agronomic traits of seven transgenic rice lines overexpressing ZmHsf05 and found that ZmHsf05 altered agronomical traits in the field trials. Moreover, rice overexpressing ZmHsf05 was more sensitive to ABA and had either a lower germination rate or shorter shoot length under ABA treatment. The transcription level of key genes in the ABA synthesis and drought-related pathway were significantly improved in transgenic rice after drought stress. Collectively, our results showed that ZmHsf05 could improve drought tolerance in rice, likely in an ABA-dependent manner.
Collapse
Affiliation(s)
- Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
| | - Qizhi Liang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Li Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
| | - Feiyang Song
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
| | - You Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (W.S.); (Q.L.); (L.C.); (F.S.); (Y.C.)
| |
Collapse
|
25
|
Convergence and Divergence: Signal Perception and Transduction Mechanisms of Cold Stress in Arabidopsis and Rice. PLANTS 2021; 10:plants10091864. [PMID: 34579397 PMCID: PMC8473081 DOI: 10.3390/plants10091864] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Cold stress, including freezing stress and chilling stress, is one of the major environmental factors that limit the growth and productivity of plants. As a temperate dicot model plant species, Arabidopsis develops a capability to freezing tolerance through cold acclimation. The past decades have witnessed a deep understanding of mechanisms underlying cold stress signal perception, transduction, and freezing tolerance in Arabidopsis. In contrast, a monocot cereal model plant species derived from tropical and subtropical origins, rice, is very sensitive to chilling stress and has evolved a different mechanism for chilling stress signaling and response. In this review, the authors summarized the recent progress in our understanding of cold stress response mechanisms, highlighted the convergent and divergent mechanisms between Arabidopsis and rice plasma membrane cold stress perceptions, calcium signaling, phospholipid signaling, MAPK cascade signaling, ROS signaling, and ICE-CBF regulatory network, as well as light-regulated signal transduction system. Genetic engineering approaches of developing freezing tolerant Arabidopsis and chilling tolerant rice were also reviewed. Finally, the future perspective of cold stress signaling and tolerance in rice was proposed.
Collapse
|
26
|
Yong Y, Zhang Y, Lyu Y. Functional characterization of Lilium lancifolium cold-responsive Zinc Finger Homeodomain ( ZFHD) gene in abscisic acid and osmotic stress tolerance. PeerJ 2021; 9:e11508. [PMID: 34113493 PMCID: PMC8162235 DOI: 10.7717/peerj.11508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/03/2021] [Indexed: 12/01/2022] Open
Abstract
Background. We have previously performed an analysis of the cold-responsive transcriptome in the mature leaves of tiger lily (Lilium lancifolium) by gene co-expression network identification. The results has revealed that a ZFHD gene, notated as encoding zinc finger homeodomain protein, may play an essential regulating role in tiger lily response to cold stress. Methods. A further investigation of the ZFHD gene (termed as LlZFHD4) responding to osmotic stresses, including cold, salt, water stresses, and abscisic acid (ABA) was performed in this study. Based on the transcriptome sequences, the coding region and 5′ promoter region of LlZFHD4 were cloned from mature tiger lily leaves. Stress response analysis was performed under continuous 4 °C, NaCl, PEG, and ABA treatments. Functional characterization of LlZFHD4 was conducted in transgenic Arabidopsis, tobacco, and yeast. Results. LlZFHD4 encodes a nuclear-localized protein consisting of 180 amino acids. The N-terminal region of LlZFHD4 has transcriptional activation activity in yeast. The 4 °C, NaCl, PEG, and ABA treatments induced the expression of LlZFHD4. Several stress- or hormone-responsive cis-acting regulatory elements (T-Box, BoxI. and ARF) and binding sites of transcription factors (MYC, DRE and W-box) were found in the core promoter region (789 bp) of LlZFHD4. Also, the GUS gene driven by LlZFHD4 promoter was up-regulated by cold, NaCl, water stresses, and ABA in Arabidopsis. Overexpression of LlZFHD4 improved cold and drought tolerance in transgenic Arabidopsis; higher survival rate and better osmotic adjustment capacity were observed in LlZFHD4 transgenic plants compared to wild type (WT) plants under 4 °C and PEG conditions. However, LlZFHD4 transgenic plants were less tolerant to salinity and more hypersensitive to ABA compared to WT plants. The transcript levels of stress- and ABA-responsive genes were much more up-regulated in LlZFHD4 transgenic Arabidopsis than WT. These results indicate LlZFHD4 is involved in ABA signaling pathway and plays a crucial role in regulating the response of tiger lily to cold, salt and water stresses.
Collapse
Affiliation(s)
- Yubing Yong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestory University, Beijing, Haidian, China.,College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yue Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestory University, Beijing, Haidian, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestory University, Beijing, Haidian, China
| |
Collapse
|
27
|
Engineering cereal crops for enhanced abiotic stress tolerance. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Zhang H, Wu T, Li Z, Huang K, Kim NE, Ma Z, Kwon SW, Jiang W, Du X. OsGATA16, a GATA Transcription Factor, Confers Cold Tolerance by Repressing OsWRKY45-1 at the Seedling Stage in Rice. RICE (NEW YORK, N.Y.) 2021; 14:42. [PMID: 33982131 PMCID: PMC8116401 DOI: 10.1186/s12284-021-00485-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cold stress is the main abiotic stress in rice, which seriously affects the growth and yield of rice. Identification of cold tolerance genes is of great significance for rice to solve these problems. GATA-family transcription factors involve diverse biological functions, however, their role in cold tolerance in rice remains unclear. RESULTS In this study, a GATA-type zinc finger transcription factor OsGATA16, which can improve cold tolerance, was isolated and characterized from rice. OsGATA16 belongs to OsGATA subfamily-II and contains 11 putative phosphorylation sites, a nuclear localization signal (NLS), and other several conserved domains. OsGATA16 was expressed in all plant tissues, with the strongest in panicles. It was induced by cold and ABA treatments, but was repressed by drought, cytokinin and JA, and acted as a transcriptional suppressor in the nucleus. Overexpression of OsGATA16 improves cold tolerance of rice at seedling stage. Under cold stress treatments, the transcription of four cold-related genes OsWRKY45-1, OsSRFP1, OsCYL4, and OsMYB30 was repressed in OsGATA16-overexpressing (OE) rice compared with wild-type (WT). Interestingly, OsGATA16 bound to the promoter of OsWRKY45-1 and repressed its expression. In addition, haplotype analysis showed that OsGATA16 polarized between the two major rice subspecies japonica and indica, and had a non-synonymous SNP8 (336G) associated with cold tolerance. CONCLUSION OsGATA16 is a GATA transcription factor, which improves cold tolerance at seedling stage in rice. It acts as a positive regulator of cold tolerance by repressing some cold-related genes such as OsWRKY45-1, OsSRFP1, OsCYL4 and OsMYB30. Additionally, OsGATA16 has a non-synonymous SNP8 (336G) associated with cold tolerance on CDS region. This study provides a theoretical basis for elucidating the mechanism of cold tolerance in rice and new germplasm resources for rice breeding.
Collapse
Affiliation(s)
- Hongjia Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Milyang, 50463, Republic of Korea
| | - Tao Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Zhao Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Kai Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Na-Eun Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Milyang, 50463, Republic of Korea
| | - Ziming Ma
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Soon-Wook Kwon
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Milyang, 50463, Republic of Korea
| | - Wenzhu Jiang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China.
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China.
| |
Collapse
|
29
|
Alam P. Functional annotations of ESTs of Stevia rebaudiana involved in abiotic stress signaling through computational approach. Saudi J Biol Sci 2021; 28:2602-2612. [PMID: 33911971 PMCID: PMC8071920 DOI: 10.1016/j.sjbs.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Stevia rebaudiana (Bertoni) is known as a natural sweetener plant to produced steviol glycosides. The steviol glycosides biosynthesis is limited in S. rebaudiana plants due to the alteration in the environmental circumstances such as drought, cold, salt and light. These environmental circumstances are a common side-effect in plants affecting the plant growth, metabolism and yield of secondary metabolites. Due to absence of complete genome annotations, the plant metabolites signaling is difficult in order to get the exact enzymatic flow to the product. In this article, we have analyzed the ESTs of S. rebaudiana and predicted their role in plant signaling in term of cis-regulatory elements, their biological function respect to abiotic stress. Further, the predicted abiotic stress responsive factors were also analyzed in order to predict the relevant genes or proteins function in comparison with the genome of Arabidopsis thaliana. Total 5,548 ESTs of stevia were retrieved from NCBI database. EST-contigs assembled from 5393 were 619 contigs and 2,894 singletons elements were identified by assembler program. Due to short expressed sequences related to singletons, it is excluded for further study. Further, retrieved ESTs were resulted in to 619 EST-contigs by using the clustering method. Out of 619, 15 contigs belongs to transcription factor families while 292 contigs, belongs to five enzyme classes. Out of 619 contigs, the 529 contigs showing the correct gene ontology in term of biological process (BP), molecular Functions (MF) and cellular component (CC). Further, these contigs were also screened for metabolic pathways analyses using KEG database. In this, 390 metabolic pathways and 67 involved for signal transduction were identified from 619 contigs. The co-expression analysis was revealed by gene investigators and STRING 10.0 with 0.40 correlations and 0.9 mutual connection. In projected PPI network, the recognized factors (WD40-like protein, MYB-HB like, AP2-EREBP, C2H2, Hap3/NF-YB, bHLH, C2C2-CO-like, CW-Zn, FHA-SMAD, Nin like, SBP3, TIFY, Tc-PD, Znf-B and bIP) belong to plant signaling and MAPK signaling pathways. These TFs introduce as a candidate genes responsive factors may lead to enhanced plant growth and metabolism by overexpression.
Collapse
Affiliation(s)
- Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), 11942 Al-Kharj, Saudi Arabia
| |
Collapse
|
30
|
Sharma R, Mahanty B, Mishra R, Joshi RK. Genome wide identification and expression analysis of pepper C 2H 2 zinc finger transcription factors in response to anthracnose pathogen Colletotrichum truncatum. 3 Biotech 2021; 11:118. [PMID: 33747699 PMCID: PMC7933328 DOI: 10.1007/s13205-020-02601-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022] Open
Abstract
Although, the C2H2 zinc finger (ZF) family of plant transcription factors have been implicated in multiple biological processes, they are yet to be characterized in the economically important chilli pepper (Capsicum annuum). In this study, a total of 79 C2H2 ZF genes were identified in the pepper genome. Phylogenetic analysis categorized the pepper C2H2 ZF (CaZF) members into five subfamilies each with unique conserved domains and functions. Genomic organization revealed that CaZF genes have variable number of introns consistent with the characteristics defined by the evolutionary analysis. Segmental duplication-based purifying selection contributed to the expansion of CaZF genes in pepper. Additionally, 11 CaZF genes were identified as targets for 38 miRNAs indicating their role in post-transcriptional silencing-mediated genetic regulation. Gene expression analysis revealed that 18 CaZF genes were differentially expressed post-infection with the anthrocnose pathogen Colletotrichum truncatum, uncovering their potential function in pepper response to biotic stresses. Moreover, CaZFs were significantly induced post-treatment with methyl jasmonate and ethylene indicating their role in defense signaling. Notably, the MeJA responsive cis-elements were detected in the promoter regions of majority of CaZF genes, suggesting that CaZFs may be implicated in defense-responsive signal cross talking. Additionally, 18 CaZF genes were differentially expressed under drought and heat treatment, indicating their involvement in plant response to abiotic stresses. Overall, a comprehensive analysis of CaZF gene family in pepper provided significant insights into the understanding of C2H2 ZF-mediated stress regulation network, which would benefit the genetic improvement of pepper and other allied plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02601-x.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| | - Bijayalaxmi Mahanty
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha India
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| |
Collapse
|
31
|
Duan M, Ke XJ, Lan HX, Yuan X, Huang P, Xu ES, Gao XY, Wang RQ, Tang HJ, Zhang HS, Huang J. A Cys2/His2 Zinc Finger Protein Acts as a Repressor of the Green Revolution Gene SD1/OsGA20ox2 in Rice (Oryza sativa L.). PLANT & CELL PHYSIOLOGY 2021; 61:2055-2066. [PMID: 32966570 DOI: 10.1093/pcp/pcaa120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Gibberellins (GAs) play important roles in the regulation of plant growth and development. The green revolution gene SD1 encoding gibberellin 20-oxidase 2 (GA20ox2) has been widely used in modern rice breeding. However, the molecular mechanism of how SD1/OsGA20ox2 expression is regulated remains unclear. Here, we report a Cys2/His2 zinc finger protein ZFP207 acting as a transcriptional repressor of OsGA20ox2. ZFP207 was mainly accumulated in young tissues and more specifically in culm nodes. ZFP207-overexpression (ZFP207OE) plants displayed semidwarfism phenotype and small grains by modulating cell length. RNA interference of ZFP207 caused increased plant height and grain length. The application of exogenous GA3 could rescue the semidwarf phenotype of ZFP207OE rice seedlings. Moreover, ZFP207 repressed the expression of OsGA20ox2 via binding to its promoter region. Taken together, ZFP207 acts as a transcriptional repressor of SD1/OsGA20ox2 and it may play a critical role in plant growth and development in rice through the fine-tuning of GA biosynthesis .
Collapse
Affiliation(s)
- Min Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Crop Research Institute, Taizhou Academy of Agricultural Sciences, Linhai, Zhejiang 317000, China
| | - Xiao-Juan Ke
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong-Xia Lan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - En-Shun Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiu-Ying Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ru-Qin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Juan Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong-Sheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
32
|
Javadi SM, Shobbar ZS, Ebrahimi A, Shahbazi M. New insights on key genes involved in drought stress response of barley: gene networks reconstruction, hub, and promoter analysis. J Genet Eng Biotechnol 2021; 19:2. [PMID: 33409810 PMCID: PMC7788114 DOI: 10.1186/s43141-020-00104-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Background Barley (Hordeum vulgare L.) is one of the most important cereals worldwide. Although this crop is drought-tolerant, water deficiency negatively affects its growth and production. To detect key genes involved in drought tolerance in barley, a reconstruction of the related gene network and discovery of the hub genes would help. Here, drought-responsive genes in barley were collected through analysis of the available microarray datasets (− 5 ≥ Fold change ≥ 5, adjusted p value ≤ 0.05). Protein-protein interaction (PPI) networks were reconstructed. Results The hub genes were identified by Cytoscape software using three Cyto-hubba algorithms (Degree, Closeness, and MNC), leading to the identification of 17 and 16 non-redundant genes at vegetative and reproductive stages, respectively. These genes consist of some transcription factors such as HvVp1, HvERF4, HvFUS3, HvCBF6, DRF1.3, HvNAC6, HvCO5, and HvWRKY42, which belong to AP2, NAC, Zinc-finger, and WRKY families. In addition, the expression pattern of four hub genes was compared between the two studied cultivars, i.e., “Yousef” (drought-tolerant) and “Morocco” (susceptible). The results of real-time PCR revealed that the expression patterns corresponded well with those determined by the microarray. Also, promoter analysis revealed that some TF families, including AP2, NAC, Trihelix, MYB, and one modular (composed of two HD-ZIP TFs), had a binding site in 85% of promoters of the drought-responsive genes and of the hub genes in barley. Conclusions The identified hub genes, especially those from AP2 and NAC families, might be among key TFs that regulate drought-stress response in barley and are suggested as promising candidate genes for further functional analysis.
Collapse
Affiliation(s)
- Seyedeh Mehri Javadi
- Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Asa Ebrahimi
- Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Shahbazi
- Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
33
|
Functional description and development of polymorphic EST-SSR markers in bread wheat and their gene interactions network. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Yin J, Wang L, Zhao J, Li Y, Huang R, Jiang X, Zhou X, Zhu X, He Y, He Y, Liu Y, Zhu Y. Genome-wide characterization of the C2H2 zinc-finger genes in Cucumis sativus and functional analyses of four CsZFPs in response to stresses. BMC PLANT BIOLOGY 2020; 20:359. [PMID: 32727369 PMCID: PMC7392682 DOI: 10.1186/s12870-020-02575-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/23/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUNDS C2H2-type zinc finger protein (ZFPs) form a relatively large family of transcriptional regulators in plants, and play many roles in plant growth, development, and stress response. However, the comprehensive analysis of C2H2 ZFPs in cucumber (CsZFPs) and their regulation function in cucumber are still lacking. RESULTS In the current study, the whole genome identification and characterization of CsZFPs, including the gene structure, genome localization, phylogenetic relationship, and gene expression were performed. Functional analysis of 4 selected genes by transient transformation were also conducted. A total of 129 full-length CsZFPs were identified, which could be classified into four groups according to the phylogenetic analysis. The 129 CsZFPs unequally distributed on 7 chromosomes. Promoter cis-element analysis showed that the CsZFPs might involve in the regulation of phytohormone and/or abiotic stress response, and 93 CsZFPs were predicted to be targeted by one to 20 miRNAs. Moreover, the subcellular localization analysis indicated that 10 tested CsZFPs located in the nucleus and the transcriptome profiling analysis of CsZFPs demonstrated that these genes are involved in root and floral development, pollination and fruit spine. Furthermore, the transient overexpression of Csa1G085390 and Csa7G071440 into Nicotiana benthamiana plants revealed that they could decrease and induce leave necrosis in response to pathogen attack, respectively, and they could enhance salt and drought stresses through the initial induction of H2O2. In addition, Csa4G642460 and Csa6G303740 could induce cell death after 5 days transformation. CONCLUSIONS The identification and function analysis of CsZFPs demonstrated that some key individual CsZFPs might play essential roles in response to biotic and abiotic stresses. These results could lay the foundation for understanding the role of CsZFPs in cucumber development for future genetic engineering studies.
Collapse
Affiliation(s)
- Junliang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Jiao Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Yiting Li
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Rong Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Xinchen Jiang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Xiaokang Zhou
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Xiongmeng Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yang He
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yiqin He
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yiqing Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| | - Yongxing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Agriculture, Yangtze University, Jingzhou, 434000 Hubei China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434000 Hubei China
| |
Collapse
|
35
|
Nadarajah KK. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E5208. [PMID: 32717820 PMCID: PMC7432042 DOI: 10.3390/ijms21155208] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change-induced abiotic stress results in crop yield and production losses. These stresses result in changes at the physiological and molecular level that affect the development and growth of the plant. Reactive oxygen species (ROS) is formed at high levels due to abiotic stress within different organelles, leading to cellular damage. Plants have evolved mechanisms to control the production and scavenging of ROS through enzymatic and non-enzymatic antioxidative processes. However, ROS has a dual function in abiotic stresses where, at high levels, they are toxic to cells while the same molecule can function as a signal transducer that activates a local and systemic plant defense response against stress. The effects, perception, signaling, and activation of ROS and their antioxidative responses are elaborated in this review. This review aims to provide a purview of processes involved in ROS homeostasis in plants and to identify genes that are triggered in response to abiotic-induced oxidative stress. This review articulates the importance of these genes and pathways in understanding the mechanism of resistance in plants and the importance of this information in breeding and genetically developing crops for resistance against abiotic stress in plants.
Collapse
Affiliation(s)
- Kalaivani K Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM BANGI, Malaysia
| |
Collapse
|
36
|
Dasgupta P, Das A, Datta S, Banerjee I, Tripathy S, Chaudhuri S. Understanding the early cold response mechanism in IR64 indica rice variety through comparative transcriptome analysis. BMC Genomics 2020; 21:425. [PMID: 32580699 PMCID: PMC7315535 DOI: 10.1186/s12864-020-06841-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cellular reprogramming in response to environmental stress involves alteration of gene expression, changes in the protein and metabolite profile for ensuring better stress management in plants. Similar to other plant species originating in tropical and sub-tropical areas, indica rice is highly sensitive to low temperature that adversely affects its growth and grain productivity. Substantial work has been done to understand cold induced changes in gene expression in rice plants. However, adequate information is not available for early gene expression, especially in indica variety. Therefore, a transcriptome profile was generated for cold shock treated seedlings of IR64 variety to identify early responsive genes. Results The functional annotation of early DEGs shows enrichment of genes involved in altered membrane rigidity and electrolytic leakage, the onset of calcium signaling, ROS generation and activation of stress responsive transcription factors in IR64. Gene regulatory network suggests that cold shock induced Ca2+ signaling activates DREB/CBF pathway and other groups of transcription factors such as MYB, NAC and ZFP; for activating various cold-responsive genes. The analysis also indicates that cold induced signaling proteins like RLKs, RLCKs, CDPKs and MAPKK and ROS signaling proteins. Further, several late-embryogenesis-abundant (LEA), dehydrins and low temperature-induced-genes were upregulated under early cold shock condition, indicating the onset of water-deficit conditions. Expression profiling in different high yielding cultivars shows high expression of cold-responsive genes in Heera and CB1 indica varieties. These varieties show low levels of cold induced ROS production, electrolytic leakage and high germination rate post-cold stress, compared to IR36 and IR64. Collectively, these results suggest that these varieties may have improved adaptability to cold stress. Conclusions The results of this study provide insights about early responsive events in Oryza sativa l.ssp. indica cv IR64 in response to cold stress. Our data shows the onset of cold response is associated with upregulation of stress responsive TFs, hydrophilic proteins and signaling molecules, whereas, the genes coding for cellular biosynthetic enzymes, cell cycle control and growth-related TFs are downregulated. This study reports that the generation of ROS is integral to the early response to trigger the ROS mediated signaling events during later stages.
Collapse
Affiliation(s)
- Pratiti Dasgupta
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Abhishek Das
- Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Sambit Datta
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Ishani Banerjee
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Sucheta Tripathy
- Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
37
|
Jia Y, Liu H, Qu Z, Wang J, Wang X, Wang Z, Yang L, Zhang D, Zou D, Zhao H. Transcriptome Sequencing and iTRAQ of Different Rice Cultivars Provide Insight into Molecular Mechanisms of Cold-Tolerance Response in Japonica Rice. RICE (NEW YORK, N.Y.) 2020; 13:43. [PMID: 32572635 PMCID: PMC7310054 DOI: 10.1186/s12284-020-00401-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/11/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important crops cultivated in both tropical and temperate regions. However, it has a high sensitivity to cold stress and chilling stress limits its nitrogen uptake and metabolism. To identify the genes and pathways involved in cold tolerance, specifically within nitrogen metabolism pathways, we compared gene and protein expression differences between a cold-tolerant cultivar, Dongnong428 (DN), and a cold-sensitive cultivar, Songjing10 (SJ). RESULTS Using isobaric tags for relative or absolute quantification (iTRAQ) with high-throughput mRNA sequencing (RNA-seq) techniques, we identified 5549 genes and 450 proteins in DN and 6145 genes and 790 proteins in SJ, which were differentially expressed during low water temperature (Tw) treatments. There were 354 transcription factor (TF) genes (212 downregulated, 142 upregulated) and 366 TF genes (220 downregulated, 146 upregulated), including 47 gene families, differentially expressed in DN under control (CKDN) vs. DN under low-Tw (D15DN) and SJ under control (CKSJ) vs. SJ under low-Tw D15SJ, respectively. Genes associated with rice cold-related biosynthesis pathways, particularly the mitogen-activated protein kinase (MAPK) signaling, zeatin biosynthesis, and plant hormone signal transduction pathways, were significantly differentially expressed in both rice cultivars. Differentially expressed proteins (DEPs) associated with rice cold-related biosynthesis pathways, and particularly glutathione metabolism, were significantly differentially expressed in both rice cultivars. Transcriptome and proteome analysis of the nitrogen metabolism pathways showed that major genes and proteins that participated in γ-aminobutyric acid (GABA) and glutamine synthesis were downregulated under cold stress. CONCLUSION Cold stress conditions during reproductive growth, resulted in genes and proteins related to cold stress biosynthesis pathways being significantly differentially expressed in DN and SJ. The present study confirmed the known cold stress-associated genes and identified new putative cold-responsive genes. We also found that translational regulation under cold stress plays an important role in cold-tolerant DN. Low-Tw treatments affected N uptake and N metabolism in rice, as well as promoted Glu metabolism and the synthesis of ornithine and proline in cold-sensitive SJ.
Collapse
Affiliation(s)
- Yan Jia
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agriculture University, Harbin, 150030, Heilongjiang, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agriculture University, Harbin, 150030, Heilongjiang, China
| | - Zhaojun Qu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agriculture University, Harbin, 150030, Heilongjiang, China
| | - Jin Wang
- Bei Da Huang Kenfeng Seed Limited Company, Harbin, 150431, Heilongjiang, China
| | - Xinpeng Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agriculture University, Harbin, 150030, Heilongjiang, China
| | - Zhuoqian Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agriculture University, Harbin, 150030, Heilongjiang, China
| | - Liang Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agriculture University, Harbin, 150030, Heilongjiang, China
| | - Dong Zhang
- PlantTech Biotechnology Co., Ltd., Beijing, 100000, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agriculture University, Harbin, 150030, Heilongjiang, China
| | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agriculture University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
38
|
Zhao T, Wu T, Zhang J, Wang Z, Pei T, Yang H, Li J, Xu X. Genome-Wide Analyses of the Genetic Screening of C 2H 2-Type Zinc Finger Transcription Factors and Abiotic and Biotic Stress Responses in Tomato ( Solanum lycopersicum) Based on RNA-Seq Data. Front Genet 2020; 11:540. [PMID: 32547602 PMCID: PMC7270337 DOI: 10.3389/fgene.2020.00540] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/04/2020] [Indexed: 01/05/2023] Open
Abstract
C2H2-type zinc finger proteins are classic and extensively studied members of the zinc finger family. C2H2-type zinc finger proteins participate in plant growth, development and stress responses. In this study, 99 C2H2-type zinc finger protein genes were identified and classified into four groups, and many functionally related cis-elements were identified. Differential C2H2-ZFP gene expression and specific responses were analyzed under drought, cold, salt, and pathogen stresses based on RNA-Seq data. Thirty-two C2H2 genes were identified in response to multiple stresses. Seven, 3, 5, and 8 genes were specifically expressed under drought, cold, salt, and pathogenic stresses, respectively. Five glycometabolism and sphingolipid-related pathways and the endocytosis pathway were enriched by KEGG analysis. The results of this study represent a foundation for further study of the function of C2H2-type zinc finger proteins and will provide us with genetic resources for stress tolerance breeding.
Collapse
Affiliation(s)
- Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Tairu Wu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jia Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Ziyu Wang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Tong Pei
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| |
Collapse
|
39
|
Gaafar AA, Ali SI, El-Shawadfy MA, Salama ZA, Sękara A, Ulrichs C, Abdelhamid MT. Ascorbic Acid Induces the Increase of Secondary Metabolites, Antioxidant Activity, Growth, and Productivity of the Common Bean under Water Stress Conditions. PLANTS 2020; 9:plants9050627. [PMID: 32423048 PMCID: PMC7285268 DOI: 10.3390/plants9050627] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/20/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
One of the most vital environmental factors that restricts plant production in arid and semi-arid environments is the lack of fresh water and drought stress. Common bean (Phaseolus vulgaris L.) productivity is severely limited by abiotic stress, especially climate-related constraints. Therefore, a field experiment in split-plot design was carried out to examine the potential function of ascorbic acid (AsA) in mitigating the adverse effects of water stress on common bean. The experiment included two irrigation regimes (100% or 50% of crop evapotranspiration) and three AsA doses (0, 200, or 400 mg L-1 AsA). The results revealed that water stress reduced common bean photosynthetic pigments (chlorophyll and carotenoids), carbonic anhydrase activity, antioxidant activities (2,2-diphenyl-1-picrylhydrazyl free radical activity scavenging activity and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay), growth and seed yield, while increased enzymatic antioxidants (peroxidase), secondary metabolites (phenolic, flavonoids, and tannins), malondialdehyde (MDA), and crop water productivity. In contrast, the AsA foliar spray enhanced all studied traits and the enhancement was gradual with the increasing AsA dose. The linear regression model predicted that when the AsA dose increase by 1.0 mg L-1, the seed yield is expected to increase by 0.06 g m-2. Enhanced water stress tolerance through adequate ascorbic acid application is a promising strategy to increase the tolerance and productivity of common bean under water stress. Moreover, the response of common bean to water deficit appears to be dependent on AsA dose.
Collapse
Affiliation(s)
- Alaa A. Gaafar
- Plant Biochemistry Department, National Research Centre, Cairo 12622, Egypt; (A.A.G.); (S.I.A.); (Z.A.S.)
| | - Sami I. Ali
- Plant Biochemistry Department, National Research Centre, Cairo 12622, Egypt; (A.A.G.); (S.I.A.); (Z.A.S.)
| | - Mohamed A. El-Shawadfy
- Water Relations and Field Irrigation Department, National Research Centre, Cairo 12622, Egypt;
| | - Zeinab A. Salama
- Plant Biochemistry Department, National Research Centre, Cairo 12622, Egypt; (A.A.G.); (S.I.A.); (Z.A.S.)
| | - Agnieszka Sękara
- Department of Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
- Correspondence: (A.S.); (M.T.A.); Tel.: +48-12-6625216 (A.S.); +20-1004145751 (M.T.A.)
| | - Christian Ulrichs
- Division Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany;
| | - Magdi T. Abdelhamid
- Botany Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (A.S.); (M.T.A.); Tel.: +48-12-6625216 (A.S.); +20-1004145751 (M.T.A.)
| |
Collapse
|
40
|
Liu Z, Coulter JA, Li Y, Zhang X, Meng J, Zhang J, Liu Y. Genome-wide identification and analysis of the Q-type C2H2 gene family in potato (Solanum tuberosum L.). Int J Biol Macromol 2020; 153:327-340. [PMID: 32145229 DOI: 10.1016/j.ijbiomac.2020.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Plant Q-type C2H2 zinc finger proteins play an important role in plant tolerance to abiotic stresses. Although the Q-type C2H2 gene family has been identified in many plants, little is known about it in potato (Solanum tuberosum). In the present study, a total of 79 Q-type C2H2 proteins in potato (StZFPs) were identified and their distribution on chromosomes, gene structure, and conserved motifs was assessed. According to their protein structural and phylogenetic features, these 79 StZFPs were classified into 12 distinct subclasses. Collinearity analysis showed that tandem and segmental duplication events played a crucial role in expansion of the StZFP gene family. Synteny analysis indicated that 11 and 21 StZFP genes were orthologous to Arabidopsis and wheat (Triticum aestivum), respectively. RNA-seq data were used to analyze the tissue-specific expression and abiotic stress responses of the StZFP genes. Furthermore, we analyzed the expression of StZFP genes in drought-sensitive and drought-tolerant potato cultivars under drought stress. Subsequently, we used qPCR (Quantitative real-time-PCR) to calculate the relative expression of candidate genes in potato plantlets treated with NaCl (100 mM) and PEG 6000 (10% w/v) for 24 h. Such candidate genes could provide valuable information for abiotic stress resistance research in potato.
Collapse
Affiliation(s)
- Zhen Liu
- College of Horticulture/Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA.
| | - Yuanming Li
- College of Horticulture/Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaojing Zhang
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Jiangang Meng
- Tianchi Agricultural Service Center, Huan County, Qingyang 745000, China
| | - Junlian Zhang
- College of Horticulture/Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuhui Liu
- College of Horticulture/Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
41
|
Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B. C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:115. [PMID: 32153617 PMCID: PMC7044346 DOI: 10.3389/fpls.2020.00115] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/24/2020] [Indexed: 05/04/2023]
Abstract
Abiotic stresses such as drought and salinity are major environmental factors that limit crop yields. Unraveling the molecular mechanisms underlying abiotic stress resistance is crucial for improving crop performance and increasing productivity under adverse environmental conditions. Zinc finger proteins, comprising one of the largest transcription factor families, are known for their finger-like structure and their ability to bind Zn2+. Zinc finger proteins are categorized into nine subfamilies based on their conserved Cys and His motifs, including the Cys2/His2-type (C2H2), C3H, C3HC4, C2HC5, C4HC3, C2HC, C4, C6, and C8 subfamilies. Over the past two decades, much progress has been made in understanding the roles of C2H2 zinc finger proteins in plant growth, development, and stress signal transduction. In this review, we focus on recent progress in elucidating the structures, functions, and classifications of plant C2H2 zinc finger proteins and their roles in abiotic stress responses.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chaoxia Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nianwei Qiu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
42
|
Comprehensive Genomic Analysis and Expression Profiling of the C2H2 Zinc Finger Protein Family Under Abiotic Stresses in Cucumber ( Cucumis sativus L.). Genes (Basel) 2020; 11:genes11020171. [PMID: 32041281 PMCID: PMC7074296 DOI: 10.3390/genes11020171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Cucumber is one of the most important vegetables in the world. The C2H2 zinc finger protein (C2H2-ZFP) family plays an important role in the growth development and abiotic stress responses of plants. However, there have been no systematic studies on cucumber. In this study, we performed a genome-wide study of C2H2-ZFP genes and analyzed their chromosomal location, gene structure, conservation motif, and transcriptional expression. In total, 101 putative cucumber C2H2-ZFP genes were identified and divided into six groups (I–VI). RNA-seq transcriptome data on different organs revealed temporal and spatial expression specificity of the C2H2-ZFP genes. Expression analysis of sixteen selected C2H2-ZFP genes in response to cold, drought, salt, and abscisic acid (ABA) treatments by real-time quantitative polymerase chain reaction showed that C2H2-ZFP genes may be involved in different signaling pathways. These results provide valuable information for studying the function of cucumber C2H2-ZFP genes in the future.
Collapse
|
43
|
Yang M, Yang J, Su L, Sun K, Li D, Liu Y, Wang H, Chen Z, Guo T. Metabolic profile analysis and identification of key metabolites during rice seed germination under low-temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110282. [PMID: 31623771 DOI: 10.1016/j.plantsci.2019.110282] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 05/05/2023]
Abstract
The metabolic profile of rice (Oryza sativa) during germination under low temperature (LT) has not been reported. In this study, the rice varieties 02428 (japonica) and YZX (indica) were subjected to experiments consisting of treatments including LT, normal temperature (NT) and a transition from LT to NT, and tissues were sampled at different time points during germination. A total of 730 metabolites were detected by a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based widely targeted metabolomics method. On the basis of the screening criteria of increased contents under LT and decreased contents under NT, we identified 35 different metabolites that responded to LT stress among the 730 metabolites. Furthermore, the content differences of the 35 metabolites were compared when the samples were transferred from LT to NT. According to a fold change <0.5 or a variable importance in projection (VIP) score>1 at the transition point, 7 out of the 35 metabolites responded significantly to LT stress and were defined as key metabolites. A partial least squares (PLS) regression model of seven key metabolites with seedling length (SL), seedling area (SSA), and seedling volume (SV) was constructed, and the fitting effect was good. These seven key metabolites participate in the biosynthesis of amino acids and phenylpropanoids and in the metabolism of glutathione and inositol phosphate. This study laid a foundation for an improved understanding of the LT-germination mechanism of rice seeds.
Collapse
Affiliation(s)
- Meng Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Jing Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Ling Su
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Kai Sun
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Dongxiu Li
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Yongzhu Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
44
|
Hu X, Zhu L, Zhang Y, Xu L, Li N, Zhang X, Pan Y. Genome-wide identification of C2H2 zinc-finger genes and their expression patterns under heat stress in tomato ( Solanum lycopersicum L.). PeerJ 2019; 7:e7929. [PMID: 31788352 PMCID: PMC6882421 DOI: 10.7717/peerj.7929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
The C2H2 zinc finger protein (C2H2-ZFP) transcription factor family regulates the expression of a wide variety of genes in response to various developmental processes or abiotic stresses; however, these proteins have not yet been comprehensively analyzed in tomato (Solanum lycopersicum). In this study, a total of 104 C2H2-ZFs were identified in an uneven distribution across the entire tomato genome, and include seven segmental duplication events. Based on their phylogenetic relationships, these genes were clustered into nine distinct categories analogous to those in Arabidopsis thaliana. High similarities were found between the exon–intron structures and conserved motifs of the genes within each group. Correspondingly, the expression patterns of the C2H2-ZF genes indicated that they function in different tissues and at different developmental stages. Additionally, quantitative real-time PCR (qRT-PCR) results demonstrated that the expression levels of 34 selected C2H2-ZFs are changed dramatically among the roots, stems, and leaves at different time points of a heat stress treatment, suggesting that the C2H2-ZFPs are extensively involved in the heat stress response but have potentially varying roles. These results form the basis for the further molecular and functional analysis of the C2H2-ZFPs, especially for those members that significantly varied under heat treatment, which may be targeted to improve the heat tolerance of tomato and other Solanaceae species.
Collapse
Affiliation(s)
- Xin Hu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lili Zhu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yi Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li Xu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Na Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Jamil W, Wu W, Gong H, Huang JW, Ahmad M, Zhu QG, Jin R, Liu XF, Yin XR. C2H2-Type Zinc Finger Proteins (DkZF1/2) Synergistically Control Persimmon Fruit Deastringency. Int J Mol Sci 2019; 20:ijms20225611. [PMID: 31717553 PMCID: PMC6888379 DOI: 10.3390/ijms20225611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/09/2023] Open
Abstract
Hypoxic environments are generally undesirable for most plants, but for astringent persimmon, high CO2 treatment (CO2 > 90%), also termed artificial high-CO2 atmosphere (AHCA), causes acetaldehyde accumulation and precipitation of soluble tannins and could remove astringency. The multiple transcriptional regulatory linkages involved in persimmon fruit deastringency have been advanced significantly by characterizing the ethylene response factors (ERFs), WRKY and MYB; however, the involvement of zinc finger proteins for deastringency has not been investigated. In this study, five genes encoding C2H2-type zinc finger proteins were isolated and designed as DkZF1-5. Phylogenetic and sequence analyses suggested the five DkZFs could be clustered into two different subgroups. qPCR analysis indicated that transcript abundances of DkZF1/4 were significantly upregulated during AHCA treatment (1% O2 and 95% CO2) at day 1, DkZF2/5 at both day 1 and 2, while DkZF3 at day 2. Dual-luciferase assay indicated DkZF1 and DkZF2 as the activators of deastringency-related structural genes (DkPDC2 and DkADH1) and transcription factors (DkERF9/10). Moreover, combinative effects between various transcription factors were investigated, indicating that DkZF1 and DkZF2 synergistically showed significantly stronger activations on the DkPDC2 promoter. Further, both bimolecular fluorescence complementation (BiFC) and yeast two hybrid (Y2H) assays confirmed that DkZF2 had protein–protein interactions with DkZF1. Thus, these findings illustrate the regulatory mechanisms of zinc finger proteins for persimmon fruit deastringency under AHCA.
Collapse
Affiliation(s)
- Wajeeha Jamil
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China; (W.J.); (W.W.); (H.G.); (M.A.); (Q.-G.Z.); (R.J.); (X.-F.L.)
| | - Wei Wu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China; (W.J.); (W.W.); (H.G.); (M.A.); (Q.-G.Z.); (R.J.); (X.-F.L.)
| | - Hui Gong
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China; (W.J.); (W.W.); (H.G.); (M.A.); (Q.-G.Z.); (R.J.); (X.-F.L.)
| | - Jing-Wen Huang
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China; (W.J.); (W.W.); (H.G.); (M.A.); (Q.-G.Z.); (R.J.); (X.-F.L.)
| | - Mudassar Ahmad
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China; (W.J.); (W.W.); (H.G.); (M.A.); (Q.-G.Z.); (R.J.); (X.-F.L.)
| | - Qing-Gang Zhu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China; (W.J.); (W.W.); (H.G.); (M.A.); (Q.-G.Z.); (R.J.); (X.-F.L.)
| | - Rong Jin
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China; (W.J.); (W.W.); (H.G.); (M.A.); (Q.-G.Z.); (R.J.); (X.-F.L.)
- Agricultural Experiment Station, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiao-Fen Liu
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China; (W.J.); (W.W.); (H.G.); (M.A.); (Q.-G.Z.); (R.J.); (X.-F.L.)
| | - Xue-Ren Yin
- Department of Horticulture, Zhejiang University, Hangzhou, Zhejiang 310058, China; (W.J.); (W.W.); (H.G.); (M.A.); (Q.-G.Z.); (R.J.); (X.-F.L.)
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, Zhejiang 310058, China
- Correspondence: ; Tel.: +86-571-8898-2461
| |
Collapse
|
46
|
Dabab Nahas L, Al-Husein N, Lababidi G, Hamwieh A. In-silico prediction of novel genes responsive to drought and salinity stress tolerance in bread wheat (Triticum aestivum). PLoS One 2019; 14:e0223962. [PMID: 31671113 PMCID: PMC6822720 DOI: 10.1371/journal.pone.0223962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/02/2019] [Indexed: 11/19/2022] Open
Abstract
Common wheat (Triticum aestivum) is the most widely grown cereal crop and is cultivated extensively in dry regions. Water shortage, resulting from either drought or salinity, leads to slow growth and loss of wheat yield. In order to predict new genes responsive to the drought and salt stresses in wheat, 6,717 expressed sequence tags (ESTs), expressed in drought and salinity stress conditions were collected from the National Center for Biotechnology Information (NCBI). The downloaded ESTs were clustered and assembled into 354 contigs; 14 transcription factor families in 29 contigs were identified. In addition, 119 contigs were organized in five enzyme classes. Biological functions were obtained for only 324 of the 354 contigs using gene ontology. In addition, using Kyoto Encyclopedia of Genes and Genomes database, 191 metabolic pathways were identified. The remaining contigs were used for further analysis and the search for new genes responsive to drought and salt stresses. These contigs were mapped on the International Wheat Genome Sequencing Consortium RefSeq v1.0 assembly, the most complete version of the reference sequence of the bread wheat variety Chinese Spring. They were found to have from one to three locations on the subgenomes A, B, and D. Full-length gene sequences were designed for these contigs, which were further validated using promoter analysis. These predicted genes may have applications in molecular breeding programs and wheat drought and salinity research.
Collapse
Affiliation(s)
- Laila Dabab Nahas
- Biotechnology Engineering Dept/Technological Engineering Faculty/University of Aleppo, Aleppo, Syria
- General Commission for Scientific Agricultural Research (GCSAR)/Ministry of Agriculture, Aleppo, Syria
| | - Naim Al-Husein
- General Commission for Scientific Agricultural Research (GCSAR)/Ministry of Agriculture, Aleppo, Syria
| | - Ghinwa Lababidi
- Biotechnology Engineering Dept/Technological Engineering Faculty/University of Aleppo, Aleppo, Syria
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Cairo, Egypt
- * E-mail:
| |
Collapse
|
47
|
Mahapatra M, Mahanty B, Joshi RK. Genome wide identification and functional assignments of C 2H 2 Zinc-finger family transcription factors in Dichanthelium oligosanthes. Bioinformation 2019; 15:689-696. [PMID: 31787818 PMCID: PMC6859702 DOI: 10.6026/97320630015689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022] Open
Abstract
Transcription factors (TFs) are biological regulators of gene function in response to various internal and external stimuli. C2H2 zinc finger proteins (C2H2-ZFPs) are a large family of TFs that play crucial roles in plant growth and development, hormone signalling and response to biotic and abiotic stresses. While C2H2-ZFPs have been well characterized in many model and crop plants, they are yet to be ascertained in the evolutionarily important C3 plant Dichanthelium oligosanthes (Heller's rosette grass). In the present study, we report 32 C2H2-ZF genes (DoZFs) belonging to three different classes-Q type, C-type and Z-type based on structural elucidation and phylogenetic analysis. Sequence comparisons revealed paralogs within the DoZFs and orthologs among with rice ZF genes. Motif assignment showed the presence of the distinctive C2H2-ZF conserved domain "QALGGH" in these proteins. Cis-element analysis indicated that majority of the predicted C2H2-ZFPs are associated with hormone signalling and abiotic stress responses. Further, their role in nucleic acid binding and transcriptional regulation was also observed using predicted functional assignment. Thus, we report an overview of the C2H2-ZF gene family in D. oligosanthes that could serve as the basis for future experimental studies on isolation and functional implication of these genes in different biological mechanism of C3 plants.
Collapse
Affiliation(s)
- Manisha Mahapatra
- Department of Biotechnology, Rama Devi Women's University, Vidya Vihar, Bhubaneswar-751022, Odisha, INDIA
| | - Bijayalaxmi Mahanty
- Department of Biotechnology, Rama Devi Women's University, Vidya Vihar, Bhubaneswar-751022, Odisha, INDIA
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women's University, Vidya Vihar, Bhubaneswar-751022, Odisha, INDIA
| |
Collapse
|
48
|
Han G, Yuan F, Guo J, Zhang Y, Sui N, Wang B. AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:55-67. [PMID: 31203894 DOI: 10.1016/j.plantsci.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/20/2023]
Abstract
C2H2-type zinc finger proteins play important roles in plant growth, development, and abiotic stress tolerance. Here, we explored the role of the C2H2-type zinc finger protein SALT INDUCED ZINC FINGER PROTEIN1 (AtSIZ1; At3G25910) in Arabidopsis thaliana under salt stress. AtSIZ1 expression was induced by salt treatment. During the germination stage, the germination rate, germination energy, germination index, cotyledon growth rate, and root length were significantly higher in AtSIZ1 overexpression lines than in the wild type under various stress treatments, whereas these indices were significantly reduced in AtSIZ1 loss-of-function mutants. At the mature seedling stage, the overexpression lines maintained higher levels of K+, proline, and soluble sugar, lower levels of Na+ and MDA, and lower Na+/K+ ratios than the wild type. Stress-related marker genes such as SOS1, AtP5CS1, AtGSTU5, COR15A, RD29A, and RD29B were expressed at higher levels in the overexpression lines than the wild type and loss-of-function mutants under salt treatment. These results indicate that AtSIZ1 improves salt tolerance in Arabidopsis by helping plants maintain ionic homeostasis and osmotic balance.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China.
| |
Collapse
|
49
|
Nawaz G, Han Y, Usman B, Liu F, Qin B, Li R. Knockout of OsPRP1, a gene encoding proline-rich protein, confers enhanced cold sensitivity in rice ( Oryza sativa L.) at the seedling stage. 3 Biotech 2019; 9:254. [PMID: 31192079 DOI: 10.1007/s13205-019-1787-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/31/2019] [Indexed: 01/24/2023] Open
Abstract
Proline-rich proteins (PRPs) play multiple physiological and biochemical roles in plant growth and stress response. In this study, we reported that the knockout of OsPRP1 induced cold sensitivity in rice. Mutant plants were generated by CRISPR/Cas9 technology to investigate the role of OsPRP1 in cold stress and 26 mutant plants were obtained in T0 generation with the mutation rate of 85% including 15% bi-allelic, 53.3% homozygous, and 16.7% heterozygous and 16 T-DNA-free lines in T1 generation. The conserved amino acid sequence was changed and the expression level of OsPRP1 was reduced in mutant plants. The OsPRP1 mutant plants displayed more sensitivity to cold stress and showed low survival rate with decreased root biomass than wild-type (WT) and homozygous mutant line with large fragment deletion was more sensitive to low temperature. Mutant lines accumulated less antioxidant enzyme activity and lower levels of proline, chlorophyll, abscisic acid (ABA), and ascorbic acid (AsA) content relative to WT under low-temperature stress. The changes of antioxidant enzymes were examined in the leaves and roots with exogenous salicylic acid (SA) treatment which resulted in increased activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) under cold stress, while enzyme antioxidant activity was lower in untreated seedlings which showed that exogenous SA pretreatment could alleviate the low-temperature stress in rice. Furthermore, the expression of three genes encoding antioxidant enzyme activities (SOD4, POX1, and OsCAT3) was significantly down-regulated in the mutant lines as compared to WT. These results suggested that OsPRP1 enhances cold tolerance by modulating antioxidants and maintaining cross talk through signaling pathways. Therefore, OsPRP1 gene could be exploited for improving cold tolerance in rice and CRISPR/Cas9 technology is helpful to study the function of a gene by analyzing the phenotypes of knockout mutants generated.
Collapse
Affiliation(s)
- Gul Nawaz
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Yue Han
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Babar Usman
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Fang Liu
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Baoxiang Qin
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Rongbai Li
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| |
Collapse
|
50
|
Yong Y, Zhang Y, Lyu Y. A Stress-Responsive NAC Transcription Factor from Tiger Lily (LlNAC2) Interacts with LlDREB1 and LlZHFD4 and Enhances Various Abiotic Stress Tolerance in Arabidopsis. Int J Mol Sci 2019; 20:ijms20133225. [PMID: 31262062 PMCID: PMC6651202 DOI: 10.3390/ijms20133225] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/28/2022] Open
Abstract
Our previous studies have indicated that a partial NAC domain protein gene is strongly up-regulated by cold stress (4 °C) in tiger lily (Lilium lancifolium). In this study, we cloned the full-length of this NAC gene, LlNAC2, to further investigate the function of LlNAC2 in response to various abiotic stresses and the possible involvement in stress tolerance of the tiger lily plant. LlNAC2 was noticeably induced by cold, drought, salt stresses, and abscisic acid (ABA) treatment. Promoter analysis showed that various stress-related cis-acting regulatory elements were located in the promoter of LlNAC2; and the promoter was sufficient to enhance activity of GUS protein under cold, salt stresses and ABA treatment. DREB1 (dehydration-responsive binding protein1) from tiger lily (LlDREB1) was proved to be able to bind to the promoter of LlNAC2 by yeast one-hybrid (Y1H) assay. LlNAC2 was shown to physically interact with LlDREB1 and zinc finger-homeodomain ZFHD4 from the tiger lily (LlZFHD4) by bimolecular fluorescence complementation (BiFC) assay. Overexpressing LlNAC2 in Arabidopsis thaliana showed ABA hypersensitivity and enhanced tolerance to cold, drought, and salt stresses. These findings indicated LlNAC2 is involved in both DREB/CBF-COR and ABA signaling pathways to regulate stress tolerance of the tiger lily.
Collapse
Affiliation(s)
- Yubing Yong
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|