1
|
Goldberg D, Buchshtab N, Charni-Natan M, Goldstein I. Transcriptional cascades during fasting amplify gluconeogenesis and instigate a secondary wave of ketogenic gene transcription. Liver Int 2024; 44:2964-2982. [PMID: 39162082 DOI: 10.1111/liv.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS During fasting, bodily homeostasis is maintained due to hepatic production of glucose (gluconeogenesis) and ketone bodies (ketogenesis). The main hormones governing hepatic fuel production are glucagon and glucocorticoids that initiate transcriptional programs aimed at supporting gluconeogenesis and ketogenesis. METHODS Using primary mouse hepatocytes as an ex vivo model, we employed transcriptomic analysis (RNA-seq), genome-wide profiling of enhancer dynamics (ChIP-seq), perturbation experiments (inhibitors, shRNA), hepatic glucose production measurements and computational analyses. RESULTS We found that in addition to the known metabolic genes transcriptionally induced by glucagon and glucocorticoids, these hormones induce a set of genes encoding transcription factors (TFs) thereby initiating transcriptional cascades. Upon activation by glucocorticoids, the glucocorticoid receptor (GR) induced the genes encoding two TFs: CCAAT/enhancer-binding protein beta (C/EBPβ) and peroxisome proliferator-activated receptor alpha (PPARα). We found that the GR-C/EBPβ cascade mainly serves as a secondary amplifier of primary hormone-induced gene programs. C/EBPβ augmented gluconeogenic gene expression and hepatic glucose production. Conversely, the GR-PPARα cascade initiated a secondary transcriptional wave of genes supporting ketogenesis. The cascade led to synergistic induction of ketogenic genes which is dependent on protein synthesis. Genome-wide analysis of enhancer dynamics revealed numerous enhancers activated by the GR-PPARα cascade. These enhancers were proximal to ketogenic genes, enriched for the PPARα response element and showed increased PPARα binding. CONCLUSION This study reveals abundant transcriptional cascades occurring during fasting. These cascades serve two separated purposes: the amplification of the gluconeogenic transcriptional program and the induction of a gene program aimed at enhancing ketogenesis.
Collapse
Affiliation(s)
- Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Kim MJ, Lee JM, Min K, Choi YS. Xenogeneic transplantation of mitochondria induces muscle regeneration in an in vivo rat model of dexamethasone-induced atrophy. J Muscle Res Cell Motil 2024; 45:53-68. [PMID: 36802005 DOI: 10.1007/s10974-023-09643-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/16/2023] [Indexed: 02/21/2023]
Abstract
Muscle atrophy significantly impairs health and quality of life; however, there is still no cure. Recently, the possibility of regeneration in muscle atrophic cells was suggested through mitochondrial transfer. Therefore, we attempted to prove the efficacy of mitochondrial transplantation in animal models. To this end, we prepared intact mitochondria from umbilical cord-derived mesenchymal stem cells maintaining their membrane potential. To examine the efficacy of mitochondrial transplantation on muscle regeneration, we measured muscle mass, cross-sectional area of muscle fiber, and changes in muscle-specific protein. In addition, changes in the signaling mechanisms related to muscle atrophy were evaluated. As a result, in mitochondrial transplantation, the muscle mass increased by 1.5-fold and the lactate concentration decreased by 2.5-fold at 1 week in dexamethasone-induced atrophic muscles. In addition, a 2.3-fold increase in the expression of desmin protein, a muscle regeneration marker, showed a significant recovery in MT 5 µg group. Importantly, the muscle-specific ubiquitin E3-ligases MAFbx and MuRF-1 were significantly decreased through AMPK-mediated Akt-FoxO signaling pathway by mitochondrial transplantation compared with the saline group, reaching a level similar to that in the control. Based on these results, mitochondrial transplantation may have therapeutic applications in the treatment of atrophic muscle disorders.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea
| | - Ji Min Lee
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea
| | - Kyunghoon Min
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 13496, Seongnam, Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea.
| |
Collapse
|
3
|
Takahashi A, Honda Y, Tanaka N, Miyake J, Maeda S, Kataoka H, Sakamoto J, Okita M. Skeletal Muscle Electrical Stimulation Prevents Progression of Disuse Muscle Atrophy via Forkhead Box O Dynamics Mediated by Phosphorylated Protein Kinase B and Peroxisome Proliferator-Activated Receptor gamma Coactivator-1alpha. Physiol Res 2024; 73:105-115. [PMID: 38466009 PMCID: PMC11019614 DOI: 10.33549/physiolres.935157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/12/2023] [Indexed: 04/26/2024] Open
Abstract
Although electrical muscle stimulation (EMS) of skeletal muscle effectively prevents muscle atrophy, its effect on the breakdown of muscle component proteins is unknown. In this study, we investigated the biological mechanisms by which EMS-induced muscle contraction inhibits disuse muscle atrophy progression. Experimental animals were divided into a control group and three experimental groups: immobilized (Im; immobilization treatment), low-frequency (LF; immobilization treatment and low-frequency muscle contraction exercise), and high-frequency (HF; immobilization treatment and high-frequency muscle contraction exercise). Following the experimental period, bilateral soleus muscles were collected and analyzed. Atrogin-1 and Muscle RING finger 1 (MuRF-1) mRNA expression levels were significantly higher for the experimental groups than for the control group but were significantly lower for the HF group than for the Im group. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) mRNA and protein expression levels in the HF group were significantly higher than those in the Im group, with no significant differences compared to the Con group. Both the Forkhead box O (FoxO)/phosphorylated FoxO and protein kinase B (AKT)/phosphorylated AKT ratios were significantly lower for the Im group than for the control group and significantly higher for the HF group than for the Im group. These results, the suppression of atrogin-1 and MuRF-1 expression for the HF group may be due to decreased nuclear expression of FoxO by AKT phosphorylation and suppression of FoxO transcriptional activity by PGC-1alpha. Furthermore, the number of muscle contractions might be important for effective EMS.
Collapse
Affiliation(s)
- A Takahashi
- Institute of Biomedical Sciences (Health Sciences), Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Centa JL, Stratton MP, Pratt MA, Osterlund Oltmanns JR, Wallace DG, Miller SA, Weimer JM, Hastings ML. Protracted CLN3 Batten disease in mice that genetically model an exon-skipping therapeutic approach. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:15-27. [PMID: 37359347 PMCID: PMC10285469 DOI: 10.1016/j.omtn.2023.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Genetic mutations that disrupt open reading frames and cause translation termination are frequent causes of human disease and are difficult to treat due to protein truncation and mRNA degradation by nonsense-mediated decay, leaving few options for traditional drug targeting. Splice-switching antisense oligonucleotides offer a potential therapeutic solution for diseases caused by disrupted open reading frames by inducing exon skipping to correct the open reading frame. We have recently reported on an exon-skipping antisense oligonucleotide that has a therapeutic effect in a mouse model of CLN3 Batten disease, a fatal pediatric lysosomal storage disease. To validate this therapeutic approach, we generated a mouse model that constitutively expresses the Cln3 spliced isoform induced by the antisense molecule. Behavioral and pathological analyses of these mice demonstrate a less severe phenotype compared with the CLN3 disease mouse model, providing evidence that antisense oligonucleotide-induced exon skipping can have therapeutic efficacy in treating CLN3 Batten disease. This model highlights how protein engineering through RNA splicing modulation can be an effective therapeutic approach.
Collapse
Affiliation(s)
- Jessica L. Centa
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Matthew P. Stratton
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Melissa A. Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | | | - Douglas G. Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - Steven A. Miller
- Psychology Department, College of Health Professionals, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57104, USA
| | - Michelle L. Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Li S, Wang Z, Yao JW, Jiao HC, Wang XJ, Lin H, Zhao JP. Reduced PGC-1β protein expression may underlie corticosterone inhibition of mitochondrial biogenesis and oxidative phosphorylation in chicken muscles. Front Physiol 2022; 13:989547. [PMID: 36311241 PMCID: PMC9605778 DOI: 10.3389/fphys.2022.989547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
To uncover the molecular mechanism underlying glucocorticoid-induced loss of mitochondrial integrity in skeletal muscles, studies were performed to investigate whether the peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1)-mediated pathway was involved in this process. In an in vivo trial, 3 groups of 30-d-old Arbor Acres male broilers were randomly subjected to one of the following treatments for 7 days: corticosterone (CORT, 30 mg/kg diet), control (blank), and pair-feeding (restricted to the same feed intake as for the CORT treatment), each with 6 replicates of 15 birds. Mitochondrial abundance, morphology, and function were determined in the pectoralis major and biceps femoris muscles. In an in vitro trial, a primary culture of embryonic chick myotubes was incubated with a serum-free medium for 24 h in the presence or absence of CORT (0, 200, and 1,000 nM). Results showed that CORT destroyed mitochondrial ultrastructure (p < 0.01), and decreased the enzymatic activity and protein expression of respiratory chain complexes (p < 0.05), leading to an inferior coupling efficiency (p < 0.05). As reflected by a decline in mitochondrial density (p < 0.01) and mitochondrial DNA copy number (p < 0.05), CORT reduced mitochondrial contents. Among all three PGC-1 family members, only PGC-1β was down-regulated by CORT at the protein level (p < 0.05). Some aspects of these responses were tissue-specific and seemed to result from the depressed feed intake. Overall, CORT may impair mitochondrial biogenesis and oxidative phosphorylation in a PGC-1β-dependent manner in chicken muscles.
Collapse
Affiliation(s)
- Sheng Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Zhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Jing Wen Yao
- Pharmacy Department, Taian City Central Hospital, Taian, Shandong, China
| | - Hong Chao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Xiao Juan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Jing Peng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- *Correspondence: Jing Peng Zhao,
| |
Collapse
|
6
|
Wang M, Jiang R, Liu J, Xu X, Sun G, Zhao D, Sun L. 20(s)‑ginseonside‑Rg3 modulation of AMPK/FoxO3 signaling to attenuate mitochondrial dysfunction in a dexamethasone‑injured C2C12 myotube‑based model of skeletal atrophy in vitro. Mol Med Rep 2021; 23:306. [PMID: 33649814 PMCID: PMC7974265 DOI: 10.3892/mmr.2021.11945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
Muscle atrophy, a side effect from administration of the anti‑inflammatory medication dexamethasone (DEX), is preventable by concomitant administration of the major monomeric constituent of Panax ginseng C.A. Meyer, 20(S)‑ginsenoside Rg3 (S‑Rg3). Putative S‑Rg3‑associated prevention of DEX‑induced muscle atrophy may involve S‑Rg3 mitigation of DEX‑induced mitochondrial dysfunction. In the present study, MTT assays revealed enhanced cell viability following S‑Rg3 treatment of DEX‑injured C2C12 myotubes. Subsequent PCR and western blotting results demonstrated S‑Rg3‑induced reduction of expression of muscle atrophy F‑box protein (atrogin‑1) and muscle RING‑finger protein‑1, proteins previously linked to muscle atrophy. Additionally, S‑Rg3 treatment of DEX‑injured myotubes led to aggregation of Rg3 monomers in cells and dose‑dependent increases in cellular mitochondrial basal respiratory oxygen consumption rate and intracellular ATP levels compared with their levels in untreated DEX‑injured myotubes. In addition, S‑Rg3 treatment significantly reversed DEX‑induced reductions of expression of key mitochondrial respiratory electron transport chain subunits of protein complexes II, III and V in DEX‑injured myotube cells. Furthermore, S‑Rg3 alleviation of mitochondrial dysfunction associated with DEX‑induced injury of C2C12 myotubes was linked to S‑Rg3‑associated decreases in both forkhead box O3 (FoxO3) protein expression and phosphorylation of AMP‑activated protein kinase (AMPK). Collectively, these results implicate S‑Rg3 modulation of signaling within the AMPK‑FoxO3 pathway as a putative mechanism underlying S‑Rg3 alleviation of DEX‑induced muscle atrophy.
Collapse
Affiliation(s)
- Manying Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Guang Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, Jilin 130021, P.R. China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
7
|
Zhao W, Peng Y, Hu Y, Guo XE, Li J, Cao J, Pan J, Feng JQ, Cardozo C, Jarvis J, Bauman WA, Qin W. Electrical stimulation of hindlimb skeletal muscle has beneficial effects on sublesional bone in a rat model of spinal cord injury. Bone 2021; 144:115825. [PMID: 33348128 PMCID: PMC7868091 DOI: 10.1016/j.bone.2020.115825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) results in marked atrophy of sublesional skeletal muscle and substantial loss of bone. In this study, the effects of prolonged electrical stimulation (ES) and/or testosterone enanthate (TE) on muscle mass and bone formation in a rat model of SCI were tested. Compared to sham-transected animals, a significant reduction of the mass of soleus, plantaris and extensor digitorum longus (EDL) muscles was observed in animals 6 weeks post-SCI. Notably, ES or ES + TE resulted in the increased mass of the EDL muscles. ES or ES + TE significantly decreased mRNA levels of muscle atrophy markers (e.g., MAFbx and MurF1) in the EDL. Significant decreases in bone mineral density (BMD) (-27%) and trabecular bone volume (-49.3%) at the distal femur were observed in animals 6 weeks post injury. TE, ES and ES + TE treatment significantly increased BMD by +6.4%, +5.4%, +8.5% and bone volume by +22.2%, and +56.2% and+ 60.2%, respectively. Notably, ES alone or ES + TE resulted in almost complete restoration of cortical stiffness estimated by finite element analysis in SCI animals. Osteoblastogenesis was evaluated by colony-forming unit-fibroblastic (CFU-F) staining using bone marrow mesenchymal stem cells obtained from the femur. SCI decreased the CFU-F+ cells by -56.8% compared to sham animals. TE or ES + TE treatment after SCI increased osteoblastogenesis by +74.6% and +67.2%, respectively. An osteoclastogenesis assay revealed significantly increased TRAP+ multinucleated cells (+34.8%) in SCI animals compared to sham animals. TE, ES and TE + ES treatment following SCI markedly decreased TRAP+ cells by -51.3%, -40.3% and -46.9%, respectively. Each intervention greatly reduced the ratio of RANKL to OPG mRNA of sublesional long bone. Collectively, our findings demonstrate that after neurologically complete paralysis, dynamic muscle resistance exercise by ES reduced muscle atrophy, downregulated genes involved in muscle wasting, and restored mechanical loading to sublesional bone to a degree that allowed for the preservation of bone by inhibition of bone resorption and/or by facilitating bone formation.
Collapse
Affiliation(s)
- Wei Zhao
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanzhen Peng
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jiliang Li
- Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jay Cao
- United States Department of Agriculture Agricultural Research Service Human Nutrition Research Center, Grand Forks, ND, USA
| | - Jiangping Pan
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jian Q Feng
- Baylor College of Dentistry, TX A&M, Dallas, TX, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Jarvis
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - William A Bauman
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiping Qin
- National Center for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Zhang D, Liu K, Hu W, Lu X, Li L, Zhang Q, Huang H, Wang H. Prenatal dexamethasone exposure caused fetal rats liver dysplasia by inhibiting autophagy-mediated cell proliferation. Toxicology 2021; 449:152664. [PMID: 33359579 DOI: 10.1016/j.tox.2020.152664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
As a synthetic glucocorticoid, dexamethasone has been widely used in the clinical treatment of premature birth and related pregnant diseases, but its clinical use is still controversial due to developmental toxicity. This study aimed to confirm the proliferation inhibitory effect of pregnant dexamethasone exposure (PDE) on fetal liver development and elucidate its molecular mechanism. In vitro studies, we found that dexamethasone inhibited hepatocyte proliferation through autophagy activated by glucocorticoid receptor (GR)-forkhead protein O1 (FOXO1) pathway. Subsequently, in vivo, we confirmed in a PDE rat model that male fetal liver proliferation was inhibited, and the expression of the GR-FOXO1 pathway and autophagy were increased. Taken together, PDE induces autophagy by activating the GR-FOXO1 pathway, which leads to fetal liver proliferation inhibition and dysplasia in offspring rats. This study confirmed that dexamethasone activates cell autophagy in utero through the GR-FOXO1 pathway, thereby inhibiting hepatocyte proliferation and liver development, which provides theoretical basis for understanding the developmental toxicity of dexamethasone and guiding the rational clinical use.
Collapse
Affiliation(s)
- Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hegui Huang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Wuhan No.1 Hospital, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
9
|
p38 MAPK in Glucose Metabolism of Skeletal Muscle: Beneficial or Harmful? Int J Mol Sci 2020; 21:ijms21186480. [PMID: 32899870 PMCID: PMC7555282 DOI: 10.3390/ijms21186480] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscles respond to environmental and physiological changes by varying their size, fiber type, and metabolic properties. P38 mitogen-activated protein kinase (MAPK) is one of several signaling pathways that drive the metabolic adaptation of skeletal muscle to exercise. p38 MAPK also participates in the development of pathological traits resulting from excessive caloric intake and obesity that cause metabolic syndrome and type 2 diabetes (T2D). Whereas p38 MAPK increases insulin-independent glucose uptake and oxidative metabolism in muscles during exercise, it contrastingly mediates insulin resistance and glucose intolerance during metabolic syndrome development. This article provides an overview of the apparent contradicting roles of p38 MAPK in the adaptation of skeletal muscles to exercise and to pathological conditions leading to glucose intolerance and T2D. Here, we focus on the involvement of p38 MAPK in glucose metabolism of skeletal muscle, and discuss the possibility of targeting this pathway to prevent the development of T2D.
Collapse
|
10
|
Kroon J, Pereira AM, Meijer OC. Glucocorticoid Sexual Dimorphism in Metabolism: Dissecting the Role of Sex Hormones. Trends Endocrinol Metab 2020; 31:357-367. [PMID: 32037025 DOI: 10.1016/j.tem.2020.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Glucocorticoids are steroid hormones that are of pivotal importance in human physiology. Glucocorticoid signaling is complex in nature and dependent on many interacting factors. As glucocorticoids exhibit sexually dimorphic effects on several key processes including in metabolism, crosstalk with the sex steroid hormones (androgens and estrogens) is relevant. In this review, we highlight the state-of-the-art knowledge on glucocorticoid sexual dimorphism and sex hormone crosstalk. We include current insight in the molecular mechanisms that underlie nuclear steroid receptor crosstalk, and sex hormone effects on glucocorticoid metabolism. Finally, we show how these findings translate to humans exposed to excess glucocorticoid signaling, and we propose future avenues in the emerging field of steroid hormone crosstalk.
Collapse
Affiliation(s)
- Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Alberto M Pereira
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Recovery of muscle mass and muscle oxidative phenotype following disuse does not require GSK-3 inactivation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165740. [PMID: 32087280 DOI: 10.1016/j.bbadis.2020.165740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Physical inactivity contributes to muscle wasting and reductions in mitochondrial oxidative phenotype (OXPHEN), reducing physical performance and quality of life during aging and in chronic disease. Previously, it was shown that inactivation of glycogen synthase kinase (GSK)-3β stimulates muscle protein accretion, myogenesis, and mitochondrial biogenesis. Additionally, GSK-3β is inactivated during recovery of disuse-induced muscle atrophy. AIM Therefore, we hypothesize that GSK-3 inhibition is required for reloading-induced recovery of skeletal muscle mass and OXPHEN. METHODS Wild-type (WT) and whole-body constitutively active (C.A.) Ser21/9 GSK-3α/β knock-in mice were subjected to a 14-day hind-limb suspension/14-day reloading protocol. Soleus muscle mass, fiber cross-sectional area (CSA), OXPHEN (abundance of sub-units of oxidative phosphorylation (OXPHOS) complexes and fiber-type composition), as well as expression levels of their main regulators (respectively protein synthesis/degradation, myogenesis and peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) signaling) were monitored. RESULTS Subtle but consistent differences suggesting suppression of protein turnover signaling and decreased expression of several OXPHOS sub-units and PGC-1α signaling constituents were observed at baseline in C.A. GSK-3 versus WT mice. Although soleus mass recovery during reloading occurred more rapidly in C.A. GSK-3 mice, this was not accompanied by a parallel increased CSA. The OXPHEN response to reloading was not distinct between C.A. GSK-3 and WT mice. No consistent or significant differences in reloading-induced changes in the regulatory steps of protein turnover, myogenesis or muscle OXPHEN were observed in C.A. GSK-3 compared to WT muscle. CONCLUSION This study indicates that GSK-3 inactivation is dispensable for reloading-induced recovery of muscle mass and OXPHEN.
Collapse
|
12
|
Odeh M, Tamir‐Livne Y, Haas T, Bengal E. P38α MAPK coordinates the activities of several metabolic pathways that together induce atrophy of denervated muscles. FEBS J 2019; 287:73-93. [DOI: 10.1111/febs.15070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/30/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Maali Odeh
- Department of Biochemistry Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Yael Tamir‐Livne
- Department of Biochemistry Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Tali Haas
- Pre‐Clinical Research Authority Technion‐Israel Institute of Technology Haifa Israel
| | - Eyal Bengal
- Department of Biochemistry Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| |
Collapse
|
13
|
Scholpa NE, Simmons EC, Tilley DG, Schnellmann RG. β 2-adrenergic receptor-mediated mitochondrial biogenesis improves skeletal muscle recovery following spinal cord injury. Exp Neurol 2019; 322:113064. [PMID: 31525347 DOI: 10.1016/j.expneurol.2019.113064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 01/06/2023]
Abstract
In addition to local spinal cord dysfunction, spinal cord injury (SCI) can result in decreased skeletal muscle mitochondrial activity and muscle atrophy. Treatment with the FDA-approved β2-adrenergic receptor (ADRB2) agonist formoterol has been shown to induce mitochondrial biogenesis (MB) in both the spinal cord and skeletal muscle and, therefore, has the potential to address comprehensive mitochondrial and organ dysfunction following SCI. Female C57BL/6 mice were subjected to moderate contusion SCI (80 Kdyn) followed by daily administration of vehicle or formoterol beginning 8 h after injury, a clinically relevant time-point characterized by a 50% decrease in mtDNA content in the injury site. As measured by the Basso Mouse Scale, formoterol treatment improved locomotor recovery in SCI mice compared to vehicle treatment by 7 DPI, with continued recovery observed through 21 DPI (3.5 v. 2). SCI resulted in 15% body weight loss in all mice by 3 DPI. Mice treated with formoterol returned to pre-surgery weight by 13 DPI, while no weight gain occurred in vehicle-treated SCI mice. Remarkably, formoterol-treated mice exhibited a 30% increase in skeletal muscle mass compared to those treated with vehicle 21 DPI (0.93 v. 0.72% BW), corresponding with increased MB and decreased skeletal muscle atrophy. These effects were not observed in ADRB2 knockout mice subjected to SCI, indicating that formoterol is acting via the ADRB2 receptor. Furthermore, knockout mice exhibited decreased basal spinal cord and skeletal muscle PGC-1α expression, suggesting that ADRB2 may play a role in mitochondrial homeostasis under physiological conditions. These data provide evidence for systemic ADRB2-mediated MB as a therapeutic avenue for the treatment of SCI.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America.
| | - Epiphani C Simmons
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America; Department of Neurosciences, College of Medicine, University of Arizona, Tucson, AZ, United States of America.
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America.
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America; Department of Neurosciences, College of Medicine, University of Arizona, Tucson, AZ, United States of America; Southern Arizona VA Health Care System, Tucson, AZ, United States of America; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States of America; Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
14
|
Fappi A, Neves JDC, Kawasaki KA, Bacelar L, Sanches LN, P. da Silva F, Larina‐Neto R, Chadi G, Zanoteli E. Omega-3 multiple effects increasing glucocorticoid-induced muscle atrophy: autophagic, AMPK and UPS mechanisms. Physiol Rep 2019; 7:e13966. [PMID: 30648357 PMCID: PMC6333722 DOI: 10.14814/phy2.13966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Muscle atrophy occurs in many conditions, including use of glucocorticoids. N-3 (omega-3) is widely consumed due its healthy properties; however, concomitant use with glucocorticoids can increase its side effects. We evaluated the influences of N-3 on glucocorticoid atrophy considering IGF-1, Myostatin, MEK/ERK, AMPK pathways besides the ubiquitin-proteasome system (UPS) and autophagic/lysosomal systems. Sixty animals constituted six groups: CT, N-3 (EPA 100 mg/kg/day for 40 days), DEXA 1.25 (DEXA 1.25 mg/kg/day for 10 days), DEXA 1.25 + N3 (EPA for 40 days + DEXA 1.25 mg/kg/day for the last 10 days), DEXA 2.5 (DEXA 2.5 mg/kg/day for 10 days), and DEXA 2.5 + N3 (EPA for 40 days + DEXA 2.5 mg/kg/day for 10 days). Results: N-3 associated with DEXA increases atrophy (fibers 1 and 2A), FOXO3a, P-SMAD2/3, Atrogin-1/MAFbx (mRNA) expression, and autophagic protein markers (LC3II, LC3II/LC3I, LAMP-1 and acid phosphatase). Additionally, N-3 supplementation alone decreased P-FOXO3a, PGC1-alpha, and type 1 muscle fiber area. Conclusion: N-3 supplementation increases muscle atrophy caused by DEXA in an autophagic, AMPK and UPS process.
Collapse
Affiliation(s)
- Alan Fappi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Juliana de C. Neves
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Karine A. Kawasaki
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Luana Bacelar
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Leandro N. Sanches
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Felipe P. da Silva
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Rubens Larina‐Neto
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Gerson Chadi
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| | - Edmar Zanoteli
- Department of NeurologyFaculdade de Medicina FMUSPUniversidade de Sao PauloSP, Brazil
| |
Collapse
|
15
|
Karakas SE, Surampudi P. New Biomarkers to Evaluate Hyperandrogenemic Women and Hypogonadal Men. Adv Clin Chem 2018; 86:71-125. [PMID: 30144842 DOI: 10.1016/bs.acc.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Androgens can have variable effects on men and women. Women may be evaluated for androgen excess for several reasons. Typically, young premenopausal women present with clinical symptoms of hirsutism, alopecia, irregular menses, and/or infertility. The most common cause of these symptoms is polycystic ovary syndrome. After menopause, even though ovaries stop producing estrogen, they continue to produce androgen, and women can have new onset of hirsutism and alopecia. Laboratory evaluation involves measurement of the major ovarian and adrenal androgens. In women, age, phase of the menstrual cycle, menopausal status, obesity, metabolic health, and sex hormone-binding proteins significantly affect total-androgen levels and complicate interpretation. This review will summarize the clinically relevant evaluation of hyperandrogenemia at different life stages in women and highlight pitfalls associated with interpretation of commonly used hormone measurements. Hypogonadism in men is a clinical syndrome characterized by low testosterone and/or low sperm count. Symptoms of hypogonadism include decreased libido, erectile dysfunction, decreased vitality, decreased muscle mass, increased adiposity, depressed mood, osteopenia, and osteoporosis. Hypogonadism is a common disorder in aging men. Hypogonadism is observed rarely in young boys and adolescent men. Based on the defects in testes, hypothalamus, and/or pituitary glands, hypogonadism can be broadly classified as primary, secondary, and mixed hypogonadism. Diagnosis of hypogonadism in men is based on symptoms and laboratory measurement. Biomarkers in use/development for hypogonadism are classified as hormonal, Leydig and Sertoli cell function, semen, genetic/RNA, metabolic, microbiome, and muscle mass-related. These biomarkers are useful for diagnosis of hypogonadism, determination of the type of hypogonadism, identification of the underlying causes, and therapeutic assessment. Measurement of serum testosterone is usually the most important single diagnostic test for male hypogonadism. Patients with primary hypogonadism have low testosterone and increased luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Patients with secondary hypogonadism have low testosterone and low or inappropriately normal LH and FSH. This review provides an overview of hypogonadism in men and a detailed discussion of biomarkers currently in use and in development for diagnosis thereof.
Collapse
Affiliation(s)
- Sidika E Karakas
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of California at Davis, Davis, CA, United States
| | - Prasanth Surampudi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of California at Davis, Davis, CA, United States
| |
Collapse
|
16
|
Lu H, Zhang LH, Yang L, Tang PF. The PI3K/Akt/FOXO3a pathway regulates regeneration following spinal cord injury in adult rats through TNF-α and p27kip1 expression. Int J Mol Med 2018; 41:2832-2838. [PMID: 29436581 DOI: 10.3892/ijmm.2018.3459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 12/20/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to elucidate the expression and role of the phosphatidylinositol 3‑kinase (PI3K)/Akt/forkhead box O3 (FOXO3a) pathway in the regeneration of the spinal cord following spinal cord injury (SCI), and its regulatory effect on tumor necrosis factor (TNF)-α and cyclin-dependent kinase inhibitor 1B (p27kip1) expression. Firstly, in a Sprague-Dawley rat model of SCI, western blot analysis revealed that the protein levels of PI3K, phosphorylated Akt and FOXO3a were markedly inhibited compared with those in the sham control group. In vitro experiments were also conducted, in which primary dissociated cultures of rat dorsal spinal cord cells were induced with lipopolysaccharide (LPS; 4 µg/ml). The downregulation of PI3K using LY294002 markedly suppressed cell viability, reduced the protein levels of FOXO3a and p27kip1, and increased TNF-α protein production in the LPS-induced spinal cord cells. In addition, when the LPS-induced spinal cord cells were infected with FOXO3a adenoviral vectors, the overexpression of FOXO3 markedly promoted cell proliferation, activated p27kip1 protein levels and inhibited TNF-α protein production in the spinal cord cells. These results suggest that the PI3K/Akt/FOXO3a pathway regulates regeneration following SCI in adult rats via its modulatory effects on TNF-α and p27kip1 expression.
Collapse
Affiliation(s)
- Honghui Lu
- Department of Orthopaedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100853, P.R. China
| | - Li-Hai Zhang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Lin Yang
- Department of Orthopaedics, The Third Hospital of Beijing Municipal Corps, Chinese People's Armed Police Forces, Beijing 100141, P.R. China
| | - Pei-Fu Tang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
17
|
|
18
|
Lv ZP, Peng YZ, Zhang BB, Fan H, Liu D, Guo YM. Glucose and lipid metabolism disorders in the chickens with dexamethasone-induced oxidative stress. J Anim Physiol Anim Nutr (Berl) 2017; 102:e706-e717. [DOI: 10.1111/jpn.12823] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Z.-P. Lv
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| | - Y.-Z. Peng
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| | - B.-B. Zhang
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| | - H. Fan
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| | - D. Liu
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| | - Y.-M. Guo
- State Key Laboratory of Animal Nutrition; College of Animal Science & Technology; China Agricultural University; Beijing China
| |
Collapse
|
19
|
Park SS, Kwon ES, Kwon KS. Molecular mechanisms and therapeutic interventions in sarcopenia. Osteoporos Sarcopenia 2017; 3:117-122. [PMID: 30775515 PMCID: PMC6372765 DOI: 10.1016/j.afos.2017.08.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is the degenerative loss of muscle mass and function with aging. Recently sarcopenia was recognized as a clinical disease by the International Classification of Disease, 10th revision, Clinical Modification. An imbalance between protein synthesis and degradation causes a gradual loss of muscle mass, resulting in a decline of muscle function as a progress of sarcopenia. Many mechanisms involved in the onset of sarcopenia include age-related factors as well as activity-, disease-, and nutrition-related factors. The stage of sarcopenia reflecting the severity of conditions assists clinical management of sarcopenia. It is important that systemic descriptions of the disease conditions include age, sex, and other environmental risk factors as well as levels of physical function. To develop a new therapeutic intervention needed is the detailed understanding of molecular and cellular mechanisms by which apoptosis, autophagy, atrophy, and hypertrophy occur in the muscle stem cells, myotubes, and/or neuromuscular junction. The new strategy to managing sarcopenia will be signal-modulating small molecules, natural compounds, repurposing of old drugs, and muscle-specific microRNAs.
Collapse
Affiliation(s)
- Sung Sup Park
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Korea University of Science and Technology, Daejeon, Korea
| | - Eun-Soo Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Korea University of Science and Technology, Daejeon, Korea
- Corresponding author. Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
20
|
Sumarac-Dumanovic M, Apostolovic M, Janjetovic K, Jeremic D, Popadic D, Ljubic A, Micic J, Dukanac-Stamenkovic J, Tubic A, Stevanovic D, Micic D, Trajkovic V. Downregulation of autophagy gene expression in endometria from women with polycystic ovary syndrome. Mol Cell Endocrinol 2017; 440:116-124. [PMID: 27845161 DOI: 10.1016/j.mce.2016.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/12/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023]
Abstract
Autophagy, a process of controlled cellular self-digestion, could be involved in cyclic remodeling of the human endometrium. We investigated endometrial mRNA expression of 23 autophagy-related (ATG) genes and transcription factors in healthy controls (n = 12) and anovulatory polycystic ovary syndrome (PCOS) patients (n = 24), as well as in their subgroup (n = 12) before and after metformin treatment. The mRNA levels of transcription factor forkhead box protein O1 (FOXO1) and several molecules involved in autophagosome formation (ATG13, RB1-inducible coiled-coil 1), autophagosome nucleation (ATG14, beclin 1, SH3-domain GRB2-like endophilin B1), autophagosome elongation (ATG3, ATG5, γ-aminobutyric acid receptor-associated protein - GABARAP), and delivery of ubiquitinated proteins to autophagosomes (sequestosome 1), were significantly reduced in anovulatory PCOS compared to healthy endometrium. Free androgen index, but not free estrogen index, insulin levels, or body mass index, negatively correlated with the endometrial expression of ATG3, ATG14, and GABARAP in PCOS patients. Treatment of PCOS patients with metformin (2 g/day for 3 months) significantly increased the endometrial mRNA levels of FOXO1, ATG3, and UV radiation resistance-associated gene. These data suggest that increased androgen availability in PCOS is associated with metformin-sensitive transcriptional downregulation of endometrial autophagy.
Collapse
Affiliation(s)
- Mirjana Sumarac-Dumanovic
- Clinic for Endocrinology, Diabetes, and Diseases of Metabolism, Clinical Center of Serbia, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Kristina Janjetovic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Danka Jeremic
- Clinic for Endocrinology, Diabetes, and Diseases of Metabolism, Clinical Center of Serbia, Belgrade, Serbia
| | - Dusan Popadic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Jelena Micic
- School of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Gynecology and Obstetrics, Clinical Center of Serbia, Belgrade, Serbia
| | - Jelena Dukanac-Stamenkovic
- School of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Gynecology and Obstetrics, Clinical Center of Serbia, Belgrade, Serbia
| | - Aleksandra Tubic
- Clinic for Gynecology and Obstetrics, Clinical Center of Nis, Nis, Serbia
| | - Darko Stevanovic
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Dragan Micic
- School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
21
|
Singh AK, Shree S, Chattopadhyay S, Kumar S, Gurjar A, Kushwaha S, Kumar H, Trivedi AK, Chattopadhyay N, Maurya R, Ramachandran R, Sanyal S. Small molecule adiponectin receptor agonist GTDF protects against skeletal muscle atrophy. Mol Cell Endocrinol 2017; 439:273-285. [PMID: 27645900 DOI: 10.1016/j.mce.2016.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 02/02/2023]
Abstract
Skeletal muscle atrophy is a debilitating response to several major diseases, muscle disuse and chronic steroid treatment for which currently no therapy is available. Since adiponectin signaling plays key roles in muscle energetics, we assessed if globular adiponectin (gAd) or the small molecule adiponectin mimetic 6-C-β-D-glucopyranosyl-(2S,3S)-(+)-5,7,3',4'-tetrahydroxydihydroflavonol (GTDF) could ameliorate muscle atrophy. Both GTDF and gAd induced C2C12 myoblast differentiation. GTDF and gAd effectively prevented reduction in myotube area and suppressed the expressions of atrophy markers; atrogin-1 and muscle ring finger protein-1 (MuRF1) in models of steroid, cytokine and starvation -induced muscle atrophy. The protective effects of GTDF and gAd were routed through AMPK and AKT activation and thereby stimulation of PPAR gamma coactivator 1α and inhibition of forkhead box O transcription factors. Finally, GTDF and gAd mitigated dexamethasone-induced muscle atrophy in vivo. Together, our results demonstrate that activating adiponectin signaling may be an effective therapeutic strategy against skeletal muscle atrophy.
Collapse
Affiliation(s)
- Abhishek Kumar Singh
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Sonal Shree
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Central Drug Research Institute Campus, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Sudhir Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Anagha Gurjar
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Central Drug Research Institute Campus, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Sapana Kushwaha
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Harish Kumar
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Arun Kumar Trivedi
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Rakesh Maurya
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Ravishankar Ramachandran
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Central Drug Research Institute Campus, 10, Janakipuram Extn, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
22
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
23
|
Rahnert JA, Zheng B, Hudson MB, Woodworth-Hobbs ME, Price SR. Glucocorticoids Alter CRTC-CREB Signaling in Muscle Cells: Impact on PGC-1α Expression and Atrophy Markers. PLoS One 2016; 11:e0159181. [PMID: 27404111 PMCID: PMC4942104 DOI: 10.1371/journal.pone.0159181] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/28/2016] [Indexed: 01/21/2023] Open
Abstract
Muscle wasting associated with chronic diseases has been linked to decreased expression of PGC-1α and overexpression of PGC-1α counters muscle loss. CREB, in conjunction with the CREB-regulated transcription coactivator (CRTC2), is a positive modulator of PGC-1α transcription. We previously reported that PGC-1α expression is decreased in skeletal muscle of diabetic rats despite a high level of CREB phosphorylation (i.e., activation), suggesting that CRTC2-CREB signaling may be dysregulated. In this study, the relationship between CREB/CRTC signaling and PGC-1α expression was examined in L6 myotubes treated with dexamethasone (Dex, 48h) to induce atrophy. Dex decreased PGC-1α mRNA and protein as well as the levels of CRTC1 and CRTC2 in the nucleus. Dex also altered the nuclear levels of two known regulators of CRTC2 localization; the amount of calcinuerin catalytic A subunit (CnA) was decreased whereas SIK was increased. To assess PGC-1α transcription, muscle cells were transfected with a PGC-1α luciferase reporter plasmid (PGC-1α-Luc). Dex suppressed PGC-1α luciferase activity while both isobutylmethylxanthine (IBMX) and over-expression of CRTC1 or CRTC2 increased PGC-1α-Luc activity. Mutation of the CRE binding site from PGC-1α-Luc reporter attenuated the responses to both IBMX and the CRTC proteins. Consistent with the reporter gene results, overexpression of CRTC2 produced an increase in CRTC2 in the nucleus and in PGC-1α mRNA and PGC-1α protein. Overexpression of CRTC2 was not sufficient to prevent the decrease in PGC-1α mRNA or protein by Dex. In summary, these data suggest that attenuated CREB/CRTC signaling contributes to the decrease in PGC-1α expression during atrophy.
Collapse
Affiliation(s)
- Jill A. Rahnert
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Bin Zheng
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Matthew B. Hudson
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Myra E. Woodworth-Hobbs
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - S. Russ Price
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States of America
- * E-mail:
| |
Collapse
|
24
|
Hułas-Stasiak M, Dobrowolski P, Tomaszewska E. Prenatally administered dexamethasone impairs folliculogenesis in spiny mouse offspring. Reprod Fertil Dev 2016; 28:1038-1048. [PMID: 25562684 DOI: 10.1071/rd14224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/21/2014] [Indexed: 01/07/2023] Open
Abstract
This study was designed to determine whether prenatal dexamethasone treatment has an effect on follicular development and atresia in the ovary of spiny mouse (Acomys cahirinus) offspring. Dexamethasone (125µg kg-1 bodyweight per day) was administered to pregnant spiny mice from Day 20 of gestation to parturition. The processes of follicle loss were analysed using classical markers of apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling reaction, active caspase-3) and autophagy (Lamp1). The present study indicated that dexamethasone reduced the pool of healthy primordial follicles. Moreover, the oocytes from these follicles showed intensive caspase-3 and Lamp1 staining. Surprisingly, dexamethasone caused an increase in the number of secondary follicles; however, most of these follicles were characterised by extensive degeneration of the oocyte and caspase-3 and Lamp1 labelling. Western-blot analysis indicated that the glucocorticoid receptor as well as apoptosis and autophagy markers were more strongly expressed in the DEX-treated group than in the control. On the basis of these findings, we have concluded that dexamethasone impairs spiny mouse folliculogenesis and enhances follicular atresia through induction of autophagy or combined autophagy and apoptosis.
Collapse
Affiliation(s)
- Monika Hułas-Stasiak
- Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, Akademicka St.19, 20-033 Lublin, Poland
| | - Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Maria Curie-Sklodowska University, Akademicka St.19, 20-033 Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Biochemistry and Physiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka St. 12, 20-950 Lublin, Poland
| |
Collapse
|
25
|
Chen S, Villalta A, Agrawal DK. FOXO1 Mediates Vitamin D Deficiency-Induced Insulin Resistance in Skeletal Muscle. J Bone Miner Res 2016; 31:585-95. [PMID: 26462119 PMCID: PMC4814301 DOI: 10.1002/jbmr.2729] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/25/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023]
Abstract
Prospective epidemiological studies have consistently shown a relationship between vitamin D deficiency, insulin resistance, and type 2 diabetes mellitus (DM2). This is supported by recent trials showing that vitamin D supplementation in prediabetic or insulin-resistant patients with inadequate vitamin D levels improves insulin sensitivity. However, the molecular mechanisms underlying vitamin D deficiency-induced insulin resistance and DM2 remain unknown. Skeletal muscle insulin resistance is a primary defect in the majority of patients with DM2. Although sustained activation of forkhead box O1 (FOXO1) in skeletal muscle causes insulin resistance, a relationship between vitamin D deficiency and FOXO1 activation in muscle is unknown. We generated skeletal muscle-specific vitamin D receptor (VDR)-null mice and discovered that these mice developed insulin resistance and glucose intolerance accompanied by increased expression and activity of FOXO1. We also found sustained FOXO1 activation in the skeletal muscle of global VDR-null mice. Treatment of C2C12 muscle cells with 1,25-dihydroxyvitamin D (VD3) reduced FOXO1 expression, nuclear translocation, and activity. The VD3-dependent suppression of FOXO1 activation disappeared by knockdown of VDR, indicating that it is VDR-dependent. Taken together, these results suggest that FOXO1 is a critical target mediating VDR-null signaling in skeletal muscle. The novel findings provide the conceptual support that persistent FOXO1 activation may be responsible for insulin resistance and impaired glucose metabolism in vitamin D signaling-deficient mice, as well as evidence for the utility of vitamin D supplementation for intervention in DM2.
Collapse
Affiliation(s)
- Songcang Chen
- Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha NE 68178 USA
| | - Armando Villalta
- Diabetes Center, University of California San Francisco, CA 94143 USA
| | - Devendra K. Agrawal
- Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha NE 68178 USA
| |
Collapse
|
26
|
Harada N, Katsuki T, Takahashi Y, Masuda T, Yoshinaga M, Adachi T, Izawa T, Kuwamura M, Nakano Y, Yamaji R, Inui H. Androgen receptor silences thioredoxin-interacting protein and competitively inhibits glucocorticoid receptor-mediated apoptosis in pancreatic β-Cells. J Cell Biochem 2016; 116:998-1006. [PMID: 25639671 DOI: 10.1002/jcb.25054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023]
Abstract
Androgen receptor (AR) is known to bind to the same cis-element that glucocorticoid receptor (GR) binds to. However, the effects of androgen signaling on glucocorticoid signaling have not yet been elucidated. Here, we investigated the effects of testosterone on dexamethasone (DEX, a synthetic glucocorticoid)-induced apoptosis of pancreatic β-cells, which might be involved in the pathogenesis of type 2 diabetes mellitus in males. We used INS-1 #6 cells, which were isolated from the INS-1 pancreatic β-cell line and which express high levels of AR. Testosterone and dihydrotestosterone inhibited apoptosis induced by DEX in INS-1 #6 cells. AR knockdown and the AR antagonist hydroxyflutamide each diminished the anti-apoptotic effects of testosterone. AR was localized in the nucleus of both INS-1 #6 cells and pancreatic β-cells of male rats. Induction of thioredoxin-interacting protein (TXNIP) is known to cause pro-apoptotic effects in β-cells. Testosterone suppressed the DEX-induced increase of TXNIP at the transcriptional level. A Chromatin immunoprecipitation assays showed that both AR and GR competitively bound to the TXNIP promoter in ligand-dependent manners. Recombinant DNA-binding domain of AR bound to the same cis-element of the TXNIP promoter that GR binds to. Our results show that AR and GR competitively bind to the same cis-element of TXNIP promoter as a silencer and enhancer, respectively. These results indicate that androgen signaling functionally competes with glucocorticoid signaling in pancreatic β-cell apoptosis.
Collapse
Affiliation(s)
- Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 5998531, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu J, Peng Y, Wang X, Fan Y, Qin C, Shi L, Tang Y, Cao K, Li H, Long J, Liu J. Mitochondrial Dysfunction Launches Dexamethasone-Induced Skeletal Muscle Atrophy via AMPK/FOXO3 Signaling. Mol Pharm 2015; 13:73-84. [DOI: 10.1021/acs.molpharmaceut.5b00516] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Liu
- Center
for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical
Information Engineering of Ministry of Education, School of Life Science
and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Yunhua Peng
- Center
for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical
Information Engineering of Ministry of Education, School of Life Science
and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Xun Wang
- Center
for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical
Information Engineering of Ministry of Education, School of Life Science
and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Yingying Fan
- Center
for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical
Information Engineering of Ministry of Education, School of Life Science
and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Chuan Qin
- Center
for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical
Information Engineering of Ministry of Education, School of Life Science
and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Le Shi
- Center
for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical
Information Engineering of Ministry of Education, School of Life Science
and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Ying Tang
- Center
for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical
Information Engineering of Ministry of Education, School of Life Science
and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Ke Cao
- Center
for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical
Information Engineering of Ministry of Education, School of Life Science
and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Hua Li
- Center
for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical
Information Engineering of Ministry of Education, School of Life Science
and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Jiangang Long
- Center
for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical
Information Engineering of Ministry of Education, School of Life Science
and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| | - Jiankang Liu
- Center
for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical
Information Engineering of Ministry of Education, School of Life Science
and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, China
| |
Collapse
|
28
|
The influence of dexamethasone administered prenatally on cartilage of newborn spiny mouse (Acomys cahirinus) offspring. J Dev Orig Health Dis 2015; 7:298-305. [DOI: 10.1017/s2040174415007874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Considering the negative effects of glucocorticoid treatment, especially during fetal development it is important to investigate effectors decreasing such disadvantages. The aim of this study was to investigate the effect of prenatally administered dexamethasone (Dex), a synthetic glucocorticoid, on the histomorphometry of the femur in the offspring of spiny mice. The study was performed on 24 pregnant spiny mice. The time of the experiment included the prenatal period between the 20th day of gestation until birth (pregnancy lasts on average of 36–38 days). The mice from the experimental group received dexamethasone per os in a dose of 125 mg/kg birth weight daily. At the end, the newborns from the experimental and control group were weighted and euthanized. Maternal Dex treatment resulted in a 17% decrease in birth weight in newborns. Dex administration significantly reduced the thickness of the hypertrophy zone of the growth plate by 34% and total thickness by 8,7%. In addition, Dex decreased the number of cells in the articular cartilage by 27% and significantly decreased their diameter by 5%. Dex also affected the structure and spatial distribution of thick and thin collagen fibers, lowering the proportion of thin fibers compared with the control group. Moreover, Dex treatment considerably lowered the amount of proteoglycans in articular and growth cartilages. Exposure to glucocorticoids in pregnant spiny mice affects cartilage development by accelerating maturity of collagen fibers and growth plate, presumably along with further disruption of longitudinal growth of long bones.
Collapse
|
29
|
Qin W, Li X, Peng Y, Harlow LM, Ren Y, Wu Y, Li J, Qin Y, Sun J, Zheng S, Brown T, Feng JQ, Ke HZ, Bauman WA, Cardozo CC. Sclerostin antibody preserves the morphology and structure of osteocytes and blocks the severe skeletal deterioration after motor-complete spinal cord injury in rats. J Bone Miner Res 2015; 30:1994-2004. [PMID: 25974843 DOI: 10.1002/jbmr.2549] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 01/16/2023]
Abstract
Unloading, neural lesions, and hormonal disorders after acute motor-complete spinal cord injury (SCI) cause one of the most severe forms of bone loss, a condition that has been refractory to available interventions tested to date. Thus, these features related to acute SCI provide a unique opportunity to study complex bone problems, potential efficacious interventions, and mechanisms of action that are associated with these dramatic pathological changes. This study was designed to explore the therapeutic potential of sclerostin antibody (Scl-Ab) in a rat model of bone loss after motor-complete SCI, and to investigate mechanisms underlying bone loss and Scl-Ab action. SCI rats were administered Scl-Ab (25 mg/kg/week) or vehicle beginning 7 days after injury then weekly for 7 weeks. SCI resulted in significant decreases in bone mineral density (-25%) and trabecular bone volume (-67%) at the distal femur; Scl-Ab completely prevented these deteriorations of bone in SCI rats, concurrent with markedly increased bone formation. Scanning electron microscopy revealed that SCI reduced numbers of osteocytes and dendrites concomitant with a morphology change from a spindle to round shape; Scl-Ab corrected these abnormalities in osteocytes. In ex vivo cultures of bone marrow cells, Scl-Ab inhibited osteoclastogenesis, and promoted osteoblastogenesis accompanied by increases in mRNA levels of LRP5, osteoprotegerin (OPG), and the OPG/RANKL ratio, and a decrease in DKK1 mRNA. Our findings provide the first evidence that robust bone loss after acute motor-complete SCI can be blocked by Scl-Ab, at least in part, through the preservation of osteocyte morphology and structure and related bone remodeling. Our findings support the inhibition of sclerostin as a promising approach to mitigate the striking bone loss that ensues after acute motor-complete SCI, and perhaps other conditions associated with disuse osteoporosis as a consequence of neurological disorders.
Collapse
Affiliation(s)
- Weiping Qin
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yuanzhen Peng
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Lauren M Harlow
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yinshi Ren
- Baylor College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Yingjie Wu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute of Gene Engineering Animal Models for Human Diseases, Dalian Medical University, Dalian, China
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University, Indianapolis, IN, USA
| | - Yiwen Qin
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jie Sun
- Institute of Gene Engineering Animal Models for Human Diseases, Dalian Medical University, Dalian, China
| | - Shijia Zheng
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | | | - Jian Q Feng
- Baylor College of Dentistry, Texas A&M University, Dallas, TX, USA
| | | | - William A Bauman
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher C Cardozo
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
30
|
Lee I, Hüttemann M, Kruger A, Bollig-Fischer A, Malek MH. (-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Front Pharmacol 2015; 6:43. [PMID: 25821434 PMCID: PMC4358069 DOI: 10.3389/fphar.2015.00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/18/2015] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to conduct an 8 week endurance training program with and without (–)–epicatechin treatment and to determine whether there is a possible cumulative effect on protein markers of angiogenesis and mitochondrial biogenesis. Thirty-four 14-month old male mice (C57BL/6N) were randomized into four groups: control (C); (–)–epicatechin only ((–)–Epi); control with endurance training (CE); and (–)–epicatechin with endurance training ((–)–Epi-Ex). Mice in the training groups performed treadmill exercise for 8 weeks (5 × /week for 60 min/session), whereas mice in the (–)–epicatechin group received 1.0 mg/kg of body mass twice daily during the training period. At 8 weeks, distance ran on the treadmill increased by 46, 69, and 84% in the (–)–Epi, CE, and (–)–Epi-Ex groups, respectively compared to the control group (p < 0.001 for all comparisons). Furthermore, the (–)–Epi-Ex group had significantly higher exercise capacity than the (–)–Epi and CE group. For angiogenic regulators, the (–)–Epi-Ex group had significantly higher VEGF-R2 protein expression with a concomitant reduction in TSP-1 protein expression than the exercise group. Interestingly, FoxO1 protein expression was significantly reduced for all three experimental groups compared to the control group. Protein markers such as PGC-1β and TFAM were significantly higher in the (–)–Epi-Ex group compared to the three other groups. These findings suggest that (–)–epicatechin treatment combined with 8 weeks of endurance training provide a cumulative effect on a number of angiogenic and mitochondrial signaling which functionally translates to enhanced exercise tolerance.
Collapse
Affiliation(s)
- Icksoo Lee
- College of Medicine, Dankook University , Cheonan-si, South Korea
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine , Detroit, MI, USA ; Cardiovascular Research Institute, Wayne State University School of Medicine , Detroit, MI, USA
| | - Adele Kruger
- Department of Obstetrics and Gynecology, Wayne State University , Detroit, MI, USA
| | | | - Moh H Malek
- Cardiovascular Research Institute, Wayne State University School of Medicine , Detroit, MI, USA ; Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences , Detroit, MI, USA
| |
Collapse
|
31
|
Neto WK, Gama EF, Rocha LY, Ramos CC, Taets W, Scapini KB, Ferreira JB, Rodrigues B, Caperuto É. Effects of testosterone on lean mass gain in elderly men: systematic review with meta-analysis of controlled and randomized studies. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9742. [PMID: 25637335 PMCID: PMC4312307 DOI: 10.1007/s11357-014-9742-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/18/2014] [Indexed: 05/26/2023]
Abstract
The objective of this study was to evaluate the effects of steroid anabolic androgenic hormones use on lean mass gain in elderly men through a systematic review with a meta-analysis of randomized controlled studies. We systematically searched PubMed database until 4th October 2013. We included randomized placebo-controlled trials (RCT) that studied testosterone replacement therapy in men over 60 years of age, with total testosterone levels ≤550 ng/dl, observing gains in weight, lean mass tissue and fat mass as outcome. We excluded duplicated studies, studies which mixed men and women, and studies using weak androgens such as dehydroepiandrosterone or androstenedione. The initial search yielded 2681 articles, of which 26 were selected for full text analysis. In the end, 11 studies were included. However, 3 studies were not included in the meta-analysis. Meta-analysis showed that mean weight increased (lean mass), ranging from 1.65 (95 % CI, 1.61-1.69) to 6.20 (95 % CI, 5.22-7.18) kg, although it was heterogeneous (I (2) = 98 %). Effect estimate was 3.59 [2.38-4.81]. Androgen therapy decreased fat mass; effect estimate was -1.78 [-2.57, -0.99] that analysis had also a high level of heterogeneity (I (2) = 81 %). The results suggest that testosterone replacement therapy is able to increase muscle mass in elderly men and that is affected by the time that the treatment is carried out and the method of administration of the drug.
Collapse
Affiliation(s)
- Walter Krause Neto
- />Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, SP Brazil
| | - Eliane Florencio Gama
- />Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, SP Brazil
| | - Leandro Yanase Rocha
- />Laboratory of Human Movement, Department of Physical Education, São Judas Tadeu University, São Paulo, SP Brazil
| | - Carla Cristina Ramos
- />Laboratory of Human Movement, Department of Physical Education, São Judas Tadeu University, São Paulo, SP Brazil
| | - Wagner Taets
- />Laboratory of Human Movement, Department of Physical Education, São Judas Tadeu University, São Paulo, SP Brazil
| | | | | | - Bruno Rodrigues
- />Laboratory of Human Movement, Department of Physical Education, São Judas Tadeu University, São Paulo, SP Brazil
| | - Érico Caperuto
- />Laboratory of Human Movement, Department of Physical Education, São Judas Tadeu University, São Paulo, SP Brazil
- />Laboratory of Exercise and Movement Sciences, Mackenzie Presbiterian University, 546, Taquari St, Moóca, 03166-000 São Paulo, SP Brazil
| |
Collapse
|
32
|
Qin W, Pan J, Wu Y, Bauman WA, Cardozo C. Anabolic steroids activate calcineurin-NFAT signaling and thereby increase myotube size and reduce denervation atrophy. Mol Cell Endocrinol 2015; 399:336-45. [PMID: 25450864 DOI: 10.1016/j.mce.2014.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/22/2014] [Accepted: 09/24/2014] [Indexed: 01/11/2023]
Abstract
Anabolic androgens have been shown to reduce muscle loss due to immobilization, paralysis and many other medical conditions, but the molecular basis for these actions is poorly understood. We have recently demonstrated that nandrolone, a synthetic androgen, slows muscle atrophy after nerve transection associated with down-regulation of regulator of calcineurin 2 (RCAN2), a calcineurin inhibitor, suggesting a possible role of calcineurin-NFAT signaling. To test this possibility, rat gastrocnemius muscle was analyzed at 56 days after denervation. In denervated muscle, calcineurin activity declined and NFATc4 was excluded from the nucleus and these effects were reversed by nandrolone. Similarly, nandrolone increased calcineurin activity and nuclear NFATc4 levels in cultured L6 myotubes. Nandrolone also induced cell hypertrophy that was blocked by cyclosporin A or overexpression of RCAN2. Finally protection against denervation atrophy by nandrolone in rats was blocked by cyclosporin A. These results demonstrate for the first time that nandrolone activates calcineurin-NFAT signaling, and that such signaling is important in nandrolone-induced cell hypertrophy and protection against paralysis-induced muscle atrophy.
Collapse
Affiliation(s)
- Weiping Qin
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York 10468, USA; Departments of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | - Jiangping Pan
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York 10468, USA
| | - Yong Wu
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York 10468, USA
| | - William A Bauman
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York 10468, USA; Departments of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA; Rehabilitation Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Christopher Cardozo
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York 10468, USA; Departments of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA; Rehabilitation Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
33
|
Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2014; 1852:490-506. [PMID: 25496993 DOI: 10.1016/j.bbadis.2014.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β.
Collapse
|
34
|
Jesinkey SR, Korrapati MC, Rasbach KA, Beeson CC, Schnellmann RG. Atomoxetine prevents dexamethasone-induced skeletal muscle atrophy in mice. J Pharmacol Exp Ther 2014; 351:663-73. [PMID: 25292181 DOI: 10.1124/jpet.114.217380] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Skeletal muscle atrophy remains a clinical problem in numerous pathologic conditions. β2-Adrenergic receptor agonists, such as formoterol, can induce mitochondrial biogenesis (MB) to prevent such atrophy. Additionally, atomoxetine, an FDA-approved norepinephrine reuptake inhibitor, was positive in a cellular assay for MB. We used a mouse model of dexamethasone-induced skeletal muscle atrophy to investigate the potential role of atomoxetine and formoterol to prevent muscle mass loss. Mice were administered dexamethasone once daily in the presence or absence of formoterol (0.3 mg/kg), atomoxetine (0.1 mg/kg), or sterile saline. Animals were euthanized at 8, 16, and 24 hours or 8 days later. Gastrocnemius muscle weights, changes in mRNA and protein expression of peroxisome proliferator-activated receptor-γ coactivator-1 α (PGC-1α) isoforms, ATP synthase β, cytochrome c oxidase subunit I, NADH dehydrogenase (ubiquinone) 1 β subcomplex, 8, ND1, insulin-like growth factor 1 (IGF-1), myostatin, muscle Ring-finger protein-1 (muscle atrophy), phosphorylated forkhead box protein O 3a (p-FoxO3a), Akt, mammalian target of rapamycin (mTOR), and ribosomal protein S6 (rp-S6; muscle hypertrophy) in naive and muscle-atrophied mice were measured. Atomoxetine increased p-mTOR 24 hours after treatment in naïve mice, but did not change any other biomarkers. Formoterol robustly activated the PGC-1α-4-IGF1-Akt-mTOR-rp-S6 pathway and increased p-FoxO3a as early as 8 hours and repressed myostatin at 16 hours. In contrast to what was observed with acute treatment, chronic treatment (7 days) with atomoxetine increased p-Akt and p-FoxO3a, and sustained PGC-1α expression and skeletal muscle mass in dexamethasone-treated mice, in a manner comparable to formoterol. In conclusion, chronic treatment with a low dose of atomoxetine prevented dexamethasone-induced skeletal muscle wasting and supports a potential role in preventing muscle atrophy.
Collapse
Affiliation(s)
- Sean R Jesinkey
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.R.J., M.C.K., K.A.R., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Midhun C Korrapati
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.R.J., M.C.K., K.A.R., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Kyle A Rasbach
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.R.J., M.C.K., K.A.R., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.R.J., M.C.K., K.A.R., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina (S.R.J., M.C.K., K.A.R., C.C.B., R.G.S.); and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| |
Collapse
|
35
|
Qin W, Pan J, Qin Y, Lee DN, Bauman WA, Cardozo C. Identification of functional glucocorticoid response elements in the mouse FoxO1 promoter. Biochem Biophys Res Commun 2014; 450:979-83. [DOI: 10.1016/j.bbrc.2014.06.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 12/12/2022]
|
36
|
Verhees KJP, Pansters NAM, Baarsma HA, Remels AHV, Haegens A, de Theije CC, Schols AMWJ, Gosens R, Langen RCJ. Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: II. Effects on skeletal muscle atrophy. Respir Res 2013; 14:117. [PMID: 24180420 PMCID: PMC4176095 DOI: 10.1186/1465-9921-14-117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is accompanied by pulmonary inflammation and associated with extra-pulmonary manifestations, including skeletal muscle atrophy. Glycogen synthase kinase-3 (GSK-3) has been implicated in the regulation of muscle protein- and myonuclear turnover; two crucial processes that determine muscle mass. In the present study we investigated the effect of the selective GSK-3 inhibitor SB216763 on muscle mass in a guinea pig model of lipopolysaccharide (LPS)-induced pulmonary inflammation-associated muscle atrophy. METHODS Guinea pigs were pretreated with either intranasally instilled SB216763 or corresponding vehicle prior to each LPS/saline challenge twice weekly. Pulmonary inflammation was confirmed and indices of muscle mass were determined after 12 weeks. Additionally, cultured skeletal muscle cells were incubated with tumor necrosis factor α (TNF-α) or glucocorticoids (GCs) to model the systemic effects of pulmonary inflammation on myogenesis, in the presence or absence of GSK-3 inhibitors. RESULTS Repeated LPS instillation induced muscle atrophy based on muscle weight and muscle fiber cross sectional area. Intriguingly, GSK-3 inhibition using SB216763 prevented the LPS-induced muscle mass decreases and myofiber atrophy. Indices of protein turnover signaling were unaltered in guinea pig muscle. Interestingly, inhibition of myogenesis of cultured muscle cells by TNF-α or synthetic GCs was prevented by GSK-3 inhibitors. CONCLUSIONS In a guinea pig model of LPS-induced pulmonary inflammation, GSK-3 inhibition prevents skeletal muscle atrophy without affecting pulmonary inflammation. Resistance to inflammation- or GC-induced impairment of myogenic differentiation, imposed by GSK-3 inhibition, suggests that sustained myogenesis may contribute to muscle mass maintenance despite persistent pulmonary inflammation. Collectively, these results warrant further exploration of GSK-3 as a potential novel drug target to prevent or reverse muscle wasting in COPD.
Collapse
Affiliation(s)
- Koen J P Verhees
- Department of Respiratory Medicine, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre + (MUMC+), PO box 5800, 6202, AZ Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Langen R, Gosker H, Remels A, Schols A. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. Int J Biochem Cell Biol 2013; 45:2245-56. [DOI: 10.1016/j.biocel.2013.06.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/09/2013] [Accepted: 06/14/2013] [Indexed: 11/29/2022]
|
38
|
Qin W, Sun L, Cao J, Peng Y, Collier L, Wu Y, Creasey G, Li J, Qin Y, Jarvis J, Bauman WA, Zaidi M, Cardozo C. The central nervous system (CNS)-independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures. J Biol Chem 2013; 288:13511-21. [PMID: 23530032 DOI: 10.1074/jbc.m113.454892] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mechanisms by which muscle regulates bone are poorly understood. RESULTS Electrically stimulated muscle contraction reversed elevations in bone resorption and increased Wnt signaling in bone-derived cells after spinal cord transection. CONCLUSION Muscle contraction reduced resorption of unloaded bone independently of the CNS, through mechanical effects and, potentially, nonmechanical signals (e.g. myokines). SIGNIFICANCE The study provides new insights regarding muscle-bone interactions. Muscle and bone work as a functional unit. Cellular and molecular mechanisms underlying effects of muscle activity on bone mass are largely unknown. Spinal cord injury (SCI) causes muscle paralysis and extensive sublesional bone loss and disrupts neural connections between the central nervous system (CNS) and bone. Muscle contraction elicited by electrical stimulation (ES) of nerves partially protects against SCI-related bone loss. Thus, application of ES after SCI provides an opportunity to study the effects of muscle activity on bone and roles of the CNS in this interaction, as well as the underlying mechanisms. Using a rat model of SCI, the effects on bone of ES-induced muscle contraction were characterized. The SCI-mediated increase in serum C-terminal telopeptide of type I collagen (CTX) was completely reversed by ES. In ex vivo bone marrow cell cultures, SCI increased the number of osteoclasts and their expression of mRNA for several osteoclast differentiation markers, whereas ES significantly reduced these changes; SCI decreased osteoblast numbers, but increased expression in these cells of receptor activator of NF-κB ligand (RANKL) mRNA, whereas ES increased expression of osteoprotegerin (OPG) and the OPG/RANKL ratio. A microarray analysis revealed that ES partially reversed SCI-induced alterations in expression of genes involved in signaling through Wnt, FSH, parathyroid hormone (PTH), oxytocin, and calcineurin/nuclear factor of activated T-cells (NFAT) pathways. ES mitigated SCI-mediated increases in mRNA levels for the Wnt inhibitors DKK1, sFRP2, and sclerostin in ex vivo cultured osteoblasts. Our results demonstrate an anti-bone-resorptive activity of muscle contraction by ES that develops rapidly and is independent of the CNS. The pathways involved, particularly Wnt signaling, suggest future strategies to minimize bone loss after immobilization.
Collapse
Affiliation(s)
- Weiping Qin
- Departments of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol Cell Endocrinol 2013; 365:174-86. [PMID: 23116773 PMCID: PMC3529800 DOI: 10.1016/j.mce.2012.10.019] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/14/2012] [Accepted: 10/18/2012] [Indexed: 01/07/2023]
Abstract
Low endogenous testosterone production, known as hypogonadism is commonly associated with conditions inducing muscle wasting. Akt signaling can control skeletal muscle mass through mTOR regulation of protein synthesis and FoxO regulation of protein degradation, and this pathway has been previously identified as a target of androgen signaling. However, the testosterone sensitivity of Akt/mTOR signaling requires further understanding in order to grasp the significance of varied testosterone levels seen with wasting disease on muscle protein turnover regulation. Therefore, the purpose of this study is to determine the effect of androgen availability on muscle Akt/mTORC1/FoxO3a regulation in skeletal muscle and cultured C(2)C(12) myotubes. C57BL/6 mice were either castrated for 42 days or castrated and treated with the nandrolone decanoate (ND) (6 mg/kg bw/wk). Testosterone loss (TL) significantly decreased volitional grip strength, body weight, and gastrocnemius (GAS) muscle mass, and ND reversed these changes. Related to muscle mass regulation, TL decreased muscle IGF-1 mRNA, the rate of myofibrillar protein synthesis, Akt phosphorylation, and the phosphorylation of Akt targets, GSK3β, PRAS40 and FoxO3a. TL induced expression of FoxO transcriptional targets, MuRF1, atrogin1 and REDD1. Muscle AMPK and raptor phosphorylation, mTOR inhibitors, were not altered by low testosterone. ND restored IGF-1 expression and Akt/mTORC1 signaling while repressing expression of FoxO transcriptional targets. Testosterone (T) sensitivity of Akt/mTORC1 signaling was examined in C(2)C(12) myotubes, and mTOR phosphorylation was induced independent of Akt activation at low T concentrations, while a higher T concentration was required to activate Akt signaling. Interestingly, low concentration T was sufficient to amplify myotube mTOR and Akt signaling after 24 h of T withdrawal, demonstrating the potential in cultured myotubes for a T initiated positive feedback mechanism to amplify Akt/mTOR signaling. In summary, androgen withdrawal decreases muscle myofibrillar protein synthesis through Akt/mTORC1 signaling, which is independent of AMPK activation, and readily reversible by anabolic steroid administration. Acute Akt activation in C(2)C(12) myotubes is sensitive to a high concentration of testosterone, and low concentrations of testosterone can activate mTOR signaling independent of Akt.
Collapse
MESH Headings
- Adenylate Kinase/metabolism
- Androgens/pharmacology
- Animals
- Cell Line
- Enzyme Activation
- Forkhead Box Protein O3
- Forkhead Transcription Factors/metabolism
- Gene Expression
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Male
- Mechanistic Target of Rapamycin Complex 1
- Mice
- Mice, Inbred C57BL
- Multiprotein Complexes
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/physiology
- Muscle Strength
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Nandrolone/analogs & derivatives
- Nandrolone/pharmacology
- Nandrolone Decanoate
- Orchiectomy
- Phosphorylation
- Protein Processing, Post-Translational
- Proteins/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases
- Testosterone/physiology
- Transcriptional Activation
Collapse
Affiliation(s)
- James P. White
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Song Gao
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Melissa J. Puppa
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Shuichi Sato
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Stephen L. Welle
- Department of Medicine, University of Rochester Medical School, Rochester, NY
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| |
Collapse
|
40
|
Porporato PE, Filigheddu N, Reano S, Ferrara M, Angelino E, Gnocchi VF, Prodam F, Ronchi G, Fagoonee S, Fornaro M, Chianale F, Baldanzi G, Surico N, Sinigaglia F, Perroteau I, Smith RG, Sun Y, Geuna S, Graziani A. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. J Clin Invest 2013; 123:611-22. [PMID: 23281394 DOI: 10.1172/jci39920] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 11/01/2012] [Indexed: 01/30/2023] Open
Abstract
Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG share several GHSR-1a-independent biological activities. Here we investigated whether UnAG and AG could protect against skeletal muscle atrophy in a GHSR-1a-independent manner. We found that both AG and UnAG inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a-mediated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.
Collapse
Affiliation(s)
- Paolo E Porporato
- Department of Translational Medicine, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), and Biotechnology Center for Applied Medical Research (BRMA), Università del Piemonte Orientale "Amedeo Avogadro" — Alessandria, Novara, Vercelli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Grandys M, Majerczak J, Karasinski J, Kulpa J, Zoladz JA. Skeletal muscle myosin heavy chain isoform content in relation to gonadal hormones and anabolic-catabolic balance in trained and untrained men. J Strength Cond Res 2012; 26:3262-9. [PMID: 22990573 DOI: 10.1519/jsc.0b013e31827361d7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gonadal hormones and anabolic-catabolic hormone balance have potent influence on skeletal muscle tissue, but little is known about their action with regard to myosin heavy chain (MHC) transformation in humans. We investigated the relationship between skeletal muscle MHC isoform content in the vastus lateralis muscle and basal testosterone (T) concentration in 3 groups of subjects: endurance trained (E), sprint/strength trained (S), and untrained (U) young men. We have also determined basal sex hormone-binding globulin and cortisol (C) concentrations in untrained subjects to examine the relationship between MHC composition and the anabolic-catabolic hormone balance. Moreover, basal free testosterone (fT) and bioavailable testosterone (bio-T) concentrations were calculated for this subgroup. Despite significant differences in MHC isoform content (69.4 ± 2.39%, 61.4 ± 8.04%, and 37.5 ± 13.80% of MHC-2 for groups S, U, and E, respectively, Kruskal-Wallis: H = 18.58, p < 0.001), the T concentration was similar in the three groups of subjects (18.84 ± 5.73 nmol·L(-1), 18.60 ± 5.73 nmol·L(-1), and 20.73 ± 4.06 nmol·L(-1) for U, E, and S groups, respectively, Kruskal-Wallis: H = 1.11, p > 0.5). We have also found that in the U group, type 2 MHC in the vastus lateralis muscle is positively correlated with basal fT:C ratio (r = 0.63, p = 0.01). It is concluded that the differences in the training history and training specificity can be distinguished with regard to the MHC composition but not with regard to the basal T concentration. Simultaneously, it has been shown that MHC isoform content in human vastus lateralis muscle may be related to basal anabolic-catabolic hormone balance, and this hypothesis needs further investigation.
Collapse
Affiliation(s)
- Marcin Grandys
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | | | | | | | | |
Collapse
|
42
|
Pansters NA, Langen RC, Wouters EF, Schols AM. Synergistic stimulation of myogenesis by glucocorticoid and IGF-I signaling. J Appl Physiol (1985) 2012; 114:1329-39. [PMID: 22936724 DOI: 10.1152/japplphysiol.00503.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle wasting is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Exercise stimulates muscle recovery, but its efficacy is variable, depending on the clinical condition and medical treatment. Systemic glucocorticoids, commonly administered in high doses during acute disease exacerbations or as maintenance treatment in end-stage disease, are known to contribute to muscle wasting. As muscle mass recovery involves insulin-like growth factor (IGF)-I signaling, which can be stimulated by anabolic steroids, the impact of glucocorticoids and the effect of simultaneous IGF-I stimulation by anabolic steroids on muscle recovery and growth were investigated. The effects of, and interactions between, glucocorticoid and IGF-I signaling on skeletal muscle growth were assessed in differentiating C2C12 myocytes. As proof of principle, we performed a post hoc analysis stratifying patients by glucocorticoid use of a clinical trial investigating the efficacy of anabolic steroid supplementation on muscle recovery in muscle-wasted patients with COPD. Glucocorticoids strongly impaired protein synthesis signaling, myotube formation, and muscle-specific protein expression. In contrast, in the presence of glucocorticoids, IGF-I synergistically stimulated myotube fusion and myofibrillar protein expression, which corresponded with restored protein synthesis signaling by IGF-I and increased transcriptional activation of muscle-specific genes by glucocorticoids. In COPD patients on maintenance glucocorticoid treatment, the clinical trial also revealed an enhanced effect of anabolic steroids on muscle mass and respiratory muscle strength. In conclusion, synergistic effects of anabolic steroids and glucocorticoids on muscle recovery may be caused by relief of the glucocorticoid-imposed blockade on protein synthesis signaling, allowing effective translation of glucocorticoid-induced accumulation of muscle-specific gene transcripts.
Collapse
Affiliation(s)
- N A Pansters
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | | | | |
Collapse
|
43
|
Frost RA, Lang CH. Multifaceted role of insulin-like growth factors and mammalian target of rapamycin in skeletal muscle. Endocrinol Metab Clin North Am 2012; 41:297-322, vi. [PMID: 22682632 PMCID: PMC3376019 DOI: 10.1016/j.ecl.2012.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review describes the current literature on the interaction between insulin-like growth factors, endocrine hormones, and branched-chain amino acids on muscle physiology in healthy young individuals and during select pathologic conditions. Emphasis is placed on the mechanism by which physical and hormonal signals are transduced at the cellular level to either grow or atrophy skeletal muscle. The key role of the mammalian target of rapamycin and its ability to respond to hypertrophic and atrophic signals informs our understanding how a combination of physical, nutritional, and pharmacologic therapies may be used in tandem to prevent or ameliorate reductions in muscle mass.
Collapse
Affiliation(s)
- Robert A. Frost
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
- Professor and Vice Chairman, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| | - Charles H. Lang
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| |
Collapse
|
44
|
Wu Y, Zhao J, Zhao W, Pan J, Bauman WA, Cardozo CP. Nandrolone normalizes determinants of muscle mass and fiber type after spinal cord injury. J Neurotrauma 2012; 29:1663-75. [PMID: 22208735 DOI: 10.1089/neu.2011.2203] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) results in atrophy of skeletal muscle and changes from slow oxidative to fast glycolytic fibers, which may reflect reduced levels of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), increased myostatin signaling, or both. In animals, testosterone reduces loss of muscle fiber cross-sectional area and activity of enzymes of energy metabolism. To identify the molecular mechanisms behind the benefits of androgens on paralyzed muscle, male rats were spinal cord transected and treated for 8 weeks with vehicle, testosterone at a physiological replacement dose, or testosterone plus nandrolone, an anabolic steroid. Treatments were initiated immediately after SCI and continued until the day animals were euthanized. In the SCI animals, gastrocnemius muscle mass was significantly increased by testosterone plus nandrolone, but not by testosterone alone. Both treatments significantly reduced nuclear content of Smad2/3 and mRNA levels of activin receptor IIB and follistatin-like 3. Testosterone alone or with nandrolone reversed SCI-induced declines in cellular and nuclear levels of PGC-1α protein and PGC-1α mRNA levels. For PGC-1α target genes, testosterone plus nandrolone partially reversed SCI-induced decreases in levels of proteins without corresponding increases in their mRNA levels. Thus, the findings demonstrate that following SCI, signaling through activin receptors and Smad2/3 is increased, and that androgens suppress activation of this signaling pathway. The findings also indicate that androgens upregulate PGC-1α in paralyzed muscle and promote its nuclear localization, but that these effects are insufficient to fully activate transcription of PGC-1α target genes. Furthermore, the transcription of these genes is not tightly coupled with their translation.
Collapse
Affiliation(s)
- Yong Wu
- Center of Excellence for the Medical Consequences of SCI, James J. Peters VA Medical Center, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
45
|
Bauman WA, Korsten MA, Radulovic M, Schilero GJ, Wecht JM, Spungen AM. 31st g. Heiner sell lectureship: secondary medical consequences of spinal cord injury. Top Spinal Cord Inj Rehabil 2012; 18:354-78. [PMID: 23459498 PMCID: PMC3584784 DOI: 10.1310/sci1804-354] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Persons with spinal cord injury (SCI) have secondary medical consequences of paralysis and/or the consequences of extreme inactivity. The metabolic changes that result from reduced activity include insulin resistance with carbohydrate disorders and dyslipidemia. A higher prevalence of coronary artery calcification was found in persons with SCI than that in matched able-bodied controls. A depression in anabolic hormones, circulating testosterone and growth hormone, has been described. Adverse soft tissue body composition changes of increased adiposity and reduced skeletal muscle are appreciated. Immobilization is the cause for sublesional disuse osteoporosis with an associated increased risk of fragility fracture. Bowel dysmotility affects all segments of the gastrointestinal tract, with an interest in better defining and addressing gastroesophageal reflux disease and difficulty with evacuation. Developing and testing more effective approaches to cleanse the bowel for elective colonoscopy are being evaluated. The extent of respiratory dysfunction depends on the level and completeness of SCI. Individuals with higher spinal lesions have both restrictive and obstructive airway disease. Pharmacological approaches and expiratory muscle training are being studied as interventions to improve pulmonary function and cough strength with the objective of reducing pulmonary complications. Persons with spinal lesions above the 6th thoracic level lack both cardiac and peripheral vascular mechanisms to maintain blood pressure, and they are frequently hypotensive, with even worse hypotension with upright posture. Persistent and/or orthostatic hypotension may predispose those with SCI to cognitive impairments. The safety and efficacy of anti-hypotensive agents to normalize blood pressure in persons with higher level cord lesions is being investigated.
Collapse
Affiliation(s)
- William A Bauman
- VA RR&D National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center , Bronx, New York ; Medical Service, James J. Peters VA Medical Center , Bronx, New York ; Department of Medicine, The Mount Sinai School of Medicine , New York, New York ; Department of Rehabilitation Medicine, The Mount Sinai School of Medicine , New York, New York
| | | | | | | | | | | |
Collapse
|
46
|
Williams DB, Wan Z, Frier BC, Bell RC, Field CJ, Wright DC. Dietary supplementation with vitamin E and C attenuates dexamethasone-induced glucose intolerance in rats. Am J Physiol Regul Integr Comp Physiol 2011; 302:R49-58. [PMID: 22031784 DOI: 10.1152/ajpregu.00304.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucocorticoid excess induces marked insulin resistance and glucose intolerance. A recent study has shown that antioxidants prevent dexamethasone (DEX)-induced insulin resistance in cultured adipocytes. The purpose of this investigation was to examine the effects of dietary vitamin E and C (Vit E/C) supplementation on DEX-induced glucose intolerance in rats. We hypothesized that feeding rats a diet supplemented with Vit E/C would improve glucose tolerance and restore insulin signaling in skeletal muscle, adipose, and liver and prevent alterations in AMPK signaling in these tissues. Male Wistar rats received either a control or Vit E/C-supplemented diet (0.5 g/kg diet each of L-ascorbate and DL-all rac-alpha-tocopherol) for 9 days prior to, and during, 5 days of daily DEX treatment (subcutaneous injections 0.8 mg/g body wt). DEX treatment resulted in increases in the glucose and insulin area under the curve (AUC) during an intraperitoneal glucose tolerance test. The glucose, but not insulin, AUC was lowered with Vit E/C supplementation. Improvements in glucose tolerance occurred independent of a restoration of PKB phosphorylation in tissues of rats stimulated with an intraperitoneal injection of insulin but were associated with increases in AMPK signaling in muscle and reductions in AMPK signaling and the expression of fatty acid oxidation enzymes in liver. There were no differences in mitochondrial enzymes in triceps muscles between groups. This study is the first to report that dietary Vit E/C supplementation can partially prevent DEX-induced glucose intolerance in rats.
Collapse
Affiliation(s)
- Deon B Williams
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Jones AWE, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G. PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion 2011; 12:86-99. [PMID: 21983689 DOI: 10.1016/j.mito.2011.09.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 09/08/2011] [Accepted: 09/16/2011] [Indexed: 12/29/2022]
Abstract
Over the past two decades, a complex nuclear transcriptional machinery controlling mitochondrial biogenesis and function has been described. Central to this network are the PGC-1 family coactivators, characterised as master regulators of mitochondrial biogenesis. Recent literature has identified a broader role for PGC-1 coactivators in both cell death and cellular adaptation under conditions of stress, here reviewed in the context of the pathology associated with cancer, neurodegeneration and cardiovascular disease. Moreover, we propose that these studies also imply a novel conceptual framework on the general role of mitochondrial dysfunction in disease. It is now well established that the complex nuclear transcriptional control of mitochondrial biogenesis allows for adaptation of mitochondrial mass and function to environmental conditions. On the other hand, it has also been suggested that mitochondria alter their function according to prevailing cellular energetic requirements and thus function as sensors that generate signals to adjust fundamental cellular processes through a retrograde mitochondria-nucleus signalling pathway. Therefore, altered mitochondrial function can affect cell fate not only directly by modifying cellular energy levels or redox state, but also indirectly, by altering nuclear transcriptional patterns. The current literature on such retrograde signalling in both yeast and mammalian cells is thus reviewed, with an outlook on its potential contribution to disease through the regulation of PGC-1 family coactivators. We propose that further investigation of these pathways will lead to the identification of novel pharmacological targets and treatment strategies to combat disease.
Collapse
Affiliation(s)
- Aleck W E Jones
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | | | | | | | | |
Collapse
|
48
|
Baehr LM, Furlow JD, Bodine SC. Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 2011; 589:4759-76. [PMID: 21807613 DOI: 10.1113/jphysiol.2011.212845] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Skeletal muscle atrophy occurs under a variety of conditions and can result from alterations in both protein synthesis and protein degradation. The muscle-specific E3 ubiquitin ligases, MuRF1 and MAFbx, are excellent markers of muscle atrophy and increase under divergent atrophy-inducing conditions such as denervation and glucocorticoid treatment. While deletion of MuRF1 or MAFbx has been reported to spare muscle mass following 14 days of denervation, their role in other atrophy-inducing conditions is unclear. The goal of this study was to determine whether deletion of MuRF1 or MAFbx attenuates muscle atrophy after 2 weeks of treatment with the synthetic glucocorticoid dexamethasone (DEX). The response of the triceps surae (TS) and tibialis anterior (TA) muscles to 14 days of DEX treatment (3 mg kg(-1) day(-1)) was examined in 4 month-old male and female wild type (WT) and MuRF1 or MAFbx knock out (KO) mice. Following 14 days of DEX treatment, muscle wet weight was significantly decreased in the TS and TA of WT mice. Comparison of WT and KO mice following DEX treatment revealed significant sparing of mass in both sexes of the MuRF1 KO mice, but no muscle sparing in MAFbx KO mice. Further analysis of the MuRF1 KO mice showed significant sparing of fibre cross-sectional area and tension output in the gastrocnemius (GA) after DEX treatment. Muscle sparing in the MuRF1 KO mice was related to maintenance of protein synthesis, with no observed increases in protein degradation in either WT or MuRF1 KO mice. These results demonstrate that MuRF1 and MAFbx do not function similarly under all atrophy models, and that the primary role of MuRF1 may extend beyond controlling protein degradation via the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Leslie M Baehr
- Department of Neurobiology, Physiology, and Behavior, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|