1
|
Farhat NY, Alexander D, McKee K, Iben J, Rodriguez-Gil JL, Wassif CA, Cawley NX, Balch WE, Porter FD. Sterol O-Acyltransferase 1 ( SOAT1): A Genetic Modifier of Niemann-Pick Disease, Type C1. Int J Mol Sci 2024; 25:4217. [PMID: 38673803 PMCID: PMC11050712 DOI: 10.3390/ijms25084217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a lysosomal disorder due to impaired intracellular cholesterol transport out of the endolysosomal compartment.. Marked heterogeneity has been observed in individuals with the same NPC1 genotype, thus suggesting a significant effect of modifier genes. Prior work demonstrated that decreased SOAT1 activity decreased disease severity in an NPC1 mouse model. Thus, we hypothesized that a polymorphism associated with decreased SOAT1 expression might influence the NPC1 phenotype. Phenotyping and genomic sequencing of 117 individuals with NPC1 was performed as part of a Natural History trial. Phenotyping included determination of disease severity and disease burden. Significant clinical heterogeneity is present in individuals homozygous for the NPC1I1061T variant and in siblings. Analysis of the SOAT1 polymorphism, rs1044925 (A>C), showed a significant association of the C-allele with earlier age of neurological onset. The C-allele may be associated with a higher Annualized Severity Index Score as well as increased frequency of liver disease and seizures. A polymorphism associated with decreased expression of SOAT1 appears to be a genetic modifier of the NPC1 phenotype. This finding is consistent with prior data showing decreased phenotypic severity in Npc1-/-:Soat1-/- mice and supports efforts to investigate the potential of SOAT1 inhibitors as a potential therapy for NPC1.
Collapse
Affiliation(s)
- Nicole Y. Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.Y.F.); (D.A.); (K.M.); (C.A.W.); (N.X.C.)
| | - Derek Alexander
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.Y.F.); (D.A.); (K.M.); (C.A.W.); (N.X.C.)
| | - Kyli McKee
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.Y.F.); (D.A.); (K.M.); (C.A.W.); (N.X.C.)
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Jorge L. Rodriguez-Gil
- Division of Medical Genetics, Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University, Palo Alto, CA 94304, USA;
| | - Christopher A. Wassif
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.Y.F.); (D.A.); (K.M.); (C.A.W.); (N.X.C.)
| | - Niamh X. Cawley
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.Y.F.); (D.A.); (K.M.); (C.A.W.); (N.X.C.)
| | - William E. Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Forbes D. Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (N.Y.F.); (D.A.); (K.M.); (C.A.W.); (N.X.C.)
| |
Collapse
|
2
|
Las Heras M, Szenfeld B, Ballout RA, Buratti E, Zanlungo S, Dardis A, Klein AD. Understanding the phenotypic variability in Niemann-Pick disease type C (NPC): a need for precision medicine. NPJ Genom Med 2023; 8:21. [PMID: 37567876 PMCID: PMC10421955 DOI: 10.1038/s41525-023-00365-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease (LSD) characterized by the buildup of endo-lysosomal cholesterol and glycosphingolipids due to loss of function mutations in the NPC1 and NPC2 genes. NPC patients can present with a broad phenotypic spectrum, with differences at the age of onset, rate of progression, severity, organs involved, effects on the central nervous system, and even response to pharmacological treatments. This article reviews the phenotypic variation of NPC and discusses its possible causes, such as the remaining function of the defective protein, modifier genes, sex, environmental cues, and splicing factors, among others. We propose that these factors should be considered when designing or repurposing treatments for this disease. Despite its seeming complexity, this proposition is not far-fetched, considering the expanding interest in precision medicine and easier access to multi-omics technologies.
Collapse
Affiliation(s)
- Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Benjamín Szenfeld
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile
| | - Rami A Ballout
- Department of Pediatrics, University of Texas Southwestern (UTSW) Medical Center and Children's Health, Dallas, TX, 75235, USA
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, 34149, Italy
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330033, Chile
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100, Udine, Italy
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, 7780272, Chile.
| |
Collapse
|
3
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
4
|
Organ Weights in NPC1 Mutant Mice Partly Normalized by Various Pharmacological Treatment Approaches. Int J Mol Sci 2022; 24:ijms24010573. [PMID: 36614015 PMCID: PMC9820376 DOI: 10.3390/ijms24010573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick Type C1 (NPC1, MIM 257220) is a rare, progressive, lethal, inherited autosomal-recessive endolysosomal storage disease caused by mutations in the NPC1 leading to intracellular lipid storage. We analyzed mostly not jet known alterations of the weights of 14 different organs in the BALB/cNctr-Npc1m1N/-J Jackson Npc1 mice in female and male Npc1+/+ and Npc1-/- mice under various treatment strategies. Mice were treated with (i) no therapy, (ii) vehicle injection, (iii) a combination of miglustat, allopregnanolone, and 2-hydroxypropyl-ß-cyclodextrin (HPßCD), (iv) miglustat, and (v) HPßCD alone starting at P7 and repeated weekly throughout life. The 12 respective male and female wild-type mice groups were evaluated in parallel. In total, 351 mice (176 Npc1+/+, 175 Npc1-/-) were dissected at P65. In both sexes, the body weights of None and Sham Npc1-/- mice were lower than those of respective Npc1+/+ mice. The influence of the Npc1 mutation and/or sex on the weights of various organs, however, differed considerably. In males, Npc1+/+ and Npc1-/- mice had comparable absolute weights of lungs, spleen, and adrenal glands. In Npc1-/- mice, smaller weights of hearts, livers, kidneys, testes, vesicular, and scent glands were found. In female Npc1-/- mice, ovaries, and uteri were significantly smaller. In Npc1-/- mice, relative organ weights, i.e., normalized with body weights, were sex-specifically altered to different extents by the different therapies. The combination of miglustat, allopregnanolone, and the sterol chelator HPßCD partly normalized the weights of more organs than miglustat or HPßCD mono-therapies.
Collapse
|
5
|
Olguín V, Durán A, Las Heras M, Rubilar JC, Cubillos FA, Olguín P, Klein AD. Genetic Background Matters: Population-Based Studies in Model Organisms for Translational Research. Int J Mol Sci 2022; 23:7570. [PMID: 35886916 PMCID: PMC9316598 DOI: 10.3390/ijms23147570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
We are all similar but a bit different. These differences are partially due to variations in our genomes and are related to the heterogeneity of symptoms and responses to treatments that patients exhibit. Most animal studies are performed in one single strain with one manipulation. However, due to the lack of variability, therapies are not always reproducible when treatments are translated to humans. Panels of already sequenced organisms are valuable tools for mimicking human phenotypic heterogeneities and gene mapping. This review summarizes the current knowledge of mouse, fly, and yeast panels with insightful applications for translational research.
Collapse
Affiliation(s)
- Valeria Olguín
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Anyelo Durán
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Juan Carlos Rubilar
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| | - Francisco A. Cubillos
- Departamento de Biología, Santiago, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
- Millennium Institute for Integrative Biology (iBio), Santiago 7500565, Chile
| | - Patricio Olguín
- Program in Human Genetics, Institute of Biomedical Sciences, Biomedical Neurosciences Institute, Department of Neuroscience, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Andrés D. Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile; (V.O.); (A.D.); (M.L.H.); (J.C.R.)
| |
Collapse
|
6
|
Yerger J, Cougnoux AC, Abbott CB, Luke R, Clark TS, Cawley NX, Porter FD, Davidson CD. Phenotype assessment for neurodegenerative murine models with ataxia and application to Niemann-Pick disease, type C1. Biol Open 2022; 11:bio059052. [PMID: 35452076 PMCID: PMC9096702 DOI: 10.1242/bio.059052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Identifying meaningful predictors of therapeutic efficacy from preclinical studies is challenging. However, clinical manifestations occurring in both patients and mammalian models offer significant translational value. Many neurological disorders, including inherited, metabolic Niemann-Pick disease, type C (NPC), exhibit ataxia. Both individuals with NPC and murine models manifest ataxia, and investigational therapies impacting this phenotype in mice have been reported to slow disease progression in patients (e.g. miglustat, intrathecal 2-hydroxypropyl-beta-cyclodextrin, and acetyl-L-leucine). Reproducible phenotypic scoring of animal models can facilitate comparisons between genotypes, sexes, disease course, and therapies. Previously, other groups have developed a composite phenotypic scoring system (CPSS), which was subsequently used to distinguish strain-dependent phenotypes and, with modifications, to evaluate potential therapies. However, high inter-rater reliability is paramount to widespread use. We have created a comprehensive, easy-to-follow phenotypic assessment based on the CPSS and have verified its reproducibility using murine models of NPC disease. Application of this scoring system is not limited to NPC disease and may be applicable to other models of neurodegeneration exhibiting motor incoordination, thereby increasing its utility in translational studies.
Collapse
Affiliation(s)
- Julia Yerger
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Section on Molecular Dysmorphology, NIH, Bethesda, MD, 20892, USA
| | - Antony C. Cougnoux
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Section on Molecular Dysmorphology, NIH, Bethesda, MD, 20892, USA
| | - Craig B. Abbott
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Section on Molecular Dysmorphology, NIH, Bethesda, MD, 20892, USA
| | - Rachel Luke
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Section on Molecular Dysmorphology, NIH, Bethesda, MD, 20892, USA
| | - Tannia S. Clark
- National Human Genome Research Institute, Genetic Disease Research Branch, NIH, Bethesda, MD 20892, USA
| | - Niamh X. Cawley
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Section on Molecular Dysmorphology, NIH, Bethesda, MD, 20892, USA
| | - Forbes D. Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Section on Molecular Dysmorphology, NIH, Bethesda, MD, 20892, USA
| | - Cristin D. Davidson
- National Human Genome Research Institute, Genetic Disease Research Branch, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Baxter LL, Watkins-Chow DE, Johnson NL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ, Rodriguez-Gil JL. Correlation of age of onset and clinical severity in Niemann-Pick disease type C1 with lysosomal abnormalities and gene expression. Sci Rep 2022; 12:2162. [PMID: 35140266 PMCID: PMC8828765 DOI: 10.1038/s41598-022-06112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a rare, prematurely fatal lysosomal storage disorder which exhibits highly variable severity and disease progression as well as a wide-ranging age of onset, from perinatal stages to adulthood. This heterogeneity has made it difficult to obtain prompt diagnosis and to predict disease course. In addition, small NPC1 patient sample sizes have been a limiting factor in acquiring genome-wide transcriptome data. In this study, primary fibroblasts from an extensive cohort of 41 NPC1 patients were used to validate our previous findings that the lysosomal quantitative probe LysoTracker can be used as a predictor for age of onset and disease severity. We also examined the correlation between these clinical parameters and RNA expression data from primary fibroblasts and identified a set of genes that were significantly associated with lysosomal defects or age of onset, in particular neurological symptom onset. Hierarchical clustering showed that these genes exhibited distinct expression patterns among patient subgroups. This study is the first to collect transcriptomic data on such a large scale in correlation with clinical and cellular phenotypes, providing a rich genomic resource to address NPC1 clinical heterogeneity and discover potential biomarkers, disease modifiers, or therapeutic targets.
Collapse
Affiliation(s)
- Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Groenen AG, La Rose AM, Li M, Bazioti V, Svendsen AF, Kloosterhuis NJ, Ausema A, Pranger A, Heiner-Fokkema MR, Niezen-Koning KE, Houben T, Shiri-Sverdlov R, Westerterp M. Elevated granulocyte-colony stimulating factor and hematopoietic stem cell mobilization in Niemann-Pick type C1 disease. J Lipid Res 2022; 63:100167. [PMID: 35007562 PMCID: PMC8953690 DOI: 10.1016/j.jlr.2021.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.
Collapse
Affiliation(s)
- Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anouk M La Rose
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mengying Li
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arthur F Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertina Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alle Pranger
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tom Houben
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Houben T, Yadati T, de Kruijf R, Gijbels MJJ, Luiken JJFP, van Zandvoort M, Kapsokalyvas D, Lütjohann D, Westerterp M, Plat J, Leake D, Shiri-Sverdlov R. Pro-Inflammatory Implications of 2-Hydroxypropyl-β-cyclodextrin Treatment. Front Immunol 2021; 12:716357. [PMID: 34489968 PMCID: PMC8417873 DOI: 10.3389/fimmu.2021.716357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Lifestyle- and genetically induced disorders related to disturbances in cholesterol metabolism have shown the detrimental impact of excessive cholesterol levels on a plethora of pathological processes such as inflammation. In this context, two-hydroxypropyl-β-cyclodextrin (CD) is increasingly considered as a novel pharmacological compound to decrease cellular cholesterol levels due to its ability to increase cholesterol solubility. However, recent findings have reported contra-indicating events after the use of CD questioning the clinical applicability of this compound. Given its potential as a therapeutic compound in metabolic inflammatory diseases, in this study, we evaluated the inflammatory effects of CD administration in the context of cholesterol-induced metabolic inflammation in vivo and in vitro. The inflammatory and cholesterol-depleting effects of CD were first investigated in low-density lipoprotein receptor knockout (Ldlr-/) mice that were transplanted with Npc1nih or Npc1wt bone marrow and were fed either regular chow or a high-fat, high-cholesterol (HFC) diet for 12 weeks, thereby creating an extreme model of lysosomal cholesterol-induced metabolic inflammation. In the final three weeks, these mice received daily injections of either control (saline) or CD subcutaneously. Subsequently, the inflammatory properties of CD were investigated in vitro in two macrophage cell lines and in murine bone marrow-derived macrophages (BMDMs). While CD administration improved cholesterol mobilization outside lysosomes in BMDMs, an overall pro-inflammatory profile was observed after CD treatment, evidenced by increased hepatic inflammation in vivo and a strong increase in cytokine release and inflammatory gene expression in vitro in murine BMDMs and macrophages cell lines. Nevertheless, this CD-induced pro-inflammatory profile was time-dependent, as short term exposure to CD did not result in a pro-inflammatory response in BMDM. While CD exerts desired cholesterol-depleting effects, its inflammatory effect is dependent on the exposure time. As such, using CD in the clinic, especially in a metabolic inflammatory context, should be closely monitored as it may lead to undesired, pro-inflammatory side effects.
Collapse
Affiliation(s)
- Tom Houben
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| | - Tulasi Yadati
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| | - Robbin de Kruijf
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| | - Marion J J Gijbels
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| | - Joost J F P Luiken
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| | - Marc van Zandvoort
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands.,School for Oncology and Developmental Biology GROW, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases CARIM Maastricht University, Maastricht, Netherlands.,Institute for Molecular Cardiovascular Research IMCAR, Rheinisch-Westfälische Technische Hogeschool (RWTH) Aachen University, Aachen, Germany
| | - Dimitris Kapsokalyvas
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands.,School for Oncology and Developmental Biology GROW, School of Nutrition and Translational Research in Metabolism (NUTRIM) and School for Cardiovascular Diseases CARIM Maastricht University, Maastricht, Netherlands.,Institute for Molecular Cardiovascular Research IMCAR, Rheinisch-Westfälische Technische Hogeschool (RWTH) Aachen University, Aachen, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Marit Westerterp
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - David Leake
- School of Biological Sciences, University of Reading, Health and Life Sciences Building, Whiteknights, Reading, United Kingdom
| | - Ronit Shiri-Sverdlov
- Departments of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, Netherlands
| |
Collapse
|
10
|
Chu TT, Tu X, Yang K, Wu J, Repa JJ, Yan N. Tonic prime-boost of STING signalling mediates Niemann-Pick disease type C. Nature 2021; 596:570-575. [PMID: 34290407 PMCID: PMC8859990 DOI: 10.1038/s41586-021-03762-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. Here, through a spatiotemporally resolved proximity labelling screen followed by quantitative proteomics, we identify the lysosomal membrane protein Niemann-Pick type C1 (NPC1) as a cofactor in the trafficking of STING. NPC1 interacts with STING and recruits it to the lysosome for degradation in both human and mouse cells. Notably, we find that knockout of Npc1 'primes' STING signalling by physically linking or 'tethering' STING to SREBP2 trafficking. Loss of NPC1 protein also 'boosts' STING signalling by blocking lysosomal degradation. Both priming and boosting of STING signalling are required for severe neurological disease in the Npc1-/- mouse. Genetic deletion of Sting1 (the gene that encodes STING) or Irf3, but not that of Cgas, significantly reduced the activation of microglia and relieved the loss of Purkinje neurons in the cerebellum of Npc1-/- mice, leading to improved motor function. Our study identifies a cGAS- and cGAMP-independent mode of STING activation that affects neuropathology and provides a therapeutic target for the treatment of Niemann-Pick disease type C.
Collapse
Affiliation(s)
- Ting-Ting Chu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xintao Tu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jianjun Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joyce J Repa
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Rodriguez-Gil JL, Bianconi SE, Farhat N, Kleiner DE, Nelson M, Porter FD. Hepatocellular carcinoma as a complication of Niemann-Pick disease type C1. Am J Med Genet A 2021; 185:3111-3117. [PMID: 34138521 DOI: 10.1002/ajmg.a.62382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/11/2022]
Abstract
Niemann-Pick disease type C (NPC) is a rare and fatal lysosomal storage disorder characterized by neurodegeneration and hepatic involvement. Mutations in either NPC1 or NPC2, two genes encoding lysosomal proteins, lead to an intracellular accumulation of unesterified cholesterol and sphingolipids in late endosomes/lysosomes. Early cholestatic disease is considered a hallmark of patients with early disease onset. This can potentially result in liver failure shortly after birth or subclinical hepatic inflammation. Previous reports suggest an association between NPC and hepatocellular carcinoma, a cancer that is rare during childhood. We present a 12-year-old male with a known diagnosis of NPC1 disease who was found to have a stage III hepatocellular carcinoma, underwent surgical resection with adjuvant chemotherapy, and subsequently died from metastatic disease. This report provides evidence of an increased risk of hepatocellular carcinoma in NPC patients, suggesting a need for screening in this patient population.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Simona E Bianconi
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Nelson
- Center for Cancer and Blood Disorders, Children's National Hospital and the George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Torres BR, Russo DO, Vuolo VAG, Borborema TS, Barbosa AVS, Diniz LMO. Niemann-Pick Disease Type C with Isolated Splenomegaly: A Case Report in a Child. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0040-1722209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractNiemann-Pick disease type C is an innate error of lysosomal storage metabolism with an autosomal recessive inheritance pattern. The disease causes intracellular cholesterol accumulation and changes in sphingolipid metabolism. If cholesterol accumulates, the signs and symptoms of visceral involvement predominate. Neurological involvement results from sphingolipid accumulation. A 7-year-old male patient was referred to a tertiary service for the investigation of asymptomatic splenomegaly. Following an extensive examination, he was diagnosed with Niemann-Pick disease type C. Interestingly, this case's only symptom was splenomegaly.
Collapse
Affiliation(s)
- Bruna Ribeiro Torres
- Department of Pediatric Neurology, Hospital Infantil João Paulo II, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Otoni Russo
- Department of Pediatric Infectology, Hospital Infantil João Paulo II, Belo Horizonte, Minas Gerais, Brazil
| | - Vinícius Andrade Gomes Vuolo
- Department of Pediatric Infectology, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcísio Silva Borborema
- Department of Pediatric Hematology, Hospital Infantil João Paulo II, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
13
|
Meneses-Salas E, Garcia-Forn M, Castany-Pladevall C, Lu A, Fajardo A, Jose J, Wahba M, Bosch M, Pol A, Tebar F, Klein AD, Zanlungo S, Pérez-Navarro E, Grewal T, Enrich C, Rentero C. Lack of Annexin A6 Exacerbates Liver Dysfunction and Reduces Lifespan of Niemann-Pick Type C Protein-Deficient Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:475-486. [PMID: 33345999 DOI: 10.1016/j.ajpath.2020.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by cholesterol accumulation caused by loss-of-function mutations in the Npc1 gene. NPC disease primarily affects the brain, causing neuronal damage and affecting motor coordination. In addition, considerable liver malfunction in NPC disease is common. Recently, we found that the depletion of annexin A6 (ANXA6), which is most abundant in the liver and involved in cholesterol transport, ameliorated cholesterol accumulation in Npc1 mutant cells. To evaluate the potential contribution of ANXA6 in the progression of NPC disease, double-knockout mice (Npc1-/-/Anxa6-/-) were generated and examined for lifespan, neurologic and hepatic functions, as well as liver histology and ultrastructure. Interestingly, lack of ANXA6 in NPC1-deficient animals did not prevent the cerebellar degeneration phenotype, but further deteriorated their compromised hepatic functions and reduced their lifespan. Moreover, livers of Npc1-/-/Anxa6-/- mice contained a significantly elevated number of foam cells congesting the sinusoidal space, a feature commonly associated with inflammation. We hypothesize that ANXA6 deficiency in Npc1-/- mice not only does not reverse neurologic and motor dysfunction, but further worsens overall liver function, exacerbating hepatic failure in NPC disease.
Collapse
Affiliation(s)
- Elsa Meneses-Salas
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Garcia-Forn
- Institut de Neurociències, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carla Castany-Pladevall
- Institut de Neurociències, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Lu
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institut de Neurociències, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Alba Fajardo
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Marta Bosch
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Pol
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Universidad del Desarrollo, Clínica Alemana de Santiago, Chile
| | - Francesc Tebar
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Andrés D Klein
- Centro de Genética y Genómica, Universidad del Desarrollo, Clínica Alemana de Santiago, Chile
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esther Pérez-Navarro
- Institut de Neurociències, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Carlos Enrich
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Carles Rentero
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
14
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
15
|
Magro Dos Reis I, Houben T, Oligschläger Y, Bücken L, Steinbusch H, Cassiman D, Lütjohann D, Westerterp M, Prickaerts J, Plat J, Shiri-Sverdlov R. Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease. J Lipid Res 2020; 61:830-839. [PMID: 32291331 PMCID: PMC7269767 DOI: 10.1194/jlr.ra120000632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/23/2020] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick type C (NPC)1 disease is a rare genetic condition in which the function of the lysosomal cholesterol transporter NPC1 protein is impaired. Consequently, sphingolipids and cholesterol accumulate in lysosomes of all tissues, triggering a cascade of pathological events that culminate in severe systemic and neurological symptoms. Lysosomal cholesterol accumulation is also a key factor in the development of atherosclerosis and NASH. In these two metabolic diseases, the administration of plant stanol esters has been shown to ameliorate cellular cholesterol accumulation and inflammation. Given the overlap of pathological mechanisms among atherosclerosis, NASH, and NPC1 disease, we sought to investigate whether dietary supplementation with plant stanol esters improves the peripheral features of NPC1 disease. To this end, we used an NPC1 murine model featuring a Npc1-null allele (Npc1nih ), creating a dysfunctional NPC1 protein. Npc1nih mice were fed a 2% or 6% plant stanol ester-enriched diet over the course of 5 weeks. During this period, hepatic and blood lipid and inflammatory profiles were assessed. Npc1nih mice fed the plant stanol-enriched diet exhibited lower hepatic cholesterol accumulation, damage, and inflammation than regular chow-fed Npc1nih mice. Moreover, plant stanol consumption shifted circulating T-cells and monocytes in particular toward an anti-inflammatory profile. Overall, these effects were stronger following dietary supplementation with 6% stanols, suggesting a dose-dependent effect. The findings of our study highlight the potential use of plant stanols as an affordable complementary means to ameliorate disorders in hepatic and blood lipid metabolism and reduce inflammation in NPC1 disease.
Collapse
Affiliation(s)
- Inês Magro Dos Reis
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Tom Houben
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Yvonne Oligschläger
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Leoni Bücken
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Hellen Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - David Cassiman
- Liver Research Unit University of Leuven, Leuven, Belgium; Department of Gastroenterology-Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Marit Westerterp
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School for Nutrition, Toxicology, and Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands. mailto:
| |
Collapse
|
16
|
Rallapalli H, Darwin BC, Toro-Montoya E, Lerch JP, Turnbull DH. Longitudinal MEMRI analysis of brain phenotypes in a mouse model of Niemann-Pick Type C disease. Neuroimage 2020; 217:116894. [PMID: 32417449 PMCID: PMC7443857 DOI: 10.1016/j.neuroimage.2020.116894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/15/2022] Open
Abstract
Niemann-Pick Type C (NPC) is a rare genetic disorder characterized by progressive cell death in various tissues, particularly in the cerebellar Purkinje cells, with no known cure. Mouse models for human NPC have been generated and characterized histologically, behaviorally, and using longitudinal magnetic resonance imaging (MRI). Previous imaging studies revealed significant brain volume differences between mutant and wild-type animals, but stopped short of making volumetric comparisons of the cerebellar sub-regions. In this study, we present longitudinal manganese-enhanced MRI (MEMRI) data from cohorts of wild-type, heterozygote carrier, and homozygote mutant NPC mice, as well as deformation-based morphometry (DBM) driven brain volume comparisons across genotypes, including the cerebellar cortex, white matter, and nuclei. We also present the first comparisons of MEMRI signal intensities, reflecting brain and cerebellum sub-regional Mn2+-uptake over time and across genotypes.
Collapse
Affiliation(s)
- Harikrishna Rallapalli
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA; Biomedical Imaging & Technology Graduate Program, New York University School of Medicine, USA
| | - Benjamin C Darwin
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Estefania Toro-Montoya
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA; Biomedical Imaging & Technology Graduate Program, New York University School of Medicine, USA.
| |
Collapse
|
17
|
Complement Component C3 Participates in Early Stages of Niemann-Pick C Mouse Liver Damage. Int J Mol Sci 2020; 21:ijms21062127. [PMID: 32244854 PMCID: PMC7139721 DOI: 10.3390/ijms21062127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Niemann–Pick type C (NPC), a lysosomal storage disorder, is mainly caused by mutations in the NPC1 gene. Niemann–Pick type C patients and mice show intracellular cholesterol accumulation leading to hepatic failure with increased inflammatory response. The complement cascade, which belongs to the innate immunity response, recognizes danger signals from injured tissues. We aimed to determine whether there is activation of the complement system in the liver of the NPC mouse and to assess the relationship between C3 activation, a final component of the pathway, and NPC liver pathology. Niemann–Pick type C mice showed high levels of C3 staining in the liver which unexpectedly decreased with aging. Using an inducible NPC1 hepatocyte rescue mouse model, we restored NPC1 expression for a short time in young mice. We found C3 positive cells only in non-rescued cells, suggesting that C3 activation in NPC cells is reversible. Then, we studied the effect of C3 ablation on NPC liver damage at two postnatal time points, P56 and P72. Deletion of C3 reduced the presence of hepatic CD68-positive cells at postnatal day 56 and prevented the increase of transaminase levels in the blood of NPC mice. These positive effects were abrogated at P72, indicating that the complement cascade participates only during the early stages of liver damage in NPC mice, and that its inhibition may serve as a new potential therapeutic strategy for the disease.
Collapse
|
18
|
Rodriguez-Gil JL, Watkins-Chow DE, Baxter LL, Elliot G, Harper UL, Wincovitch SM, Wedel JC, Incao AA, Huebecker M, Boehm FJ, Garver WS, Porter FD, Broman KW, Platt FM, Pavan WJ. Genetic background modifies phenotypic severity and longevity in a mouse model of Niemann-Pick disease type C1. Dis Model Mech 2020; 13:dmm042614. [PMID: 31996359 PMCID: PMC7075069 DOI: 10.1242/dmm.042614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a rare, fatal neurodegenerative disorder characterized by lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. NPC1 is extremely heterogeneous in the timing of clinical presentation and is associated with a wide spectrum of causative NPC1 mutations. To study the genetic architecture of NPC1, we have generated a new NPC1 mouse model, Npc1em1PavNpc1em1Pav/em1Pav mutants showed notably reduced NPC1 protein compared to controls and displayed the pathological and biochemical hallmarks of NPC1. Interestingly, Npc1em1Pav/em1Pav mutants on a C57BL/6J genetic background showed more severe visceral pathology and a significantly shorter lifespan compared to Npc1em1Pav/em1Pav mutants on a BALB/cJ background, suggesting that strain-specific modifiers contribute to disease severity and survival. QTL analysis for lifespan of 202 backcross N2 mutants on a mixed C57BL/6J and BALB/cJ background detected significant linkage to markers on chromosomes 1 and 7. The discovery of these modifier regions demonstrates that mouse models are powerful tools for analyzing the genetics underlying rare human diseases, which can be used to improve understanding of the variability in NPC1 phenotypes and advance options for patient diagnosis and therapy.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
- Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gene Elliot
- Embryonic Stem Cell and Transgenic Mouse Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ursula L Harper
- Genomics Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen M Wincovitch
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia C Wedel
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arturo A Incao
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Frederick J Boehm
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William S Garver
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Forbes D Porter
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karl W Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Molecular Genetics of Niemann-Pick Type C Disease in Italy: An Update on 105 Patients and Description of 18 NPC1 Novel Variants. J Clin Med 2020; 9:jcm9030679. [PMID: 32138288 PMCID: PMC7141276 DOI: 10.3390/jcm9030679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disorder caused by mutations in NPC1 or NPC2 genes. In 2009, the molecular characterization of 44 NPC Italian patients has been published. Here, we present an update of the genetic findings in 105 Italian NPC patients belonging to 83 unrelated families (77 NPC1 and 6 NPC2). NPC1 and NPC2 genes were studied following an algorithm recently published. Eighty-four different NPC1 and five NPC2 alleles were identified. Only two NPC1 alleles remained non detected. Sixty-two percent of NPC1 alleles were due to missense variants. The most frequent NPC1 mutation was the p.F284Lfs*26 (5.8% of the alleles). All NPC2 mutations were found in the homozygous state, and all but one was severe. Among newly diagnosed patients, 18 novel NPC1 mutations were identified. The pathogenic nature of 7/9 missense alleles and 3/4 intronic variants was confirmed by filipin staining and NPC1 protein analysis or mRNA expression in patient’s fibroblasts. Taken together, our previous published data and new results provide an overall picture of the molecular characteristics of NPC patients diagnosed so far in Italy.
Collapse
|
20
|
Cougnoux A, Fellmeth M, Gu T, Davidson CD, Gibson AL, Pavan WJ, Porter FD. Maternal immune activation modifies the course of Niemann-pick disease, type C1 in a gender specific manner. Mol Genet Metab 2020; 129:165-170. [PMID: 31668555 PMCID: PMC7002177 DOI: 10.1016/j.ymgme.2019.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023]
Abstract
Niemann-Pick disease, type C1 (NPC1) is a rare neurodegenerative lysosomal storage disease with a wide spectrum of clinical manifestation. Multiple genetic factors influence the NPC1 mouse phenotype, but very little attention has been given to prenatal environmental factors that might have long-term effects on the neuroinflammatory component of NPC1 pathology. Studies in other mouse models of cerebellar ataxia have shown that developmental exposures lead to Purkinje neuron degeneration later in life, suggesting that environmental exposures during development can impact cerebellar biology. Thus, we evaluated the potential effect of maternal immune activation (MIA) on disease progression in an Npc1 mouse model. The MIA paradigm used mimics viral infection using the toll like receptor 3 agonist polyinosinic-polycytidilic acid during gestation. Through phenotypic and pathologic tests, we measured motor and behavioral changes as well as cerebellar neuroinflammation and neurodegeneration. We observed a gender and genotype dependent effect of MIA on the cerebellum. While the effects of MIA have been previously shown to primarily affect male progeny, we observed increased sensitivity of female mutant progeny to prenatal exposure to treatment with polyinosinic-polycytidilic acid. Specifically, prenatal MIA resulted in female NPC1 mutant progeny with greater motor deficits and a corresponding decrease in cerebellar Purkinje neurons. Our data suggest that prenatal environmental exposures may be one factor contributing to the phenotypic variability observed in individuals with NPC1.
Collapse
Affiliation(s)
- Antony Cougnoux
- Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD 20892, United States of America
| | - Mason Fellmeth
- Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD 20892, United States of America
| | - Tansy Gu
- National Human Genome Research Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, United States of America
| | - Cristin D Davidson
- National Human Genome Research Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, United States of America
| | - Alana L Gibson
- National Human Genome Research Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, United States of America
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, United States of America
| | - Forbes D Porter
- Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD 20892, United States of America.
| |
Collapse
|
21
|
NPC1 Deficiency in Mice is Associated with Fetal Growth Restriction, Neonatal Lethality and Abnormal Lung Pathology. J Clin Med 2019; 9:jcm9010012. [PMID: 31861571 PMCID: PMC7019814 DOI: 10.3390/jcm9010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The rare lysosomal storage disorder Niemann-Pick disease type C1 (NPC1) arises from mutation of NPC1, which encodes a lysosomal transmembrane protein essential for normal transport and trafficking of cholesterol and sphingolipids. NPC1 is highly heterogeneous in both clinical phenotypes and age of onset. Previous studies have reported sub-Mendelian survival rates for mice homozygous for various Npc1 mutant alleles but have not studied the potential mechanisms underlying this phenotype. We performed the first developmental analysis of a Npc1 mouse model, Npc1em1Pav, and discovered significant fetal growth restriction in homozygous mutants beginning at E16.5. Npc1em1Pav/em1Pav mice also exhibited cyanosis, increased respiratory effort, and over 50% lethality at birth. Analysis of neonatal lung tissues revealed lipid accumulation, notable abnormalities in surfactant, and enlarged alveolar macrophages, suggesting that lung abnormalities may be associated with neonatal lethality in Npc1em1Pav/em1Pav mice. The phenotypic severity of the Npc1em1Pav model facilitated this first analysis of perinatal lethality and lung pathology in an NPC1 model organism, and this model may serve as a useful resource for developing treatments for respiratory complications seen in NPC1 patients.
Collapse
|
22
|
Pergande MR, Serna‐Perez F, Mohsin SB, Hanek J, Cologna SM. Lipidomic Analysis Reveals Altered Fatty Acid Metabolism in the Liver of the Symptomatic Niemann–Pick, Type C1 Mouse Model. Proteomics 2019; 19:e1800285. [DOI: 10.1002/pmic.201800285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/22/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Melissa R. Pergande
- Department of ChemistryUniversity of Illinois at Chicago Chicago IL 60607 USA
| | - Fidel Serna‐Perez
- Department of ChemistryUniversity of Illinois at Chicago Chicago IL 60607 USA
| | | | - Jonathon Hanek
- Department of ChemistryUniversity of Illinois at Chicago Chicago IL 60607 USA
| | - Stephanie M. Cologna
- Department of ChemistryUniversity of Illinois at Chicago Chicago IL 60607 USA
- Department of ChemistryLaboratory for Integrative NeuroscienceUniversity of Illinois at Chicago Chicago IL 60607 USA
| |
Collapse
|
23
|
Neßlauer AM, Gläser A, Gräler M, Engelmann R, Müller-Hilke B, Frank M, Burstein C, Rolfs A, Neidhardt J, Wree A, Witt M, Bräuer AU. A therapy with miglustat, 2-hydroxypropyl-ß-cyclodextrin and allopregnanolone restores splenic cholesterol homeostasis in Niemann-pick disease type C1. Lipids Health Dis 2019; 18:146. [PMID: 31248418 PMCID: PMC6598286 DOI: 10.1186/s12944-019-1088-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Niemann-Pick disease type C1 (NPC1) is an autosomal-recessive lipid-storage disorder with an estimated minimal incidence of 1/120,000 live births. Besides other neuronal and visceral symptoms, NPC1 patients develop spleen dysfunction, isolated spleno- or hepatosplenomegaly and infections. The mechanisms of splenomegaly and alterations of lipid metabolism-related genes in NPC1 disease are still poorly understood. METHODS Here, we used an NPC1 mouse model to study a splenoprotective effect of a treatment with miglustat, 2-hydroxypropyl-ß-cyclodextrin and allopregnanolone and showed that this treatment has a positive effect on spleen morphology and lipid metabolism. RESULTS Disease progress can be halted and blocked at the molecular level. Mutant Npc1 (Npc1-/-) mice showed increased spleen weight and increased lipid accumulation that could be avoided by our treatment. Also, FACS analyses showed that the increased number of splenic myeloid cells in Npc1-/- mice was normalized by the treatment. Treated Npc1-/- mice showed decreased numbers of cytotoxic T cells and increased numbers of T helper cells. CONCLUSIONS In summary, the treatment promotes normal spleen morphology, stabilization of lipid homeostasis and blocking of inflammation, but alters the composition of T cell subtypes.
Collapse
Affiliation(s)
- Anna-Maria Neßlauer
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Anne Gläser
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Department für Humanmedizin, Abteilung Anatomie, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129, Oldenburg, Germany
| | - Markus Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Robby Engelmann
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Brigitte Müller-Hilke
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Strempelstraße 14, 18057, Rostock, Germany
| | - Christine Burstein
- Institute of Clinical Chemistry and Pathobiochemistry, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Arndt Rolfs
- Centogene AG, Am Strande 7, 18055, Rostock, Germany
| | - John Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Anja U Bräuer
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany. .,Research Group Anatomy, School of Medicine and Health Sciences, Department für Humanmedizin, Abteilung Anatomie, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129, Oldenburg, Germany. .,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
24
|
Fog CK, Kirkegaard T. Animal models for Niemann-Pick type C: implications for drug discovery & development. Expert Opin Drug Discov 2019; 14:499-509. [PMID: 30887840 DOI: 10.1080/17460441.2019.1588882] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Niemann-Pick type C (NPC) is a neurovisceral, progressively detrimental lysosomal storage disease with very limited therapeutic options and no approved treatment available in the US. Despite its rarity, NPC has seen increased drug developmental efforts over the past decade, culminating in the completion of two potential registration trials in 2018. Areas covered: This review highlights the many available animal models that have been developed in the field and briefly covers classical and new cell technologies. This review provides a high-level evaluation and prioritization of the various models with regard to efficient and clinically translatable drug development, and briefly discusses the relevant developments and opportunities pertaining to this. Expert opinion: With a number of in vitro and in vivo models available, and with having several drugs, all with various mechanisms of action, either approved or in late stage development, the NPC field is in an exciting time. One of the challenges for researchers and developers will be the ability to make use of the lessons learnt from existing late-stage programs as well as the incorporation not only of the opportunities but also the limitations of the many models into successful drug discovery and translational development programs.
Collapse
|
25
|
Pergande MR, Cougnoux A, Rathnayake RAC, Porter FD, Cologna SM. Differential Proteomics Reveals miR-155 as a Novel Indicator of Liver and Spleen Pathology in the Symptomatic Niemann-Pick Disease, Type C1 Mouse Model. Molecules 2019; 24:E994. [PMID: 30870990 PMCID: PMC6429457 DOI: 10.3390/molecules24050994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/24/2022] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a rare, autosomal recessive, lipid storage disorder caused by mutations in NPC1. As a result, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system. Clinically, patients can present with splenomegaly and hepatomegaly. In the current study, we analyzed the differential proteome of the spleen in symptomatic Npc1-/- mice to complement previous studies focused on the differential proteome of the liver, and then evaluated biomolecules that may serve as tissue biomarkers. The proteomic analysis revealed altered pathways in NPC1 representing different functional categories including heme synthesis, cellular regulation and phosphoinositide metabolism in both tissues. Differential proteins included several activators of the ubiquitous and critical protein, Akt, a major kinase involved in multiple cellular processes. Evaluation of Akt revealed decreased expression in both the liver and spleen tissues of symptomatic Npc1-/- mice. Upstream regulation analysis also suggested that miR-155 may modulate the differences of known downstream protein targets observed in our dataset. Upon evaluation of miR-155, we observed an increased expression in the liver and decreased expression in the spleen of symptomatic Npc1-/- mice. Here, we propose that miR-155 may be a novel indicator of spleen and liver pathology in NPC1.
Collapse
Affiliation(s)
- Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Antony Cougnoux
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20879, USA.
| | | | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20879, USA.
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
26
|
Marques ARA, Saftig P. Lysosomal storage disorders - challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 2019; 132:jcs221739. [PMID: 30651381 DOI: 10.1242/jcs.221739] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pivotal role of lysosomes in cellular processes is increasingly appreciated. An understanding of the balanced interplay between the activity of acidic hydrolases, lysosomal membrane proteins and cytosolic proteins is required. Lysosomal storage diseases (LSDs) are characterized by disturbances in this network and by intralysosomal accumulation of substrates, often only in certain cell types. Even though our knowledge of these diseases has increased and therapies have been established, many aspects of the molecular pathology of LSDs remain obscure. This Review aims to discuss how lysosomal storage affects functions linked to lysosomes, such as membrane repair, autophagy, exocytosis, lipid homeostasis, signalling cascades and cell viability. Therapies must aim to correct lysosomal storage not only morphologically, but reverse its (patho)biochemical consequences. As different LSDs have different molecular causes, this requires custom tailoring of therapies. We will discuss the major advantages and drawbacks of current and possible future therapies for LSDs. Study of the pathological molecular mechanisms underlying these 'experiments of nature' often yields information that is relevant for other conditions found in the general population. Therefore, more common diseases may profit from a correction of impaired lysosomal function.
Collapse
Affiliation(s)
- André R A Marques
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| |
Collapse
|
27
|
Cougnoux A, Clifford S, Salman A, Ng SL, Bertin J, Porter FD. Necroptosis inhibition as a therapy for Niemann-Pick disease, type C1: Inhibition of RIP kinases and combination therapy with 2-hydroxypropyl-β-cyclodextrin. Mol Genet Metab 2018; 125:345-350. [PMID: 30392741 PMCID: PMC6279611 DOI: 10.1016/j.ymgme.2018.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023]
Abstract
Niemann-Pick disease, type C1 (NPC1) is an inborn error of metabolism that results in endolysosomal accumulation of unesterified cholesterol. Clinically, NPC1 manifests as cholestatic liver disease in the newborn or as a progressive neurogenerative condition characterized by cerebellar ataxia and cognitive decline. Currently there are no FDA approved therapies for NPC1. Thus, understanding the pathological processes that contribute to neurodegeneration will be important in both developing and testing potential therapeutic interventions. Neuroinflammation and necroptosis contribute to the NPC1 pathological cascade. Receptor Interacting Protein Kinase 1 and 3 (RIPK1 and RIPK3), are protein kinases that play a central role in mediating neuronal necroptosis. Our prior work suggested that pharmacological inhibition of RIPK1 had a significant but modest beneficial effect; however, the inhibitors used in that study had suboptimal pharmacokinetic properties. In this work we evaluated both pharmacological and genetic inhibition of RIPK1 kinase activity. Lifespan in both Npc1-/- mice treated with GSK'547, a RIPK1 inhibitor with better pharmacokinetic properties, and Npc1-/-:Ripk1kd/kd double mutant mice was significantly increased. In both cases the increase in lifespan was modest, suggesting that the therapeutic potential of RIPK1 inhibition, as a monotherapy, is limited. We thus investigated the potential of combining RIPK1 inhibition with 2-hydroxypropyl-β-cyclodextrin (HPβCD) therapy HPβCD has been shown to slow neurological disease progression in NPC1 mice, cats and patients. HPβCD appeared to have an additive positive effect on the pathology and survival of Npc1-/-:Ripk1kd/kd mice. RIPK1 and RIPK3 are both critical components of the necrosome, thus we were surprised to observe no increase survival in Npc1-/-;Ripk3-/- mice compared to Npc1-/- mice. These data suggest that although necroptosis is occurring in NPC1, the observed effects of RIPK1 inhibition may be related to its RIPK3-independent role in neuroinflammation and cytokine production.
Collapse
Affiliation(s)
- A Cougnoux
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - S Clifford
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - A Salman
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - S-L Ng
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - J Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - F D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Calderón JF, Klein AD. Controversies on the potential therapeutic use of rapamycin for treating a lysosomal cholesterol storage disease. Mol Genet Metab Rep 2018; 15:135-136. [PMID: 30023307 PMCID: PMC6047216 DOI: 10.1016/j.ymgmr.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022] Open
Affiliation(s)
- Juan F Calderón
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
29
|
Cougnoux A, Movassaghi M, Picache JA, Iben JR, Navid F, Salman A, Martin K, Farhat NY, Cluzeau C, Tseng WC, Burkert K, Sojka C, Wassif CA, Cawley NX, Bonnet R, Porter FD. Gastrointestinal Tract Pathology in a BALB/c Niemann-Pick Disease Type C1 Null Mouse Model. Dig Dis Sci 2018; 63:870-880. [PMID: 29357083 PMCID: PMC6292218 DOI: 10.1007/s10620-018-4914-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Niemann-Pick disease, type C (NPC) is a rare lysosomal storage disorder characterized by progressive neurodegeneration, splenomegaly, hepatomegaly, and early death. NPC is caused by mutations in either the NPC1 or NPC2 gene. Impaired NPC function leads to defective intracellular transport of unesterified cholesterol and its accumulation in late endosomes and lysosomes. A high frequency of Crohn disease has been reported in NPC1 patients, suggesting that gastrointestinal tract pathology may become a more prominent clinical issue if effective therapies are developed to slow the neurodegeneration. The Npc1 nih mouse model on a BALB/c background replicates the hepatic and neurological disease observed in NPC1 patients. Thus, we sought to characterize the gastrointestinal tract pathology in this model to determine whether it can serve as a model of Crohn disease in NPC1. METHODS We analyzed the gastrointestinal tract and isolated macrophages of BALB/cJ cNctr-Npc1m1N/J (Npc1-/-) mouse model to determine whether there was any Crohn-like pathology or inflammatory cell activation. We also evaluated temporal changes in the microbiota by 16S rRNA sequencing of fecal samples to determine whether there were changes consistent with Crohn disease. RESULTS Relative to controls, Npc1 mutant mice demonstrate increased inflammation and crypt abscesses in the gastrointestinal tract; however, the observed pathological changes are significantly less than those observed in other Crohn disease mouse models. Analysis of Npc1 mutant macrophages demonstrated an increased response to lipopolysaccharides and delayed bactericidal activity; both of which are pathological features of Crohn disease. Analysis of the bacterial microbiota does not mimic what is reported in Crohn disease in either human or mouse models. We did observe significant increases in cyanobacteria and epsilon-proteobacteria. The increase in epsilon-proteobacteria may be related to altered cholesterol homeostasis since cholesterol is known to promote growth of this bacterial subgroup. CONCLUSIONS Macrophage dysfunction in the BALB/c Npc1-/- mouse is similar to that observed in other Crohn disease models. However, neither the degree of pathology nor the microbiota changes are typical of Crohn disease. Thus, this mouse model is not a good model system for Crohn disease pathology reported in NPC1 patients.
Collapse
Affiliation(s)
- Antony Cougnoux
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Miyad Movassaghi
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jaqueline A Picache
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - James R Iben
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Fatemeh Navid
- Department of Health and Human Services, National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, 20892, USA
| | - Alexander Salman
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Kyle Martin
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Nicole Y Farhat
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Celine Cluzeau
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Wei-Chia Tseng
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Kathryn Burkert
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Caitlin Sojka
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Christopher A Wassif
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Niamh X Cawley
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Richard Bonnet
- Microbes, Inflammation, Intestin et Susceptibilité de l'Hôte (M2iSH), Inserm U1071, INRA USC2018, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Center Hospitalier Universitaire, Clermont-Ferrand, France
| | - Forbes D Porter
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Marshall CA, Watkins-Chow DE, Palladino G, Deutsch G, Chandran K, Pavan WJ, Erickson RP. In Niemann-Pick C1 mouse models, glial-only expression of the normal gene extends survival much further than do changes in genetic background or treatment with hydroxypropyl-beta-cyclodextrin. Gene 2017; 643:117-123. [PMID: 29223359 DOI: 10.1016/j.gene.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 11/19/2022]
Abstract
The Npc1nmf164 allele of Npc1 provides a mouse model for Niemann-Pick disease type C1 (NPC1), a genetic disease known to have a widely variable phenotype. The transfer of the Npc1nmf164 mutation from the C57BL/6J inbred strain to the BALB/cJ inbred strain increased the mean lifespan from 117.8days to 153.1days, confirming that the severity of the NPC1 phenotype is strongly influenced by genetic background. The transfer of another Npc1 allele, Npc1nih, to this background also extended survival of the homozygotes indicating that the modifying effect of BALB/cJ is not limited to a single allele of Npc1. The increased longevity due to the BALB/cJ background did not map to a previously mapped modifier on chromosome 19, indicating the presence of additional genes impacting disease severity. The previously studied Glial Fibrillary Acidic Protein promoter-Npc1 cDNA transgene (GFAP-Npc1) which only expresses NPC1 in astrocytes further extended the lifespan of Npc1nmf164 homozygotes on a BALB/cJ background (up to 600days). Hydroxypropyl-β-cyclodextrin (HPβCD) treatment, not previously tested in the Npc1nmf164 mutant, extended life in the Npc1nmf164 homozygotes but not the transgenic, Npc1nmf164 mice on the BALB/cJ background. In all cases, lack of weight gain and early cerebellar symptoms of loss of motor control were found. At termination, the one mouse sacrificed for histological studies showed severe, diffuse pulmonary alveolar proteinosis suggesting that pulmonary abnormalities in NPC1 mouse models are not unique to the Npc1nih allele.
Collapse
Affiliation(s)
- Craig A Marshall
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ 85724-5073, United States
| | - Dawn E Watkins-Chow
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Giampiero Palladino
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ 85724-5073, United States
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, United States
| | - Keshav Chandran
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ 85724-5073, United States
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ 85724-5073, United States.
| |
Collapse
|
31
|
Zhang B, Yang C, Qiao L, Li Q, Wang C, Yan X, Lin J. Telocytes: a potential defender in the spleen of Npc1 mutant mice. J Cell Mol Med 2016; 21:848-859. [PMID: 27860245 PMCID: PMC5387173 DOI: 10.1111/jcmm.13024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/02/2016] [Indexed: 12/30/2022] Open
Abstract
Niemann–Pick disease, type C1 (Npc1), is an atypical lysosomal storage disorder caused by autosomal recessive inheritance of mutations in Npc1 gene. In the Npc1 mutant mice (Npc1−/−), the initial manifestation is enlarged spleen, concomitant with free cholesterol accumulation. Telocytes (TCs), a novel type of interstitial cell, exist in a variety of tissues including spleen, presumably thought to be involved in many biological processes such as nursing stem cells and recruiting inflammatory cells. In this study, we found that the spleen is significantly enlarged in Npc1−/− mice, and the results from transmission electron microscopy examination and immunostaining using three different TCs markers, c‐Kit, CD34 and Vimentin revealed significantly increased splenic TCs in Npc1−/− mice. Furthermore, hematopoietic stem cells and macrophages were also elevated in Npc1−/− spleen. Taken together, our data indicate that splenic TCs might alleviate the progress of splenic malfunction via recruiting hematopoietic stem cells and macrophages.
Collapse
Affiliation(s)
- Bichao Zhang
- College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Ciqing Yang
- College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Liang Qiao
- College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiuling Li
- College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Congrui Wang
- College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xin Yan
- College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,College of Biomedical Engineering, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.,Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
32
|
Identification of Modifier Genes in a Mouse Model of Gaucher Disease. Cell Rep 2016; 16:2546-2553. [PMID: 27568557 DOI: 10.1016/j.celrep.2016.07.085] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/19/2016] [Accepted: 07/29/2016] [Indexed: 02/02/2023] Open
Abstract
Diseases caused by single-gene mutations can display substantial phenotypic variability, which may be due to genetic, environmental, or epigenetic modifiers. Here, we induce Gaucher disease (GD), a rare inherited metabolic disorder, by injecting 15 inbred mouse strains with a low dose of a chemical inhibitor of acid β-glucosidase, the enzyme defective in GD. Different mouse strains exhibit widely different lifespans, which is unrelated to levels of acid β-glucosidase's substrate accumulation. Genome-wide association reveals a number of candidate risk loci, including a marker within Grin2b, which in combination with another marker allows us to predict the lifespan of additional mouse strains. An antagonist of the NMDA receptor (encoded by Grin2b) significantly increases the lifespan of GD mice that would otherwise have lived for a short time. Our data identify putative modifier genes that may be involved in determining GD severity, which might help elucidate phenotypic variability between patients with similar GD mutations.
Collapse
|
33
|
Marques ARA, Aten J, Ottenhoff R, van Roomen CPAA, Herrera Moro D, Claessen N, Vinueza Veloz MF, Zhou K, Lin Z, Mirzaian M, Boot RG, De Zeeuw CI, Overkleeft HS, Yildiz Y, Aerts JMFG. Reducing GBA2 Activity Ameliorates Neuropathology in Niemann-Pick Type C Mice. PLoS One 2015; 10:e0135889. [PMID: 26275242 PMCID: PMC4537125 DOI: 10.1371/journal.pone.0135889] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
The enzyme glucocerebrosidase (GBA) hydrolyses glucosylceramide (GlcCer) in lysosomes. Markedly reduced GBA activity is associated with severe manifestations of Gaucher disease including neurological involvement. Mutations in the GBA gene have recently also been identified as major genetic risk factor for Parkinsonism. Disturbed metabolism of GlcCer may therefore play a role in neuropathology. Besides lysosomal GBA, cells also contain a non-lysosomal glucosylceramidase (GBA2). Given that the two β-glucosidases share substrates, we speculated that over-activity of GBA2 during severe GBA impairment might influence neuropathology. This hypothesis was studied in Niemann-Pick type C (Npc1-/-) mice showing secondary deficiency in GBA in various tissues. Here we report that GBA2 activity is indeed increased in the brain of Npc1-/- mice. We found that GBA2 is particularly abundant in Purkinje cells (PCs), one of the most affected neuronal populations in NPC disease. Inhibiting GBA2 in Npc1-/- mice with a brain-permeable low nanomolar inhibitor significantly improved motor coordination and extended lifespan in the absence of correction in cholesterol and ganglioside abnormalities. This trend was recapitulated, although not to full extent, by introducing a genetic loss of GBA2 in Npc1-/- mice. Our findings point to GBA2 activity as therapeutic target in NPC.
Collapse
Affiliation(s)
- André R. A. Marques
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Aten
- Department of Pathology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | | | - Daniela Herrera Moro
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | | | - Kuikui Zhou
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Zhanmin Lin
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Rolf G. Boot
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Yildiz Yildiz
- Department of Internal Medicine, Hospital of Bregenz, 6900, Bregenz, Austria
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Platt N, Speak AO, Colaco A, Gray J, Smith DA, Williams IM, Wallom KL, Platt FM. Immune dysfunction in Niemann-Pick disease type C. J Neurochem 2015; 136 Suppl 1:74-80. [PMID: 25946402 PMCID: PMC4833189 DOI: 10.1111/jnc.13138] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
Lysosomal storage diseases are inherited monogenic disorders in which lysosome function is compromised. Although individually very rare, they occur at a collective frequency of approximately one in five thousand live births and usually have catastrophic consequences for health. The lysosomal storage diseases Niemann‐Pick disease type C (NPC) is caused by mutations predominantly in the lysosomal integral membrane protein NPC1 and clinically presents as a progressive neurodegenerative disorder. In this article we review data that demonstrate significant dysregulation of innate immunity in NPC, which occurs both in peripheral organs and the CNS. In particular pro‐inflammatory responses promote disease progression and anti‐inflammatory drugs provide benefit in animal models of the disease and are an attractive target for clinical intervention in this disorder.
![]() Niemann‐Pick disease type C is a rare, devastating, inherited lysosomal storage disease with a unique cellular phenotype characterized by lysosomal accumulation of sphingosine, various glycosphingolipids and cholesterol and a reduction in lysosomal calcium. In this review we highlight the impact of the disease on innate immune activities in both the central nervous system (CNS) and peripheral tissues and discuss their contributions to pathology and the underlying mechanisms.
Collapse
Affiliation(s)
- Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | - James Gray
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David A Smith
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ian M Williams
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Aqul A, Lopez AM, Posey KS, Taylor AM, Repa JJ, Burns DK, Turley SD. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice. Am J Physiol Gastrointest Liver Physiol 2014; 307:G836-47. [PMID: 25147230 PMCID: PMC4200320 DOI: 10.1152/ajpgi.00243.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.
Collapse
Affiliation(s)
- Amal Aqul
- 2Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Adam M. Lopez
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Kenneth S. Posey
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Anna M. Taylor
- 3Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Joyce J. Repa
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; ,3Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Dennis K. Burns
- 4Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen D. Turley
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
36
|
Argüello G, Martinez P, Peña J, Chen O, Platt F, Zanlungo S, González M. Hepatic metabolic response to restricted copper intake in a Niemann–Pick C murine model. Metallomics 2014; 6:1527-39. [DOI: 10.1039/c4mt00056k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Niemann–Pick C disease (NPC) is a vesicular trafficking disorder primarily caused by mutations in theNpc1gene and characterized by liver dysfunction and neuropathology.
Collapse
Affiliation(s)
- Graciela Argüello
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| | - Pablo Martinez
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
- Santiago, Chile
| | - Juan Peña
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
| | - Oscar Chen
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Frances Platt
- Department of Pharmacology
- University of Oxford
- Oxford OX1 3QT, UK
| | - Silvana Zanlungo
- FONDAP-Center of Genome Regulation (CGR)
- Santiago, Chile
- Departamento de Gastroenterología
- Facultad de Medicina
- Pontificia Universidad Católica de Chile
| | - Mauricio González
- INTA
- Laboratorio de Bioinformática y Expresión Génica
- Universidad de Chile
- Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR)
| |
Collapse
|
37
|
Cologna SM, Cluzeau CV, Yanjanin NM, Blank PS, Dail MK, Siebel S, Toth CL, Wassif CA, Lieberman AP, Porter FD. Human and mouse neuroinflammation markers in Niemann-Pick disease, type C1. J Inherit Metab Dis 2014; 37:83-92. [PMID: 23653225 PMCID: PMC3877698 DOI: 10.1007/s10545-013-9610-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/27/2013] [Accepted: 04/05/2013] [Indexed: 02/01/2023]
Abstract
Niemann-Pick disease, type C1 (NPC1) is an autosomal recessive lipid storage disorder in which a pathological cascade, including neuroinflammation occurs. While data demonstrating neuroinflammation is prevalent in mouse models, data from NPC1 patients is lacking. The current study focuses on identifying potential markers of neuroinflammation in NPC1 from both the Npc1 mouse model and NPC1 patients. We identified in the mouse model significant changes in expression of genes associated with inflammation and compared these results to the pattern of expression in human cortex and cerebellar tissue. From gene expression array analysis, complement 3 (C3) was increased in mouse and human post-mortem NPC1 brain tissues. We also characterized protein levels of inflammatory markers in cerebrospinal fluid (CSF) from NPC1 patients and controls. We found increased levels of interleukin 3, chemokine (C-X-C motif) ligand 5, interleukin 16 and chemokine ligand 3 (CCL3), and decreased levels of interleukin 4, 10, 13 and 12p40 in CSF from NPC1 patients. CSF markers were evaluated with respect to phenotypic severity. Miglustat treatment in NPC1 patients slightly decreased IL-3, IL-10 and IL-13 CSF levels; however, further studies are needed to establish a strong effect of miglustat on inflammation markers. The identification of inflammatory markers with altered levels in the cerebrospinal fluid of NPC1 patients may provide a means to follow secondary events in NPC1 disease during therapeutic trials.
Collapse
Affiliation(s)
- Stephanie M. Cologna
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Celine V.M. Cluzeau
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Nicole M. Yanjanin
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Paul S. Blank
- Program in Physical Biology, Section on Membrane & Cellular Biophysics, NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Michelle K. Dail
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Stephan Siebel
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Cynthia L. Toth
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | - Christopher A. Wassif
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| | | | - Forbes D. Porter
- Program in Developmental Endocrinology and Genetics, Section on Molecular Dysmorphology NICHD, NIH, DHHS, Bethesda, MD, USA 20892
| |
Collapse
|
38
|
Ontogenic changes in lung cholesterol metabolism, lipid content, and histology in mice with Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:54-61. [PMID: 24076310 DOI: 10.1016/j.bbalip.2013.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 11/21/2022]
Abstract
Niemann-Pick Type C (NPC) disease is caused by a deficiency of either NPC1 or NPC2. Loss of function of either protein results in the progressive accumulation of unesterified cholesterol in every tissue leading to cell death and organ damage. Most literature on NPC disease focuses on neurological and liver manifestations. Pulmonary dysfunction is less well described. The present studies investigated how Npc1 deficiency impacts the absolute weight, lipid composition and histology of the lungs of Npc1(-/-) mice (Npc1(nih)) at different stages of the disease, and also quantitated changes in the rates of cholesterol and fatty acid synthesis in the lung over this same time span (8 to 70days of age). Similar measurements were made in Npc2(-/-) mice at 70days. All mice were of the BALB/c strain and were fed a basal rodent chow diet. Well before weaning, the lung weight, cholesterol and phospholipid (PL) content, and cholesterol synthesis rate were all elevated in the Npc1(-/-) mice and remained so at 70days of age. In contrast, lung triacylglycerol content was reduced while there was no change in lung fatty acid synthesis. Despite the elevated PL content, the composition of PL in the lungs of the Npc1(-/-) mice was unchanged. H&E staining revealed an age-related increase in the presence of lipid-laden macrophages in the alveoli of the lungs of the Npc1(-/-) mice starting as early as 28days. Similar metabolic and histologic changes were evident in the lungs of the Npc2(-/-) mice. Together these findings demonstrate an intrinsic lung pathology in NPC disease that is of early onset and worsens over time.
Collapse
|
39
|
Lopez ME, Scott MP. Genetic dissection of a cell-autonomous neurodegenerative disorder: lessons learned from mouse models of Niemann-Pick disease type C. Dis Model Mech 2013; 6:1089-100. [PMID: 23907005 PMCID: PMC3759329 DOI: 10.1242/dmm.012385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Understanding neurodegenerative disease progression and its treatment requires the systematic characterization and manipulation of relevant cell types and molecular pathways. The neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NPC) is highly amenable to genetic approaches that allow exploration of the disease biology at the organismal, cellular and molecular level. Although NPC is a rare disease, genetic analysis of the associated neuropathology promises to provide insight into the logic of disease neural circuitry, selective neuron vulnerability and neural-glial interactions. The ability to control the disorder cell-autonomously and in naturally occurring spontaneous animal models that recapitulate many aspects of the human disease allows for an unparalleled dissection of the disease neurobiology in vivo. Here, we review progress in mouse-model-based studies of NPC disease, specifically focusing on the subtype that is caused by a deficiency in NPC1, a sterol-binding late endosomal membrane protein involved in lipid trafficking. We also discuss recent findings and future directions in NPC disease research that are pertinent to understanding the cellular and molecular mechanisms underlying neurodegeneration in general.
Collapse
Affiliation(s)
- Manuel E Lopez
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Clark Center W200, 318 Campus Drive, Stanford, CA 94305-5439, USA
| | | |
Collapse
|
40
|
Alam MS, Getz M, Safeukui I, Yi S, Tamez P, Shin J, Velázquez P, Haldar K. Genomic expression analyses reveal lysosomal, innate immunity proteins, as disease correlates in murine models of a lysosomal storage disorder. PLoS One 2012; 7:e48273. [PMID: 23094108 PMCID: PMC3477142 DOI: 10.1371/journal.pone.0048273] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/21/2012] [Indexed: 12/17/2022] Open
Abstract
Niemann-Pick Type C (NPC) disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and a lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional, neurological lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1−/− mice relative to Npc1+/− at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates of neurological and/or liver disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gaucher’s disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1−/− as well as Balb/c Npc1nmf164 mice (bearing a point mutation closer to human disease mutants) and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1−/− mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry. These data revealed neutrophil elevation in the Npc1−/− spleen and liver (where large foci were detected proximal to damaged tissue). Together our results yield a set of lysosomal, secretory innate immunity genes that have potential to be developed as pan or specific plasma markers for neurological diseases associated with lysosomal storage and where diagnosis is a major problem. Further, the accumulation of neutrophils in diseased organs (hitherto not associated with NPC) suggests their role in pathophysiology and disease exacerbation.
Collapse
Affiliation(s)
- Md. Suhail Alam
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michelle Getz
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Innocent Safeukui
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sue Yi
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pamela Tamez
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jenny Shin
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Peter Velázquez
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Kasturi Haldar
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
41
|
Louwette S, Régal L, Wittevrongel C, Thys C, Vandeweeghde G, Decuyper E, Leemans P, De Vos R, Van Geet C, Jaeken J, Freson K. NPC1 defect results in abnormal platelet formation and function: studies in Niemann-Pick disease type C1 patients and zebrafish. Hum Mol Genet 2012; 22:61-73. [PMID: 23010472 DOI: 10.1093/hmg/dds401] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick type C is a lysosomal storage disease associated with mutations in NPC1 or NPC2, resulting in an accumulation of cholesterol in the endosomal-lysosomal system. Niemann-Pick type C has a clinical spectrum that ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease combined with remarkably, in some cases, hematological defects such as thrombocytopenia, anemia and petechial rash. A role of NPC1 in hematopoiesis was never shown. Here, we describe platelet function abnormalities in three unrelated patients with a proven genetic and biochemical NPC1 defect. Their platelets have reduced aggregations, P-selectin expression and ATP secretions that are compatible with the observed abnormal alpha and reduced dense granules as studied by electron microscopy and CD63 staining after platelet spreading. Their blood counts were normal. NPC1 expression was shown in platelets and megakaryocytes (MKs). In vitro differentiated MKs from NPC1 patients exhibit hyperproliferation of immature MKs with different CD63(+) granules and abnormal cellular accumulation of cholesterol as shown by filipin stainings. The role of NPC1 in megakaryopoiesis was further studied using zebrafish with GFP-labeled thrombocytes or DsRed-labeled erythrocytes. NPC1 depletion in zebrafish resulted in increased cell death in the brain and abnormal cellular accumulation of filipin. NPC1-depleted embryos presented with thrombocytopenia and mild anemia as studied by flow cytometry and real-time QPCR for specific blood cell markers. In conclusion, this is the first report, showing a role of NPC1 in platelet function and formation but further studies are needed to define how cholesterol storage interferes with these processes.
Collapse
Affiliation(s)
- Sophie Louwette
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lopez ME, Klein AD, Hong J, Dimbil UJ, Scott MP. Neuronal and epithelial cell rescue resolves chronic systemic inflammation in the lipid storage disorder Niemann-Pick C. Hum Mol Genet 2012; 21:2946-60. [PMID: 22493001 PMCID: PMC3373242 DOI: 10.1093/hmg/dds126] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic systemic inflammation is thought to be a major contributor to metabolic and neurodegenerative diseases. Since inflammatory components are shared among different disorders, targeting inflammation is an attractive option for mitigating disease. To test the significance of inflammation in the lipid storage disorder (LSD) Niemann-Pick C (NPC), we deleted the macrophage inflammatory gene Mip1a/Ccl3 from NPC diseased mice. Deletion of Ccl3 had been reported to delay neuronal loss in Sandhoff LSD mice by inhibiting macrophage infiltration. For NPC mice, in contrast, deleting Ccl3 did not retard neurodegeneration and worsened the clinical outcome. Depletion of visceral tissue macrophages also did not alter central nervous system (CNS) pathology and instead increased liver injury, suggesting a limited macrophage infiltration response into the CNS and a beneficial role of macrophage activity in visceral tissue. Prevention of neuron loss or liver injury, even at late stages in the disease, was achieved through specific rescue of NPC disease in neurons or in liver epithelial cells, respectively. Local epithelial cell correction was also sufficient to reduce the macrophage-associated pathology in lung tissue. These results demonstrate that elevated inflammation and macrophage activity does not necessarily contribute to neurodegeneration and tissue injury, and LSD defects in immune cells may not preclude an appropriate inflammatory response. We conclude that inflammation remains secondary to neuronal and epithelial cell dysfunction and does not irreversibly contribute to the pathogenic cascade in NPC disease. Without further exploration of possible beneficial roles of inflammatory mediators, targeting inflammation may not be therapeutically effective at ameliorating disease severity.
Collapse
Affiliation(s)
- Manuel E Lopez
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine Clark Center, 318 Campus Drive, Stanford, CA 94305-5439, USA
| | | | | | | | | |
Collapse
|