1
|
Zhang Y, Ya D, Yang J, Jiang Y, Li X, Wang J, Tian N, Deng J, Yang B, Li Q, Liao R. EAAT3 impedes oligodendrocyte remyelination in chronic cerebral hypoperfusion-induced white matter injury. CNS Neurosci Ther 2024; 30:e14487. [PMID: 37803915 PMCID: PMC10805396 DOI: 10.1111/cns.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion-induced demyelination causes progressive white matter injury, although the pathogenic pathways are unknown. METHODS The Single Cell Portal and PanglaoDB databases were used to analyze single-cell RNA sequencing experiments to determine the pattern of EAAT3 expression in CNS cells. Immunofluorescence (IF) was used to detect EAAT3 expression in oligodendrocytes and oligodendrocyte progenitor cells (OPCs). EAAT3 levels in mouse brains were measured using a western blot at various phases of development, as well as in traumatic brain injury (TBI) and intracerebral hemorrhage (ICH) mouse models. The mouse bilateral carotid artery stenosis (BCAS) model was used to create white matter injury. IF, Luxol Fast Blue staining, and electron microscopy were used to investigate the effect of remyelination. 5-Ethynyl-2-Deoxy Uridine staining, transwell chamber assays, and IF were used to examine the effects of OPCs' proliferation, migration, and differentiation in vivo and in vitro. The novel object recognition test, the Y-maze test, the rotarod test, and the grid walking test were used to examine the impact of behavioral modifications. RESULTS A considerable amount of EAAT3 was expressed in OPCs and mature oligodendrocytes, according to single-cell RNA sequencing data. During multiple critical phases of mouse brain development, there were no substantial changes in EAAT3 levels in the hippocampus, cerebral cortex, or white matter. Furthermore, neither the TBI nor ICH models significantly affected the levels of EAAT3 in the aforementioned brain areas. The chronic white matter injury caused by BCAS, on the other hand, resulted in a strikingly high level of EAAT3 expression in the oligodendroglia and white matter. Correspondingly, blocking EAAT3 assisted in the recovery of cognitive and motor impairment as well as the restoration of cerebral blood flow following BCAS. Furthermore, EAAT3 suppression was connected to improved OPCs' survival and proliferation in vivo as well as faster OPCs' proliferation, migration, and differentiation in vitro. Furthermore, this study revealed that the mTOR pathway is implicated in EAAT3-mediated remyelination. CONCLUSIONS Our findings provide the first evidence that abnormally high levels of oligodendroglial EAAT3 in chronic cerebral hypoperfusion impair OPCs' pro-remyelination actions, hence impeding white matter repair and functional recovery. EAAT3 inhibitors could be useful in the treatment of ischemia demyelination.
Collapse
Affiliation(s)
- Yingmei Zhang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Dongshan Ya
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jiaxin Yang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Yanlin Jiang
- Department of PharmacologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Xiaoxia Li
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jiawen Wang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Ning Tian
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jungang Deng
- Department of PharmacologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Bin Yang
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Qinghua Li
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Rujia Liao
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| |
Collapse
|
2
|
Pańczyszyn-Trzewik P, Czechowska E, Stachowicz K, Sowa-Kućma M. The Importance of α-Klotho in Depression and Cognitive Impairment and Its Connection to Glutamate Neurotransmission-An Up-to-Date Review. Int J Mol Sci 2023; 24:15268. [PMID: 37894946 PMCID: PMC10607524 DOI: 10.3390/ijms242015268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Depression is a serious neuropsychiatric disease affecting an increasing number of people worldwide. Cognitive deficits (including inattention, poor memory, and decision-making difficulties) are common in the clinical picture of depression. Cognitive impairment has been hypothesized to be one of the most important components of major depressive disorder (MDD; referred to as clinical depression), although typical cognitive symptoms are less frequent in people with depression than in people with schizophrenia or bipolar disorder (BD; sometimes referred to as manic-depressive disorder). The importance of α-Klotho in the aging process has been well-documented. Growing evidence points to the role of α-Klotho in regulating other biological functions, including responses to oxidative stress and the modulation of synaptic plasticity. It has been proven that a Klotho deficit may contribute to the development of various nervous system pathologies, such as behavioral disorders or neurodegeneration. Given the growing evidence of the role of α-Klotho in depression and cognitive impairment, it is assumed that this protein may be a molecular link between them. Here, we provide a research review of the role of α-Klotho in depression and cognitive impairment. Furthermore, we propose potential mechanisms (related to oxidative stress and glutamatergic transmission) that may be important in α-Klotho-mediated regulation of mental and cognitive function.
Collapse
Affiliation(s)
- Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
| | - Ewelina Czechowska
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
| | - Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland;
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna Street 1A, 35-595 Rzeszow, Poland
| |
Collapse
|
3
|
Jiang Q, Sherlock DN, Guyader J, Loor JJ. Abundance of Amino Acid Transporters and mTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows. Animals (Basel) 2023; 13:ani13071189. [PMID: 37048445 PMCID: PMC10093496 DOI: 10.3390/ani13071189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Data from non-ruminants indicate that amino acid (AA) transport into cells can regulate mTOR pathway activity and protein synthesis. Whether mTOR is expressed in the ruminant gastrointestinal tract (GIT) and how it may be related to AA transporters and the AA concentrations in the tissue is unknown. Ruminal papillae and the epithelia of the duodenum, jejunum, and ileum collected at slaughter from eight clinically healthy Holstein in mid-lactation were used. Metabolites and RNA were extracted from tissue for liquid chromatography–mass spectrometry and RT-qPCR analysis. The glycine and asparagine concentrations in the rumen were greater than those in the intestine (p < 0.05), but the concentrations of other AAs were greater in the small intestine than those in the rumen. Among the 20 AAs identified, the concentrations of glutamate, alanine, and glycine were the greatest. The mRNA abundances of AKT1 and MTOR were greater in the small intestine than those in the rumen (p < 0.05). Similarly, the SLC1A1, SLC6A6, SLC7A8, SLC38A1, SLC38A7, and SLC43A2 mRNA abundances were greater (p < 0.05) in the small intestine than those in the rumen. The mRNA abundances of SLC1A5, SLC3A2, and SLC7A5 were greater in the rumen than those in the small intestine (p < 0.05). Overall, the present study provides fundamental data on the relationship between mTOR pathway components and the transport of AAs in different sections of the gastrointestinal tract.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, 63457 Essen, Germany
| | - Juan J. Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
4
|
Krishna G, Pillai VS, Gopi P, Nair AS, Veettil MV. Epstein-Barr virus infection controls the concentration of the intracellular antioxidant glutathione by upregulation of the glutamate transporter EAAT3 in tumor cells. Virus Genes 2023; 59:55-66. [PMID: 36344769 DOI: 10.1007/s11262-022-01951-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
Epstein-Barr virus or human herpesvirus 4 (EBV/HHV-4) is an omnipresent oncovirus etiologically associated with various B-cell lymphomas and epithelial cancers. The malignant transformation associated with the persistent expression of viral proteins often deregulates the host cellular machinery and EBV infection is coupled to elevated levels of reactive oxygen species. Here, we investigated the role that the glutamate transporter EAAT3 plays in regulating the antioxidant system as a protective mechanism of EBV-infected cells against the virus-induced oxidative stress. Our study demonstrated that the expression of EAAT3 was upregulated and localized to the plasma membrane in EBV latently infected and de novo EBV-infected cells. EAAT3 was regulated by the transcription factor NFAT5 in the infected cells. Membrane localized EAAT3 was found to be involved in the transportation of glutamate from the extracellular space into the cell, as EAAT3 and NFAT5 inhibitors markedly reduced the levels of intracellular glutamate levels in EBV latently infected cells. Additionally, our data demonstrated a notable decrease in the intracellular glutathione levels following treatment with an EAAT3 inhibitor. Collectively, our results suggest that upregulation of the glutamate transporter EAAT3 is an adaptation of EBV-infected cells to maintain cellular redox homeostasis against the virus-induced oxidative stress, and that this cellular balance could be therapeutically destroyed by targeting EAAT3 to impede EBV-associated cancers.
Collapse
Affiliation(s)
- Gayathri Krishna
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Vinod Soman Pillai
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
- Institute of Advanced Virology (IAV), Thonnakkal, Thiruvananthapuram, Kerala, 695317, India
| | - Poornima Gopi
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Anuja S Nair
- Institute of Advanced Virology (IAV), Thonnakkal, Thiruvananthapuram, Kerala, 695317, India
| | - Mohanan Valiya Veettil
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India.
- Institute of Advanced Virology (IAV), Thonnakkal, Thiruvananthapuram, Kerala, 695317, India.
| |
Collapse
|
5
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
6
|
Abstract
Glutathione (GSH) is the most abundant non-protein thiol, and plays crucial roles in the antioxidant defense system and the maintenance of redox homeostasis in neurons. GSH depletion in the brain is a common finding in patients with neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, and can cause neurodegeneration prior to disease onset. Excitatory amino acid carrier 1 (EAAC1), a sodium-dependent glutamate/cysteine transporter that is selectively present in neurons, plays a central role in the regulation of neuronal GSH production. The expression of EAAC1 is posttranslationally controlled by the glutamate transporter-associated protein 3–18 (GTRAP3-18) or miR-96-5p in neurons. The regulatory mechanism of neuronal GSH production mediated by EAAC1 may be a new target in therapeutic strategies for these neurodegenerative diseases. This review describes the regulatory mechanism of neuronal GSH production and its potential therapeutic application in the treatment of neurodegenerative diseases.
Collapse
|
7
|
Kahya U, Köseer AS, Dubrovska A. Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers (Basel) 2021; 13:E125. [PMID: 33401748 PMCID: PMC7796306 DOI: 10.3390/cancers13010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.
Collapse
Affiliation(s)
- Uğur Kahya
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Ayşe Sedef Köseer
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Gruenbaum SE, Chen EC, Sandhu MRS, Deshpande K, Dhaher R, Hersey D, Eid T. Branched-Chain Amino Acids and Seizures: A Systematic Review of the Literature. CNS Drugs 2019; 33:755-770. [PMID: 31313139 DOI: 10.1007/s40263-019-00650-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Up to 40% of patients with epilepsy experience seizures despite treatment with antiepileptic drugs; however, branched-chain amino acid (BCAA) supplementation has shown promise in treating refractory epilepsy. OBJECTIVES The purpose of this systematic review was to evaluate all published studies that investigated the effects of BCAAs on seizures, emphasizing therapeutic efficacy and possible underlying mechanisms. METHODS On 31 January, 2017, the following databases were searched for relevant studies: MEDLINE (OvidSP), EMBASE (OvidSP), Scopus (Elsevier), the Cochrane Library, and the unindexed material in PubMed (National Library of Medicine/National Institutes of Health). The searches were repeated in all databases on 18 February, 2019. We only included full-length preclinical and clinical studies that were published in the English language that examined the effects of BCAA administration on seizures. RESULTS Eleven of 2045 studies met our inclusion criteria: ten studies were conducted in animal models and one study in human subjects. Seven seizure models were investigated: the strychnine (one study), pentylenetetrazole (two studies), flurothyl (one study), picrotoxin (two studies), genetic absence epilepsy in rats (one study), kainic acid (two studies), and methionine sulfoximine (one study) paradigms. Three studies investigated the effect of a BCAA mixture whereas the other studies explored the effects of individual BCAAs on seizures. In most animal models and in humans, BCAAs had potent anti-seizure effects. However, in the methionine sulfoximine model, long-term BCAA supplementation worsened seizure propagation and caused neuron loss, and in the genetic absence epilepsy in rats model, BCAAs exhibited pro-seizure effects. CONCLUSIONS The contradictory effects of BCAAs on seizure activity likely reflect differences in the complex mechanisms that underlie seizure disorders. Some of these mechanisms are likely mediated by BCAA's effects on glucose, glutamate, glutamine, and ammonia metabolism, activation of the mechanistic target of rapamycin signaling pathway, and their effects on aromatic amino acid transport and neurotransmitter synthesis. We propose that a better understanding of mechanisms by which BCAAs affect seizures and neuronal viability is needed to advance the field of BCAA supplementation in epilepsy.
Collapse
Affiliation(s)
- Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| | - Eric C Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Ketaki Deshpande
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Denise Hersey
- Lewis Science Library, Princeton University, Princeton, NJ, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Liang Y, Batistel F, Parys C, Loor JJ. Methionine supply during the periparturient period enhances insulin signaling, amino acid transporters, and mechanistic target of rapamycin pathway proteins in adipose tissue of Holstein cows. J Dairy Sci 2019; 102:4403-4414. [PMID: 30879817 DOI: 10.3168/jds.2018-15738] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
Enhanced postruminal supply of Met during the periparturient period increases dry matter intake and milk yield. In nonruminants, adipose tissue is responsive to AA supply, and can use AA as fuels or for protein synthesis regulated in part via insulin and mechanistic target of rapamycin (mTOR) signaling. Whether enhancing supply of Met has an effect on insulin and mTOR pathways in adipose tissue in peripartal cows is unknown. Multiparous Holstein cows were assigned from -28 to 60 d relative to parturition to a basal diet (control; 1.47 Mcal/kg of dry matter and 15.3% crude protein prepartum; 1.67 Mcal/kg and 17.7% crude protein postpartum) or the control plus ethyl-cellulose rumen-protected Met (RPM). The RPM was fed individually at a rate of 0.09% of dry matter intake prepartum and 0.10% postpartum. Subcutaneous adipose tissue harvested at -10, 10, and 30 d relative to parturition (days in milk) was used for quantitative PCR and Western blotting. A glucose tolerance test was performed at -12 and 12 d in milk to evaluate insulin sensitivity. Area under the curve for glucose in the pre- and postpartum tended to be smaller in cows fed Met. Enhanced Met supply led to greater overall mRNA abundance of Gln (SLC38A1), Glu (SLC1A1), l-type AA (Met, Leu, Val, Phe; SLC3A2), small zwitterionic α-AA (SLC36A1), and neutral AA (SLC1A5) transporters. Abundance of AKT1, RPS6KB1, and EIF4EBP1 was also upregulated in response to Met. A diet × day interaction was observed for protein abundance of insulin receptor due to Met cows having lower values at 30 d postpartum compared with controls. The diet × day interaction was significant for hormone-sensitive lipase due to Met cows having greater abundance at 10 d postpartum compared with controls. Enhanced Met supply upregulated protein abundance of insulin-responsive proteins phosphorylated (p)-AKT, peroxisome proliferator-activated receptor gamma, and fatty acid synthase. Overall abundance of solute carrier family 2 member 4 tended to be greater in cows fed Met. A diet × day interaction was observed for mTOR protein abundance due to greater values for RPM cows at 30 d postpartum compared with controls. Enhanced RPM supply upregulated overall protein abundance of solute carrier family 1 member 3, p-mTOR, and ribosomal protein S6. Overall, data indicate that mTOR and insulin signaling pathways in adipose tissue adapt to the change in physiologic state during the periparturient period. Further studies should be done to clarify whether the activation of p-AKT or increased availability of AA leads to the activation of mTOR.
Collapse
Affiliation(s)
- Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - F Batistel
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, 63457, Germany
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
10
|
Khalil R. Ubiquitin-Proteasome Pathway and Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:235-248. [DOI: 10.1007/978-981-13-1435-3_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Garza-Lombó C, Petrosyan P, Tapia-Rodríguez M, Valdovinos-Flores C, Gonsebatt ME. Systemic L-buthionine-S-R-sulfoximine administration modulates glutathione homeostasis via NGF/TrkA and mTOR signaling in the cerebellum. Neurochem Int 2018; 121:8-18. [PMID: 30300680 DOI: 10.1016/j.neuint.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Glutathione (GSH) is an essential component of intracellular antioxidant systems that plays a primordial role in the protection of cells against oxidative stress, maintaining redox homeostasis and xenobiotic detoxification. GSH synthesis in the brain is limited by the availability of cysteine and glutamate. Cystine, the disulfide form of cysteine is transported into endothelial cells of the blood-brain barrier (BBB) and astrocytes via the system xc-, which is composed of xCT and the heavy chain of 4F2 cell surface antigen (4F2hc). Cystine is reduced inside the cells and the L-type amino acid transporter 1 (LAT1) transports cysteine from the endothelial cells into the brain, cysteine is transported into the neurons through the excitatory amino acid transporter 3 (EAAT3), also known as excitatory amino acid carrier 1 (EAAC1). The mechanistic/mammalian target of rapamycin (mTOR) and neurotrophins can activate signaling pathways that modulate amino acid transporters for GSH synthesis. The present study found that systemic L-buthionine-S-R-sulfoximine (BSO) administration selectively altered GSH homeostasis and EAAT3 levels in the mice cerebellum. Intraperitoneal treatment of mice with 6 mmol/kg of BSO depleted GSH and GSSG in the liver at 2 h of treatment. The cerebellum, but not other brain regions, exhibited a redox response. The mTOR and the neuronal growth factor (NGF)/tropomyosin receptor kinase A (TrkA) signaling pathways were activated and lead to an increase in the protein levels of the EAAT3 transporter, which was linked to an increase in the GSH/GSSG ratio and GSH concentration in the cerebellum at 0.5 and 2 h, respectively. Therefore, the cerebellum responds to peripheral GSH depletion via activation of the mTOR and NGF/TrkA pathways, which increase the transport of cysteine for GSH synthesis.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Miguel Tapia-Rodríguez
- Unidad de Microscopía, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Cesar Valdovinos-Flores
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
12
|
Ye JL, Gao CQ, Li XG, Jin CL, Wang D, Shu G, Wang WC, Kong XF, Yao K, Yan HC, Wang XQ. EAAT3 promotes amino acid transport and proliferation of porcine intestinal epithelial cells. Oncotarget 2018; 7:38681-38692. [PMID: 27231847 PMCID: PMC5122420 DOI: 10.18632/oncotarget.9583] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/29/2016] [Indexed: 12/11/2022] Open
Abstract
Excitatory amino acid transporter 3 (EAAT3, encoded by SLC1A1) is an epithelial type high-affinity anionic amino acid transporter, and glutamate is the major oxidative fuel for intestinal epithelial cells. This study investigated the effects of EAAT3 on amino acid transport and cell proliferation through activation of the mammalian target of the rapamycin (mTOR) pathway in porcine jejunal epithelial cells (IPEC-J2). Anionic amino acid and cystine (Cys) transport were increased (P<0.05) by EAAT3 overexpression and decreased (P<0.05) by EAAT3 knockdown rather than other amino acids. MTT and cell counting assays suggested that IPEC-J2 cell proliferation increased (P<0.05) with EAAT3 overexpression. Phosphorylation of mTOR (Ser2448), ribosomal protein S6 kinase-1 (S6K1, Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1, Thr70) was increased by EAAT3 overexpression and decreased by EAAT3 knockdown (P<0.05), as were levels of activating transcription factor 4 (ATF4) and cystine/glutamate antiporter (xCT) (P<0.05). Our results demonstrate for the first time that EAAT3 facilitates anionic amino acid transport and activates the mTOR pathway, promoting Cys transport and IPEC-J2 cell proliferation.
Collapse
Affiliation(s)
- Jin-Ling Ye
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Xiang-Guang Li
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Cheng-Long Jin
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Dan Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Gang Shu
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Wen-Ce Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Xiang-Feng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets. PLoS One 2017; 12:e0182246. [PMID: 28783736 PMCID: PMC5544224 DOI: 10.1371/journal.pone.0182246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 07/14/2017] [Indexed: 12/25/2022] Open
Abstract
The experiment was conducted to study the effect of the glutamate (Glu) on muscle protein loss through toll-like receptor 4 (TLR4), nucleotide-binding oligomerization domain proteins (NODs), Akt/Forkhead Box O (Akt/FOXO) and mammalian target of rapamycin (mTOR) signaling pathways in LPS-challenged piglets. Twenty-four weaned piglets were assigned into four treatments: (1) Control; (2) LPS+0% Glu; (3) LPS + 1.0% Glu; (4) LPS + 2.0% Glu. The experiment was lasted for 28 days. On d 28, the piglets in the LPS challenged groups were injected with LPS on 100 μg/kg body weight (BW), and the piglets in the control group were injected with the same volume of 0.9% NaCl solution. After 4 h LPS or saline injection, the piglets were slaughtered and the muscle samples were collected. Glu supplementation increased the protein/DNA ratio in gastrocnemius muscle, and the protein content in longissimus dorsi (LD) muscle after LPS challenge (P<0.05). In addition, Glu supplementation decreased TLR4, IL-1 receptor-associated kinase (IRAK) 1, receptor-interacting serine/threonine-protein kinase (RIPK) 2, and nuclear factor-κB (NF-κB) mRNA expression in gastrocnemius muscle (P<0.05), MyD88 mRNA expression in LD muscle, and FOXO1 mRNA expression in LD muscle (P<0.05). Moreover, Glu supplementation increased p-Akt/t-Akt ratio (P<0.05) in gastrocnemius muscle, and p-4EBP1/t-4EBP1 ratio in both gastrocnemius and LD muscles (P<0.05). Glu supplementation in the piglets' diets might be an effective strategy to alleviate LPS-induced muscle protein loss, which might be due to suppressing the mRNA expression of TLR4 and NODs signaling-related genes, and modulating Akt/FOXO and mTOR signaling pathways.
Collapse
|
14
|
Li XG, Sui WG, Gao CQ, Yan HC, Yin YL, Li HC, Wang XQ. L-Glutamate deficiency can trigger proliferation inhibition via down regulation of the mTOR/S6K1 pathway in pig intestinal epithelial cells1. J Anim Sci 2016; 94:1541-9. [DOI: 10.2527/jas.2015-9432] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- X.-G. Li
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - W.-G. Sui
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - C.-Q. Gao
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - H.-C. Yan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| | - Y.-L. Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan Province, China
| | - H.-C. Li
- Davis Heart & Lung Research Institute, Wexner Medical Center at the Ohio State University, Columbus
| | - X.-Q. Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou 510642, China
| |
Collapse
|
15
|
Beaudin S, Welsh J. 1,25-Dihydroxyvitamin D induces the glutamate transporter SLC1A1 and alters glutamate handling in non-transformed mammary cells. Mol Cell Endocrinol 2016; 424:34-41. [PMID: 26774511 PMCID: PMC4779372 DOI: 10.1016/j.mce.2016.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 12/27/2022]
Abstract
Genomic profiling of immortalized human mammary epithelial (hTERT-HME1) cells identified several metabolic genes, including the membrane glutamate transporter, SLC1A1, as 1,25-dihydroxyvitamin D3 (1,25D) regulated. In these studies we have surveyed the effects of 1,25D on known glutamate transporters and evaluated its impact on cellular glutamate handling. We confirm that expression of SLC1A1 and all of its known transcript variants are significantly upregulated in hTERT-HME1 cells following 1,25D treatment. Expression of the full-length cognate protein, EAAT3, is correspondingly increased in 1,25D treated hTERT-HME1 cells. Under the same conditions, the expression of two other glutamate transporters--SLC1A6 (EAAT4) and SLC1A2 (EAAT2 or GLT-1)--is enhanced by 1,25D while that of SLC1A3 (EAAT1 or GLAST) and SLC7A11 (xCT) is decreased. Glutamate is not essential for growth of hTERT-HME1 cells, and supplemental glutamate (up to 0.5 mM) does not abrogate the growth inhibitory effects of 1,25D. These data suggest that extracellular glutamate is not a major contributor to cellular energy metabolism in hTERT-HME1 cells under basal conditions and that the growth inhibitory effects of 1,25D are not secondary to its effects on glutamate handling. Instead, the effects of 1,25D on glutamate transporters translated to a decrease in cellular glutamate concentration and an increase in media glutamate concentration, suggesting that one or more of these transporters functions to export glutamate in response to 1,25D exposure. The reduced cellular glutamate concentration may also reflect its incorporation into the cellular glutathione (GSH) pool, which is increased upon 1,25D treatment. In support of this concept, the expression of GCLC (which codes for the rate-limiting enzyme in GSH synthesis) and genes which generate reducing equivalents in the form of NADPH (ie, G6PD, PGD, IDH2) are elevated in 1,25D-treated cells. Taken together, these data identify 1,25D as a physiological regulator of multiple membrane glutamate transporters that impacts on overall cellular glutamate handling.
Collapse
Affiliation(s)
- Sarah Beaudin
- Department of Biomedical Sciences, University at Albany, Rensselaer, NY, USA; Cancer Research Center, University at Albany, Rensselaer, NY, USA
| | - JoEllen Welsh
- Cancer Research Center, University at Albany, Rensselaer, NY, USA; Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA.
| |
Collapse
|
16
|
Carrier TJ, King BL, Coffman JA. Gene Expression Changes Associated With the Developmental Plasticity of Sea Urchin Larvae in Response to Food Availability. THE BIOLOGICAL BULLETIN 2015; 228:171-80. [PMID: 26124444 PMCID: PMC4706744 DOI: 10.1086/bblv228n3p171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Planktotrophic sea urchin larvae are developmentally plastic: in response to food scarcity, development of the juvenile rudiment is suspended and larvae instead develop elongated arms, thus increasing feeding capacity and extending larval life. Here, data are presented on the effect of different feeding regimes on gene expression in larvae of the green sea urchin Strongylocentrotus droebachiensis. These data indicate that during periods of starvation, larvae down-regulate genes involved in growth and metabolic activity while up-regulating genes involved in lipid transport, environmental sensing, and defense. Additionally, we show that starvation increases FoxO activity and that in well-fed larvae rapamycin treatment impedes rudiment growth, indicating that the latter requires TOR activity. These results suggest that the developmental plasticity of echinoplutei is regulated by genes known to control aging and longevity in other animals.
Collapse
Affiliation(s)
- Tyler J Carrier
- MDI Biological Laboratory, Salisbury Cove, Maine 04672; and School of Marine Sciences, University of Maine, Orono, Maine 04469
| | | | | |
Collapse
|
17
|
Ahmed M, Almilaji A, Munoz C, Elvira B, Shumilina E, Bock CT, Kandolf R, Lang F. Down-regulation of K⁺ channels by human parvovirus B19 capsid protein VP1. Biochem Biophys Res Commun 2014; 450:1396-401. [PMID: 25010641 DOI: 10.1016/j.bbrc.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 01/04/2023]
Abstract
Parvovirus B19 (B19V) can cause inflammatory cardiomyopathy and endothelial dysfunction. Pathophysiological mechanisms involved include lysophosphatidylcholine producing phospholipase A2 (PLA2) activity of the B19V capsid protein VP1. Most recently, VP1 and lysophosphatidylcholine have been shown to inhibit Na(+)/K(+) ATPase. The present study explored whether VP1 modifies the activity of Kv1.3 and Kv1.5 K(+) channels. cRNA encoding Kv1.3 or Kv1.5 was injected into Xenopus oocytes without or with cRNA encoding VP1 isolated from a patient suffering from fatal B19V-induced myocarditis. K(+) channel activity was determined by dual electrode voltage clamp. Injection of cRNA encoding Kv1.3 or Kv1.5 into Xenopus oocytes was followed by appearance of Kv K(+) channel activity, which was significantly decreased by additional injection of cRNA encoding VP1, but not by additional injection of cRNA encoding PLA2-negative VP1 mutant (H153A). The effect of VP1 on Kv current was not significantly modified by transcription inhibitor actinomycin (10 μM for 36 h) but was mimicked by lysophosphatidylcholine (1 μg/ml). The B19V capsid protein VP1 inhibits host cell Kv channels, an effect at least partially due to phospholipase A2 (PLA) dependent formation of lysophosphatidylcholine.
Collapse
Affiliation(s)
- Musaab Ahmed
- Department of Physiology, University of Tübingen, Germany
| | - Ahmad Almilaji
- Department of Physiology, University of Tübingen, Germany
| | - Carlos Munoz
- Department of Physiology, University of Tübingen, Germany
| | - Bernat Elvira
- Department of Physiology, University of Tübingen, Germany
| | | | - C-Thomas Bock
- Department of Molecular Pathology, University of Tübingen, Germany
| | - Reinhard Kandolf
- Department of Molecular Pathology, University of Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Germany.
| |
Collapse
|
18
|
Bianchi MG, Bardelli D, Chiu M, Bussolati O. Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cell Mol Life Sci 2014; 71:2001-15. [PMID: 24162932 PMCID: PMC11113519 DOI: 10.1007/s00018-013-1484-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
Excitatory amino acid transporters (EAATs) are high-affinity Na(+)-dependent carriers of major importance in maintaining glutamate homeostasis in the central nervous system. EAAT3, the human counterpart of the rodent excitatory amino acid carrier 1 (EAAC1), is encoded by the SLC1A1 gene. EAAT3/EAAC1 is ubiquitously expressed in the brain, mostly in neurons but also in other cell types, such as oligodendrocyte precursors. While most of the glutamate released in the synapses is taken up by the "glial-type" EAATs, EAAT2 (GLT-1 in rodents) and EAAT1 (GLAST), the functional role of EAAT3/EAAC1 is related to the subtle regulation of glutamatergic transmission. Moreover, because it can also transport cysteine, EAAT3/EAAC1 is believed to be important for the synthesis of intracellular glutathione and subsequent protection from oxidative stress. In contrast to other EAATs, EAAT3/EAAC1 is mostly intracellular, and several mechanisms have been described for the rapid regulation of the membrane trafficking of the transporter. Moreover, the carrier interacts with several proteins, and this interaction modulates transport activity. Much less is known about the slow regulatory mechanisms acting on the expression of the transporter, although several recent reports have identified changes in EAAT3/EAAC1 protein level and activity related to modulation of its expression at the gene level. Moreover, EAAT3/EAAC1 expression is altered in pathological conditions, such as hypoxia/ischemia, multiple sclerosis, schizophrenia, and epilepsy. This review summarizes these results and provides an overall picture of changes in EAAT3/EAAC1 expression in health and disease.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
- Unit of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Donatella Bardelli
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Martina Chiu
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Ovidio Bussolati
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Via Volturno 39, 43125 Parma, Italy
| |
Collapse
|
19
|
Grados MA, Specht MW, Sung HM, Fortune D. Glutamate drugs and pharmacogenetics of OCD: a pathway-based exploratory approach. Expert Opin Drug Discov 2013; 8:1515-27. [PMID: 24147578 DOI: 10.1517/17460441.2013.845553] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Neuropharmacology research in glutamate-modulating drugs supports their development and use in the management of neuropsychiatric disorders, including major depression, Alzheimer's disorder and schizophrenia. Concomitantly, there is a growing use of these agents used in the treatment of obsessive-compulsive disorder (OCD). AREAS COVERED This article provides a review of glutamate-modulating drugs used in the treatment of OCD. Specifically, the authors examine riluzole, N-acetylcysteine, d-cycloserine, glycine, ketamine, memantine and acamprosate as treatments. Furthermore, recent genetic epidemiology research findings are presented with a focus on the positional candidate genes SLC1A1 (a glutamate transporter), ADAR3 (an RNA-editing enzyme), RYR3 (a Ca(2+) channel), PBX1 (a homeobox transcription factor) and a GWAS candidate gene, DLGAP1 (a protein interacting with post-synaptic density). These genetic findings are submitted to a curated bioinformatics database to conform a biological network for discerning potential pharmacological targets. EXPERT OPINION In the genetically informed network, known genes and identified key connecting components, including DLG4 (a developmental gene), PSD-95 (a synaptic scaffolding protein) and PSEN1 (presenilin, a regulator of secretase), conform a group of potential pharmacological targets. These potential targets can be explored, in the future, to deliver new therapeutic approaches to OCD. There is also the need to develop a better understanding of neuroprotective mechanisms as a foundation for future OCD drug discovery.
Collapse
Affiliation(s)
- Marco A Grados
- Johns Hopkins University School of Medicine , 1800 Orleans St. - 12th floor, Baltimore, MD 21287 , USA +1 443 287 2291 ; +1 410 955 8691 ;
| | | | | | | |
Collapse
|
20
|
Schmidt RH, Jokinen JD, Massey VL, Falkner KC, Shi X, Yin X, Zhang X, Beier JI, Arteel GE. Olanzapine activates hepatic mammalian target of rapamycin: new mechanistic insight into metabolic dysregulation with atypical antipsychotic drugs. J Pharmacol Exp Ther 2013; 347:126-35. [PMID: 23926289 DOI: 10.1124/jpet.113.207621] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Olanzapine (OLZ), an effective treatment of schizophrenia and other disorders, causes weight gain and metabolic syndrome. Most studies to date have focused on the potential effects of OLZ on the central nervous system's mediation of weight; however, peripheral changes in liver or other key metabolic organs may also play a role in the systemic effects of OLZ. Thus, the purpose of this study was to investigate the effects of OLZ on hepatic metabolism in a mouse model of OLZ exposure. Female C57Bl/6J mice were administered OLZ (8 mg/kg per day) or vehicle subcutaneously by osmotic minipumps for 28 days. Liver and plasma were taken at sacrifice for biochemical analyses and for comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry metabolomics analysis. OLZ increased body weight, fat pad mass, and liver-to-body weight ratio without commensurate increase in food consumption, indicating that OLZ altered energy expenditure. Expression and biochemical analyses indicated that OLZ induced anaerobic glycolysis and caused a pseudo-fasted state, which depleted hepatic glycogen reserves. OLZ caused similar effects in cultured HepG2 cells, as determined by Seahorse analysis. Metabolomic analysis indicated that OLZ increased hepatic concentrations of amino acids that can alter metabolism via the mTOR pathway; indeed, hepatic mTOR signaling was robustly increased by OLZ. Interestingly, OLZ concomitantly activated AMP-activated protein kinase (AMPK) signaling. Taken together, these data suggest that disturbances in glucose and lipid metabolism caused by OLZ in liver may be mediated, at least in part, via simultaneous activation of both catabolic (AMPK) and anabolic (mammalian target of rapamycin) pathways, which yields new insight into the metabolic side effects of this drug.
Collapse
Affiliation(s)
- Robin H Schmidt
- Department of Pharmacology and Toxicology (R.H.S., J.D.J., V.L.M., J.I.B., G.E.A.), and Department of Medicine (K.C.F.), Health Sciences Center, and Department of Chemistry (X.S., X.Y., X.Z.), University of Louisville, Louisville, Kentucky
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Goswami DB, Jernigan CS, Chandran A, Iyo AH, May WL, Austin MC, Stockmeier CA, Karolewicz B. Gene expression analysis of novel genes in the prefrontal cortex of major depressive disorder subjects. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:126-33. [PMID: 23261523 PMCID: PMC4089971 DOI: 10.1016/j.pnpbp.2012.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/21/2022]
Abstract
Dysregulation of the glutamatergic system has been implicated not only in the treatment of major depressive disorder (MDD), but also in the excitotoxic effects of stress and anxiety on the prefrontal cortex, which may precede the onset of a depressive episode. Our previous studies demonstrate marked deficits in prominent postsynaptic proteins involved in glutamate neurotransmission in the prefrontal cortex (PFC), Brodmann's area 10 (BA 10) from subjects diagnosed with major depressive disorder (MDD). In the same group of subjects we have identified deficits in expression and phosphorylation level of key components of the mammalian target of rapamycin (mTOR) signaling pathway, known to regulate translation initiation. Based on our previous findings, we have postulated that glutamate-dependent dysregulation of mTOR-initiated protein synthesis in the PFC may underlie the pathology of MDD. The aim of this study was to use the NanoString nCounter System to perform analysis of genes coding for glutamate transporters, glutamate metabolizing enzymes, neurotrophic factors and other intracellular signaling markers involved in glutamate signaling that were not previously investigated by our group in the PFC BA 10 from subjects with MDD. We have analyzed a total of 200 genes from 16 subjects with MDD and 16 healthy controls. These are part of the same cohort used in our previous studies. Setting our cutoff p-value≤0.01, marked upregulation of genes coding for mitochondrial glutamate carrier (GC1; p=0.0015), neuropilin 1 (NRP-1; p=0.0019), glutamate receptor ionotropic N-methyl-d-aspartate-associated protein 1 (GRINA; p=0.0060), and fibroblast growth factor receptor 1 (FGFR-1; p=0.010) was identified. No significant differences in expression of the remaining 196 genes were observed between MDD subjects and controls. While upregulation of FGFR-1 has been previously shown in MDD; abnormalities in GC-1, GRINA, and NRP-1 have not been reported. Therefore, this postmortem study identifies GC1, GRINA, and NRP-1 as novel factors associated with MDD; however, future studies will be needed to address the significance of these genes in the pathophysiology of depression and antidepressant activity.
Collapse
Affiliation(s)
- Dharmendra B. Goswami
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA,New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, Southborough, MA 01772, USA,Correspondence author at: Department of Psychiatry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA. Tel.: +1 601-815-5614; fax: +1-601-984-5899.
| | - Courtney S. Jernigan
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA
| | - Agata Chandran
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA
| | - Abiye H. Iyo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA
| | - Warren L. May
- Center of Biostatistics and Bioinformatic, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA
| | - Mark C. Austin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA,Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106
| | - Beata Karolewicz
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA
| |
Collapse
|
22
|
Neuroprotective properties of the excitatory amino acid carrier 1 (EAAC1). Amino Acids 2013; 45:133-42. [PMID: 23462929 DOI: 10.1007/s00726-013-1481-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/23/2013] [Indexed: 01/09/2023]
Abstract
Extracellular glutamate should be maintained at low levels to conserve optimal neurotransmission and prevent glutamate neurotoxicity in the brain. Excitatory amino acid transporters (EAATs) play a pivotal role in removing extracellular glutamate in the central nervous system (CNS). Excitatory amino acid carrier 1 (EAAC1) is a high-affinity Na⁺-dependent neuronal EAAT that is ubiquitously expressed in the brain. However, most glutamate released in the synapses is cleared by glial EAATs, but not by EAAC1 in vivo. In the CNS, EAAC1 is widely distributed in somata and dendrites but not in synaptic terminals. The contribution of EAAC1 to the control of extracellular glutamate levels seems to be negligible in the brain. However, EAAC1 can transport not only extracellular glutamate but also cysteine into the neurons. Cysteine is an important substrate for glutathione (GSH) synthesis in the brain. GSH has a variety of neuroprotective functions, while its depletion induces neurodegeneration. Therefore, EAAC1 might exert a critical role for neuroprotection in neuronal GSH metabolism rather than glutamatergic neurotransmission, while EAAC1 dysfunction would cause neurodegeneration. Despite the potential importance of EAAC1 in the brain, previous studies have mainly focused on the glutamate neurotoxicity induced by glial EAAT dysfunction. In recent years, however, several studies have revealed regulatory mechanisms of EAAC1 functions in the brain. This review will summarize the latest information on the EAAC1-regulated neuroprotective functions in the CNS.
Collapse
|
23
|
Malik AR, Urbanska M, Macias M, Skalecka A, Jaworski J. Beyond control of protein translation: what we have learned about the non-canonical regulation and function of mammalian target of rapamycin (mTOR). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1434-48. [PMID: 23277194 DOI: 10.1016/j.bbapap.2012.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 12/15/2012] [Indexed: 12/19/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a serine-threonine kinase involved in almost every aspect of mammalian cell function. This kinase was initially believed to control protein translation in response to amino acids and trophic factors, and this function has become a canonical role for mTOR. However, mTOR can form two separate protein complexes (mTORCs). Recent advances clearly demonstrate that both mTORCs can respond to various stimuli and change myriad cellular processes. Therefore, our current view of the cellular roles of TORCs has rapidly expanded and cannot be fully explained without appreciating recent findings about the new modes of mTOR regulation and identification of non-canonical effectors of mTOR that contribute to transcription, cytoskeleton dynamics, and membrane trafficking. This review discusses the molecular details of these newly discovered non-canonical functions that allow mTORCs to control the cellular environment at multiple levels. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Anna R Malik
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|