1
|
Huynh TH, Jang SC, Ban YH, Lee EY, Kim T, Kang I, An JS, Kang S, Han J, Kwon Y, Oh D, Park HG, Cho JC, Jang J, Oh KB, Nam SJ, Lee SK, Oh DC. Discovery of Spirosnuolides A-D, Type I/III Hybrid Polyketide Spiro-Macrolides for a Chemotherapeutic Lead against Lung Cancer. JACS AU 2024; 4:4821-4832. [PMID: 39735922 PMCID: PMC11672126 DOI: 10.1021/jacsau.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024]
Abstract
Four new macrolides, spirosnuolides A-D (1-4, respectively), were discovered from the termite nest-derived Kitasatospora sp. INHA29. Spirosnuolides A-D are 18-membered macrolides sharing an embedded [6,6]-spiroketal functionality inside the macrocycle and are conjugated with structurally uncommon side chains featuring cyclopentenone, 1,4-benzoquinone, hydroxyfuroic acid, or butenolide moieties. Structure elucidation was achieved using a combination of spectroscopic analyses, multiple chemical derivatizations (methylation, methanolysis, Luche reduction, and Mosher's reaction), X-ray diffraction analysis, and computational ECD calculations. Interestingly, genome sequencing analysis suggests that spirosnuolides were biosynthesized through a rare type I/III hybrid polyketide synthase. Importantly, spirosnuolide B displayed potent antiproliferative effects against various cancer cell lines at nanomolar concentrations, particularly against HCC827 cells, an EGFR mutant non-small-cell lung cancer (NSCLC) cell line, with a high safety index value. Based on in vitro studies, the antiproliferative mechanism of spirosnuolide B involved the activation of AMPK signaling, leading to cell cycle arrest and apoptosis in HCC827 cells. Its potent efficacy was also proven in vivo by the effective inhibition of tumor growth in mouse xenograft studies. Moreover, cotreatment with spirosnuolide B and gefitinib, synergistically enhanced the antiproliferative activity and apoptosis, suggesting a potential strategy to overcome gefitinib resistance in EGFR mutant NSCLC.
Collapse
Affiliation(s)
- Thanh-Hau Huynh
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Chul Jang
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Hee Ban
- Department
of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun-Young Lee
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic
of Korea
| | - Taeho Kim
- Division
of Life Science, Department of Bio & Medical Big Data (BK21 Four
Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ilnam Kang
- Department
of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Joon Soo An
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangwook Kang
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Han
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Kwon
- Research
Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Daehyun Oh
- Research
Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeung-geun Park
- Research
Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jang-Cheon Cho
- Department
of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Jichan Jang
- Division
of Life Science, Department of Bio & Medical Big Data (BK21 Four
Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ki-Bong Oh
- Department
of Agricultural Biotechnology, College of Agriculture and Life Sciences
and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic
of Korea
| | - Sang Kook Lee
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural
Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Moar K, Yadav S, Pant A, Deepika, Maurya PK. Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review. Indian J Clin Biochem 2024; 39:470-488. [PMID: 39346722 PMCID: PMC11436542 DOI: 10.1007/s12291-024-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 10/01/2024]
Abstract
The use of drugs in chemotherapy poses numerous side effects. Hence the use of natural substances that can help in the prevention and cure of the disease is a dire necessity. Cancer is a deadly illness and combination of diseases, the menace of which is rising with every passing year. The research community and scientists from all over the world are working towards finding a cure of the disease. The use of polyphenols which are naturally derived from plants have a great potential to be used as anti-cancer drugs and also the use of fruits and vegetables which are rich in these polyphenols can also help in the prevention of diseases. The study aims to compile the available literature and research studies on the anti-cancer effects of polyphenols and the signaling pathways that are affected by them. To review the anti-cancer effects of polyphenols, Google Scholar, PubMed and ScienceDirect were used to study the literature available. The article that have been used for literature review were filtered using keywords including cancer, polyphenols and signaling pathways. Majorly articles from the last 10 years have been considered for the review but relevant articles from earlier than 10 years have also been considered. Almost 400 articles were studied for the review and 200 articles have been cited. The current review shows the potential of polyphenols as anti-cancer compounds and how the consumption of a diet rich in polyphenols can help in the prevention of cancer. Because of their capacity to affect a variety of oncogenic and oncosuppressive signaling pathways, phytochemicals derived from plants have been effectively introduced as an alternative anticarcinogenic medicines. Graphical Abstract
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| |
Collapse
|
3
|
Márquez-Garbán DC, Yanes CD, Llarena G, Elashoff D, Hamilton N, Hardy M, Wadehra M, McCloskey SA, Pietras RJ. Manuka Honey Inhibits Human Breast Cancer Progression in Preclinical Models. Nutrients 2024; 16:2369. [PMID: 39064812 PMCID: PMC11279598 DOI: 10.3390/nu16142369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Manuka honey (MH) exhibits potential antitumor activity in preclinical models of a number of human cancers. Treatment in vitro with MH at concentrations ranging from 0.3 to 5.0% (w/v) led to significant dose-dependent inhibition of proliferation of human breast cancer MCF-7 cells, but anti-proliferative effects of MH were less pronounced in MDA-MB-231 breast cancer cells. Effects of MH were also tested on non-malignant human mammary epithelial cells (HMECs) at 2.5% w/v, and it was found that MH reduced the proliferation of MCF-7 cells but not that of HMECs. Notably, the antitumor activity of MH was in the range of that exerted by treatment of MCF-7 cells with the antiestrogen tamoxifen. Further, MH treatment stimulated apoptosis of MCF-7 cells in vitro, with most cells exhibiting acute and significant levels of apoptosis that correlated with PARP activation. Additionally, the effects of MH induced the activation of AMPK and inhibition of AKT/mTOR downstream signaling. Treatment of MCF7 cells with increased concentrations of MH induced AMPK phosphorylation in a dose-dependent manner that was accompanied by inhibition of phosphorylation of AKT and mTOR downstream effector protein S6. In addition, MH reduced phosphorylated STAT3 levels in vitro, which may correlate with MH and AMPK-mediated anti-inflammatory properties. Further, in vivo, MH administered alone significantly inhibited the growth of established MCF-7 tumors in nude mice by 84%, resulting in an observable reduction in tumor volume. Our findings highlight the need for further research into the use of natural compounds, such as MH, for antitumor efficacy and potential chemoprevention and investigation of molecular pathways underlying these actions.
Collapse
Affiliation(s)
- Diana C. Márquez-Garbán
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - Cristian D. Yanes
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - Gabriela Llarena
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - David Elashoff
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Division of General Internal Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Nalo Hamilton
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- School of Nursing, UCLA, Los Angeles, CA 90095, USA
| | - Mary Hardy
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Division of General Internal Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Susan A. McCloskey
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Department of Radiation Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Richard J. Pietras
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| |
Collapse
|
4
|
Liu MH, Liu ZK, Liu F. An anti-tumor protein PFAP specifically interacts with cholesterol-enriched membrane domains of A549 cells and induces paraptosis and endoplasmic reticulum stress. Int J Biol Macromol 2024; 264:130690. [PMID: 38458297 DOI: 10.1016/j.ijbiomac.2024.130690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nowadays, non-small cell lung cancer (NSCLC) is still one of the most life-threatening diseases in the world. In previous studies, a fungal protein PFAP with anti-NSCLC properties was isolated and identified from Pleurotus ferulae lanzi. In this study, the amino acid sequence of PFAP was analyzed and found to be highly homologous to the aegerolysin family. PFAP, like other members of the aegerolysin family, specifically recognizes lipid raft domains rich in cholesterol and sphingomyelin, which is probably its specific anti-tumor mechanism. Previous studies have shown that PFAP can induce AMPK-mediated autophagy and G1-phase cell cycle arrest in A549 lung cancer cells. This study further revealed that PFAP can also induce paraptosis and endoplasmic reticulum stress (ERS) in A549 cells in vitro by targeting AMPK. PFAP induces multi-pathway death of A549 cells, and thus demonstrates its potential value for developing new drugs for NSCLC.
Collapse
Affiliation(s)
- Meng-Han Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhao-Kun Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Han J, Kim D, Park HJ, Park HJ, Lee SK. Antiproliferative Activity of Gibbosic Acid H through Induction of G 0/G 1 Cell Cycle Arrest and Apoptosis in Human Lung Cancer Cells. J Cancer Prev 2023; 28:201-211. [PMID: 38205360 PMCID: PMC10774477 DOI: 10.15430/jcp.2023.28.4.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 01/12/2024] Open
Abstract
Lung cancer is one of the most common causative cancers worldwide. Particularly, non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases. NSCLC is a serious form of lung cancer that requires prompt diagnosis, and the 5-year survival rate for patients with this disease is only 24%. Gibbosic acid H (GaH), a natural lanostanoid obtained from the Ganoderma species (Ganodermataceae), has antiproliferative activities against colon and lung cancer cells. The aim of the present study was to evaluate the antiproliferative activity of GaH in NSCLC cells and to elucidate the underlying molecular mechanisms. GaH was found to induce G0/G1 cell cycle arrest and autophagy by activating adenosine monophosphate-activated protein kinase in A549 and H1299 cells. The induction of this cell cycle arrest was associated with the downregulation of cyclin E1 and CDK2. Additionally, the induction of autophagy by GaH was correlated with the upregulation of LC3B, beclin-1, and p53 expression. GaH also induced apoptosis by upregulating cleaved caspase-3 and Bax in the lung cancer cells. These findings suggest that GaH has a potential in the growth inhibition of human lung cancer cells.
Collapse
Affiliation(s)
- Jaeho Han
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Donghwa Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Hee-Juhn Park
- Department of Pharmaceutical Engineering, Sangji University, Wonju, Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Chang CW, Chen C, Chang CW, Chiu PY, Yang JS, Chen FA. Effects of Tetrandrine on the Apoptosis of Cisplatin-resistant Oral Cancer Cells. Pharmacogn Mag 2023. [DOI: 10.1177/09731296231158699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Background Cisplatin, the first-line drug for chemotherapy, often has limited treatment efficacy because of resistance and cancer recurrence mechanisms. Tetrandrine is a unique secondary metabolite of Stephania tetrandra. As a traditional Chinese medicine agent, tetrandrine has been reported to have antioxidant, anti-inflammatory, antitumor, and antiangiogenesis activities and has been shown to inhibit the proliferation and angiogenesis of colorectal, lung, and breast cancer cells; potential mechanisms underlying its activities include the promotion of tumor cell apoptosis, promotion of cell cycle arrest, and intensification of reactive oxygen species (ROS) production. Objectives The main treatments for oral cancer are chemotherapy, surgery, and radiotherapy; these treatments are often used in combination. Cancer cells easily develop cisplatin resistance; therefore, we investigated tetrandrine’s potential as a therapy for overcoming resistance to oral cancer drugs. Materials and Methods We used the cisplatin-resistant oral cancer CAR cell line (CAL27) as a research objected and applied inhibitor treatment to clarify the role of tetrandrine in cell death and mitochondrial dysfunction. Results Tetrandrine could effectively inhibit CAR cell proliferation and induce apoptosis, with a corresponding increase in ROS production in mitochondria. Moreover, tetrandrine increased caspase-9 and caspase-3 activity in CAR cells and induced apoptotic mRNA, caspase-3/-9, AIF, and Endo G overexpression. Our results indicate that tetrandrine induces apoptosis in CAR cells through a mitochondrial-dependent signaling pathway.
Collapse
Affiliation(s)
- Chin-Wen Chang
- Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chun Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Wei Chang
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan
| | - Po-Yen Chiu
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan
| |
Collapse
|
7
|
Zhang Q, Yu W, Liu Z, Li H, Liu Y, Liu X, Han Z, He J, Zeng Y, Guo Y, Liu Y. Design, synthesis, antitumor activity and ct-DNA binding study of photosensitive drugs based on porphyrin framework. Int J Biol Macromol 2023; 230:123147. [PMID: 36621729 DOI: 10.1016/j.ijbiomac.2023.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Photodynamic therapy is a promising novel tumor treatment method. In this study, novel porphyrin-chrysin photosensitizer derivatives were synthesized. Most of the compounds showed antitumor activity against human cervical cancer HeLa cells and human lung cancer A549 cells, among which compound 4c had the best photodynamic therapy effect on HeLa cells and A549 cells, with IC50 values of 6.26 μM and 23.37 μM, respectively. Free-base porphyrin-chrysin derivatives bind to DNA through surface self-stacking, and zinc metalloporphyrin-chrysin derivatives bind to ct-DNA through intercalation. Notably, the tightness of compound binding to ct-DNA was positively correlated with its antitumor activity. What's more, three-dimensional quantitative conformation studies have shown that increasing the positive charge of the porphyrin ring and introducing a strong electron-withdrawing group at the meso position of the porphyrin ring at the para-position of the benzene ring or reducing the space volume of the compound can enhance the antitumor activity.
Collapse
Affiliation(s)
- Qizhi Zhang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Wenmei Yu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Yihui Liu
- The second Hospital, University of South China, PR China
| | - Xin Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Zhaoshun Han
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Yaofu Zeng
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Yu Guo
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 28 Western Changshen Road, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
8
|
Ghareghomi S, Atabaki V, Abdollahzadeh N, Ahmadian S, Hafez Ghoran S. Bioactive PI3-kinase/Akt/mTOR Inhibitors in Targeted Lung Cancer Therapy. Adv Pharm Bull 2023; 13:24-35. [PMID: 36721812 PMCID: PMC9871280 DOI: 10.34172/apb.2023.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
One of the central signaling pathways with a regulatory effect on cell proliferation and survival is Akt/mTOR. In many human cancer types, for instance, lung cancer, the overexpression of Akt/mTOR has been reported. For this reason, either targeting cancer cells by synthetic or natural products affecting the Akt/mTOR pathway down-regulation is a useful strategy in cancer therapy. Direct inhibition of the signaling pathway or modulation of each related molecule could have significant feedback on the growth and proliferation of cancer cells. A variety of secondary metabolites has been identified to directly inhibit the AKT/mTOR signaling, which is important in the field of drug discovery. Naturally occurring nitrogenous and phenolic compounds can emerge as two pivotal classes of natural products possessing anticancer abilities. Herein, we have summarized the alkaloids and flavonoids for lung cancer treatment together with all the possible mechanisms of action relying on the Akt/mTOR pathway down-regulation. This review suggested that in search of new drugs, phytochemicals could be considered as promising scaffolds to be developed into efficient drugs for the treatment of cancer. In this review, the terms "Akt/mTOR", "Alkaloid", "flavonoid", and "lung cancer" were searched without any limitation in search criteria in Scopus, PubMed, Web of Science, and Google scholar engines.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Vahideh Atabaki
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Naseh Abdollahzadeh
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.,Corresponding Authors: Salar Hafez Ghoran and Shahin Ahmadian, and
| | - Salar Hafez Ghoran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Corresponding Authors: Salar Hafez Ghoran and Shahin Ahmadian, and
| |
Collapse
|
9
|
Salari N, Faraji F, Jafarpour S, Faraji F, Rasoulpoor S, Dokaneheifard S, Mohammadi M. Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review. Indian J Surg Oncol 2022; 13:681-690. [PMID: 36687219 PMCID: PMC9845454 DOI: 10.1007/s13193-022-01550-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Chrysin is a natural bioactive compound that is extracted from many trees, honey, and propolis. Chrysin has several pharmacological activities such as anti-inflammatory, anti-cancer, and antioxidant properties. This study was performed to evaluate the anti-cancer activities of chrysin in cancer therapy. The present study was conducted by systematic review of studies published up to August 2021. Related studies were identified by searching Web of Science (WoS), PubMed, Science Direct, SID, MagIran, Scopus, and Google Scholar databases. The keywords of chrysin, cancer, anti-cancer, and cancer therapy were used for searching. The quality of the studies was assessed by the CONSORT checklist. A total of 21 studies were identified. The results of studies showed that chrysin has an anticancer effect by stimulating apoptosis in a wide range of human cells and rats. Chrysin is also an important factor in inhibiting tumor growth and neoplasticity. Chrysin inhibits the growth and proliferation of cancer cells by inducing cytotoxic effects. Therefore, due to the antitumor effects of chrysin and its safety and non-toxicity towards normal cells, this compound can be considered as an adjuvant along with chemotherapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Jafarpour
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Faraji
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shna Rasoulpoor
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sadat Dokaneheifard
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
10
|
Beylerli O, Beilerli A, Shumadalova A, Wang X, Yang M, Sun H, Teng L. Therapeutic effect of natural polyphenols against glioblastoma. Front Cell Dev Biol 2022; 10:1036809. [PMID: 36268515 PMCID: PMC9577362 DOI: 10.3389/fcell.2022.1036809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive tumor of the central nervous system, which has a highly invasive growth pattern, which creates poor prospects for patient survival. Chemotherapy and tumor surgery are limited by anticancer drug resistance and tumor invasion. Evidence suggests that combinations of treatments may be more effective than single drugs alone. Natural polyphenolic compounds have potential as drugs for the treatment of glioblastoma and are considered as potential anticancer drugs. Although these beneficial effects are promising, the efficacy of natural polyphenolic compounds in GBM is limited by their bioavailability and blood-brain barrier permeability. Many of them have a significant effect on reducing the progression of glioblastoma through mechanisms such as reduced migration and cell invasion or chemosensitization. Various chemical formulations have been proposed to improve their pharmacological properties. This review summarizes natural polyphenolic compounds and their physiological effects in glioblastoma models by modulating signaling pathways involved in angiogenesis, apoptosis, chemoresistance, and cell invasion. Polyphenolic compounds are emerging as promising agents for combating the progression of glioblastoma. However, clinical trials are still needed to confirm the properties of these compounds in vitro and in vivo.
Collapse
Affiliation(s)
- Ozal Beylerli
- Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingchun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanran Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Teng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lei Teng,
| |
Collapse
|
11
|
Guo Y, Jiang X, Chang Q, Xiao Z, Chen Z, Jiang D, Hu G, Li Q. Novel pyrazolo[3,4-b]pyridine derivatives: Synthesis, structure-activity relationship studies, and regulation of the AMPK/70S6K pathway. Arch Pharm (Weinheim) 2022; 355:e2100465. [PMID: 35415908 DOI: 10.1002/ardp.202100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
A series of novel pyrazolo[3,4-b]pyridine derivatives were designed, synthesized, and biologically evaluated for anti-lung cancer activity. Structure-activity relationship and AutoGPA models were constructed based on the in vitro antiproliferative potency of the compounds against a human lung adenocarcinoma cell line (A549). Compound 9d exhibits improved potency for A549 cell growth inhibition (3.06 ± 0.05 μM) compared with A-769662 (45.29 ± 2.14 μM). Compound 9d can elevate the phosphorylation levels of adenosine monophosphate-activated protein kinase (AMPK) and its substrate acetyl-CoA carboxylase and reduce the level of phosphorylated ribosomal S6 kinase (p-70S6K) at 1 μM, which is comparable to the activity of A-769662 at 20 μM. 9d induced G2/M cell cycle arrest, which was rescued when co-incubated with "Compound C," a potent AMPK inhibitor. Taken together, compound 9d showed potential anti-lung cancer activity via inducing cell cycle arrest by regulation of the AMPK/70S6K pathway in A549 cells, which could provide a new lead for the discovery of anti-lung cancer agents.
Collapse
Affiliation(s)
- Yating Guo
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xiaoding Jiang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zhihong Xiao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Dejian Jiang
- Hunan Key Laboratory for Pharmacodynamics and Safety Evaluation of New Drugs, Hunan Center for Safety Evaluation and Research of Drugs, Changsha, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Study on the cytotoxic, antimetastatic and albumin binding properties of the oxidovanadium(IV) chrysin complex. Structural elucidation by computational methodologies. Chem Biol Interact 2022; 351:109750. [PMID: 34813780 DOI: 10.1016/j.cbi.2021.109750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
We have previously synthesized and characterized the chrysin coordination complex with the oxidovanadium(IV) cation (VIVO(chrys)2) and characterized in ethanolic solution and in solid state. Because suitable single crystals for X-ray diffraction determinations could not be obtained, in the present work, we elucidate the geometrical parameters of this complex by computational methodologies. The optimization and vibrational investigation were carried out both in ethanolic solution and in gas phase. The computational results support the experimentally proposed geometries of the VIVO(chrys)2 complex, thus leading to the conclusion that the complex exists as conformers with trans-octahedral geometry in ethanolic solution and as conformers with cis-octahedral geometry in the solid state. The complex also exists as conformers with trans-octahedral geometry in aqueous media. The active species formed after dissolution in DMSO showed anticancer and antimetastatic behavior in human lung cell line A549 with moderate binding (Kaca. 105 M-1) to bovine serum albumin (BSA). The interaction through hydrogen bonding and van der Waals forces resulted in a spontaneous process. Site marker competitive experiments showed binding sites for chrysin mainly located in site II (subdomain IIIA) and in site I (subdomain IIIA) for the complex. FT-IR spectral measurements showed evidences of the alterations of protein secondary structure in the presence of chrysin and VIVO(chrys)2.
Collapse
|
13
|
Zhou YJ, Xu N, Zhang XC, Zhu YY, Liu SW, Chang YN. Chrysin Improves Glucose and Lipid Metabolism Disorders by Regulating the AMPK/PI3K/AKT Signaling Pathway in Insulin-Resistant HepG2 Cells and HFD/STZ-Induced C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5618-5627. [PMID: 33979145 DOI: 10.1021/acs.jafc.1c01109] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural products with minor side effects have been reported to be an effective adjuvant therapy for glucose and lipid metabolism disorders. Chrysin, a flavone, has a wide range of physiological effects, such as antioxidant, anti-inflammatory, anti-diabetes, anti-hyperlipidemia, and hepatoprotective. This study was designed to explore the effects and mechanism of chrysin on metabolic syndrome using insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. The results indicated that chrysin significantly decreased insulin resistance, oxidative stress, inflammation, and liver injury. In addition, chrysin improved glycogen synthesis and fatty acid oxidation and inhibited gluconeogenesis and fatty acid synthesis by regulating GSK3β, G6Paes, PEPCK, SREBP1, FAS, and ACC1. Furthermore, the results of western blot and real-time PCR experiments demonstrated that chrysin modulated glucose and lipid metabolism through the AMPK/PI3K/AKT signaling pathway. Treatment with the AMPK inhibitor verified that AMPK activation is positively correlated with chrysin activity on glycolipid metabolism. This study confirms that chrysin is a potential treatment for glucose and lipid metabolism disorders.
Collapse
Affiliation(s)
- Ying-Jun Zhou
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Nuo Xu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Xiao-Chen Zhang
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Yu-Yan Zhu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Shao-Wei Liu
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| | - Ya-Ning Chang
- The State Key Laboratory of Bioreactor Engineering, College of Bioengineering, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, People's Republic of China
| |
Collapse
|
14
|
Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci 2021; 278:119649. [PMID: 34043989 DOI: 10.1016/j.lfs.2021.119649] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of death worldwide with high mortality and morbidity. A wide variety of risk factors are considered for LC development such as smoking, air pollution and family history. It appears that genetic and epigenetic factors are also potential players in LC development and progression. AMP-activated protein kinase (AMPK) is a signaling pathway with vital function in inducing energy balance and homeostasis. An increase in AMP:ATP and ADP:ATP ratio leads to activation of AMPK signaling by upstream mediators such as LKB1 and CamKK. Dysregulation of AMPK signaling is a common finding in different cancers, particularly LC. AMPK activation can significantly enhance LC metastasis via EMT induction. Upstream mediators such as PLAG1, IMPAD1, and TUFM can regulate AMPK-mediated metastasis. AMPK activation can promote proliferation and survival of LC cells via glycolysis induction. In suppressing LC progression, anti-tumor compounds including metformin, ginsenosides, casticin and duloxetine dually induce/inhibit AMPK signaling. This is due to double-edged sword role of AMPK signaling in LC cells. Furthermore, AMPK signaling can regulate response of LC cells to chemotherapy and radiotherapy that are discussed in the current review.
Collapse
|
15
|
Talebi M, Talebi M, Farkhondeh T, Simal-Gandara J, Kopustinskiene DM, Bernatoniene J, Samarghandian S. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int 2021; 21:214. [PMID: 33858433 PMCID: PMC8050922 DOI: 10.1186/s12935-021-01906-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chrysin has been shown to exert several beneficial pharmacological activities. Chrysin has anti-cancer, anti-viral, anti-diabetic, neuroprotective, cardioprotective, hepatoprotective, and renoprotective as well as gastrointestinal, respiratory, reproductive, ocular, and skin protective effects through modulating signaling pathway involved in apoptosis, oxidative stress, and inflammation. In the current review, we discussed the emerging cellular and molecular mechanisms underlying therapeutic indications of chrysin in various cancers. Online databases comprising Scopus, PubMed, Embase, ProQuest, Science Direct, Web of Science, and the search engine Google Scholar were searched for available and eligible research articles. The search was conducted by using MeSH terms and keywords in title, abstract, and keywords. In conclusion, experimental studies indicated that chrysin could ameliorate cancers of the breast, gastrointestinal tract, liver and hepatocytes, bladder, male and female reproductive systems, choroid, respiratory tract, thyroid, skin, eye, brain, blood cells, leukemia, osteoblast, and lymph. However, more studies are needed to enhance the bioavailability of chrysin and evaluate this agent in clinical trial studies.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1991953381, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
- Food Safety Net Services (FSNS), San Antonio, TX, 78216, USA
| | - Tahereh Farkhondeh
- Cardiovscular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Ourense Campus, 32004, Ourense, Spain
| | - Dalia M Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, 50161, Kaunas, Lithuania
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, 50161, Kaunas, Lithuania
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
16
|
AMPK activation by ASP4132 inhibits non-small cell lung cancer cell growth. Cell Death Dis 2021; 12:365. [PMID: 33824293 PMCID: PMC8024326 DOI: 10.1038/s41419-021-03655-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022]
Abstract
Activation of adenosine monophosphate-activated protein kinase (AMPK) is able to produce significant anti-non-small cell lung cancer (NSCLC) cell activity. ASP4132 is an orally active and highly effective AMPK activator. The current study tested its activity against NSCLC cells. In primary NSCLC cells and established cell lines (A549 and NCI-H1944) ASP4132 potently inhibited cell growth, proliferation and cell cycle progression as well as cell migration and invasion. Robust apoptosis activation was detected in ASP4132-treated NSCLC cells. Furthermore, ASP4132 treatment in NSCLC cells induced programmed necrosis, causing mitochondrial p53-cyclophilin D (CyPD)-adenine nucleotide translocase 1 (ANT1) association, mitochondrial depolarization and medium lactate dehydrogenase release. In NSCLC cells ASP4132 activated AMPK signaling, induced AMPKα1-ACC phosphorylation and increased AMPK activity. Furthermore, AMPK downstream events, including mTORC1 inhibition, receptor tyrosine kinases (PDGFRα and EGFR) degradation, Akt inhibition and autophagy induction, were detected in ASP4132-treated NSCLC cells. Importantly, AMPK inactivation by AMPKα1 shRNA, knockout (using CRISPR/Cas9 strategy) or dominant negative mutation (T172A) almost reversed ASP4132-induced anti-NSCLC cell activity. Conversely, a constitutively active AMPKα1 (T172D) mimicked and abolished ASP4132-induced actions in NSCLC cells. In vivo, oral administration of a single dose of ASP4132 largely inhibited NSCLC xenograft growth in SCID mice. AMPK activation, mTORC1 inhibition and EGFR-PDGFRα degradation as well as Akt inhibition and autophagy induction were detected in ASP4132-treated NSCLC xenograft tumor tissues. Together, activation of AMPK by ASP4132 potently inhibits NSCLC cell growth in vitro and in vivo.
Collapse
|
17
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
18
|
Mei J, Yang R, Yang Q, Wan W, Wei X. Proteomic screening identifies the direct targets of chrysin anti-lipid depot in adipocytes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113361. [PMID: 32891819 DOI: 10.1016/j.jep.2020.113361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/07/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Overweight/obesity was mentioned by many countries as an obstacle to good health and long life, which increases risk of diseases and disorders. Previous studies suggested that the chronic low-grade inflammation present in the body was considered as the essential pathogenesis for obesity. Chrysin is extracted from traditional Chinese medicine Oroxylum indicum (Linn.) Kurz and plays a superior anti-obesity role. Chrysin could reduce the lipid depot by inhibiting the obesity-related inflammation in adipose tissue. However, the target protein for chrysin to exert its anti-obesity role are not verified. AIM OF STUDY The present study aimed to screen and validate the target protein for chrysin to reduce the lipid depot in palmitic acid-induced 3T3-L1 adipocytes. MATERIALS AND METHODS Obesity model was established employing 0.5 mmol/L palmitic acid-induced 3T3-L1 adipocytes through "Cocktails" method. Two-dimensional gel electrophoresis (2-DE) combined with liquid chromatography-mass spectrometry (LC-MS) was applied to analyze the differentially expressed proteins for chrysin intervention by lipid formation in adipocytes. Gene silencing was utilized to decrease gene expression of the candidate proteins, then production of triglyceride in 3T3-L1 was detected by triglycerides assay to determine the target proteins. Ultraviolet (UV) absorption together with fluorescence spectra validated the direct target proteins of chrysin. They also computed the correlation constants of combination between chrysin and the target proteins. Molecular docking was further employed to identify the main binding amino acids between chrysin and the target protein. RESULTS 2-DE combined with LC-MS screened four candidate proteins which were related to metabolism and inflammation. The production of triglycerides in 3T3-L1 was reduced after decreasing gene expression of Annexin A2 (ANXA2), 60 kDa heat shock protein (HSP-60) and succinyl-CoA:3-ketoacid coenzyme A transferase 1 (SCOT-S), respectively. UV spectrum showed that the absorbance spectra of ANXA2 from 260 to 300 nm shifted upwards along with the increase in chrysin concentration, meanwhile the absorbance spectra of HSP-60 from 200 to 220 nm and from 265 to 280 nm shifted slightly upwards along with the increase in chrysin concentrations. The results indicated the conjugated structures between chrysin and ANXA2 or HSP-60. Fluorescence quenching further suggested a spontaneous interaction between chrysin and ANXA2 or HSP-60. Finally, molecular docking identified the main binding amino acids between ANXA2 and chrysin were Ser22, Tyr24, Pro267, Val298, Asp299, and Lys302. CONCLUSIONS Chrysin can reduce the amount of triglycerides by directly downregulating the inflammation-related target proteins ANXA2 and HSP-60, exerting an anti-obesity role.
Collapse
Affiliation(s)
- Jie Mei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiaohong Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wencheng Wan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyong Wei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Li G, Ding K, Qiao Y, Zhang L, Zheng L, Pan T, Zhang L. Flavonoids Regulate Inflammation and Oxidative Stress in Cancer. Molecules 2020; 25:E5628. [PMID: 33265939 PMCID: PMC7729519 DOI: 10.3390/molecules25235628] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death globally. Millions of persons die due to cancer each year. In the last two decades, the anticancer effects of natural flavonoids have become a hot topic in many laboratories. Meanwhile, flavonoids, of which over 8000 molecules are known to date, are potential candidates for the discovery of anticancer drugs. The current review summarizes the major flavonoid classes of anticancer efficacy and discusses the potential anti-cancer mechanisms through inflammation and oxidative stress action, which were based on database and clinical studies within the past years. The results showed that flavonoids could regulate the inflammatory response and oxidative stress of tumor through some anti-inflammatory mechanisms such as NF-κB, so as to realize the anti-tumor effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China; (G.L.); (K.D.); (Y.Q.); (L.Z.); (L.Z.); (T.P.)
| |
Collapse
|
20
|
Khor CY, Khoo BY. PPARα plays an important role in the migration activity, and the expression of CYP2S1 and CYP1B1 in chrysin-treated HCT116 cells. Biotechnol Lett 2020; 42:1581-1595. [PMID: 32385743 DOI: 10.1007/s10529-020-02904-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/30/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE This study aimed to examine the metabolising effect of chrysin by investigating the mRNA expression levels of PPARα and its related cellular mechanisms in HCT116 cells. RESULTS The mRNA expression of PPARα was significantly induced in HCT116 cells following treatment with chrysin for 36 h, but the mRNA expression of PPARα was inhibited, when the cells were treated with a combination of chrysin and MK886 (PPARα inhibitor). This phenomenon proved that the incorporation of MK886 lowers the expression levels of PPARα, thus enabling us to study the function of PPARα. The cell population of the G0/G1 phase significantly increased in chrysin-treated cells, which was accompanied by a decrease in the percentage of S phase cell population after 12 h of treatment. However, treatments of HCT116 cells with chrysin only or a combination of chrysin and MK886 did not show the opposite situation in the G0/G1 and S phase cell populations, indicating that the expression of PPARα may not be associated with the cell cycle in the treated cells. The migration rate in chrysin-treated HCT116 cells was reduced significantly after 24 and 36 h of treatments. However, the activity was revived, when the expression of PPARα was inhibited, indicating that the migration activity of chrysin-treated cells is likely correlated with the expression of PPARα. Comparison of the CYP2S1 and CYP1B1 mRNA expression in chrysin only treated, and a combination of chrysin and MK886-treated HCT116 cells for 24 and 36 h showed a significant difference in the expression levels, indicating that PPARα inhibitor could also modify the expression of CYP2S1 and CYP1B1. CONCLUSION The study indicates that PPARα may play an essential role in regulating the migration activity, and the expression of CYP2S1 and CYP1B1 in chrysin-treated colorectal cancer cells.
Collapse
Affiliation(s)
- Chin Yin Khor
- Institute for Research in Molecular Medicine (INFORMM), Universitit Sains Malaysia, 11800, Penang, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine (INFORMM), Universitit Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
21
|
Martínez Medina JJ, Rodríguez J, Mermot J, Naso LG. Antitumour and Antimetastatic Effects and Safety Profile of a New Magnesium(II)-Chrysin Complex. Aust J Chem 2020. [DOI: 10.1071/ch19333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chrysin is a flavone found in many plant extracts including blue passion flower, propolis and honey. The magnesium(ii) cation is an essential metal for life and it is involved in a variety of metabolic and physiological functions. Biological activities of flavonoids can be improved by complexation with metals. For this reason, Mgchrys was synthesised. The complex was characterised by spectroscopic techniques (ultraviolet–visible absorption spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), 1H and 13C-NMR) and elemental and thermogravimetric analysis. The results indicated that chrysin reacts with magnesium(ii) through a 4-carbonyl-5-hydroxy chelation site. The computational study suggests the coexistence of at least twelve conformers of Mgchrys at room temperature. There are six most stable conformers that show square-pyramidal and distorted square-pyramidal geometries. In addition, anticancer and antimetastatic activities of Mgchrys on the A549 cell line were evaluated and compared with the metal and the free ligand. The complex did not show cytotoxicity against normal lung fibroblasts but it behaved as a cytotoxic drug against the cancer cell line with oxidative stress being its probable mechanism of action. However, Mgchrys inhibited the different steps involved in the metastatic cascade: adhesion to fibronectin, migration and invasion. The compounds displayed no acute toxicity (Artemia salina test) and no mutagenic effect (Ames test).
Collapse
|
22
|
Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. Sci Rep 2019; 9:13753. [PMID: 31551535 PMCID: PMC6760125 DOI: 10.1038/s41598-019-50276-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of claudins (CLDNs), which are tight junctional proteins, is seen in various solid tumors, but the regulatory mechanisms and their pathophysiological role are not well understood. Both CLDN1 and CLDN11 were highly expressed in human lung squamous cell carcinoma (SCC). Chrysin, found in high concentration in honey and propolis, decreased CLDN1 and CLDN11 expression in RERF-LC-AI cells derived from human lung SCC. The phosphorylation level of Akt was decreased by chrysin, but those of ERK1/2 and c-Jun were not. LY-294002, an inhibitor of phosphatidylinositol 3-kinase, inhibited the phosphorylation of Akt and decreased the expression levels of CLDN1 and CLDN11. The association between phosphoinositide-dependent kinase 1 (PDK1) and Akt was inhibited by chrysin, but the phosphorylation of PDK1 was not. Immunoprecipitation and quartz-crystal microbalance assays revealed that biotinylated-chrysin binds directly to Akt. The knockdown of CLDN1 and CLDN11 using small interfering RNAs increased the transepithelial flux of doxorubicin (DXR), an anthracycline anticancer drug. Similarly, both chrysin and LY-294002 increased DXR flux. Neither CLDN1 knockdown, CLDN11 knockdown, nor chrysin changed the anticancer drug-induced cytotoxicity in a two-dimensional culture model, whereas they enhanced cytotoxicity in a spheroid culture model. Taken together, chrysin may bind to Akt and inhibit its phosphorylation, resulting in the elevation of anticancer drug-induced toxicity mediated by reductions in CLDN1 and CLDN11 expression in RERF-LC-AI cells. We suggest that chrysin may be useful as an adjuvant chemotherapy in lung SCC.
Collapse
|
23
|
Chen MB, Liu YY, Cheng LB, Lu JW, Zeng P, Lu PH. AMPKα phosphatase Ppm1E upregulation in human gastric cancer is required for cell proliferation. Oncotarget 2018; 8:31288-31296. [PMID: 28423719 PMCID: PMC5458207 DOI: 10.18632/oncotarget.16126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Activation of AMP-activated protein kinase (AMPK) is a valuable anti-cancer strategy. In the current study, we tested expression and potential function of Ca2+/calmodulin-dependent protein kinase phosphatase (Ppm1E), an AMPKα phosphatase, in human gastric cancers. Ppm1E expression was elevated in human gastric cancer tissues (vs. normal tissues), which was correlated with AMPK (p-AMPKα, Thr-172) dephosphorylation and mTOR complex 1 (mTORC1) activation. Ppm1E upregulation, AMPK inhibition and mTORC1 activation were also observed in human gastric cancer cell lines (AGS, HGC-27, and SNU601). Intriguingly, Ppm1E knockdown by shRNA induced AMPK activation, mTORC1 inactivation, and proliferation inhibition in AGS cells. On the other hand, forced over-expression of Ppm1E induced further AMPK inhibition and mTORC1 activation to enhance AGS cell proliferation. Remarkably, microRNA-135b-5p (“miR-135b-5p”), an anti-Ppm1E microRNA, was downregulated in both human gastric cancer tissues and cells. Reversely, miR-135b-5p exogenous expression caused Ppm1E depletion, AMPK activation, and AGC cell proliferation inhibition. Together, Ppm1E upregulation in human gastric cancer is important for cell proliferation, possible via regulating AMPK-mTOR signaling.
Collapse
Affiliation(s)
- Min-Bin Chen
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Yuan-Yuan Liu
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Li-Bo Cheng
- Department of Ophthalmology, Wuxi Second Hospital, Nanjing Medical University, Wu'xi, China
| | - Jian-Wei Lu
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ping Zeng
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Pei-Hua Lu
- Department of Radiotherapy and Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
24
|
Lu PH, Chen MB, Ji C, Li WT, Wei MX, Wu MH. Aqueous Oldenlandia diffusa extracts inhibits colorectal cancer cells via activating AMP-activated protein kinase signalings. Oncotarget 2018; 7:45889-45900. [PMID: 27322552 PMCID: PMC5216768 DOI: 10.18632/oncotarget.9969] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
Here we evaluated the anti-cancer activity of aqueous Oldenlandia diffusa (OD) extracts (ODE) in colorectal cancer (CRC) cells. We showed that ODE exerted potent anti-proliferative, cytotoxic and pro-apoptotic activities against a panel of established CRC lines (HCT-116, DLD-1, HT-29 and Lovo) and primary (patient-derived) human CRC cells. ODE activated AMP-activated protein kinase (AMPK) signaling, which led to subsequent mTORC1 inhibition and Bcl-2/HIF-1α downregulation in CRC cells. In ODE-treated CRC cells, AMPKα1 formed a complex with p53. This might be important for p53 activation and subsequent cancer cell apoptosis. Inhibition of AMPK signaling, though dominant negative (dn) mutation or shRNA/siRNA knockdown of AMPKα1 attenuated ODE-exerted CRC cytotoxicity. In vivo, i.p. administration of ODE inhibited HCT-116 xenograft tumor growth in SCID mice. In addition, AMPK activation, mTORC1 inhibition and p53 activation were observed in ODE-treated HCT-116 xenograft tumors. These results suggest that ODE inhibits CRC cells in vitro and in vivo, possibly via activation of AMPK-dependent signalings.
Collapse
Affiliation(s)
- Pei-Hua Lu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Min-Bin Chen
- Department of Medical Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, 215300, Jiangsu, China
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Wen-Ting Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mu-Xin Wei
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mian-Hua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
25
|
Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. PHYTOCHEMISTRY 2018; 145:187-196. [PMID: 29161583 DOI: 10.1016/j.phytochem.2017.09.016] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 05/05/2023]
Abstract
In recent years, public and scientific interest in plant flavonoids has tremendously increased because of their postulated health benefits. This review was mainly focuses on the flavone chrysin (5,7-dihydroxyflavone), which occurs naturally in many plants, honey, and propolis. A number of in vitro and in vivo studies have revealed the therapeutic effects of chrysin against various diseases. In general, chrysin exhibits many biological activities and pharmacological effects, including antioxidant, anti-inflammatory, anticancer, and antiviral activities. Moreover, many studies have reported on the bioavailability of chrysin. Because of its compromised bioavailability and enhanced protein stability, chrysin solid lipid nanoparticle (SLN) synthesis avoids proteolytic degradation and sustained release of drug delivery. To clarify the mechanism of action of chrysin, researchers have investigated the structural binding relationship of chrysin through the docking computation method.
Collapse
Affiliation(s)
- Renuka Mani
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, India
| | - Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, India.
| |
Collapse
|
26
|
Lashmanova E, Zemskaya N, Proshkina E, Kudryavtseva A, Volosnikova M, Marusich E, Leonov S, Zhavoronkov A, Moskalev A. The Evaluation of Geroprotective Effects of Selected Flavonoids in Drosophila melanogaster and Caenorhabditis elegans. Front Pharmacol 2017; 8:884. [PMID: 29375370 PMCID: PMC5770640 DOI: 10.3389/fphar.2017.00884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/16/2017] [Indexed: 01/13/2023] Open
Abstract
Flavonoids is an intensively studied group of natural compounds with antioxidant, antineoplastic, antihyperglycemic, cardioprotective, and neuroprotective properties. The present study intends to investigate the geroprotective action of three selected flavonoids (naringin, luteolin, chrysin) in two model organisms, Caenorhabditis elegans and Drosophila melanogaster. Luteolin and chrysin were shown to improve lifespan parameters when administered to both model organisms. The observed positive effects of these flavonoids in D. melanogaster were limited to females and were not associated with reduced fecundity or locomotor impairment. The life-extending effects of flavonoids were observed in N2 wild-type worms but absent in aak-2(gt33) mutants implying that these effects can be associated with AMP-activated protein kinase activity. Naringin improved lifespan parameters of C. elegans, but had no effect on D. melanogaster females; in some cases, naringin was found to decrease the lifespan of males. Compared to chrysin and luteolin, however, naringin more effectively activates Nrf2 target genes (particularly, GstD1) under oxidative stress. Then we compared molecular mechanisms of studied compounds and a well-known geroprotector rapamycin, using software tool GeroScope. There are no transcriptomic data on luteolin or chrysin provided by LINCS Project database. The bioinformatics comparison of transcriptomics data for A549 and MCF7 human cell lines treated with rapamycin or naringin revealed that these compounds share just a few common signaling pathways and quite distinct in their geroprotective action. Thus, based on C. elegans effects of naringin, luteolin, chrysin on lifespan we have revealed new potential geroprotectors.
Collapse
Affiliation(s)
- Ekaterina Lashmanova
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nadezhda Zemskaya
- Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Ekaterina Proshkina
- Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia.,Department of Ecology, Syktyvkar State University, Syktyvkar, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Volosnikova
- Insilico Medicine, Inc., Johns Hopkins University, Baltimore, MD, United States
| | - Elena Marusich
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Leonov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alex Zhavoronkov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Insilico Medicine, Inc., Johns Hopkins University, Baltimore, MD, United States
| | - Alexey Moskalev
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia.,Department of Ecology, Syktyvkar State University, Syktyvkar, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Hsieh FS, Hung MH, Wang CY, Chen YL, Hsiao YJ, Tsai MH, Li JR, Chen LJ, Shih CT, Chao TI, Chen KF. Inhibition of protein phosphatase 5 suppresses non-small cell lung cancer through AMP-activated kinase activation. Lung Cancer 2017; 112:81-89. [DOI: 10.1016/j.lungcan.2017.07.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022]
|
28
|
Zhao Z, Feng L, Wang J, Cheng D, Liu M, Ling M, Xu W, Sun K. NPC-26 kills human colorectal cancer cells via activating AMPK signaling. Oncotarget 2017; 8:18312-18321. [PMID: 28407688 PMCID: PMC5392330 DOI: 10.18632/oncotarget.15436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
NPC-26 is novel mitochondrion-interfering compound. The current study tested its potential effect against colorectal cancer (CRC) cells. We demonstrated that NPC-26 induced potent anti-proliferative and cytotoxic activities against CRC cell lines (HCT-116, DLD-1 and HT-29). Activation of AMP-activated protein kinase (AMPK) signaling mediated NPC-26-induced CRC cell death. AMPKα1 shRNA knockdown or dominant negative mutation abolished NPC-26-induced AMPK activation and subsequent CRC cell death. NPC-26 disrupted mitochondrial function, causing mitochondrial permeability transition pore (mPTP) opening and reactive oxygen species (ROS) production. ROS scavengers (NAC or MnTBAP) and mPTP blockers (cyclosporin A or sanglifehrin A) blocked NPC-26-induced AMPK activation and attenuated CRC cell death. Significantly, intraperitoneal injection of NPC-26 potently inhibited HCT-116 tumor growth in severe combined immuno-deficient (SCID) mice. Yet, its anti-tumor activity was significantly weakened against AMPKα1-silenced HCT-116 tumors. Together, we conclude that NPC-26 kills CRC cells possibly via activating AMPK signaling.
Collapse
Affiliation(s)
- Zhen Zhao
- Clinical Laboratory, Minhang Hospital, Fudan University, Shanghai, China
| | - Li Feng
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiqin Wang
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Deshan Cheng
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Mei Liu
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Meirong Ling
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiping Xu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Keyu Sun
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Sabzichi M, Mohammadian J, Bazzaz R, Pirouzpanah MB, Shaaker M, Hamishehkar H, Chavoshi H, Salehi R, Samadi N. Chrysin loaded nanostructured lipid carriers (NLCs) triggers apoptosis in MCF-7 cancer cells by inhibiting the Nrf2 pathway. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Wang J, Xiao B, Han F, Shi Y. Metformin Alleviated the Neuronal Oxidative Stress in Hippocampus of Rats under Single Prolonged Stress. J Mol Neurosci 2017; 63:28-35. [DOI: 10.1007/s12031-017-0953-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022]
|
31
|
Wang C, Liang C, Feng W, Xia X, Chen F, Qiao E, Zhang X, Chen D, Ling Z, Yang H. ICT1 knockdown inhibits breast cancer cell growth via induction of cell cycle arrest and apoptosis. Int J Mol Med 2017; 39:1037-1045. [PMID: 28290601 DOI: 10.3892/ijmm.2017.2913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/23/2017] [Indexed: 11/05/2022] Open
Abstract
The protein encoded by immature colon carcinoma transcript 1 (ICT1) is a component of the human mitochondrial ribosome, and is reported to be implicated in cell proliferation, viability and apoptosis of HeLa cells. This study was conducted to investigate the role of ICT1 in human breast cancer. Oncomine database was used to investigate ICT1 expression in human breast cancer tissues compared to normal tissues. The results showed that ICT1 was highly overexpressed in various human breast cancer subtypes. Then short hairpin RNA (shRNA)-mediated knockdown of ICT1 was performed in human breast cancer ZR-75-30 and T-47D cells. A series of functional analysis, including MTT, colony formation and flow cytometry assays were conducted after ICT1 knockdown. Our results demonstrated that knockdown of ICT1 significantly suppressed cell viability and proliferation through cell cycle arrest at the G2/M phase and induced apoptosis in breast cancer cells. Furthermore, knockdown of ICT1 altered signaling pathways associated with cell growth and apoptosis, including phospho‑BAD (Ser112), phospho-PRAS40 (Thr246) and induction of phospho‑AMPKα (Thr172). Additionally, it was further confirmed by western blot analysis that ICT1 knockdown altered the expression of apoptosis- or cell cycle‑related proteins such as Bcl-2, caspase-3, CDK1, CDK2 and cyclin B. In conclusion, targeting ICT1 in breast cancer cells may provide a new strategy for breast cancer gene therapy.
Collapse
Affiliation(s)
- Chen Wang
- Department of Oncology, First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chenlu Liang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Weiliang Feng
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xianghou Xia
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Feng Chen
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Enqi Qiao
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Daobao Chen
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhiqiang Ling
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Hongjian Yang
- Department of Oncology, First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
32
|
Xue C, Chen Y, Hu DN, Iacob C, Lu C, Huang Z. Chrysin induces cell apoptosis in human uveal melanoma cells via intrinsic apoptosis. Oncol Lett 2016; 12:4813-4820. [PMID: 28105189 DOI: 10.3892/ol.2016.5251] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
Uveal melanoma is the most common intraocular malignant tumor in adults. Chrysin is a flavonoid present in honey, propolis, various plants and herbs. In the present study, the cytotoxic effects of chrysin were investigated on human uveal melanoma cell lines (M17 and SP6.5) and associated signaling pathways, and a comparison to the effects on normal ocular cells [scleral fibroblasts and retinal pigment epithelial (RPE) cells] was performed. The effects of chrysin on cell viability were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis was determined by using terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling assay. Mitochondrial permeability was determined by JC-1 fluorescein analysis. Cytosol cytochrome c levels, and the activities of caspase-3, -8 and -9 were measured by enzyme-linked immunosorbent assay or colorimetric assay. Chrysin reduced the viability of cultured human melanoma cells in a dose-dependent manner (0, 10, 30 and 100 µM) with IC50 at 28.3 and 35.8 µM in SP6.5 and M17 cell lines, respectively. Chrysin at 30-100 µM levels selectively reduced the viability of melanoma cells without affecting the viability of scleral fibroblasts and RPE cells. Chrysin increased mitochondrial permeability, the levels of cytosol cytochrome c, and caspase-9 and -3 activities, but not capase-8 activity in uveal melanoma cells. The results of the present study indicate that chrysin induces apoptosis of human uveal melanoma cells via the mitochondrial signaling pathway and suggest that chrysin may be a promising agent in the treatment of uveal melanoma.
Collapse
Affiliation(s)
- Chunyan Xue
- Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yueqin Chen
- Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China; Tissue Culture Center, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Dan-Ning Hu
- Tissue Culture Center, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Codrin Iacob
- Department of Pathology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Chengwei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhenping Huang
- Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
33
|
Bahadori M, Baharara J, Amini E. Anticancer Properties of Chrysin on Colon Cancer Cells, In vitro and In vivo with Modulation of Caspase-3, -9, Bax and Sall4. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:177-184. [PMID: 28959334 PMCID: PMC5492241 DOI: 10.15171/ijb.1374] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The SALL4/Sall4 is constitutively expressed in human and mice. SALL4 mRNA could be used as a marker for the diagnosis of different types of cancers. On the other hand, chrysin has diverse biological properties. OBJECTIVES In the present study, the effect of the chrysin was investigated on the CT26 colon cancer in vitro and in vivo. Furthermore, the expression levels of the stem cell markers; sall4 and Bax was analyzed, as well. MATERIALS AND METHODS The cytotoxic effects and the type of cell death induced by chrysin were evaluated using a number of biological assays. The apoptotic pathway was examined by caspase-3and caspase-9 assay. The in vivo antitumor efficacy of chrysin on transplanted CT26 tumor cells in BALB/c mice was investigated. In addition, mRNA expression of sall4, Bax was analyzed with RT-PCR. RESULTS MTT assay and morphological characteristics showed that chrysin exerted a cytotoxic effect on CT26 cells in a dose dependent manner with IC50= 80 μg.mL-1. The biological assays have indicated that chrysin administrated cytotoxicity on colon cancer cells through recruitment of the apoptosis. Caspase-3 and caspase-9 colorimetric assays, in addition to Bax expression analysis, have indicated the involvement of intrinsic apoptotic pathway in the cytotoxic effect of the chrysin. The in vivo assay revealed a remarkable reduction of the colon tumor volume in treated mice (8, 10 mg.kg -1) as compared to the untreated mice. RT-PCR elucidated that chrysin attenuated tumor volume through down regulation of the sall4 and up-regulation of the Bax. CONCLUSIONS It was demonstrated that chrysin accomplishes anti-cancer effect on colon cancer cells via induction of the apoptosis and attenuation of the sall4 the expression. These findings introduce chrysin as an efficient apoptosis based therapeutic agent against colon cancer.
Collapse
Affiliation(s)
- Maliheh Bahadori
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Javad Baharara
- Department of Biology, Research Center For Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
34
|
Porcza LM, Simms C, Chopra M. Honey and Cancer: Current Status and Future Directions. Diseases 2016; 4:diseases4040030. [PMID: 28933410 PMCID: PMC5456322 DOI: 10.3390/diseases4040030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death worldwide and poses a challenge to treatment. With overwhelming evidence of the role played by diet and lifestyle in cancer risk and prevention, there is a growing interest into the search for chemopreventative or chemotherapeutic agents derived from natural products. Honey is an important source of bioactive compounds derived from plants and recent years have seen an increased interest in its anticancer properties. This review examines the role of honey in targeting key hallmarks of carcinogenesis, including uncontrolled proliferation, apoptosis evasion, angiogenesis, growth factor signalling, invasion, and inflammation. The evidence for honey as an adjunct to conventional cancer therapy is also presented. The review also highlights gaps in the current understanding and concludes that, before translation of evidence from cell culture and animal studies into the clinical setting, further studies are warranted to examine the effects of honey at a molecular level, as well as on cells in the tumour environment.
Collapse
Affiliation(s)
- Laura M Porcza
- Institute of Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Hampshire, Portsmouth PO1 2DT, UK.
| | - Claire Simms
- Institute of Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Hampshire, Portsmouth PO1 2DT, UK.
| | - Mridula Chopra
- Institute of Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Hampshire, Portsmouth PO1 2DT, UK.
| |
Collapse
|
35
|
Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016; 8:nu8080515. [PMID: 27556486 PMCID: PMC4997428 DOI: 10.3390/nu8080515] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
There is much epidemiological evidence that a diet rich in fruits and vegetables could lower the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides, numerous studies have demonstrated that natural polyphenols could be used for the prevention and treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the modulation of multiple molecular events involved in carcinogenesis. The current review summarized the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes) and discussed the potential mechanisms of action, which were based on epidemiological, in vitro, in vivo and clinical studies within the past five years.
Collapse
|
36
|
Yao J, Zhang YS, Feng GZ, Du Q. Chrysin inhibits human airway smooth muscle cells proliferation through the extracellular signal-regulated kinase 1/2 signaling pathway. Mol Med Rep 2016; 12:7693-8. [PMID: 26502995 DOI: 10.3892/mmr.2015.4401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 09/01/2015] [Indexed: 11/05/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease characterized by an increased mass of airway smooth muscle (ASM). Chrysin (5,7-dihydroxyflavone), a natural flavonoid, has been shown to exert multiple biological activities, including anti-inflammatory, anti-proliferative and anti-oxidant effects, as well as the potency to ameliorate asthma in animal models. The objective of the present study was to identify the underlying mechanism of the therapeutic effects of chrysin. The impact of chrysin on basal and platelet-derived growth factor (PDGF)-induced proliferation and apoptosis of human airway smooth muscle cells (HASMCs) was investigated. Furthermore, the activation of the extracellular signal-regulated protein kinase (ERK) signaling pathway was evaluated in HASMCs. The results revealed that chrysin significantly inhibited basal as well as PDGF-induced HASMC proliferation, most likely through the suppression of ERK1/2 phosphorylation. However, chrysin did not significantly reduce PDGF-induced apoptosis of HASMCs. The present study indicated that chrysin may be a promising medication for controlling airway remodeling and clinical manifestations of asthma.
Collapse
|
37
|
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 2016; 6:1-19. [PMID: 26904394 PMCID: PMC4724661 DOI: 10.1016/j.apsb.2015.06.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.
Collapse
Affiliation(s)
- David Grahame Hardie
- Division of Cell Signaling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
38
|
Chen MB, Jiang Q, Liu YY, Zhang Y, He BS, Wei MX, Lu JW, Ji Y, Lu PH. C6 ceramide dramatically increases vincristine sensitivity both in vivo and in vitro, involving AMP-activated protein kinase-p53 signaling. Carcinogenesis 2015; 36:1061-70. [PMID: 26116623 DOI: 10.1093/carcin/bgv094] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022] Open
Abstract
Use of the conventional cancer chemotherapy (i.e. vincristine) is limited in tumor cells exhibiting pre-existing or acquired resistance. Here, we found that C6 ceramide (C6) dramatically sensitized vincristine's activity. In vitro, C6 and vincristine coadministration induced substantial necrosis and apoptosis in multiple human cancer cell lines, which were accompanied by a profound AMP-activated protein kinase (AMPK) activation, subsequent p53 activation, mTORC1 inactivation and Bcl-2/HIF-1α downregulation. Such synergistic effects were attenuated by AMPK inactivation through genetic mutation or short hairpin RNA silencing. Coadministration-activated p53 translocated to mitochondria, and formed a complex with cyclophilin-D, leading to mitochondrial permeability transition pore opening and cell necrosis. Disrupting p53-Cyp-D complexation through pharmacological or genetic means reduced costimulation-induced cytotoxicity. In vivo, a liposomal C6 was synthesized, which dramatically enhanced the antiproliferative activity of vincristine on HCT-116 or A2780 xenografts. Together, C6 sensitizes vincristine-induced anticancer activity in vivo and in vitro, involving activating AMPK-p53 signaling.
Collapse
Affiliation(s)
- Min-Bin Chen
- Department of Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, No.91, Qianjin Road, Kunshan, Jiangsu 215300, China, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215021, China, Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China, Department of Traditional Chinese Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China, Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, Jiangsu 210009, China, Department of Thoracic Surgery and Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299, Qingyang Road, Wuxi, Jiangsu 214023, China and Department of Medical Oncology Center, Institute of Integrated Traditional and Western Medicine Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuan-yuan Liu
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yan Zhang
- Department of Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, No.91, Qianjin Road, Kunshan, Jiangsu 215300, China, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215021, China, Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China, Department of Traditional Chinese Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China, Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, Jiangsu 210009, China, Department of Thoracic Surgery and Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299, Qingyang Road, Wuxi, Jiangsu 214023, China and Department of Medical Oncology Center, Institute of Integrated Traditional and Western Medicine Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Bang-shun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Mu-Xin Wei
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian-Wei Lu
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Baiziting 42, Nanjing, Jiangsu 210009, China, Department of Thoracic Surgery and
| | - Yong Ji
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299, Qingyang Road, Wuxi, Jiangsu 214023, China and
| | - Pei-Hua Lu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299, Qingyang Road, Wuxi, Jiangsu 214023, China and Department of Medical Oncology Center, Institute of Integrated Traditional and Western Medicine Affiliated to Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
39
|
Martins IL, Charneira C, Gandin V, Ferreira da Silva JL, Justino GC, Telo JP, Vieira AJSC, Marzano C, Antunes AMM. Selenium-containing chrysin and quercetin derivatives: attractive scaffolds for cancer therapy. J Med Chem 2015; 58:4250-65. [PMID: 25906385 DOI: 10.1021/acs.jmedchem.5b00230] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selenium-containing chrysin (SeChry) and 3,7,3',4'-tetramethylquercetin (SePQue) derivatives were synthesized by a microwave-based methodology. In addition to their improvement in terms of DPPH scavenging and potential GPx-like activities, when tested in a panel of cancer cell lines both selenium-derivatives revealed consistently to be more cytotoxic when compared with their oxo and thio-analogues, evidencing the key role of selenocabonyl moiety for these activities. In particular, SeChry elicited a noteworthy cytotoxic activity with mean IC50 values 18- and 3-fold lower than those observed for chrysin and cisplatin, respectively. Additionally, these seleno-derivatives evidenced an ability to overcome cisplatin and multidrug resistance. Notably, a differential behavior toward malignant and nonmalignant cells was observed for SeChry and SePQue, exhibiting higher selectivity indexes when compared with the chalcogen-derivatives and cisplatin. Our preliminary investigation on the mechanism of cytotoxicity of SeChry and SePQue in MCF-7 human mammary cancer cells demonstrated their capacity to efficiently suppress the clonal expansion along with their ability to hamper TrxR activity leading to apoptotic cell death.
Collapse
Affiliation(s)
- Inês L Martins
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Catarina Charneira
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Valentina Gandin
- ‡Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - João L Ferreira da Silva
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Gonçalo C Justino
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - João P Telo
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Abel J S C Vieira
- §LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Cristina Marzano
- ‡Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy
| | - Alexandra M M Antunes
- †Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| |
Collapse
|
40
|
Abstract
The adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway arose early during evolution of eukaryotic cells, when it appears to have been involved in the response to glucose starvation and perhaps also in monitoring the output of the newly acquired mitochondria. Due to the advent of hormonal regulation of glucose homeostasis, glucose starvation is a less frequent event for mammalian cells than for single-celled eukaryotes. Nevertheless, the AMPK system has been preserved in mammals where, by monitoring cellular AMP:adenosine triphosphate (ATP) and adenosine diphosphate (ADP):ATP ratios and balancing the rates of catabolism and ATP consumption, it maintains energy homeostasis at a cell-autonomous level. In addition, hormones involved in maintaining energy balance at the whole-body level interact with AMPK in the hypothalamus. AMPK is activated by two widely used clinical drugs, metformin and aspirin, and also by many natural products of plants that are either derived from traditional medicines or are promoted as "nutraceuticals."
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom;
| |
Collapse
|
41
|
Son HS, Kwon HY, Sohn EJ, Lee JH, Woo HJ, Yun M, Kim SH, Kim YC. Activation of AMP-activated protein kinase and phosphorylation of glycogen synthase kinase3 β mediate ursolic acid induced apoptosis in HepG2 liver cancer cells. Phytother Res 2013; 27:1714-22. [PMID: 23325562 DOI: 10.1002/ptr.4925] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2023]
Abstract
Despite the antitumour effect of ursolic acid observed in several cancers, the underlying mechanism remains unclear. Thus, in the present study, the roles of AMP-activated protein kinase (AMPK) and glycogen synthase kinase 3 beta (GSK3β) were examined in ursolic acid induced apoptosis in HepG2 hepatocellular carcinoma cells. Ursolic acid significantly exerted cytotoxicity, increased the sub-G1 population and the number of ethidium homodimer and terminal deoxynucleotidyl transferase(TdT) mediated dUTP nick end labeling positive cells in HepG2 cells. Also, ursolic acid enhanced the cleavages of poly-ADP-ribose polymerase (PARP) and caspase3, attenuated the expression of astrocyte elevated gene (AEG1) and survivin in HepG2 cells. Interestingly, ursolic acid increased the phosphorylation of AMPK and coenzyme A carboxylase and also enhanced phosphorylation of GSK3β at inactive form serine 9, whereas ursolic acid attenuated the phosphorylation of AKT and mTOR in HepG2 cells. Conversely, AMPK inhibitor compound C or GSK3β inhibitor SB216763 blocked the cleavages of PARP and caspase 3 induced by ursolic acid in HepG2 cells. Furthermore, proteosomal inhibitor MG132 suppressed AMPK activation, GSK3β phosphorylation, cleaved PARP and deceased AEG-1 induced by ursolic acid in HepG2 cells. Overall, our findings suggest that ursolic acid induced apoptosis in HepG2 cells via AMPK activation and GSK3β phosphorylation as a potent chemopreventive agent.
Collapse
Affiliation(s)
- Hyun-Soo Son
- College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang B, Huang J, Xiang T, Yin X, Luo X, Huang J, Luo F, Li H, Li H, Ren G. Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J Appl Toxicol 2013; 34:105-12. [PMID: 24122885 DOI: 10.1002/jat.2941] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/25/2013] [Accepted: 09/06/2013] [Indexed: 11/10/2022]
Abstract
Chrysin, a naturally occurring flavone, has been shown to inhibit cell proliferation and induce cell apoptosis in various cancers. However, the effect and mechanisms of chrysin on cancer metastasis are still enigmatic. In this study, metastatic triple-negative breast cancer (TNBC) cell lines were used to evaluate the antimetastatic activity of chrysin. The results showed that chrysin (5, 10 and 20 μM) significantly suppressed TNBC cell migration and invasion in a dose-dependent manner. Human matrix metalloproteinase (MMP) antibody array demonstrated that MMP-10 was downregulated by chrysin, which was further verified by Western blotting and ELISA. Moreover, it was shown that chrysin induced increased E-cadherin expression and decreased expression of vimentin, snail and slug in TNBC cells, suggesting that chrysin had a reversal effect on epithelial-mesenchymal transition. More importantly, it was demonstrated that inhibiting the Akt signal pathway might play a central role in chrysin-induced antimetastatic activity by regulating MMP-10 and epithelial-mesenchymal transition. In conclusion, our study indicates that chrysin exerts antimetastatic activities in TNBC cells, which suggests that chrysin might be a potential therapeutic candidate for the treatment of advanced or metastatic breast cancer.
Collapse
Affiliation(s)
- Bing Yang
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Galangin inhibits proliferation of HepG2 cells by activating AMPK via increasing the AMP/TAN ratio in a LKB1-independent manner. Eur J Pharmacol 2013; 718:235-44. [PMID: 24028940 DOI: 10.1016/j.ejphar.2013.08.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 08/06/2013] [Accepted: 08/29/2013] [Indexed: 02/06/2023]
Abstract
Galangin, a flavonol derived from Alpinia officinarum Hance and used as food additives in southern China, induces apoptosis and autophagy to suppress the proliferation of HepG2 cells. In this study, we demonstrated that galangin induced autophagy by increasing the ratio of AMP/TAN in HepG2 cells. It stimulated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and LKB1, but inhibited the phosphorylation of AKT and mTOR. Inhibition of AMPK activation suppressed the dephosphorylation of mTOR to block galangin-induced autophagy. AMPK activation by galangin appeared to be independent of the LKB1 signaling pathway because the down-regulation of LKB1 by its siRNA failed to affect galangin-induced autophagy. Collectively, the findings demonstrated a novel mechanism of how galangin induces autophagy via activating AMPK in a LKB1- independent manner. The induction of autophagy can thus reflect the anti-proliferation effect of galangin in HCC cells.
Collapse
|
44
|
Wu MS, Lien GS, Shen SC, Yang LY, Chen YC. N
-acetyl-L
-cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells. Mol Carcinog 2013; 53 Suppl 1:E119-29. [DOI: 10.1002/mc.22053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 04/18/2013] [Accepted: 05/03/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Ming-Shun Wu
- Graduate Institute of Clinical Medicine; College of Medicine, Taipei Medical University; Taipei Taiwan
- Division of Gastroenterology; Department of Internal Medicine; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
| | - Gi-Shih Lien
- Graduate Institute of Clinical Medicine; College of Medicine, Taipei Medical University; Taipei Taiwan
- Division of Gastroenterology; Department of Internal Medicine; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences; Taipei Medical University; Taipei Taiwan
| | - Liang-Yo Yang
- Department of Physiology and Graduate Institute of Neuroscience; Taipei Medical University; Taipei Taiwan
| | - Yen-Chou Chen
- Graduate Institute of Medical Sciences; Taipei Medical University; Taipei Taiwan
- Cancer Research Center and Orthopedics Research Center; Taipei Medical University Hospital; Taipei Taiwan
| |
Collapse
|
45
|
Gao AM, Ke ZP, Shi F, Sun GC, Chen H. Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem Biol Interact 2013; 206:100-8. [PMID: 23994249 DOI: 10.1016/j.cbi.2013.08.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 08/03/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor which plays a key role in antioxidant and detoxification processes. Recent studies have reported that development of chemoresistance is associated with the constitutive activation of the Nrf2-mediated signaling pathway in many types of cancer cells. Here, we investigated whether Nrf2 was associated with drug resistant in doxorubicin resistant BEL-7402 (BEL-7402/ADM) cells, and if chrysin could reverse drug resistance in BEL-7402/ADM cells. We found that remarkable higher level of Nrf2 and its target proteins in BEL-7402/ADM cells compared to BEL-7402 cells. Similarly, intracellular Nrf2 protein level was significantly decreased and ADM resistance was partially reversed by Nrf2 siRNA in BEL-7402/ADM cells. chrysin is a potent Nrf2 inhibitor which sensitizes BEL-7402/ADM cells to ADM and increases intracellular concentration of ADM. Mechanistically, chrysin significantly reduced Nrf2 expression at both the mRNA and protein levels through down-regulating PI3K-Akt and ERK pathway. Consequently, expression of Nrf2-downstream genes HO-1, AKR1B10, and MRP5 were reduced and the Nrf2-dependent chemoresistance was suppressed. In conclusion, these results clearly indicate that activation of Nrf2 is associated with drug resistance in BEL-7402/ADM cells and chrysin may be an effective adjuvant sensitizer to reduce anticancer drug resistance by down-regulating Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ai-Mei Gao
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
46
|
Han D, Li SJ, Zhu YT, Liu L, Li MX. LKB1/AMPK/mTOR Signaling Pathway in Non-small-cell Lung Cancer. Asian Pac J Cancer Prev 2013; 14:4033-9. [DOI: 10.7314/apjcp.2013.14.7.4033] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Kim I, He YY. Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy. Front Oncol 2013; 3:175. [PMID: 23875169 PMCID: PMC3711071 DOI: 10.3389/fonc.2013.00175] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/21/2013] [Indexed: 12/25/2022] Open
Abstract
Despite the advances in biomedical research and clinical applications, cancer remains a leading cause of death worldwide. Given the limitations of conventional chemotherapeutics, including serious toxicities and reduced quality of life for patients, the development of safe and efficacious alternatives with known mechanism of action is much needed. Prevention of cancer through dietary intervention may hold promise and has been investigated extensively in the recent years. AMP-activated protein kinase (AMPK) is an energy sensor that plays a key role in the regulation of protein and lipid metabolism in response to changes in fuel availability. When activated, AMPK promotes energy-producing catabolic pathways while inhibiting anabolic pathways, such as cell growth and proliferation – thereby antagonizing carcinogenesis. Other anti-cancer effects of AMPK may include promoting autophagy and DNA repair upon UVB damage. In the last decade, interest in AMPK has grown extensively as it emerged as an attractive target molecule for cancer prevention and treatment. Among the latest developments is the activation of AMPK by naturally occurring dietary constituents and plant products – termed phytochemicals. Owing to their efficacy and safety, phytochemicals are considered as an alternative to the conventional harmful chemotherapy. The rising popularity of using phytochemicals for cancer prevention and therapy is supported by a substantial progress in identifying the molecular pathways involved, including AMPK. In this article, we review the recent progress in this budding field that suggests AMPK as a new molecular target in the prevention and treatment of cancer by phytochemicals.
Collapse
Affiliation(s)
- Inyoung Kim
- Pritzker School of Medicine, University of Chicago , Chicago, IL , USA
| | | |
Collapse
|
48
|
LIRDPRAPAMONGKOL KRIENGSAK, SAKURAI HIROAKI, ABDELHAMED SHERIF, YOKOYAMA SATORU, ATHIKOMKULCHAI SIRIVAN, VIRIYAROJ AMORNRAT, AWALE SURESH, RUCHIRAWAT SOMSAK, SVASTI JISNUSON, SAIKI IKUO. Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. Int J Oncol 2013; 43:329-37. [DOI: 10.3892/ijo.2013.1926] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/04/2013] [Indexed: 11/06/2022] Open
|
49
|
Shin HD, Lee HJ, Sikder MA, Park SH, Ryu J, Hong JH, Kim JO, Seok JH, Lee CJ. Effect of Chrysin on Gene Expression and Production of MUC5AC Mucin from Cultured Airway Epithelial Cells. Tuberc Respir Dis (Seoul) 2012; 73:204-9. [PMID: 23166555 PMCID: PMC3492420 DOI: 10.4046/trd.2012.73.4.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/16/2012] [Accepted: 09/13/2012] [Indexed: 12/02/2022] Open
Abstract
Background We investigated whether chrysin affected MUC5AC mucin production and gene expression induced by phorbol ester (phorbol 12-myristate 13-acetate, PMA) or epidermal growth factor (EGF) from human airway epithelial cells. Methods Confluent NCI-H292 cells were pretreated with varying concentrations of chrysin for 30 minutes, and were then stimulated with PMA and EGF for 24 hours, respectively. MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Results Concentrations of 10µM and 100µM chrysin were found to inhibit the production of MUC5AC mucin protein induced by PMA; A concentration of 100µM chrysin also inhibited the production of MUC5AC mucin protein induced by EGF; 100µM chrysin inhibited the expression of MUC5AC mucin gene induced by PMA or EGF. The cytotoxicity of chrysin was checked by lactate dehydrogenase assay, and there was no cytotoxic effect observed for chrysin. Conclusion These results suggest that chrysin can inhibit mucin gene expression and the production of mucin protein by directly acting on airway epithelial cells.
Collapse
Affiliation(s)
- Hyun-Dae Shin
- Department of Pharmacology, Chungnam National University School of Medicine, Daejeon, Korea. ; Department of Orthopedic Surgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|