1
|
Zhang X, Zhang A, Li R, Jiao M, Wen R, Zheng R. Electroacupuncture regulates ferroptosis to improve postoperative cognitive dysfunction in mice through mediating GRX1/GSK-3β/Nrf2 axis. Brain Res Bull 2025; 222:111234. [PMID: 39889835 DOI: 10.1016/j.brainresbull.2025.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The incidence of postoperative cognitive dysfunction (POCD) is higher happening in the elderly. It has been reported electroacupuncture (EA) was beneficial to the treatment of POCD, but its specific regulatory mechanism is still unclear. METHODS Through partial hepatectomy in mice, POCD model of mice was established. Baihui acupoint (GV20) was selected for targeted point of EA therapy. Morris water maze (MWM) was applied to evaluate cognitive impairment of mice. HE staining was used to examine cell arrangement and cell morphology in hippocampus of mice. RT-qPCR, western blot and IHC were employed to detect abundance of genes and proteins. MDA, GSH and iron levels was measured by some commercial kits. RESULTS Our findings revealed that partial hepatectomy surgery impaired learning and memory ability of mice, promoted ferroptosis. inhibited GRX1 and inactivated GSK-3β/Nrf2 pathway. However, EA therapy abolished these effects. In addition, GRX1 silencing and erastin abolished EA-mediated alterations of improving POCD in mice. CONCLUSION EA suppressed ferroptosis by regulating GRX1/GSK-3β/Nrf2 pathway to improve postoperative cognitive dysfunction of POCD mice.
Collapse
Affiliation(s)
- Xiaqing Zhang
- First Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No.2 Weiyang West Road, Xianyang City, Shaanxi Province 712000, PR China
| | - Afen Zhang
- First Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No.2 Weiyang West Road, Xianyang City, Shaanxi Province 712000, PR China
| | - Rui Li
- First Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No.2 Weiyang West Road, Xianyang City, Shaanxi Province 712000, PR China
| | - Mingna Jiao
- First Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No.2 Weiyang West Road, Xianyang City, Shaanxi Province 712000, PR China
| | - Rou Wen
- First Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No.2 Weiyang West Road, Xianyang City, Shaanxi Province 712000, PR China
| | - Rongzhi Zheng
- First Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, No.2 Weiyang West Road, Xianyang City, Shaanxi Province 712000, PR China.
| |
Collapse
|
2
|
Falco JA, Wynia-Smith SL, McCoy J, Smith BC, Weerapana E. Identification of Protein Targets of S-Nitroso-Coenzyme A-Mediated S-Nitrosation Using Chemoproteomics. ACS Chem Biol 2024; 19:193-207. [PMID: 38159293 PMCID: PMC11154738 DOI: 10.1021/acschembio.3c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
S-Nitrosation is a cysteine post-translational modification fundamental to cellular signaling. This modification regulates protein function in numerous biological processes in the nervous, cardiovascular, and immune systems. Small molecule or protein nitrosothiols act as mediators of NO signaling by transferring the NO group (formally NO+) to a free thiol on a target protein through a transnitrosation reaction. The protein targets of specific transnitrosating agents and the extent and functional effects of S-nitrosation on these target proteins have been poorly characterized. S-nitroso-coenzyme A (CoA-SNO) was recently identified as a mediator of endogenous S-nitrosation. Here, we identified direct protein targets of CoA-SNO-mediated transnitrosation using a competitive chemical-proteomic approach that quantified the extent of modification on 789 cysteine residues in response to CoA-SNO. A subset of cysteines displayed high susceptibility to modification by CoA-SNO, including previously uncharacterized sites of S-nitrosation. We further validated and functionally characterized the functional effects of S-nitrosation on the protein targets phosphofructokinase (platelet type), ATP citrate synthase, and ornithine aminotransferase.
Collapse
Affiliation(s)
- Julia A. Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - James McCoy
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Brian C. Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
3
|
Vašková J, Kočan L, Vaško L, Perjési P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023; 28:molecules28031447. [PMID: 36771108 PMCID: PMC9919958 DOI: 10.3390/molecules28031447] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The tripeptide glutathione is found in all eukaryotic cells, and due to the compartmentalization of biochemical processes, its synthesis takes place exclusively in the cytosol. At the same time, its functions depend on its transport to/from organelles and interorgan transport, in which the liver plays a central role. Glutathione is determined as a marker of the redox state in many diseases, aging processes, and cell death resulting from its properties and reactivity. It also uses other enzymes and proteins, which enables it to engage and regulate various cell functions. This paper approximates the role of these systems in redox and detoxification reactions such as conjugation reactions of glutathione-S-transferases, glyoxylases, reduction of peroxides through thiol peroxidases (glutathione peroxidases, peroxiredoxins) and thiol-disulfide exchange reactions catalyzed by glutaredoxins.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
- Correspondence: (J.V.); (P.P.); Tel.: +42-155-234-3232 (J.V.)
| | - Ladislav Kočan
- Clinic of Anaesthesiology and Intensive Care Medicine, East Slovak Institute of Cardiovascular Disease, 040 11 Košice, Slovakia
| | - Ladislav Vaško
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovakia
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, 7600 Pécs, Hungary
- Correspondence: (J.V.); (P.P.); Tel.: +42-155-234-3232 (J.V.)
| |
Collapse
|
4
|
Montagna C, Filomeni G. Looking at denitrosylation to understand the myogenesis gone awry theory of rhabdomyosarcoma. Nitric Oxide 2022; 122-123:1-5. [PMID: 35182743 DOI: 10.1016/j.niox.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
S-nitrosylation of proteins is a nitric oxide (NO)-based post-translational modification of cysteine residues. By removing the NO moiety from S-nitrosothiol adducts, denitrosylases restore sulfhydryl protein pool and act as downstream tuners of S-nitrosylation signaling. Alterations in the S-nitrosylation/denitrosylation dynamics are implicated in many pathological states, including cancer ontogenesis and progression, skeletal muscle myogenesis and function. Here, we aim to provide and link different lines of evidence, and elaborate on the possible role of S-nitrosylation/denitrosylation signaling in rhabdomyosarcoma, one of the most common pediatric mesenchymal malignancy.
Collapse
Affiliation(s)
- Costanza Montagna
- Department of Biology, Tor Vergata University, Rome, Italy; Unicamillus-Saint Camillus University of Health Sciences, Rome, Italy.
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University, Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Song W, Ren YJ, Liu LL, Zhao YY, Li QF, Yang HB. Curcumin induced the cell death of immortalized human keratinocytes (HaCaT) through caspase-independent and caspase-dependent pathways. Food Funct 2021; 12:8669-8680. [PMID: 34351351 DOI: 10.1039/d1fo01560e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin is a diketone compound found in turmeric. It is used as food additives and spices, and has anti-proliferation and anti-cancer properties. However, the effect of curcumin on human keratinocytes (KCs) is still unclear. In this study, curcumin dramatically inhibited the cell growth of immortalized human KCs (HaCaT) and arrested the cells at the G2/M phase, with an apoptosis rate of 33.95% after 24 μM curcumin treatment. HaCaT cells showed changes in typical apoptotic morphology and the configuration of nuclear matrix-intermediate filaments (NM-IFs) after treatment with curcumin. We identified 16 differentially expressed nuclear matrix (NM) proteins, including apoptosis inducing factor (AIF) and caspase 3, by 2-DE and MALDI-TOF/TOF mass spectrometry. The expression of AIF decreased in the mitochondria and increased in the nucleus. Immunofluorescence assays showed that AIF was released from the mitochondria to the nucleus. AIF silencing and caspase inhibitor (z-vad-fmk) both lead to HaCaT cells being insensitive to apoptosis induced by curcumin. Meanwhile, after curcumin treatment, mitochondrial membrane depolarization led to cytochrome c release from the mitochondria to the cytoplasm, and the ratio of Bax to Bcl-2 in HaCaT cells was also increased, which subsequently initiated the activation of caspase-3. These results suggest that curcumin-induced apoptosis of HaCaT cells occurs not only through the caspase-dependent pathway but also through the caspase-independent pathway. This discovery enhances the development and utilization of curcumin and provides possible evidence for the treatment of proliferative skin diseases, including skin cancer.
Collapse
Affiliation(s)
- Wei Song
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China.
| | - Yuan-Jing Ren
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China.
| | - Lu-Lu Liu
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China.
| | - Ya-Ying Zhao
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China.
| | - Qi-Fu Li
- School of Life Science, Xiamen University, Xiamen 361005, China.
| | - Hai-Bo Yang
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China. and School of Life Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Ogata FT, Branco V, Vale FF, Coppo L. Glutaredoxin: Discovery, redox defense and much more. Redox Biol 2021; 43:101975. [PMID: 33932870 PMCID: PMC8102999 DOI: 10.1016/j.redox.2021.101975] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/15/2023] Open
Abstract
Glutaredoxin, Grx, is a small protein containing an active site cysteine pair and was discovered in 1976 by Arne Holmgren. The Grx system, comprised of Grx, glutathione, glutathione reductase, and NADPH, was first described as an electron donor for Ribonucleotide Reductase but, from the first discovery in E.coli, the Grx family has impressively grown, particularly in the last two decades. Several isoforms have been described in different organisms (from bacteria to humans) and with different functions. The unique characteristic of Grxs is their ability to catalyse glutathione-dependent redox regulation via glutathionylation, the conjugation of glutathione to a substrate, and its reverse reaction, deglutathionylation. Grxs have also recently been enrolled in iron sulphur cluster formation. These functions have been implied in various physiological and pathological conditions, from immune defense to neurodegeneration and cancer development thus making Grx a possible drug target. This review aims to give an overview on Grxs, starting by a phylogenetic analysis of vertebrate Grxs, followed by an analysis of the mechanisms of action, the specific characteristics of the different human isoforms and a discussion on aspects related to human physiology and diseases.
Collapse
Affiliation(s)
- Fernando T Ogata
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Rua Mirassol, 207. 04044-010, São Paulo - SP, Brazil
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, SE-17165, Stockholm, Sweden.
| |
Collapse
|
7
|
Glutaredoxin 1 protects neurons from oxygen-glucose deprivation/reoxygenation (OGD/R)-induced apoptosis and oxidative stress via the modulation of GSK-3β/Nrf2 signaling. J Bioenerg Biomembr 2021; 53:369-379. [PMID: 33956252 DOI: 10.1007/s10863-021-09898-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/09/2021] [Indexed: 12/18/2022]
Abstract
Increasing evidence has indicated that glutaredoxin 1 (GRX1) is a potent antioxidant protein that promotes cell survival under conditions of oxidative stress. Oxidative stress-induced neuronal injury contributes to cerebral ischemia/reperfusion injury. However, the role of GRX1-mediated antioxidant defense against neuronal damage during cerebral ischemia/reperfusion injury has not been thoroughly investigated. Thus, the objective of this study was to evaluate whether GRX1 protects neurons against oxygen-glucose deprivation/reoxygenation (OGD/R)-evoked oxidative stress injury in an in vitro model of cerebral ischemia/reperfusion injury. Our data revealed that GRX1 was induced by OGD/R treatment in neurons. Functional assays indicated that loss of GRX1 exacerbated OGD/R-induced apoptosis and the generation of reactive oxygen species (ROS), while GRX1 up-regulation protected against OGD/R-evoked neuronal injury. Further investigation revealed that GRX1 promoted the nuclear expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhanced transcription of the Nrf2/antioxidant response element (ARE) in GOD/R-exposed neurons. Furthermore, GRX1 promoted the activation of Nrf2/ARE associated with the modulation of glycogen synthase kinase-3β (GSK-3β). GSK-3β inhibition blocked GRX1 knockdown-mediated suppression of Nrf2 activation. Notably, the suppression of Nrf2 partially reversed GRX1-mediated anti-oxidative stress injury in OGD/R-exposed neurons. In summary, these findings indicate that GRX1 protects neurons against OGD/R-induced oxidative stress injury by enhancing Nrf2 activation via the modulation of GSK-3β. Our study suggests that GRX1 is a potential neuroprotective protein that protects against cerebral ischemia/reperfusion injury.
Collapse
|
8
|
Weng X, Shi W, Zhang X, Du J. Dexmedetomidine attenuates H2O2-induced apoptosis of rat cardiomyocytes independently of antioxidant enzyme expression. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.repce.2020.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Weng X, Shi W, Zhang X, Du J. Dexmedetomidine attenuates H 2O 2-induced apoptosis of rat cardiomyocytes independently of antioxidant enzyme expression. Rev Port Cardiol 2021; 40:273-281. [PMID: 33715922 DOI: 10.1016/j.repc.2020.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Dexmedetomidine is a highly selective alpha-2 adrenoceptor agonist that has sedative and analgesic properties and myocardial protective effects. However, the mechanism underlying the protective effect of dexmedetomidine on cardiomyocytes remains unknown. This study mainly aimed to investigate the effects of dexmedetomidine on the generation of reactive oxygen species (ROS) in cardiomyocytes and whether it inhibits the apoptosis of cardiomyocytes by affecting antioxidant enzyme expression. METHODS Neonatal rat cardiomyocytes were pretreated with dexmedetomidine (100 nM) for 24 h. The cardiomyocytes were then incubated with 200 μM hydrogen peroxide solution (H2O2) for 4 h. PCR assay was used to determine the mRNA expression of antioxidant enzymes. Western blot assay was used to determine the protein expression of antioxidant enzymes. Fluorescence microscopy with the MitoSOX probe was used to detect the formation of ROS in cardiomyocytes, and fluorescence-activated cell sorting with annexin V/PI was used to determine the number of apoptotic cardiomyocytes. RESULTS Dexmedetomidine reduced ROS generation and antioxidant enzymes levels in cardiomyocytes before H2O2 stimulation (p<0.05). However, ROS generation and apoptosis in cardiomyocytes were significantly increased after H2O2 treatment, and dexmedetomidine pretreatment markedly inhibited the changes (p<0.05). CONCLUSION For the first time, to the best of our knowledge, our study shows that dexmedetomidine has a protective effect on cardiomyocytes through inhibition of ROS-induced apoptosis, and more importantly, this effect is independent of antioxidant enzyme mRNA and protein expression.
Collapse
Affiliation(s)
- Xiaojian Weng
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Wenjiao Shi
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Xiaodan Zhang
- Department of Intensive Care Unit, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, PR China.
| | - Jianer Du
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| |
Collapse
|
10
|
Burns M, Rizvi SHM, Tsukahara Y, Pimentel DR, Luptak I, Hamburg NM, Matsui R, Bachschmid MM. Role of Glutaredoxin-1 and Glutathionylation in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E6803. [PMID: 32948023 PMCID: PMC7555996 DOI: 10.3390/ijms21186803] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, and as rates continue to increase, discovering mechanisms and therapeutic targets become increasingly important. An underlying cause of most cardiovascular diseases is believed to be excess reactive oxygen or nitrogen species. Glutathione, the most abundant cellular antioxidant, plays an important role in the body's reaction to oxidative stress by forming reversible disulfide bridges with a variety of proteins, termed glutathionylation (GSylation). GSylation can alter the activity, function, and structure of proteins, making it a major regulator of cellular processes. Glutathione-protein mixed disulfide bonds are regulated by glutaredoxins (Glrxs), thioltransferase members of the thioredoxin family. Glrxs reduce GSylated proteins and make them available for another redox signaling cycle. Glrxs and GSylation play an important role in cardiovascular diseases, such as myocardial ischemia and reperfusion, cardiac hypertrophy, peripheral arterial disease, and atherosclerosis. This review primarily concerns the role of GSylation and Glrxs, particularly glutaredoxin-1 (Glrx), in cardiovascular diseases and the potential of Glrx as therapeutic agents.
Collapse
Affiliation(s)
- Mannix Burns
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - Syed Husain Mustafa Rizvi
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Yuko Tsukahara
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - David R. Pimentel
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Ivan Luptak
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Naomi M. Hamburg
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Reiko Matsui
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - Markus M. Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| |
Collapse
|
11
|
Montagna C, Cirotti C, Rizza S, Filomeni G. When S-Nitrosylation Gets to Mitochondria: From Signaling to Age-Related Diseases. Antioxid Redox Signal 2020; 32:884-905. [PMID: 31931592 DOI: 10.1089/ars.2019.7872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significance: Cysteines have an essential role in redox signaling, transforming an oxidant signal into a biological response. Among reversible cysteine post-translational modifications, S-nitrosylation acts as a redox-switch in several pathophysiological states, such as ischemia/reperfusion, synaptic transmission, cancer, and muscular dysfunctions. Recent Advances: Growing pieces of in vitro and in vivo evidence argue for S-nitrosylation being deeply involved in development and aging, and playing a role in the onset of different pathological states. New findings suggest it being an enzymatically regulated cellular process, with deep impact on mitochondrial structure and function, and in cellular metabolism. In light of this, the recent discovery of the denitrosylase S-nitrosoCoA (coenzyme A) reductase takes on even greater importance and opens new perspectives on S-nitrosylation as a general mechanism of cellular homeostasis. Critical Issues: Based on these recent findings, we aim at summarizing and elaborating on the established and emerging crucial roles of S-nitrosylation in mitochondrial metabolism and mitophagy, and provide an overview of the pathophysiological effects induced by its deregulation. Future Directions: The identification of new S-nitrosylation targets, and the comprehension of the mechanisms through which S-nitrosylation modulates specific classes of proteins, that is, those impinging on diverse mitochondrial functions, may help to better understand the pathophysiology of aging, and propose lines of intervention to slow down or extend the onset of aging-related diseases.
Collapse
Affiliation(s)
- Costanza Montagna
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Claudia Cirotti
- Laboratory of Signal Transduction, Fondazione Santa Lucia, Rome, Italy
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
12
|
Madusanka RK, Tharuka MDN, Liyanage DS, Sirisena DMKP, Lee J. Role of rockfish (Sebastes schlegelii) glutaredoxin 1 in innate immunity, and alleviation of cellular oxidative stress: Insights into localization, molecular characteristics, transcription, and function. Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110432. [PMID: 32119919 DOI: 10.1016/j.cbpb.2020.110432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/30/2022]
Abstract
Glutaredoxins are a group of heat stable oxidoreductases ubiquitously found in prokaryotes and eukaryotes. They are widely known for GSH (glutathione)-dependent protein disulfide reduction and cellular redox homeostasis. This study was performed to identify and characterize rockfish (Sebastes schlegelii) glutaredoxin 1 (SsGrx1) at molecular, transcriptional, and functional levels. The coding sequence of SsGrx1 was 318 bp in length and encoded a protein containing 106 amino acids. The molecular weight and theoretical isoelectric point of the putative SsGrx1 protein were 11.6 kDa and 6.71 kDa, respectively. The amino acid sequence of SsGrx1 comprised a CPYC redox active motif surrounded by several conserved GSH binding sites. The modeled protein structure was found to consist of five α-helices and four β-sheets, similar to human Grx1. SsGrx1 showed a tissue specific expression in all the tissues tested, with the highest expression in the kidney. Immune stimulation by lipopolysaccharides (LPS), polyinosinic:polycytidylic acid (polyI:C), and Streptococcus iniae (S. iniae) could significantly modulate the SsGrx1 expression pattern in the blood and gills. Analysis of its subcellular localization disclosed that SsGrx1 was prominently localized in the cytosol. Recombinant SsGrx1 (rSsGrx1) exhibited significant activity in insulin disulfide reduction assay and HED (β-Hydroxyethyl Disulfide) assay. Furthermore, transient overexpression of SsGrx1 in FHM (fathead minnow) cells significantly enhanced cell survival upon H2O2-induced apoptosis. Collectively, our findings strongly suggest that SsGrx1 plays a crucial role in providing rockfish immune protection against pathogens and oxidative stress.
Collapse
Affiliation(s)
- Rajamanthrilage Kasun Madusanka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
13
|
Ren X, Sengupta R, Lu J, Lundberg JO, Holmgren A. Characterization of mammalian glutaredoxin isoforms as S‐denitrosylases. FEBS Lett 2019; 593:1799-1806. [DOI: 10.1002/1873-3468.13454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyuan Ren
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| | - Rajib Sengupta
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
- Amity Institute of Biotechnology Amity University Kolkata India
| | - Jun Lu
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
- School of Pharmaceutical Sciences Southwest University Chongqing China
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| |
Collapse
|
14
|
Montagna C, Rizza S, Cirotti C, Maiani E, Muscaritoli M, Musarò A, Carrí MT, Ferraro E, Cecconi F, Filomeni G. nNOS/GSNOR interaction contributes to skeletal muscle differentiation and homeostasis. Cell Death Dis 2019; 10:354. [PMID: 31043586 PMCID: PMC6494884 DOI: 10.1038/s41419-019-1584-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) plays a crucial role in the maintenance of correct skeletal muscle function due, at least in part, to S-nitrosylation of specific protein targets. Similarly, we recently provided evidence for a muscular phenotype in mice lacking the denitrosylase S-nitrosoglutathione reductase (GSNOR). Here, we demonstrate that nNOS and GSNOR are concomitantly expressed during differentiation of C2C12. They colocalizes at the sarcolemma and co-immunoprecipitate in cells and in myofibers. We also provide evidence that GSNOR expression decreases in mouse models of muscular dystrophies and of muscle atrophy and wasting, i.e., aging and amyotrophic lateral sclerosis, suggesting a more general regulatory role of GSNOR in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- Costanza Montagna
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, 2400, Copenhagen, Denmark
| | - Salvatore Rizza
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Claudia Cirotti
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Fondazione Santa Lucia, IRCCS, 00143, Rome, Italy
| | - Emiliano Maiani
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine (formerly Department of Clinical Medicine), Sapienza University of Rome, 00185, Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Teresa Carrí
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Fondazione Santa Lucia, IRCCS, 00143, Rome, Italy
| | - Elisabetta Ferraro
- Department of Orthopaedics and Traumatology, Hospital "Maggiore della Carità", University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giuseppe Filomeni
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark. .,Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.
| |
Collapse
|
15
|
López-Grueso MJ, González-Ojeda R, Requejo-Aguilar R, McDonagh B, Fuentes-Almagro CA, Muntané J, Bárcena JA, Padilla CA. Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches. Redox Biol 2018; 21:101049. [PMID: 30639960 PMCID: PMC6327914 DOI: 10.1016/j.redox.2018.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to define the role of Trx and Grx on metabolic thiol redox regulation and identify their protein and metabolite targets. The hepatocarcinoma-derived HepG2 cell line under both normal and oxidative/nitrosative conditions by overexpression of NO synthase (NOS3) was used as experimental model. Grx1 or Trx1 silencing caused conspicuous changes in the redox proteome reflected by significant changes in the reduced/oxidized ratios of specific Cys's including several glycolytic enzymes. Cys91 of peroxiredoxin-6 (PRDX6) and Cys153 of phosphoglycerate mutase-1 (PGAM1), that are known to be involved in progression of tumor growth, are reported here for the first time as specific targets of Grx1. A group of proteins increased their CysRED/CysOX ratio upon Trx1 and/or Grx1 silencing, including caspase-3 Cys163, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) Cys247 and triose-phosphate isomerase (TPI) Cys255 likely by enhancement of NOS3 auto-oxidation. The activities of several glycolytic enzymes were also significantly affected. Glycolysis metabolic flux increased upon Trx1 silencing, whereas silencing of Grx1 had the opposite effect. Diversion of metabolic fluxes toward synthesis of fatty acids and phospholipids was observed in siRNA-Grx1 treated cells, while siRNA-Trx1 treated cells showed elevated levels of various sphingomyelins and ceramides and signs of increased protein degradation. Glutathione synthesis was stimulated by both treatments. These data indicate that Trx and Grx have both, common and specific protein Cys redox targets and that down regulation of either redoxin has markedly different metabolic outcomes. They reflect the delicate sensitivity of redox equilibrium to changes in any of the elements involved and the difficulty of forecasting metabolic responses to redox environmental changes. Trx1 and Grx1 Cys redox targets are abundant among Glycolytic enzymes. PRDX6-Cys91 and PGAM-Cys153 are specific targets of Grx1. Down regulation of thioredoxin and glutaredoxin have different metabolic outcomes. Glutathione synthesis and membrane lipid composition are sensitive to Trx1 and Grx1 down regulation. Redoxins down regulation also induce target Cys reductive changes under NOS3 overexpression.
Collapse
Affiliation(s)
- M J López-Grueso
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - R González-Ojeda
- Institute of Biomedicine of Seville (IBIS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville, Seville, Spain
| | - R Requejo-Aguilar
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - B McDonagh
- Dept. of Physiology, School of Medicine, NUI Galway, Ireland
| | | | - J Muntané
- Dept. of Physiology, School of Medicine, NUI Galway, Ireland
| | - J A Bárcena
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
| | - C A Padilla
- Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| |
Collapse
|
16
|
Wynia-Smith SL, Smith BC. Nitrosothiol formation and S-nitrosation signaling through nitric oxide synthases. Nitric Oxide 2016; 63:52-60. [PMID: 27720836 DOI: 10.1016/j.niox.2016.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/31/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule impacting many biological pathways. NO is produced in mammals by three nitric oxide synthase (NOS) isoforms: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). nNOS and eNOS produce low concentrations of NO for paracrine signaling; NO produced and released from one cell diffuses to a neighboring cell where it binds and activates soluble guanylyl cyclase (sGC). iNOS produces high concentrations of NO using NO toxicity to amplify the innate immune response. Recent work has also defined protein cysteine S-nitrosation as a pathway of sGC-independent NO signaling. Though many studies have shown that S-nitrosation regulates the activity of NOS isoforms and other proteins in vivo, many issues need to be resolved to establish S-nitrosation as a viable signaling mechanism. Several chemical mechanisms result in S-nitrosation including transition metal-catalyzed pathways, NO oxidation followed by thiolate reaction, and thiyl radical recombination with NO. Once formed, nitrosothiols can be transferred between cellular cysteine residues via transnitrosation reactions. However, it is largely unclear how these chemical processes result in selective S-nitrosation of specific cellular cysteine residues. S-nitrosation site selectivity may be imparted via direct interactions or colocalization with NOS isoforms that focus chemical or transnitrosation mechanisms of nitrosothiol formation or transfer. Here, we discuss chemical mechanisms of nitrosothiol formation, S-nitrosation of NOS isoforms, and potential S-nitrosation signaling cascades resulting from NOS S-nitrosation.
Collapse
Affiliation(s)
- Sarah L Wynia-Smith
- Department of Biochemistry and Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian C Smith
- Department of Biochemistry and Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
17
|
Coppo L, Montano SJ, Padilla AC, Holmgren A. Determination of glutaredoxin enzyme activity and protein S-glutathionylation using fluorescent eosin-glutathione. Anal Biochem 2016; 499:24-33. [PMID: 26836485 DOI: 10.1016/j.ab.2016.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 11/25/2022]
Abstract
Glutaredoxins catalyze glutathione-dependent disulfide oxidoreductions, particularly reduction of glutathione (GSH)-protein mixed disulfides. Mammalian glutaredoxins are present in the cytosol/nucleus as Grx1 or in mitochondria as Grx2a. Here we describe di-eosin-glutathione disulfide (Di-E-GSSG) as a new tool to study glutaredoxin (Grx) activity. Di-E-GSSG has almost no fluorescence in its disulfide form due to self-quenching, whereas the reduced form (E-GSH) has a large fluorescence emission at 545 nm after excitation at 520 nm. Di-E-GSSG was a very poor substrate for glutathione reductase, but we discovered that the molecule was an excellent substrate for glutaredoxin in a coupled assay system with GSH, nicotinamide adenine dinucleotide phosphate (NADPH), and glutathione reductase or with lipoamide, NADH, and lipoamide dehydrogenase. In addition, Di-E-GSSG was used to glutathionylate the free SH group of bovine serum albumin (BSA), yielding eosin-glutathionylated BSA (E-GS-BSA) readily observed in ultraviolet (UV) light. E-GS-BSA also displayed a quenched fluorescence, and its Grx-catalyzed reduction could be followed by the formation of E-GSH by fluorescence emission using microtiter plates. This way of measuring Grx activity provided an ultrasensitive method that detected Grx1 and Grx2 at picomolar levels. Human Grx1 was readily quantified in 40 μl of plasma and determined to be 680 ± 208 pM in healthy controls.
Collapse
Affiliation(s)
- Lucia Coppo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177, Stockholm, Sweden.
| | - Sergio J Montano
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Alicia C Padilla
- Department of Biochemistry and Molecular Biology, Campus de Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177, Stockholm, Sweden.
| |
Collapse
|
18
|
Yoshioka J. Thioredoxin superfamily and its effects on cardiac physiology and pathology. Compr Physiol 2016; 5:513-30. [PMID: 25880503 DOI: 10.1002/cphy.c140042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A precise control of oxidation/reduction of protein thiols is essential for intact cardiac physiology. Irreversible oxidative modifications have been proposed to play a role in the pathogenesis of cardiovascular diseases. An imbalance of redox homeostasis with diminution of antioxidant capacities predisposes the heart to oxidant injury. There is growing interest in endoplasmic reticulum (ER) stress in the cardiovascular field, since perturbation of redox homeostasis in the ER is sufficient to cause ER stress. Because a number of human diseases are related to altered redox homeostasis and defects in protein folding, many research efforts have been devoted in recent years to understanding the structure and enzymatic properties of the thioredoxin superfamily. The thioredoxin superfamily has been well documented as thiol oxidoreductases to exert a role in various cell signaling pathways. The redox properties of the thioredoxin motif account for the different functions of several members of the thioredoxin superfamily. While thioredoxin and glutaredoxin primarily act as antioxidants by reducing protein disulfides and mixed disulfide, another member of the superfamily, protein disulfide isomerase (PDI), can act as an oxidant by forming intrachain disulfide bonds that contribute to proper protein folding. Increasing evidence suggests a pivotal role of PDI in the survival pathway that promotes cardiomyocyte survival and leads to more favorable cardiac remodeling. Thus, the thiol redox state is important for cellular redox signaling and survival pathway in the heart. This review summarizes the key features of major members of the thioredoxin superfamily directly involved in cardiac physiology and pathology.
Collapse
Affiliation(s)
- Jun Yoshioka
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Jia R, Han C, Lei JL, Liu BL, Huang B, Huo HH, Yin ST. Effects of nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile turbot (Scophthalmus maximus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:1-9. [PMID: 26476021 DOI: 10.1016/j.aquatox.2015.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Nitrite (NO2(-)) is commonly present as contaminant in aquatic environment and toxic to aquatic organisms. In the present study, we investigated the effects of nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile turbot (Scophthalmus maximus). Fish were exposed to various concentrations of nitrite (0, 0.02, 0.08, 0.4 and 0.8mM) for 96 h. Fish blood and gills were collected to assay haematological parameters, oxidative stress and expression of genes after 0, 24, 48 and 96 h of exposure. In blood, the data showed that the levels of methemoglobin (MetHb), triglyceride (TG), potassium (K(+)), cortisol, heat shock protein 70 (HSP70) and glucose significantly increased in treatments with higher concentrations of nitrite (0.4 and/or 0.8mM) after 48 and 96 h, while the levels of haemoglobin (Hb) and sodium (Na(+)) significantly decreased in these treatments. In gills, nitrite (0.4 and/or 0.8mM) apparently reduced the levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione (GSH), increased the formation of malondialdehyde (MDA), up-regulated the mRNA levels of c-jun amino-terminal kinase (JUK1), p53, caspase-3, caspase-7 and caspase-9 after 48 and 96 h of exposure. The results suggested caspase-dependent and JUK signaling pathways played important roles in nitrite-induced apoptosis in fish. Further, this study provides new insights into how nitrite affects the physiological responses and apoptosis in a marine fish.
Collapse
Affiliation(s)
- Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Cen Han
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Ji-Lin Lei
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bao-Liang Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Bin Huang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Huan-Huan Huo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Shu-Ting Yin
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
20
|
Savreux-Lenglet G, Depauw S, David-Cordonnier MH. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts. Int J Mol Sci 2015; 16:26555-81. [PMID: 26556350 PMCID: PMC4661830 DOI: 10.3390/ijms161125971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.
Collapse
Affiliation(s)
- Gaëlle Savreux-Lenglet
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| |
Collapse
|
21
|
Zhang JY, Zhang F, Hong CQ, Giuliano AE, Cui XJ, Zhou GJ, Zhang GJ, Cui YK. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 2015; 12:10-22. [PMID: 25859407 PMCID: PMC4383849 DOI: 10.7497/j.issn.2095-3941.2014.0019] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/26/2014] [Indexed: 02/04/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described.
Collapse
Affiliation(s)
- Jin-Ying Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fan Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chao-Qun Hong
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armando E Giuliano
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiao-Jiang Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guang-Ji Zhou
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Guo-Jun Zhang
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yu-Kun Cui
- 1 Department of Physiology, Guangdong Medical College, Dongguan 523808, China ; 2 Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China ; 3 Department of Surgery, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
22
|
Spoel SH, van Ooijen G. Circadian redox signaling in plant immunity and abiotic stress. Antioxid Redox Signal 2014; 20:3024-39. [PMID: 23941583 PMCID: PMC4038994 DOI: 10.1089/ars.2013.5530] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/13/2013] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. RECENT ADVANCES Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. CRITICAL ISSUES Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. FUTURE DIRECTIONS Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.
Collapse
Affiliation(s)
- Steven H. Spoel
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerben van Ooijen
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- SythSys, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Wang YG, Li Y, Wang CY, Ai JW, Dong XY, Huang HY, Feng ZY, Pan YM, Lin Y, Wang BX, Yao LL. L-3-n-Butylphthalide protects rats' cardiomyocytes from ischaemia/reperfusion-induced apoptosis by affecting the mitochondrial apoptosis pathway. Acta Physiol (Oxf) 2014; 210:524-33. [PMID: 24286671 DOI: 10.1111/apha.12186] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/24/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022]
Abstract
AIMS This study investigated the role of L-3-n-Butylphthalide (NBP) in cardiac protection. METHODS The left anterior descending coronary arteries (LAD) of the rats were occluded for 30 min following by 2-h reperfusion to make the ischaemia/reperfusion models. Neonatal cardiomyocytes were cultured and subjected to hypoxia. L-3-n-Butylphthalide was administered intraperitoneally 2 h before the surgery and right after the reperfusion in the in vivo experiments or added to the culture medium in vitro. Haemodynamic parameters were recorded to evaluate the cardiac functions, triphenyltetrazolium chloride (TTC) and Evens blue staining were used to determine the area of risk and infarct area, apoptotic cell numbers were counted with terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining. Western blotting was used to determine the apoptotic protein levels and immune staining to determine the translocation of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein. RESULTS Our research showed for the first time that L-3-n-Butylphthalide had great effects in improving cardiac hemodynamic function and decreasing cardiac infarct areas and apoptotic cell numbers in the peri-infarct areas. The apoptotic signals investigation showed that L-3-n-Butylphthalide affected the mitochondrial pathway including Bcl-2 protein expression, inhibition of caspase 3 activation and cytochrome C releasing. Besides, Glyceraldehyde-3-phosphate dehydrogenase protein translocation was inhibited by L-3-n-Butylphthalide treatment, and this effect was mediated by endogenous reactive oxygen species (ROS). CONCLUSION L-3-n-Butylphthalide protects cardiomyocytes from ischaemia/reperfusion-induced apoptosis by antioxidant effect and affecting mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Y.-G. Wang
- Neurology Department of Shanghai Renji Hospital Affiliated to Jiaotong University; Shanghai China
| | - Y. Li
- Anesthesia Department of Zhongshan Hospital Affiliated to Fudan University; Shanghai China
| | - C.-Y. Wang
- Key Laboratory for Clinical Cardiovascular Genetics, Ministry of Education; FuWai Hospital; Chinese Academy of Medical Sciences; Beijing China
| | - J.-W. Ai
- Department of Physiology and Pathophysiology; Medical College of Fudan University; Shanghai China
| | - X.-Y. Dong
- Department of Physiology and Pathophysiology; Medical College of Fudan University; Shanghai China
| | - H.-Y. Huang
- Department of Physiology and Pathophysiology; Medical College of Fudan University; Shanghai China
| | - Z.-Y. Feng
- Neurology Department of Shanghai Renji Hospital Affiliated to Jiaotong University; Shanghai China
| | - Y.-M. Pan
- Neurology Department of Shanghai Renji Hospital Affiliated to Jiaotong University; Shanghai China
| | - Y. Lin
- Neurology Department of Shanghai Renji Hospital Affiliated to Jiaotong University; Shanghai China
| | - B.-X. Wang
- Neurology Department of Shanghai Renji Hospital Affiliated to Jiaotong University; Shanghai China
| | - L.-L. Yao
- Department of Physiology and Pathophysiology; Medical College of Fudan University; Shanghai China
| |
Collapse
|
24
|
You B, Huang S, Qin Q, Yi B, Yuan Y, Xu Z, Sun J. Glyceraldehyde-3-phosphate dehydrogenase interacts with proapoptotic kinase mst1 to promote cardiomyocyte apoptosis. PLoS One 2013; 8:e58697. [PMID: 23527007 PMCID: PMC3604124 DOI: 10.1371/journal.pone.0058697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
Mammalian sterile 20-like kinase 1 (Mst1) is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in the heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart remains unknown. In a yeast two-hybrid screen of a human heart cDNA library with Mst1 as bait, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as an Mst1-interacting protein. The interaction of GAPDH with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and mouse heart homogenates, in which GAPDH interacted with the kinase domain of Mst1, whereas the C-terminal catalytic domain of GAPDH mediated its interaction with Mst1. Moreover, interaction of Mst1 with GAPDH caused a robust phosphorylation of GAPDH and markedly increased the Mst1 activity in cells. Chelerythrine, a potent inducer of apoptosis, substantially increased the nuclear translocation and interaction of GAPDH and Mst1 in cardiomyocytes. Overexpression of GAPDH significantly augmented the Mst1 mediated apoptosis, whereas knockdown of GAPDH markedly attenuated the Mst1 activation and cardiomyocyte apoptosis in response to either chelerythrine or hypoxia/reoxygenation. These findings reveal a novel function of GAPDH in Mst1 activation and cardiomyocyte apoptosis and suggest that disruption of GAPDH interaction with Mst1 may prevent apoptosis related heart diseases such as heart failure and ischemic heart disease.
Collapse
Affiliation(s)
- Bei You
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shengdong Huang
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qing Qin
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Bing Yi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Yang Yuan
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhiyun Xu
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianxin Sun
- Institute of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Reynolds MM, Witzeling SD, Damodaran VB, Medeiros TN, Knodle RD, Edwards MA, Lookian PP, Brown MA. Applications for nitric oxide in halting proliferation of tumor cells. Biochem Biophys Res Commun 2013; 431:647-51. [PMID: 23337501 DOI: 10.1016/j.bbrc.2013.01.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Tumor resistance to cytotoxic therapeutics coupled with dose-limiting toxicity is a serious hurdle in the field of medical oncology. In the face of this obstacle, nitric oxide has emerged as a powerful adjuvant for the hypersensitization of tumors to more traditional chemo- and radio-therapeutics. Furthermore, emerging evidence indicates that nitric oxide donors have the potential to function independently in the clinical management of cancer. Herein, we discuss the role of nitric oxide in cancer and the potential for nitric oxide donors to support conventional therapeutics.
Collapse
Affiliation(s)
- Melissa M Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1052, USA
| | | | | | | | | | | | | | | |
Collapse
|