1
|
Shinjo T, Nishimura F. The bidirectional association between diabetes and periodontitis, from basic to clinical. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:15-21. [PMID: 38098853 PMCID: PMC10716706 DOI: 10.1016/j.jdsr.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
The prevalence and severity of periodontitis are increased and advanced in diabetes. Severe periodontitis elicits adverse effects on diabetes by impairing insulin actions due to systemic microinflammation. Recent studies unveil the emerging findings and molecular basis of the bidirectional relationship between periodontitis and diabetes. In addition to conventional mechanisms such as hyperglycemia, hyperlipidemia, and chronic inflammation, deficient insulin action may play a pathogenic role in the progression of periodontitis under diabetes. Epidemiologically, from the viewpoint of the adverse effect of periodontitis on diabetes, recent studies have suggested that Asians including Japanese and Asian Americans with diabetes and mild obesity (BMI <25 kg/m2) should pay more attention to their increased risk for cardiovascular diseases. In this review, we summarize recent findings on the effect of diabetes on periodontitis from the viewpoint of abnormalities in metabolism and insulin resistance with novel mechanisms, and the influence of periodontitis on diabetes mainly focused on micro-inflammation related to mature adipose tissue and discuss future perspectives about novel approaches to interrupt the adverse interrelationship.
Collapse
Affiliation(s)
- Takanori Shinjo
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Fusanori Nishimura
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Zheng T, Lu F, Cai T, Chen H, Zhang R, Wang G, Li X. The interconnection between periodontitis and HIV-1 latency: Molecular mechanisms and therapeutic insights. Int Immunopharmacol 2024; 143:113402. [PMID: 39437490 DOI: 10.1016/j.intimp.2024.113402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Periodontitis is one of the major global public health problems associated with the occurrence and development of diverse systemic diseases, especially acquired immune deficiency syndrome (AIDS), necessitating further research and clinical attention. The persistence of HIV-1 latency poses a significant challenge to the attainment of a functional cure for AIDS, despite the introduction of highly active antiretroviral therapy (HAART). A similar mechanistic basis between periodontitis and HIV-1 latency has been revealed by many studies, suggesting possible mechanisms whereby periodontitis and HIV-1 latency may mutually influence each other. Therefore, we aimed to systematically summarize the current research on periodontitis and HIV-1 latency to investigate their potential correlations. This study revealed several common hubs for periodontitis and HIV-1 latency in the nuclear factor kappa-B (NF-κB) signaling pathway and other signaling pathways, including the Wnt/β-catenin pathway, bromodomain-containing protein 4 (BRD4), protein kinase C (PKC), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, programmed cell death protein 1 (PD-1), histone deacetylases (HDACs), and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. Furthermore, we will discuss the hypothesis that periodontal pathogens may represent the unifying mechanism elucidating the intricate interconnection between periodontitis and HIV-1 latency. This article presents a detailed and comprehensive overview of the relationship underlying periodontitis and HIV-1 latency in terms of molecular mechanisms, which may provide novel theoretical insight into the pathogenesis of periodontitis and HIV-1 latency and reveal suitable therapeutic targets for the two diseases.
Collapse
Affiliation(s)
- Tengyi Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tiange Cai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaxue Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guixiang Wang
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China.
| |
Collapse
|
3
|
Janson TM, Ramenzoni LL, Hatz CR, Schlagenhauf U, Attin T, Schmidlin PR. Limosilactobacillus reuteri supernatant attenuates inflammatory responses of human gingival fibroblasts to LPS but not to elevated glucose levels. J Periodontal Res 2024; 59:974-981. [PMID: 38764133 DOI: 10.1111/jre.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
AIM We investigated the in vitro effect of Limosilactobacillus reuteri DSM 17938 supernatant on the inflammatory response of human gingival fibroblasts (HGF) challenged by lipopolysaccharide (LPS) or elevated glucose levels. METHODS HGF were exposed to LPS (1 μg/mL), glucose (5, 12 mM or 25 mM), and dilutions of supernatant prepared from L. reuteri DSM 17938 (0.5 × 107, 1.0 × 107, 2.5 × 107, and 5.0 × 107 CFU/mL). After 24 h cell viability and levels of cytokines (IL-1β, IL-6 and IL-8) and TLR-2 were determined. RESULTS None of the tested L. reuteri (DSM 17938) supernatant concentrations reduced the viability of HGF. Supernatant concentrations (2.5 × 107 and 5 × 107 CFU/mL) significantly (p < .05) decreased the production of IL-1β, IL-6, IL-8, and TLR-2 in the presence of LPS. In contrast, inflammatory markers were not reduced by L. reuteri supernatant in the presence of glucose. Glucose concentrations of 12 mM and 24 mM still lead to an elevated production of the investigated biochemical mediators. CONCLUSION While L. reuteri (DSM 17938) supernatant attenuates the inflammatory response of HGF to LPS in a dose-dependent manner, elevated glucose levels suppress this action. These in vitro results support the overall anti-inflammatory efficacy of L. reuteri supplementation in plaque-associated periodontal inflammations.
Collapse
Affiliation(s)
- T M Janson
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - L L Ramenzoni
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - C R Hatz
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - U Schlagenhauf
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
- Department of Conservative Dentistry and Periodontology, Center for Oral Health, University Hospital Wuerzburg, Wuerzburg, Germany
| | - T Attin
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - P R Schmidlin
- Division of Periodontology and Peri-implant Diseases, Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Qin H, Li G, Xu X, Zhang C, Zhong W, Xu S, Yin Y, Song J. The role of oral microbiome in periodontitis under diabetes mellitus. J Oral Microbiol 2022; 14:2078031. [PMID: 35694215 PMCID: PMC9176325 DOI: 10.1080/20002297.2022.2078031] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Periodontitis is among most common human inflammatory diseases and characterized by destruction of tooth-supporting tissues that will eventually lead to tooth loss. Diabetes mellitus (DM) is a group of metabolic disorders characterized by chronic hyperglycemia which results from defects in insulin secretion and/or insulin resistance. Numerous studies have provided evidence for the inter-relationship between DM and periodontitis that has been considered as the sixth most frequent complication of DM. However, the mechanisms are not fully understood yet. The impact of DM on periodontitis through hyperglycemia and inflammatory pathways is well described, but the effects of DM on oral microbiota remain controversial according to previous studies. Recent studies using next-generation sequencing technology indicate that DM can alter the biodiversity and composition of oral microbiome especially subgingival microbiome. This may be another mechanism by which DM risks or aggravates periodontitis. Thus, to understand the role of oral microbiome in periodontitis of diabetics and the mechanism of shifts of oral microbiome under DM would be valuable for making specific therapeutic regimens for treating periodontitis patients with DM or preventing diabetic patients from periodontitis. This article reviews the role of oral microbiome in periodontal health (symbiosis) and disease (dysbiosis), highlights the oral microbial shifts under DM and summarizes the mechanism of the shifts.
Collapse
Affiliation(s)
- Han Qin
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Guangyue Li
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Xiaohui Xu
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Shihan Xu
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, Unknown, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, Unknown, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, Unknown, China
| |
Collapse
|
5
|
The Effect of Diabetes Mellitus on IGF Axis and Stem Cell Mediated Regeneration of the Periodontium. Bioengineering (Basel) 2021; 8:bioengineering8120202. [PMID: 34940355 PMCID: PMC8698546 DOI: 10.3390/bioengineering8120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontitis and diabetes mellitus (DM) are two of the most common and challenging health problems worldwide and they affect each other mutually and adversely. Current periodontal therapies have unpredictable outcome in diabetic patients. Periodontal tissue engineering is a challenging but promising approach that aims at restoring periodontal tissues using one or all of the following: stem cells, signalling molecules and scaffolds. Mesenchymal stem cells (MSCs) and insulin-like growth factor (IGF) represent ideal examples of stem cells and signalling molecules. This review outlines the most recent updates in characterizing MSCs isolated from diabetics to fully understand why diabetics are more prone to periodontitis that theoretically reflect the impaired regenerative capabilities of their native stem cells. This characterisation is of utmost importance to enhance autologous stem cells based tissue regeneration in diabetic patients using both MSCs and members of IGF axis.
Collapse
|
6
|
Gao L, Yu W, Song P, Li Q. Non-histone methylation of SET7/9 and its biological functions. Recent Pat Anticancer Drug Discov 2021; 17:231-243. [PMID: 34856916 DOI: 10.2174/1574892816666211202160041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND (su(var)-3-9,enhancer-of-zeste,trithorax) domain-containing protein 7/9 (SET7/9) is a member of the protein lysine methyltransferases (PLMTs or PKMTs) family. It contains a SET domain. Recent studies demonstrate that SET7/9 methylates both lysine 4 of histone 3 (H3-K4) and lysine(s) of non-histone proteins, including transcription factors, tumor suppressors, and membrane-associated receptors. OBJECTIVE This article mainly reviews the non-histone methylation effects of SET7/9 and its functions in tumorigenesis and development. METHODS PubMed was screened for this information. RESULTS SET7/9 plays a key regulatory role in various biological processes such as cell proliferation, transcription regulation, cell cycle, protein stability, cardiac morphogenesis, and development. In addition, SET7/9 is involved in the pathogenesis of hair loss, breast cancer progression, human carotid plaque atherosclerosis, chronic kidney disease, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. CONCLUSION SET7/9 is an important methyltransferase, which can catalyze the methylation of a variety of proteins. Its substrates are closely related to the occurrence and development of tumors.
Collapse
Affiliation(s)
- Lili Gao
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Weiping Yu
- Department of Pathophysiology, Medical school of Southeast University, Nanjing 210009, Jiangsu. China
| | - Peng Song
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Qing Li
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| |
Collapse
|
7
|
State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021; 10:5383. [PMID: 34830663 PMCID: PMC8618619 DOI: 10.3390/jcm10225383&set/a 912874875+940716348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
|
8
|
State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021. [DOI: 10.3390/jcm10225383
expr 893869204 + 932072443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
|
9
|
González-Moles MÁ, Ramos-García P. State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021; 10:5383. [PMID: 34830663 PMCID: PMC8618619 DOI: 10.3390/jcm10225383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
10
|
Pirih FQ, Monajemzadeh S, Singh N, Sinacola RS, Shin JM, Chen T, Fenno JC, Kamarajan P, Rickard AH, Travan S, Paster BJ, Kapila Y. Association between metabolic syndrome and periodontitis: The role of lipids, inflammatory cytokines, altered host response, and the microbiome. Periodontol 2000 2021; 87:50-75. [PMID: 34463996 PMCID: PMC8457155 DOI: 10.1111/prd.12379] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodontitis has been associated with many systemic diseases and conditions, including metabolic syndrome. Metabolic syndrome is a cluster of conditions that occur concomitantly and together they increase the risk of cardiovascular disease and double the risk of type 2 diabetes. In this review, we focus on the association between metabolic syndrome and periodontitis; however, we also include information on diabetes mellitus and cardiovascular disease, since these two conditions are significantly intertwined with metabolic syndrome. With regard to periodontitis and metabolic syndrome, to date, the vast majority of studies point to an association between these two conditions and also demonstrate that periodontitis can contribute to the development of, or can worsen, metabolic syndrome. Evaluating the effect of metabolic syndrome on the salivary microbiome, data presented herein support the hypothesis that the salivary bacterial profile is altered in metabolic syndrome patients compared with healthy patients. Considering periodontitis and these three conditions, the vast majority of human and animal studies point to an association between periodontitis and metabolic syndrome, diabetes, and cardiovascular disease. Moreover, there is evidence to suggest that metabolic syndrome and diabetes can alter the oral microbiome. However, more studies are needed to fully understand the influence these conditions have on each other.
Collapse
Affiliation(s)
- Flavia Q Pirih
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, California
| | | | - Neelima Singh
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| | | | - Jae Min Shin
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Tsute Chen
- The Forsyth Institute, Cambridge, Massachusetts
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Suncica Travan
- Department of Periodontics & Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Bruce J Paster
- The Forsyth Institute, Cambridge, Massachusetts
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Yvonne Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| |
Collapse
|
11
|
Verbascoside Protects Gingival Cells against High Glucose-Induced Oxidative Stress via PKC/HMGB1/RAGE/NFκB Pathway. Antioxidants (Basel) 2021; 10:antiox10091445. [PMID: 34573077 PMCID: PMC8464661 DOI: 10.3390/antiox10091445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Impaired wound healing often occurs in patients with diabetes and causes great inconvenience to them. Aside from the presence of prolonged inflammation, the accumulation of oxidative stress is also implicated in the delayed wound healing. In the present study, we tested the effect of verbascoside, a caffeoyl phenylethanoid glycoside, on the improvement of cell viability and wound healing capacity of gingival epithelial cells under high glucose condition. We showed that verbascoside attenuated the high glucose-induced cytotoxicity and impaired healing, which may be associated with the downregulation of oxidative stress. Our results demonstrated that verbascoside increased the activity of the antioxidant enzyme SOD and reduced the oxidative stress indicator, 8-OHdG, as well as apoptosis. Moreover, verbascoside upregulated the PGC1-α and NRF1 expression and promoted mitochondrial biogenesis, which was mediated by suppression of PKC/HMGB1/RAGE/NFκB signaling. Likewise, we showed the inhibitory effect of verbascoside on oxidative stress was via repression of PKC/HMGB1/RAGE/NFκB activation. Also, our data suggested that the PKC-mediated oxidative stress may lead to the elevated production of inflammatory cytokines, IL-6 and IL-1β. Collectively, we demonstrated that verbascoside may be beneficial to ameliorate impaired oral wound healing for diabetic patients.
Collapse
|
12
|
Polak D, Sanui T, Nishimura F, Shapira L. Diabetes as a risk factor for periodontal disease-plausible mechanisms. Periodontol 2000 2020; 83:46-58. [PMID: 32385872 DOI: 10.1111/prd.12298] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present narrative review examines the scientific evidence of the biological mechanisms that may link periodontitis and diabetes, as a source of comorbidity. Publications regarding periodontitis and diabetes, in human, animals, and in vitro were screened for their relevance. Periodontal microbiome studies indicate a possible association between altered glucose metabolism in prediabetes and diabetes and changes in the periodontal microbiome. Coinciding with this, hyperglycemia enhances expression of pathogen receptors, which enhance host response to the dysbiotic microbiome. Hyperglycemia also promotes pro-inflammatory response independently or via the advanced glycation end product/receptor for advanced glycation end product pathway. These processes excite cellular tissue destruction functions, which further enhance pro-inflammatory cytokines expression and alteration in the RANKL/osteoprotegerin ratio, promoting formation and activation of osteoclasts. The evidence supports the role of several pathogenic mechanisms in the path of true causal comorbidity between poorly controlled diabetes and periodontitis. However, further research is needed to better understand these mechanisms and to explore other mechanisms.
Collapse
Affiliation(s)
- David Polak
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Terukazu Sanui
- Section of Periodontology, Division of Oral Rehabilitation, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Fusanori Nishimura
- Section of Periodontology, Division of Oral Rehabilitation, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Lior Shapira
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
13
|
Zhang XY, Huang Z, Li QJ, Zhong GQ, Meng JJ, Wang DX, Tu RH. Ischemic postconditioning attenuates the inflammatory response in ischemia/reperfusion myocardium by upregulating miR‑499 and inhibiting TLR2 activation. Mol Med Rep 2020; 22:209-218. [PMID: 32377693 PMCID: PMC7248531 DOI: 10.3892/mmr.2020.11104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptor 2 (TLR2)-mediated myocardial inflammation serves an important role in promoting myocardial ischemic/reperfusion (I/R) injury. Previous studies have shown that miR-499 is critical for cardioprotection after ischemic postconditioning (IPostC). Therefore, the present study evaluated the protective effect of IPostC on the myocardium by inhibiting TLR2, and also assessed the involvement of microRNA (miR)-499. Rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. The IPostC was 3 cycles of 30 sec of reperfusion and 30 sec of re-occlusion prior to reperfusion. In total, 90 rats were randomly divided into six groups (n=15 per group): Sham; I/R; IPostC; miR-499 negative control adeno-associated virus (AAV) vectors + IPostC; miR-499 inhibitor AAV vectors + IPostC; and miR-499 mimic AAV vectors + IPostC. It was identified that IPostC significantly decreased the I/R-induced cardiomyocyte apoptotic index (29.4±2.03% in IPostC vs. 42.64±2.27% in I/R; P<0.05) and myocardial infarct size (48.53±2.49% in IPostC vs. 66.52±3.1% in I/R; P<0.05). Moreover, these beneficial effects were accompanied by increased miR-499 expression levels (as demonstrated by reverse transcription-quantitative PCR) in the myocardial tissue and decreased TLR2, protein kinase C (PKC), interleukin (IL)-1β and IL-6 expression levels (as demonstrated by western blotting and ELISA) in the myocardium and serum. The results indicated that IPostC + miR-499 mimics significantly inhibited inflammation and the PKC signaling pathway and enhanced the anti-inflammatory and anti-apoptotic effects of IPostC. However, IPostC + miR-499 inhibitors had the opposite effect. Therefore, it was speculated that IPostC may have a miR-499-dependent cardioprotective effect. The present results suggested that miR-499 may be involved in IPostC-mediated ischemic cardioprotection, which may occur via local and systemic TLR2 inhibition, subsequent inhibition of the PKC signaling pathway and a decrease in inflammatory cytokine release, including IL-1β and IL-6. Moreover, these effects will ultimately lead to a decrease in the myocardial apoptotic index and myocardial infarct size via the induction of the anti-apoptotic protein Bcl-2, and inhibition of the pro-apoptotic protein Bax in myocardium.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zheng Huang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qing-Jie Li
- Department of Cardiology, Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guo-Qiang Zhong
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian-Jun Meng
- Department of Geriatric Health Care Center, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dong-Xiao Wang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Hui Tu
- Guangxi Key Laboratory of Precision Medicine in Cardio‑Cerebrovascular Diseases Control and Prevention, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
14
|
Hyperglycaemia and Ischaemia Impair Wound Healing via Toll-like Receptor 4 Pathway Activation in vitro and in an Experimental Murine Model. Eur J Vasc Endovasc Surg 2019; 59:117-127. [PMID: 31732468 DOI: 10.1016/j.ejvs.2019.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Diabetes mellitus has reached epidemic proportions. Foot ulceration is a multifactorial complication of diabetes associated with marked morbidity and mortality. Innate immune Toll-like receptor 4 (TLR4) mediated inflammation has been implicated in the systemic pathogenesis of diabetes and may contribute to impairment of wound healing. This study investigates the effect of high glucose and hypoxic conditions on TLR4 activation and signalling in vitro and in vivo. METHODS Fibroblasts cultured at physiological glucose concentration (5.5 mM) were exposed to glucose concentrations from 0 mM to 25 mM, with duplicates placed in a hypoxic chamber. TLR4 inhibition was assessed in the 25 mM glucose groups. Diabetes was induced in wild type (WT) and TLR4 knockout (KO) C57BL/6 mice by intraperitoneal injection of low dose streptozocin (STZ). Hindlimb ischaemia was induced by femoral artery ligation four weeks post streptozocin, and a full thickness 4 mm skin wound inflicted below the knee. Wound healing was assessed via digital planimetry on days 3, 7, and 14 post surgery. RESULTS Hypoxic and high glucose (25 mM) conditions led to an increase in TLR4 protein expression, apoptosis, and interleukin (IL)-6 release. Inhibition with a TLR4 neutralising antibody and specific TLR4 antagonist ameliorated the effects of high glucose and ischaemia (p < .05). In vivo, wound healing was significantly impaired in the diabetic ischaemic group at day 14 (p < .05). Diabetic ischaemic wounds in TLR4 KO mice exhibited significantly improved healing rates compared with those in WT mice at all time points. CONCLUSION Hypoxia stimulates upregulation of TLR4 protein expression and this effect is exaggerated by hyperglycaemia. In TLR4 KO mice, there is a significant improvement in the healing of diabetic ischaemic wounds compared with WT. It is suggested that a synergistic effect between hypoxia and hyperglycaemia impairing wound healing exists, through TLR4 mediated inflammation.
Collapse
|
15
|
Lee KTD, Chiang MH, Chen PH, Ho ML, Lee HZ, Lee HE, Wang YH. The effect of low-level laser irradiation on hyperglycemia-induced inflammation in human gingival fibroblasts. Lasers Med Sci 2018; 34:913-920. [DOI: 10.1007/s10103-018-2675-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/25/2018] [Indexed: 01/09/2023]
|
16
|
Dubey D, Kumar S, Chaurasia S, Guleria A, Ahmed S, Singh R, Kumari R, Modi DR, Misra R, Kumar D. NMR-Based Serum Metabolomics Revealed Distinctive Metabolic Patterns in Reactive Arthritis Compared with Rheumatoid Arthritis. J Proteome Res 2018; 18:130-146. [PMID: 30376345 DOI: 10.1021/acs.jproteome.8b00439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive arthritis (ReA) is a member of seronegative spondyloarthropathy (SSA), which involves an acute/subacute onset of asymmetrical lower limb joint inflammation weeks after a genitourinary/gastrointestinal infection. The diagnosis is clinical because it is difficult to culture the microbes from synovial fluid. Arthritis patients with a similar clinical picture but lapsed history of an immediate preceding infection that do not fulfill the diagnostic criteria of other members of SSA, such as ankylosing spondylitis, psoriatic arthritis, and arthritis associated with inflammatory bowel disease, are labeled as peripheral undifferentiated spondyloarthropathy (uSpA). Both ReA and uSpA patients show a strong association with class I major histocompatibility complex allele, HLA-B27, and a clear association with an infectious trigger; however, the disease mechanism is far from clear. Because the clinical picture is largely dominated by rheumatoid-arthritis (RA)-like features including elevated levels of inflammatory markers (such as ESR, CRP, etc.), these overlapping symptoms often confound the clinical diagnosis and represent a clinical dilemma, making treatment choice more generalized. Therefore, there is a compelling need to identify biomarkers that can support the diagnosis of ReA/uSpA. In the present study, we performed NMR-based serum metabolomics analysis and demonstrated that ReA/uSpA patients are clearly distinguishable from controls and further that these patients can also be distinguished from the RA patients based on the metabolic profiles, with high sensitivity and specificity. The discriminatory metabolites were further subjected to area under receiver operating characteristic curve analysis, which led to the identification of four metabolic entities (i.e., valine, leucine, arginine/lysine, and phenylalanine) that could differentiate ReA/uSpA from RA.
Collapse
Affiliation(s)
- Durgesh Dubey
- Babasaheb Bhimrao Ambedkar University , Lucknow 226025 , India
| | | | | | | | | | - Rajeev Singh
- National Institute of Virology , Gorkhpur Unit , BRD Medical College Campus , Gorakhpur 273013 , India.,Department of Biochemistry , KGMU , Lucknow 226003 , India
| | - Reena Kumari
- Department of Biochemistry , KGMU , Lucknow 226003 , India
| | - Dinesh Raj Modi
- Babasaheb Bhimrao Ambedkar University , Lucknow 226025 , India
| | | | | |
Collapse
|
17
|
Zhang Q, Olatunji OJ, Chen H, Tola AJ, Oluwaniyi OO. Evaluation of the Anti-Diabetic Activity of Polysaccharide from Cordyceps cicadae in Experimental Diabetic Rats. Chem Biodivers 2018; 15:e1800219. [PMID: 29874416 DOI: 10.1002/cbdv.201800219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023]
Abstract
Cordyceps cicadae is a medicinal fungus used in treating night sweat, childhood convulsions, vision improvement and pain. This study was designed to evaluate the anti-diabetic activity of the crude polysaccharide (SHF) from the mycelium and body portion of C. cicadae. Diabetes mellitus was induced in the rat with a single intravenous injection of alloxan monohydrate (150 mg/kg). In other to evaluate the anti-diabetic effects of C. cicadae polysaccharide in alloxan-induced diabetic rats, the crude polysaccharide (SHF at 100, 200 and 400 mg/kg body weight) and glibenclamide were administered orally to diabetic rats for 30 days. Blood glucose level, total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphate (ALP), creatinine (CREA), urea, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH) were determined. SHF showed significant reduction in blood glucose in diabetic rats. Treatment of diabetic rats also resulted an improvement in body weights, increased HDL, SOD and GSH, as well as decreased TC, TG, LDL, MDA, urea, CREA, ALT, AST and ALP. These results suggested that C. cicadae polysaccharide displayed anti-hyperglycemic, anti-hyperlipidemic and antioxidant activities and could be a promising therapeutic source in managing diabetes mellitus and its associated complications.
Collapse
Affiliation(s)
- Qianping Zhang
- Department of Endocrinology, Dezhou Municipal Hospital, Dezhou, 253000, P. R. China
| | - Opeyemi J Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Hongxia Chen
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, R. P. China
| | - Adesola J Tola
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Omolara O Oluwaniyi
- Department of Industrial Chemistry, Faculty of Science, University of Ilorin, P.M.B 1515, Ilorin, Kwara State, Nigeria
| |
Collapse
|
18
|
Duda-Sobczak A, Zozulinska-Ziolkiewicz D, Wyganowska-Swiatkowska M. Type 1 Diabetes and Periodontal Health. Clin Ther 2018; 40:823-827. [PMID: 29429766 DOI: 10.1016/j.clinthera.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 02/02/2023]
Abstract
It is well established that hyperglycemia affects periodontal outcomes. A body of evidence, predominantly over the past 20 years supports significant independent associations between periodontal disease and glycemic control or complications of diabetes. Association between periodontal tissue and hyperglycemia is possible through altered cellular immunity, increased proliferation of bacteria, microangiopathy, and formation of the advanced glycation end products. However, most studies focus solely on patients with type 2 diabetes or diabetes in general. There is still the paucity of data concerning patients with type 1 diabetes (T1D). Here, the authors consider the possible mechanisms linking periodontal disease with diabetes, focusing mainly on T1D and discuss possible diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Anna Duda-Sobczak
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | |
Collapse
|
19
|
Polak D, Shapira L. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol 2017; 45:150-166. [PMID: 29280184 DOI: 10.1111/jcpe.12803] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 02/06/2023]
Abstract
AIM To provide an update of the review by Taylor (Journal of Clinical Periodontology, 2013, 40, S113) regarding the scientific evidence of the biological association between periodontitis and diabetes. METHODS Literature searches were performed using MeSH terms, keywords and title words and were published between 2012 and November 2016. All publications were screened for their relevance. The data from the articles were extracted and summarized in tables and a narrative review. RESULTS Small-scale molecular periodontal microbiome studies indicate a possible association between altered glucose metabolism in pre-diabetes and diabetes and changes in the periodontal microbiome, with no evidence for casual relationships. Clinical and animal studies found elevated gingival levels of IL1-β, TNF-α, IL-6, RANKL/OPG and oxygen metabolites in poorly controlled diabetes. In addition, individuals with diabetes and periodontitis exhibit high levels of circulating TNF-α, CRP and mediators of oxidative stress, and successful periodontal treatment reduces their levels. CONCLUSIONS The elevated pro-inflammatory factors in the gingiva of patients with poorly controlled diabetes suggest a biological pathway that may aggravate periodontitis. Some evidence suggests that the systemic inflammatory burden in periodontitis has the potential to affect diabetes control, but no studies addressed the impact of successful periodontal therapy on the pathophysiological mechanisms involved in systemic complications of diabetes.
Collapse
Affiliation(s)
- David Polak
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Lior Shapira
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
20
|
Wu Y, Song LT, Li JS, Zhu DW, Jiang SY, Deng JY. MicroRNA-126 Regulates Inflammatory Cytokine Secretion in Human Gingival Fibroblasts Under High Glucose via Targeting Tumor Necrosis Factor Receptor Associated Factor 6. J Periodontol 2017; 88:e179-e187. [PMID: 28598282 DOI: 10.1902/jop.2017.170091] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND MicroRNAs (miRs) play a crucial role in inflammatory diseases, including periodontitis. Meanwhile, miRs act as biomarkers for predicting diabetes mellitus (DM). However, the regulatory mechanism of miR-126 on development of periodontitis in patients with DM still remains unclear. METHODS Human gingival fibroblasts were cultured with low (5.5 mmol/L), medium (15 mmol/L), and high (25 mmol/L) glucose, respectively. Expressions of miR-126, tumor necrosis factor (TNF) receptor associated factor (TRAF) 6, and related cytokines were analyzed by real-time polymerase chain reaction (PCR). After transfection with miR-126 mimic, PCR and western blot were performed to detect level of TRAF6, and luciferase reporter assay confirmed if TRAF6 is the direct target of miR-126. Production of cytokines was measured using enzyme-linked immunosorbent assay. RESULTS Increased glucose significantly suppressed miR-126 expression in human gingival fibroblasts (P <0.05). Also, high glucose increased TRAF6, interleukin (IL)-6, TNF-α, and chemical chemokine ligand (CCL) 2 levels, whereas it decreased IL-10 level. MiR-126 mimic significantly decreased TRAF6 mRNA and protein levels under high glucose (P <0.05). Also, miR-126 directly targeted TRAF6 through binding to its 3' untranslated region in human gingival fibroblasts. Overexpression of miR-126 significantly abrogated high glucose-induced secretion of proinflammatory cytokines such as IL-6, TNF-α, and CCL2 and promoted production of IL-10. CONCLUSION These data suggest that miR-126 inhibits inflammation of human gingival fibroblasts under high glucose through targeting TRAF6, which may be a potential therapeutic target for periodontitis concomitant with DM.
Collapse
Affiliation(s)
- Yi Wu
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Li-Ting Song
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Jia-Shan Li
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Dong-Wang Zhu
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Shao-Yun Jiang
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Jia-Yin Deng
- Department of Stomatology, Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| |
Collapse
|
21
|
Chokpaisarn J, Urao N, Voravuthikunchai SP, Koh TJ. Quercus infectoria inhibits Set7/NF-κB inflammatory pathway in macrophages exposed to a diabetic environment. Cytokine 2017; 94:29-36. [PMID: 28408068 DOI: 10.1016/j.cyto.2017.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/20/2017] [Accepted: 04/03/2017] [Indexed: 01/12/2023]
Abstract
Chronic inflammation plays a key role in the pathogenesis of myriad complications associated with diabetes and thus anti-inflammatory therapies may ameliorate these complications. Quercus infectoria (Qi) extract has been shown to downregulate inflammatory processes; however, the molecular mechanisms of this anti-inflammatory activity remain unclear. The hypothesis of our study was that Qi extract exerts its anti-inflammatory effect by downregulating the Set7/NF-κB pathway. Bone marrow-derived macrophages (BMM) were treated with high glucose plus palmitate medium (HG/Pa) to simulate the diabetic environment. Compared with control conditions, HG/Pa elevated expression Set7, expression and activity of NF-κB along with expression of several inflammatory cytokines. These changes were associated with increased levels of intracellular reactive oxygen species (ROS). Moreover, similar alterations were demonstrated in BMM derived from mice fed a high fat diet (HFD) compared to those from lean mice, suggesting that HFD-induced changes in BM progenitors persist throughout differentiation and culture. Importantly, Qi extract dose-dependently reduced Set7, p65 and inflammatory cytokine expression relative to vehicle controls in both HG/Pa-and HFD-treated BMM. Finally, macrophages/monocytes isolated from wounds of diabetic mice that were treated with Qi solution exhibited lower expression of the inflammatory cytokines, IL-1β and TNF-α, compared with vehicle treated wounds, demonstrating translation to the in vivo diabetic environment. Taken together, data from this study suggests that Qi downregulates diabetes-induced activity of the Set7/NF-kB pathway.
Collapse
Affiliation(s)
- Julalak Chokpaisarn
- Department of Microbiology and Excellent Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Supayang P Voravuthikunchai
- Department of Microbiology and Excellent Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
22
|
Kashiwagi Y, Takedachi M, Mori K, Kubota M, Yamada S, Kitamura M, Murakami S. High glucose-induced oxidative stress increases IL-8 production in human gingival epithelial cells. Oral Dis 2016; 22:578-84. [PMID: 27171647 DOI: 10.1111/odi.12502] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/25/2016] [Accepted: 05/08/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Diabetes is often associated with increased prevalence and severity of periodontal disease. We hypothesized that gingival epithelial cells modify periodontal disease progression and predicted that hyperglycemia would activate an inflammatory response in human gingival epithelial cells (HGECs). MATERIALS AND METHODS We tested our hypothesis in immortalized HGECs (epi 4 cells) isolated from periodontal tissue and transfected with the simian virus 40 T antigen. The epi 4 cells were cultured in high (25 mM, HG) and normal (6 mM, NG) glucose conditions. RESULTS The epi 4 cells showed increased interleukin-8 (IL-8) protein secretion and mRNA expression when cultured in HG, compared with in NG. These effects were not associated with increased cell proliferation and were not observed in a hyperosmolar control group (normal glucose with 19 mM mannitol). Increased IL-8 secretion in HG was inhibited by pretreatment with an antioxidant, N-acetylcysteine, or a protein kinase C inhibitor, Ro31-8220. Hyperglycemia did not affect IL-8 secretion by gingival fibroblasts or periodontal ligament cells. In epi 4 cells, hyperglycemia also induced expression of toll-like receptor 2 (TLR2) but not TLR4. CONCLUSION These findings suggest a potential participation of epithelial cells in periodontal disease during diabetes by evoking an excessive host inflammatory response.
Collapse
Affiliation(s)
- Y Kashiwagi
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - M Takedachi
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - K Mori
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - M Kubota
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - S Yamada
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - M Kitamura
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - S Murakami
- Division of Oral Biology and Disease Control, Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
23
|
Lysophospholipid Receptors, as Novel Conditional Danger Receptors and Homeostatic Receptors Modulate Inflammation-Novel Paradigm and Therapeutic Potential. J Cardiovasc Transl Res 2016; 9:343-59. [PMID: 27230673 DOI: 10.1007/s12265-016-9700-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/29/2022]
Abstract
There are limitations in the current classification of danger-associated molecular patterns (DAMP) receptors. To overcome these limitations, we propose a new paradigm by using endogenous metabolites lysophospholipids (LPLs) as a prototype. By utilizing a data mining method we pioneered, we made the following findings: (1) endogenous metabolites such as LPLs at basal level have physiological functions; (2) under sterile inflammation, expression of some LPLs is elevated. These LPLs act as conditional DAMPs or anti-inflammatory homeostasis-associated molecular pattern molecules (HAMPs) for regulating the progression of inflammation or inhibition of inflammation, respectively; (3) receptors for conditional DAMPs and HAMPs are differentially expressed in human and mouse tissues; and (4) complex signaling mechanism exists between pro-inflammatory mediators and classical DAMPs that regulate the expression of conditional DAMPs and HAMPs. This novel insight will facilitate identification of novel conditional DAMPs and HAMPs, thus promote development of new therapeutic targets to treat inflammatory disorders.
Collapse
|
24
|
Shikama Y, Kudo Y, Ishimaru N, Funaki M. Possible Involvement of Palmitate in Pathogenesis of Periodontitis. J Cell Physiol 2015; 230:2981-9. [PMID: 25921577 DOI: 10.1002/jcp.25029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes (T2D) is characterized by decreased insulin sensitivity and higher concentrations of free fatty acids (FFAs) in plasma. Among FFAs, saturated fatty acids (SFAs), such as palmitate, have been suggested to promote inflammatory responses. Although many epidemiological studies have shown a link between periodontitis and T2D, little is known about the clinical significance of SFAs in periodontitis. In this study, we showed that gingival fibroblasts have cell-surface expression of CD36, which is also known as FAT/fatty acid translocase. Moreover, CD36 expression was increased in gingival fibroblasts of high-fat diet-induced T2D model mice, compared with gingival fibroblasts of mice fed a normal diet. DNA microarray analysis revealed that palmitate increased mRNA expression of pro-inflammatory cytokines and chemokines in human gingival fibroblasts (HGF). Consistent with these results, we confirmed that palmitate-induced interleukin (IL)-6, IL-8, and CXCL1 secretion in HGF, using a cytokine array and ELISA. SFAs, but not an unsaturated fatty acid, oleate, induced IL-8 production. Docosahexaenoic acid (DHA), which is one of the omega-3 polyunsaturated fatty acids, significantly suppressed palmitate-induced IL-6 and IL-8 production. Treatment of HGF with a CD36 inhibitor also inhibited palmitate-induced pro-inflammatory responses. Finally, we demonstrated that Porphyromonas gingivalis (P.g.) lipopolysaccharide and heat-killed P.g. augmented palmitate-induced chemokine secretion in HGF. These results suggest a potential link between SFAs in plasma and the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Yosuke Shikama
- Clinical Research Center for Diabetes, Tokushima University Hospital, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Makoto Funaki
- Clinical Research Center for Diabetes, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
25
|
Kato H, Taguchi Y, Tominaga K, Kimura D, Yamawaki I, Noguchi M, Yamauchi N, Tamura I, Tanaka A, Umeda M. High Glucose Concentrations Suppress the Proliferation of Human Periodontal Ligament Stem Cells and Their Differentiation Into Osteoblasts. J Periodontol 2015; 87:e44-51. [PMID: 26537370 DOI: 10.1902/jop.2015.150474] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is a major risk factor for periodontal disease and affects various cellular functions. Periodontal ligament stem cells (PDLSCs) play an important role in periodontal tissue regeneration; however, the effect of hyperglycemia on PDLSCs is unclear. The aim of this study is to investigate whether hyperglycemia affects periodontal tissue regeneration, using human PDLSCs and high-glucose medium as a model of DM. METHODS PDLSCs were obtained from healthy adult human mandibular third molars. Cell proliferation, osteoblastic differentiation, and proinflammatory cytokine expression were investigated by culturing PDLSCs in media supplemented with four different glucose concentrations representative of control patients (5.5 mM), patients with postprandial or controlled DM (8.0 mM), and patients with uncontrolled DM (12.0 and 24.0 mM). The molecular effects of hyperglycemia on PDLSC physiology were examined with a focus on the nuclear factor (NF)-(κB signaling pathway. The involvement of NF-κB was investigated with a specific NF-κB inhibitor in PDLSCs under hyperglycemic conditions. RESULTS High glucose levels inhibited PDLSC proliferation and differentiation into osteoblasts but induced NF-κB activation and subsequent interleukin (IL)-6 and IL-8 expression. Treatment with an NF-κB inhibitor rescued the defects in cell proliferation and osteoblastic differentiation and inhibited the IL-6 expression caused by the high-glucose environment. CONCLUSION The results of this study demonstrate that hyperglycemia inhibits human PDLSC proliferation and osteoblastic differentiation.
Collapse
Affiliation(s)
- Hirohito Kato
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | | | - Daisuke Kimura
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Isao Yamawaki
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Masahiro Noguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | | | - Isao Tamura
- Department of Oral Anatomy, Osaka Dental University
| | - Akio Tanaka
- Department of Oral Pathology, Osaka Dental University
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
26
|
Sonnenschein SK, Meyle J. Local inflammatory reactions in patients with diabetes and periodontitis. Periodontol 2000 2015; 69:221-54. [DOI: 10.1111/prd.12089] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2014] [Indexed: 12/14/2022]
|
27
|
Tipton DA, Hatten AA, Babu JP, Dabbous MK. Effect of glycated albumin and cranberry components on interleukin-6 and matrix metalloproteinase-3 production by human gingival fibroblasts. J Periodontal Res 2015; 51:228-36. [PMID: 26179241 DOI: 10.1111/jre.12302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Gingival fibroblasts have the potential to participate in periodontal inflammation and breakdown, producing interleukin (IL)-6 and matrix metalloproteinase (MMP)-3. Advanced glycation end products (AGEs), formed during diabetic hyperglycemia, might aggravate periodontal inflammation. The cranberry contains anti-inflammatory polyphenols, which inhibit proinflammatory activities of lipopolysaccharide (LPS)- and IL-1β-stimulated human cells. Little is known of its effects on gingival fibroblast IL-6 or MMP-3 production stimulated by AGEs. The objectives were to determine cranberry effects on IL-6 and MMP-3 production by gingival fibroblasts exposed to the representative AGE, glycated human serum albumin (G-HSA), or LPS ± G-HSA. MATERIAL AND METHODS Cranberry high molecular weight non-dialyzable material (NDM), was derived from cranberry juice. Normal human gingival fibroblasts were incubated with G-HSA or normal HSA or Porphyromonas gingivalis LPS (1 μg/mL) ± G-HSA, in the presence or absence of preincubation with NDM. IL-6 and MMP-3 were measured by enzyme-linked immunosorbent assay. Data were analyzed using one-way analysis of variance and Scheffe's F procedure. RESULTS IL-6 production was stimulated by G-HSA or LPS (p < 0.01), which was inhibited in both cases by NDM (p < 0.002). [G-HSA+LPS] synergistically stimulated IL-6 production (p < 0.0001), which was inhibited by NDM. MMP-3 levels were not stimulated by G-HSA but were decreased by LPS (p < 0.02). [G-HSA+LPS] increased MMP-3 production significantly, vs. LPS (p = 0.0005). NDM inhibited MMP-3 levels in the presence of G-HSA or LPS, and in the presence of [G-HSA+LPS] (p < 0.0001). CONCLUSIONS G-HSA ± LPS may have differential effects on IL-6 and MMP-3 production by human gingival fibroblasts, but both are inhibited by NDM. The study suggests that cranberry phenols may be useful in regulating the host response and perhaps treating periodontitis in patients with poorly controlled diabetes.
Collapse
Affiliation(s)
- D A Tipton
- College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A A Hatten
- College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - J P Babu
- College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - M Kh Dabbous
- College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA.,College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
28
|
Mandal SM, Mahata D, Migliolo L, Parekh A, Addy PS, Mandal M, Basak A. Glucose directly promotes antifungal resistance in the fungal pathogen, Candida spp. J Biol Chem 2014; 289:25468-73. [PMID: 25053418 PMCID: PMC4162151 DOI: 10.1074/jbc.c114.571778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/20/2014] [Indexed: 11/06/2022] Open
Abstract
Effects of glucose on the susceptibility of antifungal agents were investigated against Candida spp. Increasing the concentration of glucose decreased the activity of antifungal agents; voriconazole was the most affected drugs followed by amphotericin B. No significant change has been observed for anidulafungin. Biophysical interactions between antifungal agents with glucose molecules were investigated using isothermal titration calorimetry, Fourier transform infrared, and (1)H NMR. Glucose has a higher affinity to bind with voriconazole by hydrogen bonding and decrease the susceptibility of antifungal agents during chemotherapy. In addition to confirming the results observed in vitro, theoretical docking studies demonstrated that voriconazole presented three important hydrogen bonds and amphotericin B presented two hydrogen bonds that stabilized the glucose. In vivo results also suggest that the physiologically relevant higher glucose level in the bloodstream of diabetes mellitus mice might interact with the available selective agents during antifungal therapy, thus decreasing glucose activity by complex formation. Thus, proper selection of drugs for diabetes mellitus patients is important to control infectious diseases.
Collapse
Affiliation(s)
- Santi M Mandal
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India, the Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Denial Mahata
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ludovico Migliolo
- the Programa de Pós-Graduação em Biotecnologia, Centro de Pesquisas Bioquímicas e Biofísicas, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil, and
| | - Aditya Parekh
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Partha S Addy
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Basak
- From the Department of Chemistry, Central Research Facility, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India,
| |
Collapse
|
29
|
Interleukin-1β increased the expression of protease-activated receptor 4 mRNA and protein in dorsal root ganglion neurons. Neurochem Res 2013; 38:1895-903. [PMID: 23775412 DOI: 10.1007/s11064-013-1095-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Protease-activated receptor-4 (PAR4) is localized in primary sensory neurons and is believed to implicate in the modulation of nociceptive mechanisms. The pro-inflammatory cytokine interleukin-1β (IL-1β) is involved in the generation of hyperalgesia in pathological states such as neuropathy and inflammation. Previous studies have shown that IL-1β enhances the expression of PAR4 in many cell types but the effect of this cytokine on primary sensory neuron PAR4 expression is less clear. In the present study, we evaluated in rat dorsal root ganglion (DRG) neurons the influence of IL-1β on PAR4 mRNA and protein levels after IL-1β intraplantar injection into the hind-paw or treatment of cultured DRG neurons. The expression of PAR4 in cultured DRG neurons was also assessed after treatment with IL-1β with pre-addition of phorbol-12-myristate 13-acetate (PMA, a PKC activator) or chelerythrine chloride (a PKC inhibitor). We found that IL-1β intraplantar injection into the hind-paw or long-term exposure of cultured DRG neurons to IL-1β significantly increased the proportion of DRG neurons expressing PAR4 immunoreactivity. Real-time PCR and western blotting showed that IL-1β treatment also significantly elevated PAR4 mRNA and protein levels in DRG neurons. This IL-1β effect was enhanced in DRG neurons when DRG cultures were pre-treatment with the PMA. But pre-incubation with chelerythrine chloride strongly inhibited the IL-1β-induced increase of PAR4 mRNA and protein levels. These results demonstrate that the expression of PAR4 mRNA and protein induced by IL-1β is PKC signaling pathway dependent.
Collapse
|