1
|
Sirek T, Król-Jatręga K, Borawski P, Zmarzły N, Boroń D, Ossowski P, Nowotny-Czupryna O, Boroń K, Janiszewska-Bil D, Mitka-Krysiak E, Grabarek BO. Distinct mRNA expression profiles and miRNA regulators of the PI3K/AKT/mTOR pathway in breast cancer: insights into tumor progression and therapeutic targets. Front Oncol 2025; 14:1515387. [PMID: 39850811 PMCID: PMC11754234 DOI: 10.3389/fonc.2024.1515387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Background Breast cancer remains a leading cause of mortality among women, driven by the molecular complexity of its various subtypes. This study aimed to investigate the differential expression of genes and miRNAs involved in the PI3K/AKT/mTOR signaling pathway, a critical regulator of cancer progression. Methods We analyzed tumor tissues from five breast cancer subtypes-luminal A, luminal B HER2-negative, luminal B HER2-positive, HER2-positive, and triple-negative breast cancer (TNBC)-and compared them with non-cancerous tissues. Microarray and qRT-PCR techniques were employed to profile mRNAs and miRNAs, while bioinformatic tools predicted miRNA-mRNA interactions. Statistical analysis was performed with a statistical significance threshold (p) < 0.05. Results We identified several upregulated genes across all subtypes, with TNBC and HER2-positive cancers showing the most significant changes. Key genes such as COL1A1, COL4A1, PIK3CA, PIK3R1, and mTOR were found to be overexpressed, correlating with increased cancer aggressiveness. miRNA analysis revealed that miR-190a-3p, miR-4729, and miR-19a-3p potentially regulate these genes, influencing the PI3K/AKT/mTOR pathway. For instance, reduced expression of miR-190a-3p may contribute to the overexpression of PIK3CA and other pathway components, enhancing metastatic potential. Conclusion Our findings suggest that the PI3K/AKT/mTOR pathway and its miRNA regulators play crucial roles in breast cancer progression, particularly in aggressive subtypes like TNBC. The identified miRNAs and mRNAs hold potential as biomarkers for diagnosis and treatment, but further validation in functional studies is required. This study provides a foundation for targeted therapies aimed at modulating this critical pathway to improve breast cancer outcomes.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | - Katarzyna Król-Jatręga
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | | | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Dariusz Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
- University of Economics and Humanities in Warsaw, Warszawa, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Olga Nowotny-Czupryna
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Kacper Boroń
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
| | - Dominika Janiszewska-Bil
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Elżbieta Mitka-Krysiak
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
| |
Collapse
|
2
|
Fan S, Liu H, Hou J, Zheng G, Gu P, Liu X. Characterizing adipocytokine-related signatures for prognosis prediction in prostate cancer. Front Cell Dev Biol 2024; 12:1475980. [PMID: 39524226 PMCID: PMC11544632 DOI: 10.3389/fcell.2024.1475980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Background Prostate cancer (PCa) is a prevalent malignant tumor in males, with a significant incidence of biochemical recurrence (BCR) despite advancements in treatment. Adipose tissue surrounding the prostate, known as periprostatic adipose tissue (PPAT), contributes to PCa invasion through adipocytokine production. However, the relationship between adipocytokine-related genes and PCa prognosis remains understudied. This study was conducted to provide a theoretical basis and serve as a reference for the use of adipocytokine-related genes as prognostic markers in PCa. Methods Transcriptome and survival data of PCa patients from The Cancer Genome Atlas (TCGA) database were analyzed. Differential gene expression analysis was conducted using the DESeq2 and limma packages. Prognostic genes were identified through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression. A prognostic model was developed and validated utilizing receiver operating characteristic (ROC) and Kaplan-Meier (K-M) curves. Assessments of immune cell infiltration and drug sensitivity were also carried out. Subsequently, the function of BNIP3L gene in PCa was verified. Results A total of 47 adipocytokine-related differentially expressed genes (DEGs) were identified. Five genes (PPARGC1A, APOE, BNIP3L, STEAP4, and C1QTNF3) were selected as prognostic markers. The prognostic model demonstrated significant predictive accuracy in both training and validation cohorts. Patients with higher risk scores exhibited poorer survival outcomes. Immune cell infiltration analysis revealed that the high-risk group had increased immune and ESTIMATE scores, while the low-risk group had higher tumor purity. In vitro experiments confirmed the suppressive effects of BNIP3L on PCa cell proliferation, migration, and invasion. Conclusion The prognostic model independently predicts the survival of patients with PCa, aiding in prognostic prediction and therapeutic efficacy. It expands the study of adipocytokine-related genes in PCa, presenting novel targets for treatment.
Collapse
Affiliation(s)
- Shicheng Fan
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haolin Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Hou
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guiying Zheng
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peng Gu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaodong Liu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Critelli RM, Casari F, Borghi A, Serino G, Caporali C, Magistri P, Pecchi A, Shahini E, Milosa F, Di Marco L, Pivetti A, Lasagni S, Schepis F, De Maria N, Dituri F, Martínez-Chantar ML, Di Benedetto F, Giannelli G, Villa E. The Neoangiogenic Transcriptomic Signature Impacts Hepatocellular Carcinoma Prognosis and Can Be Triggered by Transarterial Chemoembolization Treatment. Cancers (Basel) 2024; 16:3549. [PMID: 39456643 PMCID: PMC11505901 DOI: 10.3390/cancers16203549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: We evaluated the relationship between the neoangiogenic transcriptomic signature (nTS) and clinical symptoms, treatment outcomes, and survival in hepatocellular carcinoma (HCC) patients. Methods: This study prospectively followed 328 patients in the derivation and 256 in the validation cohort (with a median follow-up of 31 and 22 months, respectively). The nTS was associated with disease presentation, treatments administered, and overall survival rates. Additionally, this study investigated how multiple treatments influenced changes in nTS status and alterations in microRNA expression. Results: The nTS was identified in 27.4% of patients, linked to aggressive features like multifocality and elevated alpha-fetoprotein (AFP), a pattern consistent with that of the validation cohort. Most patients in both cohorts received treatment for HCC. nTS+ patients had limited access to, and benefited less from, liver transplantation or radiofrequency ablation (RFA) compared to nTS- patients. By the end, 78.9% had died, with nTS- patients showing better median survival and response to treatments than their nTS+ counterparts, who had lower survival across all treatment types. Among those who received transarterial chemoembolization (TACE), 31.2% (21/80 patients after the initial treatment and another four following a second TACE) transitioned from an nTS- to an nTS+ status. This shift was associated with lower survival and alterations in microRNA expressions related to oncogenic pathways. Conclusions: The nTS markedly influences treatment eligibility and survival in patients with HCC. Notably, the nTS can develop after repeated TACE procedures, significantly impacting patient survival and altering oncogenic microRNA expression patterns. These findings highlight the critical role of the nTS in guiding treatment decisions and prognostication in HCC management.
Collapse
Affiliation(s)
- Rosina Maria Critelli
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Federico Casari
- Radiology, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.C.); (C.C.); (A.P.)
| | - Alberto Borghi
- Internal Medicine, Ospedale di Faenza, 48018 Faenza, Italy;
| | - Grazia Serino
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - Cristian Caporali
- Radiology, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.C.); (C.C.); (A.P.)
| | - Paolo Magistri
- HPB Surgery and Liver Transplant Unit, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Annarita Pecchi
- Radiology, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.C.); (C.C.); (A.P.)
| | - Endrit Shahini
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - Fabiola Milosa
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Lorenza Di Marco
- Clinical and Experimental Medicine PhD Program, 41125 Modena, Italy;
| | - Alessandra Pivetti
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Simone Lasagni
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Filippo Schepis
- M.E.C. Dipartimental Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Nicola De Maria
- Gastroenterology Unit, CHIMOMO Department, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.C.); (F.M.); (A.P.); (S.L.); (N.D.M.)
| | - Francesco Dituri
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), 28200 Madrid, Spain
| | - Fabrizio Di Benedetto
- HPB Surgery and Liver Transplant Unit, Azienda Ospedaliero-Universitaria di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “IRCCS Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (G.S.); (E.S.); (F.D.); (G.G.)
| | - Erica Villa
- M.E.C. Dipartimental Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
4
|
Luan Y, Yang Y, Luan Y, Liu H, Xing H, Pei J, Liu H, Qin B, Ren K. Targeting ferroptosis and ferritinophagy: new targets for cardiovascular diseases. J Zhejiang Univ Sci B 2024; 25:1-22. [PMID: 38163663 PMCID: PMC10758208 DOI: 10.1631/jzus.b2300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/21/2023] [Indexed: 01/03/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading factor driving mortality worldwide. Iron, an essential trace mineral, is important in numerous biological processes, and its role in CVDs has raised broad discussion for decades. Iron-mediated cell death, namely ferroptosis, has attracted much attention due to its critical role in cardiomyocyte damage and CVDs. Furthermore, ferritinophagy is the upstream mechanism that induces ferroptosis, and is closely related to CVDs. This review aims to delineate the processes and mechanisms of ferroptosis and ferritinophagy, and the regulatory pathways and molecular targets involved in ferritinophagy, and to determine their roles in CVDs. Furthermore, we discuss the possibility of targeting ferritinophagy-induced ferroptosis modulators for treating CVDs. Collectively, this review offers some new insights into the pathology of CVDs and identifies possible therapeutic targets.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People's Hospital, Zhengzhou 450052, China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Bo Qin
- Center for Translational Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
5
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
6
|
Peng B, Li J, Yan Y, Liu Y, Liang Q, Liu W, Thakur A, Zhang K, Xu Z, Wang J, Zhang F. Non-coding RNAs: The recently accentuated molecules in the regulation of cell autophagy for ovarian cancer pathogenesis and therapeutic response. Front Pharmacol 2023; 14:1162045. [PMID: 37063265 PMCID: PMC10102359 DOI: 10.3389/fphar.2023.1162045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Autophagy is a self-recycling and conserved process, in which the senescent cytoplasmic components are degraded in cells and then recycled to maintain homeostatic balance. Emerging evidence has suggested the involvement of autophagy in oncogenesis and progression of various cancers, such as ovarian cancer (OC). Meanwhile, the non-coding RNAs (ncRNAs) frequently regulate the mRNA transcription and other functional signaling pathways in cell autophagy, displaying promising roles in human cancer pathogenesis and therapeutic response. This article mainly reviews the cutting-edge research advances about the interactions between ncRNAs and autophagy in OC. This review not only summarizes the underlying mechanisms of dynamic ncRNA-autophagy association in OC, but also discusses their prognostic implications and therapeutic biomarkers. The aim of this review was to provide a more in-depth knowledge framework exploring the ncRNA-autophagy crosstalk and highlight the promising treatment strategies for OC patients.
Collapse
Affiliation(s)
- Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Pharmacy, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan, China
| | - Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Pharmacy, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
The Role of Hydrogen Sulfide Targeting Autophagy in the Pathological Processes of the Nervous System. Metabolites 2022; 12:metabo12090879. [PMID: 36144282 PMCID: PMC9502065 DOI: 10.3390/metabo12090879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is an important cellular process, involving the transportation of cytoplasmic contents in the double membrane vesicles to lysosomes for degradation. Autophagy disorder contributes to many diseases, such as immune dysfunction, cancers and nervous system diseases. Hydrogen sulfide (H2S) is a volatile and toxic gas with a rotten egg odor. For a long time, it was considered as an environmental pollution gas. In recent years, H2S is regarded as the third most important gas signal molecule after NO and CO. H2S has a variety of biological functions and can play an important role in a variety of physiological and pathological processes. Increasingly more evidences show that H2S can regulate autophagy to play a protective role in the nervous system, but the mechanism is not fully understood. In this review, we summarize the recent literatures on the role of H2S in the pathological process of the nervous system by regulating autophagy, and analyze the mechanism in detail, hoping to provide the reference for future related research.
Collapse
|
8
|
Visintin R, Ray SK. Specific microRNAs for Modulation of Autophagy in Spinal Cord Injury. Brain Sci 2022; 12:247. [PMID: 35204010 PMCID: PMC8870708 DOI: 10.3390/brainsci12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of spinal cord injury (SCI) is currently a major challenge, with a severe lack of effective therapies for yielding meaningful improvements in function. Therefore, there is a great opportunity for the development of novel treatment strategies for SCI. The modulation of autophagy, a process by which a cell degrades and recycles unnecessary or harmful components (protein aggregates, organelles, etc.) to maintain cellular homeostasis and respond to a changing microenvironment, is thought to have potential for treating many neurodegenerative conditions, including SCI. The discovery of microRNAs (miRNAs), which are short ribonucleotide transcripts for targeting of specific messenger RNAs (mRNAs) for silencing, shows prevention of the translation of mRNAs to the corresponding proteins affecting various cellular processes, including autophagy. The number of known miRNAs and their targets continues to grow rapidly. This review article aims to explore the relationship between autophagy and SCI, specifically with the intent of identifying specific miRNAs that can be useful to modulate autophagy for neuroprotection and the improvement of functional recovery in SCI.
Collapse
Affiliation(s)
- Rhett Visintin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
9
|
Zehtabi M, Akbarpour Z, Valizadeh S, Roosta Y, Khamaneh AM, Raeisi M. Investigation and confirmation of differentially expressed miRNAs, as well as target gene prediction in papillary thyroid cancer, with a special emphasis on the autophagy signaling pathway. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2022; 11:173-181. [PMID: 36777002 PMCID: PMC9905749 DOI: 10.22099/mbrc.2022.43844.1751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most common endocrine cancer. However, the role of biomechanics in the development and progression of PTC is obscure. The microarray dataset GSE104005 was examined to identify important microRNAs (miRNAs or miRs) and their probable roles in the carcinogenesis of PTC. The gene expression omnibus (GEO) database was used to obtain the data. R was used to access the differentially expressed miRNAs (DEMs) and genes (DEGs). The multiMiR software was used to predict DEM targets. To validate the top DEMs and DEGs, thirty tissue samples were obtained from PTC patients who had their thyroids removed and compared with 30 normal samples. The total RNA content of the tumor and corresponding non-tumoral adjacent samples were purified and converted to cDNA. Expression levels of top dysregulated miRNAs and their target and predicted DEG were evaluated using the RT-qPCR method. miR-182 and miR-183 were top upregulated miRs and miR-30d was the most downregulated miR among DEMs. Furthermore, FOXO1 which was shown to be targeted by aforementioned miRNAs, was the most downregulated genes among other DEGs. 10 hub nodes were detected by PPI construction. PTEN was the hub node with highest score. The in vitro gene expression analysis was also showed the same expression pattern in tissues. Significant increase in miR-182-5p and miR-183-5p expressions, as well as a significant decrease in FOXO1 and miR-30d-5p expressions, suggest that PTC cells may tend to preserve their autophagy capability.
Collapse
Affiliation(s)
- Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Akbarpour
- Rahat Breathe and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Roosta
- Department of Internal Medicine, School of Medicine, Imam Khomeini Hospital, Urmia University of Medical Sciences
| | - Amir Mahdi Khamaneh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding Author: Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Tel: +98 4133347054; Fax: +98 4133343844; E.mail:
| |
Collapse
|
10
|
Zhang L, Dai L, Li D. Mitophagy in neurological disorders. J Neuroinflammation 2021; 18:297. [PMID: 34937577 PMCID: PMC8693476 DOI: 10.1186/s12974-021-02334-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023] Open
Abstract
Selective autophagy is an evolutionarily conserved mechanism that removes excess protein aggregates and damaged intracellular components. Most eukaryotic cells, including neurons, rely on proficient mitophagy responses to fine-tune the mitochondrial number and preserve energy metabolism. In some circumstances (such as the presence of pathogenic protein oligopolymers and protein mutations), dysfunctional mitophagy leads to nerve degeneration, with age-dependent intracellular accumulation of protein aggregates and dysfunctional organelles, leading to neurodegenerative disease. However, when pathogenic protein oligopolymers, protein mutations, stress, or injury are present, mitophagy prevents the accumulation of damaged mitochondria. Accordingly, mitophagy mediates neuroprotective effects in some forms of neurodegenerative disease (e.g., Alzheimer's disease, Parkinson’s disease, Huntington's disease, and Amyotrophic lateral sclerosis) and acute brain damage (e.g., stroke, hypoxic–ischemic brain injury, epilepsy, and traumatic brain injury). The complex interplay between mitophagy and neurological disorders suggests that targeting mitophagy might be applicable for the treatment of neurodegenerative diseases and acute brain injury. However, due to the complexity of the mitophagy mechanism, mitophagy can be both harmful and beneficial, and future efforts should focus on maximizing its benefits. Here, we discuss the impact of mitophagy on neurological disorders, emphasizing the contrast between the positive and negative effects of mitophagy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, China
| | - Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Li Y, Zheng W, Lu Y, Zheng Y, Pan L, Wu X, Yuan Y, Shen Z, Ma S, Zhang X, Wu J, Chen Z, Zhang X. BNIP3L/NIX-mediated mitophagy: molecular mechanisms and implications for human disease. Cell Death Dis 2021; 13:14. [PMID: 34930907 PMCID: PMC8688453 DOI: 10.1038/s41419-021-04469-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Mitophagy is a highly conserved cellular process that maintains the mitochondrial quantity by eliminating dysfunctional or superfluous mitochondria through autophagy machinery. The mitochondrial outer membrane protein BNIP3L/Nix serves as a mitophagy receptor by recognizing autophagosomes. BNIP3L is initially known to clear the mitochondria during the development of reticulocytes. Recent studies indicated it also engages in a variety of physiological and pathological processes. In this review, we provide an overview of how BNIP3L induces mitophagy and discuss the biological functions of BNIP3L and its regulation at the molecular level. We further discuss current evidence indicating the involvement of BNIP3L-mediated mitophagy in human disease, particularly in cancer and neurological disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Wanqing Zheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Yangyang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Yanrong Zheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmacology Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Pan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Xiaoli Wu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Yang Yuan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Shijia Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Xingxian Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Jiaying Wu
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmacology Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Zia A, Farkhondeh T, Sahebdel F, Pourbagher-Shahri AM, Samarghandian S. Key miRNAs in Modulating Aging and Longevity: A Focus on Signaling Pathways and Cellular Targets. Curr Mol Pharmacol 2021; 15:736-762. [PMID: 34533452 DOI: 10.2174/1874467214666210917141541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Aging is a multifactorial procedure accompanied by gradual deterioration of most biological procedures of cells. MicroRNAs (miRNAs) are a class of short non-coding RNAs that post-transcriptionally regulate the expression of mRNAs through sequence-specific binding, and contributing to many crucial aspects of cell biology. Several miRNAs are expressed differently in various organisms through aging. The function of miRNAs in modulating aging procedures has been disclosed recently with the detection of miRNAs that modulate longevity in the invertebrate model organisms, through the IIS pathway. In these model organisms, several miRNAs have been detected to both negatively and positively regulate lifespan via commonly aging pathways. miRNAs modulate age-related procedures and disorders in different mammalian tissues by measuring their tissue-specific expression in older and younger counterparts, including heart, skin, bone, brain, and muscle tissues. Moreover, several miRNAs have been contributed to modulating senescence in different human cells, and the roles of these miRNAs in modulating cellular senescence have allowed illustrating some mechanisms of aging. The review discusses the available data on miRNAs through the aging process and we highlight the roles of miRNAs as aging biomarkers and regulators of longevity in cellular senescence, tissue aging, and organism lifespan.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
13
|
Kim Y, Lee DH, Park SH, Jeon TI, Jung CH. The interplay of microRNAs and transcription factors in autophagy regulation in nonalcoholic fatty liver disease. Exp Mol Med 2021; 53:548-559. [PMID: 33879861 PMCID: PMC8102505 DOI: 10.1038/s12276-021-00611-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The autophagy-lysosomal degradation system has an important role in maintaining liver homeostasis by removing unnecessary intracellular components. Impaired autophagy has been linked to nonalcoholic fatty liver disease (NAFLD), which includes hepatitis, steatosis, fibrosis, and cirrhosis. Thus, gaining an understanding of the mechanisms that regulate autophagy and how autophagy contributes to the development and progression of NAFLD has become the focus of recent studies. Autophagy regulation has been thought to be primarily regulated by cytoplasmic processes; however, recent studies have shown that microRNAs (miRNAs) and transcription factors (TFs) also act as key regulators of autophagy by targeting autophagy-related genes. In this review, we summarize the miRNAs and TFs that regulate the autophagy pathway in NAFLD. We further focus on the transcriptional and posttranscriptional regulation of autophagy and discuss the complex regulatory networks involving these regulators in autophagy. Finally, we highlight the potential of targeting miRNAs and TFs involved in the regulation of autophagy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yumi Kim
- grid.418974.70000 0001 0573 0246Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Da-Hye Lee
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - So-Hyun Park
- grid.418974.70000 0001 0573 0246Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365 Republic of Korea ,grid.412786.e0000 0004 1791 8264Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Tae-Il Jeon
- grid.14005.300000 0001 0356 9399Department of Animal Science, Chonnam National University, Gwangju, Republic of Korea
| | - Chang Hwa Jung
- grid.418974.70000 0001 0573 0246Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365 Republic of Korea ,grid.412786.e0000 0004 1791 8264Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Pargol M, Zare Karizi S, Akbari M, Nourmohammadi B, Shadmehr MB, Karimipoor M, Zare Karizi S. Investigation the Role of Autophagy in Non-Small Cell Lung Cancer. Asian Pac J Cancer Prev 2021; 22:947-955. [PMID: 33773561 PMCID: PMC8286697 DOI: 10.31557/apjcp.2021.22.3.947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: Recent studies have shown the role of autophagy in different types of cancer including lung cancer. MicroRNAs are considered as key factors in regulation of autophagy related genes. miR-30d, miR-204-5p and miR-20a are regulatory markers which can suppress the expression of beclin1, LC3, bcl2 and ULK1 as their target genes and they lead to decrement of autophagy in human cancer cells. Moreover, epigenetic modifications DNA methylation has been indicated in regulation of autophagy in different stages of cancer. Methods: In this study, the expression levels of miR-30d, miR-204-5p and miR-20a as well as their target genes were analyzed in 30 non-small cell lung cancers (NSCLCs) patients sample and adjacent normal tissues by real-time qPCR. In addition, DNA methylation of beclin1, LC3, bcl2 and ULK1 genes were assessed by MS-HRM method. Results: MiR-30d (p value= 0.01) and miR-204-5p (P=0.048) significantly down-regulated in tumor samples compared to normal adjacent tissues, while there was no significant change in expression level of miR-20a. On the other hand, target genes expression level was significantly increased in NSCLC tissues, however methylation pattern of the target gene promoters, did not show any significant alteration. Conclusion: These results indicate roles for miR-30d, miR-204-5p as tumor suppressor genes as well as target genes as oncogenes in NSCLC patients. Although these factors may have a significant role in NSCLC progression, further studies are necessary to investigate the implications of these findings for treatment of lung cancer.
Collapse
Affiliation(s)
- Minoo Pargol
- Department of Genetics and Biotechnology, School of Biological Science, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran.,Molecular Medicine Department, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran
| | - Shima Zare Karizi
- Department of Genetics and Biotechnology, School of Biological Science, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran.,Molecular Medicine Department, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Akbari
- Department of Genetics and Biotechnology, School of Biological Science, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran.,Molecular Medicine Department, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran
| | - Bahareh Nourmohammadi
- Molecular Medicine Department, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Behgam Shadmehr
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Genetics and Biotechnology, School of Biological Science, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
15
|
Liu PF, Farooqi AA, Peng SY, Yu TJ, Dahms HU, Lee CH, Tang JY, Wang SC, Shu CW, Chang HW. Regulatory effects of noncoding RNAs on the interplay of oxidative stress and autophagy in cancer malignancy and therapy. Semin Cancer Biol 2020; 83:269-282. [PMID: 33127466 DOI: 10.1016/j.semcancer.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
Noncoding RNAs (ncRNAs) regulation of various diseases including cancer has been extensively studied. Reactive oxidative species (ROS) elevated by oxidative stress are associated with cancer progression and drug resistance, while autophagy serves as an ROS scavenger in cancer cells. However, the regulatory effects of ncRNAs on autophagy and ROS in various cancer cells remains complex. Here, we explore how currently investigated ncRNAs, mainly miRNAs and lncRNAs, are involved in ROS production through modulating antioxidant genes. The regulatory effects of miRNAs and lncRNAs on autophagy-related (ATG) proteins to control autophagy activity in cancer cells are discussed. Moreover, differential expression of ncRNAs in tumor and normal tissues of cancer patients are further analyzed using The Cancer Genome Atlas (TCGA) database. This review hypothesizes links between ATG genes- or antioxidant genes-modulated ncRNAs and ROS production, which might result in tumorigenesis, malignancy, and cancer recurrence. A better understanding of the regulation of ROS and autophagy by ncRNAs might advance the use of ncRNAs as diagnostic and prognostic markers as well as therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Wen Shu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Chen Y, Herrold AA, Martinovich Z, Bari S, Vike NL, Blood AJ, Walter AE, Harezlak J, Seidenberg PH, Bhomia M, Knollmann-Ritschel B, Stetsiv K, Reilly JL, Nauman EA, Talavage TM, Papa L, Slobounov S, Breiter HC. Brain Perfusion Mediates the Relationship Between miRNA Levels and Postural Control. Cereb Cortex Commun 2020; 1:tgaa078. [PMID: 34296137 PMCID: PMC8153038 DOI: 10.1093/texcom/tgaa078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/09/2020] [Accepted: 10/04/2020] [Indexed: 12/13/2022] Open
Abstract
Transcriptomics, regional cerebral blood flow (rCBF), and a virtual reality-based spatial motor task were integrated using mediation analysis in a novel demonstration of “imaging omics.” Data collected in National Collegiate Athletic Association (NCAA) Division I football athletes cleared for play before in-season training showed significant relationships in 1) elevated levels of miR-30d and miR-92a to elevated putamen rCBF, 2) elevated putamen rCBF to compromised Balance scores, and 3) compromised Balance scores to elevated microRNA (miRNA) levels. rCBF acted as a consistent mediator variable (Sobel’s test P < 0.05) between abnormal miRNA levels and compromised Balance scores. Given the involvement of these miRNAs in inflammation and immune function and that vascular perfusion is a component of the inflammatory response, these findings support a chronic inflammatory model in these athletes with 11 years of average football exposure. rCBF, a systems biology measure, was necessary for miRNA to affect behavior.
Collapse
Affiliation(s)
- Yufen Chen
- Center for Translational Imaging, Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy A Herrold
- Edward Hines Jr., VA Hospital, Research Service, Hines, IL 60141, USA
| | - Zoran Martinovich
- Mental Health Services and Policy Program, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sumra Bari
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nicole L Vike
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Anne J Blood
- Mood and Motor Control Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Alexa E Walter
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN 47405, USA
| | - Peter H Seidenberg
- Departments of Orthopaedics & Rehabilitation and Family & Community Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Manish Bhomia
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Khrystyna Stetsiv
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - James L Reilly
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas M Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL, USA
| | - Semyon Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hans C Breiter
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
17
|
Capaci V, Bascetta L, Fantuz M, Beznoussenko GV, Sommaggio R, Cancila V, Bisso A, Campaner E, Mironov AA, Wiśniewski JR, Ulloa Severino L, Scaini D, Bossi F, Lees J, Alon N, Brunga L, Malkin D, Piazza S, Collavin L, Rosato A, Bicciato S, Tripodo C, Mantovani F, Del Sal G. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun 2020; 11:3945. [PMID: 32770028 PMCID: PMC7414119 DOI: 10.1038/s41467-020-17596-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading to enhanced vesicular trafficking and secretion. The mut-p53/HIF1α/miR-30d axis potentiates the release of soluble factors and the deposition and remodeling of the ECM, affecting mechano-signaling and stromal cells activation within the tumor microenvironment, thereby enhancing tumor growth and metastatic colonization.
Collapse
Affiliation(s)
- Valeria Capaci
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
| | - Lorenzo Bascetta
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | - Marco Fantuz
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | | | | | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo, School of Medicine, 90133, Palermo, Italy
| | - Andrea Bisso
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Elena Campaner
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Alexander A Mironov
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139, Milan, Italy
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 85152, Martinsried, Germany
| | - Luisa Ulloa Severino
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Denis Scaini
- International School for Advanced Studies (SISSA), 34146, Trieste, Italy
| | - Fleur Bossi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Jodi Lees
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Noa Alon
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ledia Brunga
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Silvano Piazza
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
| | - Licio Collavin
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Antonio Rosato
- Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy
| | - Silvio Bicciato
- Center for Genome Research, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, University of Palermo, School of Medicine, 90133, Palermo, Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), 34149, Trieste, Italy.
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139, Milan, Italy.
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy.
| |
Collapse
|
18
|
Terkelsen T, Russo F, Gromov P, Haakensen VD, Brunak S, Gromova I, Krogh A, Papaleo E. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Breast Cancer Res 2020; 22:73. [PMID: 32605588 PMCID: PMC7329449 DOI: 10.1186/s13058-020-01295-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Studies on tumor-secreted microRNAs point to a functional role of these in cellular communication and reprogramming of the tumor microenvironment. Uptake of tumor-secreted microRNAs by neighboring cells may result in the silencing of mRNA targets and, in turn, modulation of the transcriptome. Studying miRNAs externalized from tumors could improve cancer patient diagnosis and disease monitoring and help to pinpoint which miRNA-gene interactions are central for tumor properties such as invasiveness and metastasis. Methods Using a bioinformatics approach, we analyzed the profiles of secreted tumor and normal interstitial fluid (IF) microRNAs, from women with breast cancer (BC). We carried out differential abundance analysis (DAA), to obtain miRNAs, which were enriched or depleted in IFs, from patients with different clinical traits. Subsequently, miRNA family enrichment analysis was performed to assess whether any families were over-represented in the specific sets. We identified dysregulated genes in tumor tissues from the same cohort of patients and constructed weighted gene co-expression networks, to extract sets of co-expressed genes and co-abundant miRNAs. Lastly, we integrated miRNAs and mRNAs to obtain interaction networks and supported our findings using prediction tools and cancer gene databases. Results Network analysis showed co-expressed genes and miRNA regulators, associated with tumor lymphocyte infiltration. All of the genes were involved in immune system processes, and many had previously been associated with cancer immunity. A subset of these, BTLA, CXCL13, IL7R, LAMP3, and LTB, was linked to the presence of tertiary lymphoid structures and high endothelial venules within tumors. Co-abundant tumor interstitial fluid miRNAs within this network, including miR-146a and miR-494, were annotated as negative regulators of immune-stimulatory responses. One co-expression network encompassed differences between BC subtypes. Genes differentially co-expressed between luminal B and triple-negative breast cancer (TNBC) were connected with sphingolipid metabolism and predicted to be co-regulated by miR-23a. Co-expressed genes and TIF miRNAs associated with tumor grade were BTRC, CHST1, miR-10a/b, miR-107, miR-301a, and miR-454. Conclusion Integration of IF miRNAs and mRNAs unveiled networks associated with patient clinicopathological traits, and underlined molecular mechanisms, specific to BC sub-groups. Our results highlight the benefits of an integrative approach to biomarker discovery, placing secreted miRNAs within a biological context.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Francesco Russo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Vilde Drageset Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anders Krogh
- Unit of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Ou M, Li X, Cui S, Zhao S, Tu J. Emerging roles of let‑7d in attenuating pulmonary arterial hypertension via suppression of pulmonary artery endothelial cell autophagy and endothelin synthesis through ATG16L1 downregulation. Int J Mol Med 2020; 46:83-96. [PMID: 32319531 PMCID: PMC7255485 DOI: 10.3892/ijmm.2020.4567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by elevated pulmonary arterial pressure and pulmonary vascular resistance, resulting in right ventricular failure and death. Compelling evidence has suggested the roles of microRNAs (miRNAs/miRs) in PAH. The present study investigated the possible effects of miR-let-7d on PAH through autophagy-related 16-like 1 (ATG16L1). Initially, the serum levels of let-7d in PAH patients were detected. Rats were then treated with monocrotaline to induce a rat model of PAH, after which the right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) were determined. Next, the putative binding sites between let-7d and ATG16L1 were detected. The expression of let-7d and ATG16L1 in PAH rat models and cells was upregulated or downregulated to assess the effects of these molecules on autophagy in pulmonary artery vascular endothelial cells (PAECs) and on endothelin synthesis. In addition, the levels of p62, LC3-I, LC3-II, LC3B and endothelin-1 (ET-1) were assessed. The results obtained revealed that let-7d was downregulated in the serum of PAH patients and rats with PAH. Importantly, ATG16L1 was found to be a target gene of let-7d and let-7d could suppress the expression of ATG16L1. Overexpression of let-7d was found to reduce RVSP and RVHI values. Additionally, upregulation of let-7d or depletion of ATG16L1 led to suppression of PAEC autophagy and endothelin synthesis, corresponding to decreased ratios of LC3-II to LC3-I and reduced levels of LC3B but elevated levels of p62 in PAECs and ET-1 in plasma and lung tissues. In summary, let-7d upregulation alleviates PAH by inhibiting autophagy in PAECs and suppressing endothelin synthesis through negative regulation of ATG16L1.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Xia Li
- Department of Ultrasound, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Shichao Cui
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Shibo Zhao
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Jie Tu
- Department of Science and Education, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
20
|
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118662. [PMID: 32001304 DOI: 10.1016/j.bbamcr.2020.118662] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
Autophagy is a cellular stress response mechanism activation of which leads to degradation of cellular components, including proteins as well as damaged organelles in lysosomes. Defects in autophagy mechanisms were associated with several pathologies (e.g. cancer, neurodegenerative diseases, and rare genetic diseases). Therefore, autophagy regulation is under strict control. Transcriptional and post-translational mechanisms that control autophagy in cells and organisms studied in detail. Recent studies introduced non-coding small RNAs, and especially microRNAs (miRNAs) in the post-translational orchestration of the autophagic activity. In this review article, we analyzed in detail the current status of autophagy-miRNA connections. Comprehensive documentation of miRNAs that were directly involved in autophagy regulation resulted in the emergence of common themes and concepts governing these complex and intricate interactions. Hence, a better and systematic understanding of these interactions reveals a central role for miRNAs in the regulation of autophagy.
Collapse
Affiliation(s)
- Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
21
|
Vega-Rubín-de-Celis S. The Role of Beclin 1-Dependent Autophagy in Cancer. BIOLOGY 2019; 9:biology9010004. [PMID: 31877888 PMCID: PMC7168252 DOI: 10.3390/biology9010004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Autophagy (self-eating) is an intracellular degradation process used by cells to keep a “clean house”; as it degrades abnormal or damaged proteins and organelles, it helps to fight infections and also provides energy in times of fasting or exercising. Autophagy also plays a role in cancer, although its precise function in each cancer type is still obscure, and whether autophagy plays a protecting (through the clearing of damaged organelles and protein aggregates and preventing DNA damage) or a promoting (by fueling the already stablished tumor) role in cancer remains to be fully characterized. Beclin 1, the mammalian ortholog of yeast Atg6/Vps30, is an essential autophagy protein and has been shown to play a role in tumor suppression. Here, an update of the tumorigenesis regulation by Beclin 1-dependent autophagy is provided.
Collapse
Affiliation(s)
- Silvia Vega-Rubín-de-Celis
- Institute for Cell Biology (Tumorforschung), University Hospital Essen, 45122 Essen, Germany; ; Tel.: +49-0201-723-3941
- German Cancer Consortium (DKTK) at Essen-Düsseldorf, 445122 Essen, Germany
| |
Collapse
|
22
|
Shen Y, Xu L, Ning Z, Liu L, Lin J, Chen H, Meng Z. ARHGAP4 regulates the cell migration and invasion of pancreatic cancer by the HDAC2/β-catenin signaling pathway. Carcinogenesis 2019; 40:1405-1414. [DOI: 10.1093/carcin/bgz067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
β-catenin is a subunit of the cadherin protein complex and acts as an intracellular signal transducer in the Wnt signaling pathway that mediates multiple cellular processes, such as cell migration and invasion. HDAC2 (histone deacetylase 2), a deacetylase that maintains histone H3 in a deacetylated state in the promoter region of Wnt-targeted genes where β-catenin is bound, negatively regulating β-catenin activation. However, the regulation of HDAC2/β-catenin pathway remains unclear. Here, we report ARHGAP4 as a new regulator of the β-catenin pathway that regulates cell invasion and migration of pancreatic cancer as well as the downstream effector MMP2 and MMP9 expression in vitro. Mechanistically, ARHGAP4 interacts with and ubiquitinates HDAC2, which in turn inhibits β-catenin activation. Furthermore, treatment of CAY10683, an HDAC2 inhibitor, and XAV939, a Wnt/β-catenin pathway inhibitor, attenuated the effects of ARHGAP4 silencing on pancreatic cancer cells. Overall, our findings establish ARHGAP4 as a novel regulator of HDAC2/β-catenin pathway with a critical role in tumorigenesis.
Collapse
Affiliation(s)
- Yehua Shen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Litao Xu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junhua Lin
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Shao X, Zhang S, Tang Y, Kong W. Micro RNA‐30b (inhibitor) nanoparticles suppressed the lipopolysaccharide (LPS)‐induced acute kidney injury. IET Nanobiotechnol 2019; 13:923-927. [PMID: 31811760 DOI: 10.1049/iet-nbt.2019.0110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Xiang Shao
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| | - Suhua Zhang
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| | - Ying Tang
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| | - Weixin Kong
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| |
Collapse
|
24
|
Shen Y, Chen G, Zhuang L, Xu L, Lin J, Liu L. ARHGAP4 mediates the Warburg effect in pancreatic cancer through the mTOR and HIF-1α signaling pathways. Onco Targets Ther 2019; 12:5003-5012. [PMID: 31303760 PMCID: PMC6611502 DOI: 10.2147/ott.s207560] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 01/28/2023] Open
Abstract
Objective The phenomenon that cancer cells avidly exhibit glycolysis with lactate secretion and decrease in mitochondrial activity under aerobic conditions is known historically as the Warburg effect. Rho GTPase-activating protein 4 (ARHGAP4) is an important negative regulator of the Rho signaling pathway that was associated with the tumorigenesis. Our study aims to determine the function of ARHGAP4 in controlling the glycolytic process of pancreatic cancer in vitro and possible molecular mechanism involved. Methods ARHGAP4 and PKM2 expressions in pancreatic cancer tissues were measured by immunohistochemistry. Human pancreatic cancer cells transfected with ARHGAP4 expressing lentivirus or siRNA were treated with either mTOR inhibitor (Rapamycin) or HIF-1α inhibitor (YC-1), and the effects were analyzed on cell viability, glucose uptake, lactate release, and the levels of ARHGAP4, p-mTOR, mTOR, PKM2, and HIF-1α expression. Results Our findings showed that ARHGAP4 and PKM2 expressions were, respectively, down-regulated and up-regulated in pancreatic cancer tissues. Overexpression of ARHGAP4 significantly inhibited cell viability, glucose uptake, lactate release, PKM2 expression, and activation of mTOR and HIF-1α signaling pathways in pancreatic cancer cells while ARHGAP4 silencing and treatment of Rapamycin or YC-1 showed inverse effects. Additionally, ARHGAP4 downregulation induced cell morphology of pancreatic cancer was inhibited by Rapamycin or YC-1 treatment. Conclusion These findings suggest that mTOR and HIF-1α signaling pathways can regulate the ARHGAP4-mediated glycolytic process of pancreatic cancer.
Collapse
Affiliation(s)
- Yehua Shen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Gang Chen
- Department of Pediatric Cardiothoracic Surgery, Children's Hospital of Fudan University, Shanghai 201102, People's Republic of China
| | - Liping Zhuang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Litao Xu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Junhua Lin
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
25
|
Zhuang H, Wu F, Wei W, Dang Y, Yang B, Ma X, Han F, Li Y. Glycine decarboxylase induces autophagy and is downregulated by miRNA-30d-5p in hepatocellular carcinoma. Cell Death Dis 2019; 10:192. [PMID: 30804330 PMCID: PMC6389915 DOI: 10.1038/s41419-019-1446-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Glycine decarboxylase (GLDC) belongs to the glycine cleavage system and is involved in one-carbon metabolism. We previously reported that GLDC downregulation enhances hepatocellular carcinoma (HCC) progression and intrahepatic metastasis through decreasing ROS-mediated ubiquitination of cofilin. The role of autophagy in cancer metastasis is still controversial. Redox-dependent autophagy largely relies on the magnitude and the rate of ROS generation. Thus, we aimed to explore the role of GLDC in cellular autophagy during HCC progression. We showed that a high GLDC expression level is associated with better overall survival and is an independent factor for the favorable prognosis of HCC patients. GLDC overexpression significantly induced cell autophagy, whereas GLDC downregulation reduced cell autophagy. Of note, GLDC is the post-transcriptional target of miR-30d-5p. GLDC overexpression could rescue miR-30d-5p-mediated cell metastasis and increase autophagy. Furthermore, upregulation of GLDC could significantly decrease p62 expression and impair intrahepatic metastasis in vivo. Taken together, our results suggest that GLDC may play an important role to increasing miR-30d-5p-reduced autophagy to suppress HCC progress.
Collapse
Affiliation(s)
- Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan Province, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Fei Wu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Wen Wei
- School of Life Sciences, Chongqing University, 400044, Chongqing, China
| | - Yamei Dang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Baicai Yang
- Department of Gynaecology and Obstetrics, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang Province, China
| | - Xuda Ma
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan Province, China.
| | - Yongmei Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
26
|
Calcatera SM, Reicks D, Pratt SL. Novel and differentially abundant microRNAs in sperm cells, seminal plasma, and serum of boars due to porcine reproduction and respiratory syndrome virus infection. Anim Reprod Sci 2018; 199:60-71. [PMID: 30455097 DOI: 10.1016/j.anireprosci.2018.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 01/10/2023]
Abstract
The objectives of this study were to identify and determine relative abundance of miRNAs in boar sperm, seminal plasma (SP), and serum pre- and post-viral infection. Functional enrichment analyses on predicted targets of miRNAs of interest were performed. Boars (n = 6) were inoculated with porcine reproductive and respiratory syndrome virus (PRRSv) strain 1-8-4 (Day 0). Semen and serum were collected on Day -2 and 6. Sperm and SP were separated and aliquots were flash frozen and stored at -80 °C. Serum was frozen and stored at -80 °C. Total RNA was isolated from sperm and SP samples and subjected to RNA sequencing. Microarray analysis was performed using the Day -2 and 6 RNA samples from serum, sperm and SP. Potential miRNA targets were predicted using miRanda 3.3a and targets were then analyzed for enrichment of Gene Ontology) and InterPro terms and were considered to be enriched if P < 0.01 using the Bonferroni correction. Microarray analyses resulted in 83, 13, and 10 miRNAs with differences in abundances in sperm, serum, and SP, respectively, when comparing Day -2 and 6. Results from enrichment analyses indicated that the predicted targets of 35, nine, and five miRNAs with differences in abundances for sperm, SP, and serum, respectively, that have functions and/or conserved protein domains that are enriched when compared to the pig genome. Enriched terms for P2X purinoceptors were identified for sperm, SP and serum. Enriched terms for cell adhesion were identified for sperm and serum transcripts. Enriched terms for cell signaling were identified for sperm and SP transcripts.
Collapse
Affiliation(s)
- Samantha M Calcatera
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, United States
| | - Darwin Reicks
- P.O. Box 314, 314 S. 3rd St., St. Peter, MN, 5608, United States
| | - Scott L Pratt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina, United States.
| |
Collapse
|
27
|
Zhu B, Chen H, Zhang X, Pan Y, Jing R, Shen L, Wang X, Ju S, Jin C, Cong H. Serum miR-30d as a novel biomarker for multiple myeloma and its antitumor role in U266 cells through the targeting of the MTDH/PI3K/Akt signaling pathway. Int J Oncol 2018; 53:2131-2144. [PMID: 30132507 DOI: 10.3892/ijo.2018.4532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/18/2018] [Indexed: 11/05/2022] Open
Abstract
Multiple myeloma (MM) is a hematological tumor and is characterized by the infiltration of malignant clonal plasma cells (PCs) in bone marrow. MicroRNAs (miRNAs or miRs) have been reported to play an important role in the genesis and progression of MM. However, little is known about the clinical diagnostic value and biological functions of miR-30d in MM. In this study, to investigate the role of miR-30d in MM, we used reverse transcription-quantitative polymerase chain reaction quantitative (RT-qPCR) to detect the relative expression level of miR-30d in the serum of 81 patients with primary MM and 78 healthy donors (HDs). The biological functions of miR-30d were then assessed by CCK-8 assay, flow cytometric analysis of apoptosis and western blot (WB) analysis in U266 cells. Moreover, the confirmation of the target gene of miR-30d was conducted by luciferase reporter assay. Our results indicated that miR-30d expression was significantly downregulated in the serum of patients with primary MM compared with that of the HDs and that it was significantly associated with several clinical indicators of MM. Further cell functional analyses using the U266 cells revealed that miR-30d functions as a tumor suppressor gene in MM by inhibiting cell viability and promoting cell apoptosis. Moreover, miR-30d was confirmed to directly bind to the 3'UTR of its target gene, metadherin (MTDH) and inhibit the activation of the downstream PI3K/Akt signaling pathway. On the whole, the findings of this study indicate that the serum expression level of miR-30d is of great significance to the diagnosis and treatment monitoring of patients with MM. Moreover, miR-30d carries out its antitumor role in U266 cells through the inhibition of the activation of the PI3K/Akt signaling pathway by negatively regulating MTDH, which reveals its potential for use as a therapeutic target for MM.
Collapse
Affiliation(s)
- Bingying Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hongmei Chen
- VIP ward, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaofen Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yafang Pan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chunjing Jin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
28
|
Gan F, Zhou Y, Qian G, Huang D, Hou L, Liu D, Chen X, Wang T, Jiang P, Lei X, Huang K. PCV2 infection aggravates ochratoxin A-induced nephrotoxicity via autophagy involving p38 signaling pathway in vivo and in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:656-662. [PMID: 29614475 DOI: 10.1016/j.envpol.2018.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/02/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Ochratoxin A (OTA) is reported to induce nephrotoxicity in animals and humans. Porcine circovirus type 2 (PCV2) could induce porcine dermatitis and nephropathy syndrome. To date, little is known whether virus infection aggravates mycotoxin-induced toxicity. This work aimed to study the effects of PCV2 infection on OTA-induced nephrotoxicity and its mechanism in vivo and vitro. The results in vivo showed that PCV2 infection aggravated OTA-induced poor growth performance, nephrotoxicity, p38 phosphorylation and autophagy as demonstrated by Atg5, LC3 II and p62 protein expressions in kidney of pigs. The results in vitro indicated that PCV2 infection significantly aggravated OTA-induced nephrotoxicity as demonstrated by cell viabilities, annexin V/PI binding and caspase 3 activities, and induced p38 phosphorylation and autophagy in PK15 cells. p38 inhibitor decreased Atg5 and LC3 protein expression induced by PCV2 infection and OTA combined treatment. Adding autophagy inhibitor 3-MA or CQ alleviated the aggravating effects of PCV2 infection on OTA-induced nephrotoxicity. Atg5-specific siRNA eliminated the aggravating effects of PCV2 infection on OTA-induced nephrotoxicity. Taken together, these data indicate that in vivo and in vitro PCV2 infection aggravated OTA-induced nephrotoxicity via p38-mediated autophagy.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Da Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ping Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
29
|
Zhang L, Li J, Cui L, Shang J, Tian F, Wang R, Xing G. MicroRNA-30b promotes lipopolysaccharide-induced inflammatory injury and alleviates autophagy through JNK and NF-κB pathways in HK-2 cells. Biomed Pharmacother 2018; 101:842-851. [PMID: 29635893 DOI: 10.1016/j.biopha.2018.02.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is an abrupt loss of kidney function. MicroRNA-30b (miR-30b) has been reported to be involved in the inflammatory reaction of a variety of diseases. However, the role of miR-30b in AKI remains unknown. In this research, we aimed to investigate the role of miR-30b in lipopolysaccharide (LPS)-induced kindey inflammatory injury in vitro and in vivo. METHODS In vitro, after miR-30b mimic/inhibitor transfection and/or LPS treatment, the viability, apoptosis, autophagy and inflammatory cytokines releases, as well as activation of c-Jun-N-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) pathways were detected by cell counting kit-8 (CCK-8) assay, flow cytometry, qRT-PCR, enzyme-linked immunosorbent assay (ELISA) and western blot, respectively. In vivo, after LPS treatment and/or anti-miR-30b administration, the levels of creatinine, the activities of alanine aminotransferase (ALT) and histologic scores, as well as concentrations of inflammatory cytokines were assessed by creatinine assay kit, ALT assay kit and ELISA, respectively. RESULTS LPS inhibited HK-2 cell viability and induced HK-2 cell apoptosis, autophagy and the releases of inflammatory cytokines. Overexpression of miR-30b promoted LPS-induced HK-2 cell viability inhibition, cell inflammatory cytokines releases, cell apoptosis induction and activation of JNK and NF-κB signaling pathways, but inhibited LPS-induced HK-2 cell autophagy. Suppression of miR-30b had opposite effects. Moreover, suppression of miR-30b alleviated the LPS-induced kidney injury in mice model by decreasing creatinine level, ALT activity and histologic scores, as well as concentrations of inflammatory cytokines. CONCLUSION miR-30b participated in the LPS-induced kindey inflammatory injury in vitro and in vivo.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, Shandong, China; Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China
| | - Jun Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China
| | - Li Cui
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China
| | - Jinchun Shang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China
| | - Fen Tian
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, Shandong, China.
| | - Guangqun Xing
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao266021, Shandong, China.
| |
Collapse
|
30
|
Zhan L, Zhang Y, Wang W, Song E, Fan Y, Li J, Wei B. Autophagy as an emerging therapy target for ovarian carcinoma. Oncotarget 2018; 7:83476-83487. [PMID: 27825125 PMCID: PMC5347782 DOI: 10.18632/oncotarget.13080] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a conserved cellular self-digestion pathway for maintenance of homeostasis under basal and stressed conditions. Autophagy plays pivotal roles in the pathogenesis of many diseases, such as aging-related diseases, autoimmune diseases, cardiovascular diseases, and cancers. Of special note is that accumulating data suggest an intimate relationship between autophagy and ovarian carcinoma. Autophagy is well identified to act as either as a tumor-suppressor or as a tumor-promoter in ovarian carcinoma. The exact function of autophagy in ovarian carcinoma is highly dependent on the circumstances of cancer including hypoxic, nutrient-deficient, chemotherapy and so on. However, the mechanism underlying autophagy associated with ovarian carcinoma remains elusive, the precise role of autophagy in ovarian carcinoma also remains undetermined. In this review, we tried to sum up and discuss recent research achievements of autophagy in ovarian cancer. Moreover, waves of novel therapies ways for ovarian carcinoma based on the functions of autophagy were collected.
Collapse
Affiliation(s)
- Lei Zhan
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu Zhang
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wenyan Wang
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Enxue Song
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yijun Fan
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China
| | - Bing Wei
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
31
|
Yang L, Han B, Zhang Y, Bai Y, Chao J, Hu G, Yao H. Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 2018; 14:404-418. [PMID: 29260931 DOI: 10.1080/15548627.2017.1414755] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endothelial-mesenchymal transition (EndoMT) is associated with damage to blood-brain barrier (BBB) integrity. Circular RNAs (circRNAs) are highly expressed in the brain and are involved in brain diseases; however, whether circRNAs regulate the EndoMT in the brain remains unknown. Our study demonstrated that circHECW2 regulated the EndoMT by directly binding to MIR30D, a significantly downregulated miRNA from miRNA profiling, which subsequently caused an increased expression of ATG5. These findings shed new light on the understanding of the noncanonical role of ATG5 in the EndoMT induced by methamphetamine (Meth) or lipopolysaccharide (LPS). The in vivo relevance was confirmed as microinjection of circHecw2 siRNA lentivirus into the mouse hippocampus suppressed the EndoMT induced by LPS. These findings provide novel insights regarding the contribution of circHECW2 to the nonautophagic role of ATG5 in the EndoMT process in the context of drug abuse and the broad range of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Li Yang
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Bing Han
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Yuan Zhang
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Ying Bai
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Jie Chao
- b Department of Physiology, School of Medicine , Southeast University , Nanjing , Jiangsu , China
| | - Gang Hu
- c Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Honghong Yao
- a Department of Pharmacology, School of Medicine , Southeast University , Nanjing , Jiangsu , China.,d Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
32
|
Kume K, Iwama H, Deguchi K, Ikeda K, Takata T, Kokudo Y, Kamada M, Fujikawa K, Hirose K, Masugata H, Touge T, Masaki T. Serum microRNA expression profiling in patients with multiple system atrophy. Mol Med Rep 2017; 17:852-860. [PMID: 29115515 PMCID: PMC5780164 DOI: 10.3892/mmr.2017.7995] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
Multiple system atrophy (MSA) is a sporadic neurodegenerative disease that is pathologically characterized by α-synuclein positive glial cytoplasmic inclusions in oligodendrocytes. The clinical diagnosis of MSA is often challenging as there are no established biomarkers and diagnoses are now based on clinical findings alone. At present, the etiology and pathogenesis of MSA are unclear. It has been reported that dysregulation of microRNA (miRNA/miR) serves an important role in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The miRNA profile of patients with MSA remains to be established. The present study investigated the serum miRNA expression level of 10 patients with MSA, using microarray chips including 668 miRNAs. It was identified that 50 miRNAs were significantly upregulated and 17 miRNAs were significantly downregulated in the serum of the patients with MSA. The most upregulated miRNA was miR-16, which may induce the accumulation of α-synuclein. The target genes of some miRNAs upregulated in MSA (including miR-17, 20a, 24, 25, 30d and 451) were associated with autophagy-associated molecules. The present study concluded that the expression pattern of miRNAs may be a clinical biomarker for MSA and targeting these miRNAs may provide a novel treatment for MSA.
Collapse
Affiliation(s)
- Kodai Kume
- Department of Neurology, Kagawa University Hospital, Kita‑gun, Kagawa 761‑0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Kazushi Deguchi
- Department of Neurology, Kagawa University Hospital, Kita‑gun, Kagawa 761‑0793, Japan
| | - Kazuyo Ikeda
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Tadayuki Takata
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Yohei Kokudo
- Department of Intractable Neurological Research, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Masaki Kamada
- Department of Intractable Neurological Research, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Keiko Fujikawa
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Kayo Hirose
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Hisashi Masugata
- Department of Integrated Medicine, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Tetsuo Touge
- Department of Health Sciences, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita‑gun, Kagawa 761‑0793, Japan
| |
Collapse
|
33
|
Srivastava SK, Ahmad A, Zubair H, Miree O, Singh S, Rocconi RP, Scalici J, Singh AP. MicroRNAs in gynecological cancers: Small molecules with big implications. Cancer Lett 2017; 407:123-138. [PMID: 28549791 PMCID: PMC5601032 DOI: 10.1016/j.canlet.2017.05.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Gynecological cancers (GCs) are often diagnosed at advanced stages, limiting the efficacy of available therapeutic options. Thus, there remains an urgent and unmet need for innovative research for the efficient clinical management of GC patients. Research over past several years has revealed the enormous promise of miRNAs. These small non-coding RNAs can aid in the diagnosis, prognosis and therapy of all major GCs, viz., ovarian cancers, cervical cancers and endometrial cancers. Mechanistic details of the miRNAs-mediated regulation of multiple biological functions are under constant investigation, and a number of miRNAs are now believed to influence growth, proliferation, invasion, metastasis, chemoresistance and the relapse of different GCs. Modulation of tumor microenvironment by miRNAs can possibly explain some of their reported biological effects. miRNA signatures have been proposed as biomarkers for the early detection of GCs, even the various subtypes of individual GCs. miRNA signatures are also being pursued as predictors of response to therapies. This review catalogs the knowledge gained from collective studies, so as to assess the progress made so far. It is time to ponder over the knowledge gained, so that more meaningful pre-clinical and translational studies can be designed to better realize the potential that miRNAs have to offer.
Collapse
Affiliation(s)
- Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Orlandric Miree
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Rodney P Rocconi
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Jennifer Scalici
- Division of Gynecologic Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
34
|
Gan F, Hou L, Zhou Y, Liu Y, Huang D, Chen X, Huang K. Effects of ochratoxin A on ER stress, MAPK signaling pathway and autophagy of kidney and spleen in pigs. ENVIRONMENTAL TOXICOLOGY 2017; 32:2277-2286. [PMID: 28699257 DOI: 10.1002/tox.22443] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Ochratoxin A (OTA), a worldwide mycotoxin found in food and feeds, is a potent nephrotoxin and immunotoxin in animals and humans. This research was conducted to evaluate whether endoplasmic reticulum (ER) stress, MAPK signaling pathway and autophagy were induced by OTA in kidney and spleen of pigs. Twenty-seven crossbred pigs randomly allocated to 3 groups were fed for 42 days ad libitum a basal diet without (Con group, 0.00 μg OTA/kg) and with supplementation of OTA at 400 (OTA-L group) and 800 μg/kg (OTA-H group). From each group, 6 pigs were randomly selected for blood collection on days 0, 21, and 42 and 3 pigs were randomly selected for tissue collection on day 42. The results showed that OTA at 400 and 800 μg/kg diets significantly increased OTA concentrations in serum and kidney and spleen induced the histopathological lesions of kidney and spleen, decreased TCR-stimulated T lymphocyte viabilities and IL-2 concentration, increased TNF-α concentration, and decreased T-AOC levels. OTA increased glucose regulated protein 78, p38, and ERK1/2 phosphorylation, and LC3 II and Atg5 protein expression in kidney and spleen of pigs. These results provide new insights into the relationship between OTA and ER stress, p38 and ERK1/2 MAPK signaling pathway and autophagy in pigs.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Da Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| |
Collapse
|
35
|
MicroRNA as a Therapeutic Target in Cardiac Remodeling. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1278436. [PMID: 29094041 PMCID: PMC5637866 DOI: 10.1155/2017/1278436] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/23/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small RNA molecules that contain 18–25 nucleotides. The alterations in their expression level play crucial role in the development of many disorders including heart diseases. Myocardial remodeling is the final pathological consequence of a variety of myocardial diseases. miRNAs have central role in regulating pathogenesis of myocardial remodeling by modulating cardiac hypertrophy, cardiomyocytes injury, cardiac fibrosis, angiogenesis, and inflammatory response through multiple mechanisms. The balancing and tight regulation of different miRNAs is a key to drive the cellular events towards functional recovery and any fall in this leads to detrimental effect on cardiac function following various insults. In this review, we discuss the impact of alterations of miRNAs expression on cardiac hypertrophy, cardiomyocytes injury, cardiac fibrosis, angiogenesis, and inflammatory response. We have also described the targets (receptors, signaling molecules, transcription factors, etc.) of miRNAs on which they act to promote or attenuate cardiac remodeling processes in different type cells of cardiac tissues.
Collapse
|
36
|
Chen P, He YH, Huang X, Tao SQ, Wang XN, Yan H, Ding KS, Lobie PE, Wu WY, Wu ZS. MiR-23a modulates X-linked inhibitor of apoptosis-mediated autophagy in human luminal breast cancer cell lines. Oncotarget 2017; 8:80709-80721. [PMID: 29113338 PMCID: PMC5655233 DOI: 10.18632/oncotarget.21080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/03/2017] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a conserved multi-step lysosomal process that is induced by diverse stimuli including cellular nutrient deficiency. X-linked inhibitor of apoptosis (XIAP) promotes cell survival and recently has been demonstrated to suppress autophagy. Herein, we examined regulation of XIAP-mediated autophagy in breast cancer cells and determined the underlying molecular mechanism. To investigate this process, autophagy of breast cancer cells was induced by Earle's balanced salt solution (EBSS). We observed discordant expression of XIAP mRNA and protein in the autophagic process induced by EBSS, suggesting XIAP may be regulated at a post-transcriptional level. By scanning several miRNAs potentially targeting XIAP, we observed that forced expression of miR-23a significantly decreased the expression of XIAP and promoted autophagy, wherever down-regulation of miR-23a increased XIAPexpression and suppressed autophagy in breast cancer cells. XIAP was confirmed as a direct target of miR-23a by reporter assay utilizing the 3'UTR of XIAP. In vitro, forced expression of miR-23a promoted autophagy, colony formation, migration and invasion of breast cancer cell by down-regulation of XIAP expression. However, miR-23a inhibited apoptosis of breast cancer cells independent of XIAP. Xenograft models confirmed the effect of miR-23a on expression of XIAP and LC3 and that miR-23a promoted breast cancer cell invasiveness. Therefore, our study demonstrates that miR-23a modulates XIAP-mediated autophagy and promotes survival and migration in breast cancer cells and hence provides important new insights into the understanding of the development and progression of breast cancer.
Collapse
Affiliation(s)
- Ping Chen
- Li Shui People's Hospital, Nanjing, Jiangsu, China.,Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Yin-Huan He
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Xing Huang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Si-Qi Tao
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Nan Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Hong Yan
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Ke-Shuo Ding
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua University Graduate School at Shenzhen, Shenzhen, Guangdong, China
| | - Wen-Yong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
37
|
Pillar N, Bairey O, Goldschmidt N, Fellig Y, Rosenblat Y, Shehtman I, Haguel D, Raanani P, Shomron N, Siegal T. MicroRNAs as predictors for CNS relapse of systemic diffuse large B-cell lymphoma. Oncotarget 2017; 8:86020-86030. [PMID: 29156774 PMCID: PMC5689664 DOI: 10.18632/oncotarget.20902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023] Open
Abstract
Systemic diffuse large B-cell lymphoma (DLBCL) is a potentially curable disease using current regimen of immunochemotherapy. Central nervous system (CNS) relapse is a complication that occurs in approximately 5% of DLBCL patients and is associated with a high fatality rate. Early identification of molecular markers for CNS involvement may serve for the highly needed accurate stratification of patients into risk groups regarding CNS relapse. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the post-transcriptional level and are known to be involved in DLBCL pathophysiology. In this study, we utilized miRNA multiplex reading of systemic newly diagnosed DLBCL samples obtained from patients with clinical risk factors for CNS involvement whose disease course was distinguished by the presence or absence of subsequent CNS relapse. The analysis detected two differentially expressed miRNAs, miR-20a and miR-30d, that predict for CNS involvement. Replication of these results in different samples was used for validation. We performed bioinformatics miRNA-target enrichment analysis to reveal a number of putative mechanisms for these miRNAs regulation of CNS relapse, including neuronal plasticity and WNT signaling pathway. Altogether, we show that the expression level of two miRNAs may have valuable information that may refine stratification for patients-at-risk for relapse with CNS involvement in DLBCL. Further larger scale studies are needed to shed light on the pathways involved in this disease.
Collapse
Affiliation(s)
- Nir Pillar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Bairey
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Hemathology, Davidoff Institute of Oncology, Rabin Medical Center, Petach Tikva, Israel
| | - Neta Goldschmidt
- Department of Hemathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | - Itchak Shehtman
- Department of Pathology, Meir Medical Center, Kefar Saba, Israel
| | - Danielle Haguel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pia Raanani
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Hemathology, Davidoff Institute of Oncology, Rabin Medical Center, Petach Tikva, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Siegal
- Neuro-Oncology Center, Davidoff Institute of Oncology, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
38
|
The effect of miR-30d on apoptosis and autophagy in cultured astrocytes under oxygen-glucose deprivation. Brain Res 2017. [DOI: 10.1016/j.brainres.2017.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Chen YJ, Wang WH, Wu WY, Hsu CC, Wei LR, Wang SF, Hsu YW, Liaw CC, Tsai WC. Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways. PLoS One 2017; 12:e0183368. [PMID: 28829799 PMCID: PMC5567660 DOI: 10.1371/journal.pone.0183368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Pancreatic cancer is one of the most lethal types of cancer with a 5-year survival rate of ~5%. Histone deacetylases (HDACs) participate in many cellular processes, including carcinogenesis, and pharmacological inhibition of HDACs has emerged as a potential therapeutic strategy. In this study, we explored antitumor activity of the novel HDAC inhibitor AR-42 in pancreatic cancer. METHODS Human pancreatic cancer cell lines BxPC-3 and PANC-1 were used in this study. Real-time PCR, RT-PCR, and western blotting were employed to investigate expression of specific genes and proteins, respectively. Translocation of apoptosis-inducing factor was investigated by immunofluorescence and subcellular fractionation. The number of apoptotic cells, cell cycle stages, and reactive oxygen species (ROS) generation levels were determined by flow cytometry. Cell invasiveness was examined by the Matrigel invasion assay. Efficacy of AR-42 in vivo was evaluated by utilizing BxPC-3 xenograft mouse model. RESULTS AR-42 inhibited pancreatic cancer cell proliferation by causing G2/M cell cycle arrest via regulating expression levels of genes and proteins involved in cell cycle. AR-42 also induced ROS generation and DNA damage, triggering apoptosis of pancreatic cancer cells via both caspase-3-dependent and caspase-3-independent pathways. In addition, AR-42 increased expression levels of negative regulators of p53 (miR-125b, miR-30d, and miR33), which could contribute to lower expression level of mutant p53 in pancreatic cancer cells. Cell invasion assay showed that AR-42 reduced cancer cell aggressiveness and significantly diminished BxPC-3 xenograft tumor growth in vivo. CONCLUSION AR-42, a novel HDAC inhibitor, inhibited pancreatic cancer cells by regulating p53 expression, inducing cell cycle arrest, particularly at the G2/M stage, and activating multiple apoptosis pathways. Additionally, AR-42 inhibited cell invasiveness and potently suppressed pancreatic cancer tumors in vivo. We conclude that by virtue of its multiple mechanisms of action, AR-42 possesses a considerable potential as an antitumor agent in pancreatic cancer.
Collapse
Affiliation(s)
- Yi-Jin Chen
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Wang
- Department of Otolaryngology, Cathay General Hospital, Taipei City, Taiwan
- Department of Otolaryngology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wan-Yu Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Chi Hsu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Rung Wei
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Fan Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Wen Hsu
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program of Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Zhu Y, Liu J, Fan L, Wang F, Bu L, Ma T, Du Y, Zhang C, Wang H, Sun G. Serum expression and significance of MicroRNA-30d-5p in esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8677-8685. [PMID: 31966725 PMCID: PMC6965463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/20/2017] [Indexed: 06/10/2023]
Abstract
This study was aimed to assess serum microRNA-30d-5p (miR-30d-5p) expression in patients with esophageal squamous cell carcinoma before and after operation, exploring its associations with clinical pathological parameters. A total of 30 esophageal cancer patients who underwent radical resection and were pathologically confirmed with esophageal squamous cell carcinoma in the First Affiliated Hospital of Anhui Medical University, from April to May in 2013, were enrolled, alongside 19 healthy controls. The expression levels of miRNA in serum from patients with esophageal squamous cell carcinoma before and after operation were assessed by microarrays and real-time PCR (RT-PCR). The associations of miR-30d-5p expression with clinical pathological parameters were determined. Serum hsa-miR-30d-5p levels in patients with esophageal squamous cell carcinoma (study group) were significantly associated with the tumor depth of invasion, lymph node metastasis, tumor location and length, histopathological type and degree of differentiation, as well as history of smoking and drinking (P<0.05). Moreover, changes of serum miRNA levels were more prominent than that of thymidine kinase 1 (TK1). There were significant differences in hsa-miR-30d-5p expression levels between the study and control groups (P<0.05). These results indicated that microRNA-30d-5p is a potential marker of esophageal squamous cell carcinoma, with high expression having a certain promoting role in the occurrence and development of esophageal cancer.
Collapse
Affiliation(s)
- Yanzhe Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University Hefei 230022, Anhui Province, China
| | - Jiatao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University Hefei 230022, Anhui Province, China
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University Hefei 230022, Anhui Province, China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University Hefei 230022, Anhui Province, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University Hefei 230022, Anhui Province, China
| | - Lijia Bu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University Hefei 230022, Anhui Province, China
| | - Tai Ma
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University Hefei 230022, Anhui Province, China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University Hefei 230022, Anhui Province, China
| | - Congjun Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University Hefei 230022, Anhui Province, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University Hefei 230022, Anhui Province, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University Hefei 230022, Anhui Province, China
| |
Collapse
|
41
|
Zhao F, Qu Y, Zhu J, Zhang L, Huang L, Liu H, Li S, Mu D. miR-30d-5p Plays an Important Role in Autophagy and Apoptosis in Developing Rat Brains After Hypoxic–Ischemic Injury. J Neuropathol Exp Neurol 2017; 76:709-719. [DOI: 10.1093/jnen/nlx052] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
42
|
Zhang R, Xu J, Zhao J, Bai J. Mir-30d suppresses cell proliferation of colon cancer cells by inhibiting cell autophagy and promoting cell apoptosis. Tumour Biol 2017. [PMID: 28651493 DOI: 10.1177/1010428317703984] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, P.R. China
| | - Jian Xu
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, P.R. China
| | - Jian Zhao
- Department of Colorectal Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, P.R. China
| | - Jinghui Bai
- Department of Internal Medicine, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
43
|
Regulation of Autophagy by MiRNAs and Their Emerging Roles in Tumorigenesis and Cancer Treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:1-26. [PMID: 28838537 DOI: 10.1016/bs.ircmb.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a conserved catabolic process for the degradation and recycling of cytosolic components or organelles through a lysosome-dependent pathway. Autophagy can be induced in response to multiple stress conditions, such as nutrient deprivation, hypoxia, energy depletion, etc. As a result, autophagy can regulate many biological processes, including cell survival, metabolism, differentiation, senescence, and cell death. MicroRNAs (MiRNAs) are small noncoding molecules that regulate gene expression by silencing mRNA targets. MiRNA dysregulation exhibits great regulatory potential during organismal development, hematopoiesis, immunity, cell proliferation and death, and autophagy. Recently, increasing studies have linked MiRNAs to autophagic regulation during cancer initiation and development. Although the relationship between MiRNAs and autophagy is quite complicated and has not been well elucidated, MiRNAs may underlie key aspects of autophagy and cancer biology. Increasing evidence shows that MiRNAs play important roles as both oncogenic MiRNAs and tumor suppressive MiRNAs in cancer initiation and development. Thus, understanding the novel relationship between MiRNAs and autophagy may allow us to develop promising cancer biomarkers and therapeutic targets.
Collapse
|
44
|
Wang XS, Liu C, Khoso PA, Zheng W, Li M, Li S. Autophagy response in the liver of pigeon exposed to avermectin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12767-12777. [PMID: 26886445 DOI: 10.1007/s11356-016-6209-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Pesticide residues are an important aspect of environmental pollution. Environmental avermectin residues have produced adverse effects in organisms. Many pesticides exert their toxic effects via the mechanism of autophagy. The purpose of this study was to examine the changes in autophagy levels and in autophagy-related genes, including LC3, Beclin 1, Dynein, ATG5, TORC1, and TORC2, resulting from exposure to subchronic levels of AVM in liver tissue in the king pigeon model. We observed abundant autophagic vacuoles with extensively degraded organelles, autophagosomal vacuoles, secondary lysosomes, and double-membrane structures in the liver. The expression levels of the autophagy-related genes LC3-I, LC3-II, Beclin 1, ATG5, and Dynein were up-regulated; however, TORC1 and TORC2 expression levels were down-regulated. These changes occurred in a concentration-dependent manner after AVM exposure for 30, 60, and 90 days in pigeons. Taken together, these results suggested that AVM increased the autophagic flux and that upregulation of autophagy might be closely related to the hepatotoxicity of AVM in birds.
Collapse
Affiliation(s)
- Xian-Song Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Pervez Ahmed Khoso
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Weijia Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ming Li
- College of Life Science, Daqing Normal College, Daqing, 163712, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
45
|
Abstract
Macroautophagy/autophagy is a catabolic process that is widely found in nature. Over the past few decades, mounting evidence has indicated that noncoding RNAs, ranging from small noncoding RNAs to long noncoding RNAs (lncRNAs) and even circular RNAs (circRNAs), mediate the transcriptional and post-transcriptional regulation of autophagy-related genes by participating in autophagy regulatory networks. The differential expression of noncoding RNAs affects autophagy levels at different physiological and pathological stages, including embryonic proliferation and differentiation, cellular senescence, and even diseases such as cancer. We summarize the current knowledge regarding noncoding RNA dysregulation in autophagy and investigate the molecular regulatory mechanisms underlying noncoding RNA involvement in autophagy regulatory networks. Then, we integrate public resources to predict autophagy-related noncoding RNAs across species and discuss strategies for and the challenges of identifying autophagy-related noncoding RNAs. This article will deepen our understanding of the relationship between noncoding RNAs and autophagy, and provide new insights to specifically target noncoding RNAs in autophagy-associated therapeutic strategies.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peiyuan Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,Heilongjiang Academy of Medical Sciences, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| |
Collapse
|
46
|
Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-Regulating microRNAs and Cancer. Front Oncol 2017; 7:65. [PMID: 28459042 PMCID: PMC5394422 DOI: 10.3389/fonc.2017.00065] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway that is responsible for the degradation of long-lived proteins, protein aggregates, as well as damaged organelles in order to maintain cellular homeostasis. Consequently, abnormalities of autophagy are associated with a number of diseases, including Alzheimers’s disease, Parkinson’s disease, and cancer. According to the current view, autophagy seems to serve as a tumor suppressor in the early phases of cancer formation, yet in later phases, autophagy may support and/or facilitate tumor growth, spread, and contribute to treatment resistance. Therefore, autophagy is considered as a stage-dependent dual player in cancer. microRNAs (miRNAs) are endogenous non-coding small RNAs that negatively regulate gene expression at a post-transcriptional level. miRNAs control several fundamental biological processes, and autophagy is no exception. Furthermore, accumulating data in the literature indicate that dysregulation of miRNA expression contribute to the mechanisms of cancer formation, invasion, metastasis, and affect responses to chemotherapy or radiotherapy. Therefore, considering the importance of autophagy for cancer biology, study of autophagy-regulating miRNA in cancer will allow a better understanding of malignancies and lead to the development of novel disease markers and therapeutic strategies. The potential to provide study of some of these cancer-related miRNAs were also implicated in autophagy regulation. In this review, we will focus on autophagy, miRNA, and cancer connection, and discuss its implications for cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Devrim Gozuacik
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
| | - Yunus Akkoc
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Deniz Gulfem Ozturk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Muhammed Kocak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
47
|
Cervantes-Anaya N, Ponciano-Gómez A, López-Álvarez GS, Gonzalez-Reyes C, Hernández-Garcia S, Cabañas-Cortes MA, Garrido-Guerrero JE, Villa-Treviño S. Downregulation of sorting nexin 10 is associated with overexpression of miR-30d during liver cancer progression in rats. Tumour Biol 2017; 39:1010428317695932. [PMID: 28381192 DOI: 10.1177/1010428317695932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
As of 2012, liver cancer was the second leading cause of death worldwide, and hepatocellular carcinoma is the most common primary cancer of the liver. The identification of molecules that might be molecular markers or therapeutic targets is urgently needed to improve clinical management. Based on a microarray analysis performed in our laboratory, we selected six genes-namely, ANXA2, DYNLT1, PFKP, PLA2G7, KRT19, and SNX10-as candidates for validation as tumor markers of liver cancer in a rat model. Their patterns of overexpression in preneoplastic lesions and established tumors at 10 different time points between 24 h and 18 months were analyzed to identify putative tumor markers for further studies. We validated the microarray results by quantitative reverse transcription polymerase chain reaction, which revealed high transcriptional expression for five of the genes, consistent with their high protein expression during cancer progression reported in the literature. However, studies of the association of sorting nexin 10 with different types of cancer are limited, prompting further study. The characterization of sorting nexin 10 in preneoplastic lesions and established tumors revealed messenger RNA overexpression and a simultaneous decrease in sorting nexin 10 protein expression. A group of microRNAs related to sorting nexin 10 messenger RNA were selected based on a data analysis conducted using miRDB and microrna.org . An analysis of the expression of these microRNAs revealed an increase in the transcription of microRNA-30d whenever the sorting nexin 10 protein was downregulated. These results suggest that sorting nexin 10 is a potential liver cancer marker exhibiting characteristics of a putative suppressor protein that is likely regulated by microRNA-30d.
Collapse
Affiliation(s)
- Nancy Cervantes-Anaya
- 1 Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México, México
| | - Alberto Ponciano-Gómez
- 2 Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México, México
| | - Guadalupe Soledad López-Álvarez
- 1 Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México, México
| | - Christian Gonzalez-Reyes
- 1 Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México, México.,3 Unidad Académica de Ciencias Químico Biológicas y Farmacéutica, Universidad Autónoma de Nayarit, Tepic, México
| | - Sergio Hernández-Garcia
- 1 Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México, México
| | - María Asunción Cabañas-Cortes
- 1 Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México, México
| | - José Efraín Garrido-Guerrero
- 2 Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México, México
| | - Saúl Villa-Treviño
- 1 Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ciudad de México, México
| |
Collapse
|
48
|
Xu Y, Huang X, Xie J, Chen Y, Fu J, Wang L. Let-7i-Induced Atg4B Suppression Is Essential for Autophagy of Placental Trophoblast in Preeclampsia. J Cell Physiol 2017; 232:2581-2589. [PMID: 27770612 DOI: 10.1002/jcp.25661] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/30/2022]
Abstract
Autophagy, identified as type II programmed cell death, has already been known to be involved in the pathophysiology of preeclampsia (PE), which is a gestational disease with high morbidity. The present study aims to investigate the functional role of let-7i, a miRNA, in trophoblastic autophagy. Placental tissue used in this study was collected from patients with severe preeclampsia (SPE) or normal pregnant women. A decreased level of let-7i was found in placenta of SPE. In addition, autophagic vacuoles were observed in SPE and the expression of microtubule associated protein 1 light chain 3 (LC3) II/I was elevated. In vitro, let-7i mimics suppressed the autophagic activities in human HTR-8/SVneo trophoblast cell line (HTR-8) and human placental choriocarcinoma cell line JEG-3, whereas let-7i inhibitor enhanced the activities. As a potential target of let-7i, autophagy-related 4B cysteine peptidase (Atg4B) had an increased expression level in SPE. As expected, the increased expression of Atg4B was negatively regulated by let-7i using dual luciferase reporter assay. Furthermore, these trophoblast-like cells transfected with the let-7i mimic or inhibitors resulted in a significant change of Atg4B in both mRNA and protein level. More importantly, Atg4B overexpression could partly reverse let-7i mimic-reduced LC3II/I levels; whereas Atg4B silencing partly attenuated let-7i inhibitor-induced the level of LC3II/I expression. Taken together, these findings suggest that let-7i is able to regulate autophagic activity via regulating Atg4B expression, which might contribute to the pathogenesis of PE. J. Cell. Physiol. 232: 2581-2589, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yinyan Xu
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xinyan Huang
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Juan Xie
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yanni Chen
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jing Fu
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Li Wang
- State key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Ou Z, Chen Y, Niu X, He W, Song B, Fan D, Sun X. High-mobility group box 1 regulates cytoprotective autophagy in a mouse spermatocyte cell line (GC-2spd) exposed to cadmium. Ir J Med Sci 2017; 186:1041-1050. [PMID: 28389990 DOI: 10.1007/s11845-017-1595-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 03/14/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cadmium (Cd) is an environmental and industrial pollutant that induces a broad spectrum of toxicological effects, influences a variety of human organs, and is associated with poor semen quality and male infertility. Increasing evidence demonstrates that Cd induces testicular germ cell apoptosis in rodent animals. However, the specific effect of Cd exposure on autophagy in germ cells is poorly understood. METHODS We investigate the role of high-mobility group box 1 protein (HMGB1), a ubiquitous nuclear protein, on Cd-evoked autophagy in a mouse spermatocyte cell line (GC-2spd). RESULTS Our data have shown that autophagy was significantly elevated in GC-2spd cells exposed to Cd. Furthermore, there was a reduction in rapamycin (RAP)-mediated apoptosis. In addition, Cd exposure reduced cell viability, which is an effect that could be significantly inhibited by RAP treatment. These results indicate that autophagy appears to serve a positive function in reducing Cd-induced cytotoxicity. In addition, HMGB1 increased coincident with the processing of LC3-I to LC3-II. Thus, the upregulation of HMGB1 increases LC3-II levels. CONCLUSIONS Our data suggest that HMGB1-induced autophagy appears to act as a defense/survival mechanism against Cd cytotoxicity in GC-2spd cells.
Collapse
Affiliation(s)
- Z Ou
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China
| | - Y Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China
| | - X Niu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China
| | - W He
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China
| | - B Song
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China
| | - D Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China
| | - X Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China.
| |
Collapse
|
50
|
Zhou Y, Hao Y, Li Y, Li R, Wu R, Wang S, Fang Z. Amplification and up-regulation of MIR30D was associated with disease progression of cervical squamous cell carcinomas. BMC Cancer 2017; 17:230. [PMID: 28356144 PMCID: PMC5372318 DOI: 10.1186/s12885-017-3201-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Background Cervical squamous cell carcinoma (CSCC) is the most frequent type among cervical cancers. Although the altered miRNA miR-30d expression and the amplified chromosome locus of MIR30D, 8q24, have been reported in somatic cancers, the definitive functional impact of such region especially in CSCC remains under-investigated. Methods One hundred thirty-six cases of CSCC tissues and matched adjacent normal ovarian epithelial tissues were assessed in this study. FISH and qPCR were performed to detect the copy number and microRNA expression of MIR30D gene in the collected samples. In in-vitro study, proliferation of CSCC cells were analyzed using WST-1 assay and invasion abilities of CSCC cells were evaluated by transwell assay. In-vivo study using a model of nude mice bearing tumor was also performed. Results Copy number gains of MIR30D were detected in 22.8% (31 out of 136) of CSCC samples. Copy number of MIR30D was positively correlated with tumor progression. CSCCs with lymph node metastases (LNM) also showed more frequencies (36.4%) of MIR30D amplification than those without LNM (18.4%, p < 0.05). CSCCs with increased copy number of MIR30D also showed a positive correlation with miR-30d up-regulation. Inhibition of miR-30d in CSCC cells led to impaired tumor growth and migration. Conclusions Copy number amplifications of MIR30D gene and enhanced expression of miR-30d were positively correlated with tumor progression in CSCCs, indicating miR-30d might play an oncomiric role in the progression of CSCC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3201-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- You Zhou
- Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, 518036, China
| | - Yinghua Hao
- Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, 518036, China
| | - Yuxia Li
- Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, 518036, China
| | - Ruizhen Li
- Department of Gynecology and Obstetrics, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Ruifang Wu
- Department of Gynecology and Obstetrics, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Shubin Wang
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| | - Zhengyu Fang
- Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, 518036, China.
| |
Collapse
|