1
|
Sukmana BI, Al-Hawary SIS, Abosaooda M, Adile M, Gupta R, Saleh EAM, Alwaily ER, Alsaab HO, Sapaev IB, Mustafa YF. A thorough and current study of miR-214-related targets in cancer. Pathol Res Pract 2023; 249:154770. [PMID: 37660658 DOI: 10.1016/j.prp.2023.154770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Cancer is a complex genetic anomaly involving coding and non-coding transcript structural and expressive irregularities. A class of tiny non-coding RNAs known as microRNAs (miRNAs) regulates gene expression at the post-transcriptional level by binding only to messenger RNAs (mRNAs). Due to their capacity to target numerous genes, miRNAs have the potential to play a significant role in the development of tumors by controlling several biological processes, including angiogenesis, drug resistance, metastasis, apoptosis, proliferation, and drug resistance. According to several recent studies, miRNA-214 has been linked to the emergence and spread of tumors. The human genome's q24.3 arm contains the DNM3 gene, which is about 6 kb away and includes the microRNA-214. Its primary purpose was the induction of apoptosis in cancerous cells. The multifaceted and complex functions of miR-214 as a modulator in neoplastic conditions have been outlined in the current review.
Collapse
Affiliation(s)
- Bayu Indra Sukmana
- Departement of Oral Biology, Lambung Mangkurat University, Banjarmasin, Indonesia
| | | | | | - Mohaned Adile
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, Uttar Pradesh 281406, India.
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan; New Uzbekistan University, Tashkent, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
2
|
Zhou R, Guo T, Li J. Research progress on the antitumor effects of astragaloside IV. Eur J Pharmacol 2022; 938:175449. [PMID: 36473596 DOI: 10.1016/j.ejphar.2022.175449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
One of the most important and effective components of Astragalus membranaceus is astragaloside IV (AS-IV), which can exert anti-tumor effects through various pathways. For instance, AS-IV exerts an anti-tumor effect by acting at the cellular level, regulating the phenotype switch of tumor-associated macrophages, or inhibiting the development of tumor cells. Furthermore, AS-IV inhibits tumor cell progression by enhancing its sensitivity to antitumor drugs or reversing the drug resistance of tumor cells. This article reviews the different mechanisms of AS-IV inhibition of epithelial-mesenchymal transition (EMT), migration, proliferation, and invasion of tumor cells, inducing apoptosis and improving the sensitivity of anti-tumor drugs. This review summarizes recent progress in the current research into AS-IV anti-tumor effect and provides insight on the next anti-tumor research of AS-IV.
Collapse
Affiliation(s)
- Ruixi Zhou
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
3
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
4
|
MicroRNA-214 in Health and Disease. Cells 2021; 10:cells10123274. [PMID: 34943783 PMCID: PMC8699121 DOI: 10.3390/cells10123274] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed, non-coding RNA molecules that mediate the post-transcriptional repression and degradation of mRNAs by targeting their 3′ untranslated region (3′-UTR). Thousands of miRNAs have been identified since their first discovery in 1993, and miR-214 was first reported to promote apoptosis in HeLa cells. Presently, miR-214 is implicated in an extensive range of conditions such as cardiovascular diseases, cancers, bone formation and cell differentiation. MiR-214 has shown pleiotropic roles in contributing to the progression of diseases such as gastric and lung cancers but may also confer cardioprotection against excessive fibrosis and oxidative damage. These contrasting functions are achieved through the diverse cast of miR-214 targets. Through silencing or overexpressing miR-214, the detrimental effects can be attenuated, and the beneficial effects promoted in order to improve health outcomes. Therefore, discovering novel miR-214 targets and understanding how miR-214 is dysregulated in human diseases may eventually lead to miRNA-based therapies. MiR-214 has also shown promise as a diagnostic biomarker in identifying breast cancer and coronary artery disease. This review provides an up-to-date discussion of miR-214 literature by describing relevant roles in health and disease, areas of disagreement, and the future direction of the field.
Collapse
|
5
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
6
|
Wang H, Yang J, Zhang K, Liu J, Li Y, Su W, Song N. Advances of Fibroblast Growth Factor/Receptor Signaling Pathway in Hepatocellular Carcinoma and its Pharmacotherapeutic Targets. Front Pharmacol 2021; 12:650388. [PMID: 33935756 PMCID: PMC8082422 DOI: 10.3389/fphar.2021.650388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of primary liver cancer with poor prognosis, and its incidence and mortality rate are increasing worldwide. It is refractory to conventional chemotherapy and radiotherapy owing to its high tumor heterogeneity. Accumulated genetic alterations and aberrant cell signaling pathway have been characterized in HCC. The fibroblast growth factor (FGF) family and their receptors (FGFRs) are involved in diverse biological activities, including embryonic development, proliferation, differentiation, survival, angiogenesis, and migration, etc. Data mining results of The Cancer Genome Atlas demonstrate high levels of FGF and/or FGFR expression in HCC tumors compared with normal tissues. Moreover, substantial evidence indicates that the FGF/FGFR signaling axis plays an important role in various mechanisms that contribute to HCC development. At present, several inhibitors targeting FGF/FGFR, such as multikinase inhibitors, specific FGFR4 inhibitors, and FGF ligand traps, exhibit antitumor activity in preclinical or early development phases in HCC. In this review, we summarize the research progress regarding the molecular implications of FGF/FGFR-mediated signaling and the development of FGFR-targeted therapeutics in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Haijun Wang
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ke Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yushan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Key Laboratory of Clinical Molecular Pathology, Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Bocchetti M, Ferraro MG, Ricciardiello F, Ottaiano A, Luce A, Cossu AM, Scrima M, Leung WY, Abate M, Stiuso P, Caraglia M, Zappavigna S, Yau TO. The Role of microRNAs in Development of Colitis-Associated Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22083967. [PMID: 33921348 PMCID: PMC8068787 DOI: 10.3390/ijms22083967] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most deadly cancer worldwide, and inflammatory bowel disease (IBD) is one of the critical factors in CRC carcinogenesis. IBD is responsible for an unphysiological and sustained chronic inflammation environment favoring the transformation. MicroRNAs (miRNAs) belong to a class of highly conserved short single-stranded segments (18-25 nucleotides) non-coding RNA and have been extensively discussed in both CRC and IBD. However, the role of miRNAs in the development of colitis-associated CRC (CAC) is less clear. The aim of this review is to summarize the major upregulated (miR-18a, miR-19a, miR-21, miR-31, miR-155 and miR-214) and downregulated (miR-124, miR-193a-3p and miR-139-5p) miRNAs in CAC, and their roles in genes' expression modulation in chronic colonic-inflammation-induced carcinogenesis, including programmed cell-death pathways. These miRNAs dysregulation could be applied for early CAC diagnosis, to predict therapy efficacy and for precision treatment.
Collapse
Affiliation(s)
- Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, via D. Montesano 49, 80131 Naples, Italy;
| | | | - Alessandro Ottaiano
- SSD-Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy;
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Marianna Scrima
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Wing-Yan Leung
- Division of Haematology, Department of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Marianna Abate
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Correspondence: (S.Z.); (T.O.Y.)
| | - Tung On Yau
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: (S.Z.); (T.O.Y.)
| |
Collapse
|
8
|
Prawira A, Le TBU, Vu TC, Huynh H. Ribociclib enhances infigratinib-induced cancer cell differentiation and delays resistance in FGFR-driven hepatocellular carcinoma. Liver Int 2021; 41:608-620. [PMID: 33179425 PMCID: PMC7894323 DOI: 10.1111/liv.14728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Infigratinib is a pan-FGFR (fibroblast growth factor receptor) inhibitor that has shown encouraging activity in FGFR-dependent hepatocellular carcinoma (HCC) models. However, long-term treatment results in the emergence of resistant colonies. We sought to understand the mechanisms behind infigratinib-induced tumour cell differentiation and resistance and to explore the potential of adding the CDK4/6 inhibitor ribociclib to prolong cell differentiation. METHODS Nine high and three low FGFR1-3-expressing HCC patient-derived xenograft (PDX) tumours were subcutaneously implanted into SCID mice and subsequently treated with either infigratinib alone or in combination with ribociclib. Tumour tissues were then subjected to immunohistochemistry to assess cell differentiation, as indicated by the cytoplasmic-to-nuclear ratio and markers such as CYP3A4, HNF4α and albumin. Western blot analyses were performed to investigate the signalling pathways involved. RESULTS Infigratinib induced cell differentiation in FGFR1-3-dependent HCC PDX models, as indicated by an increase in the cytoplasmic/nuclear ratio and an increase in CYP3A4, HNF4α and albumin. Resistant colonies emerged in long-term treatment, characterised by a reversal of differentiated cell morphology, a reduction in the cytoplasmic-to-nuclear ratio and a loss of differentiation markers. Western blot analyses identified an increase in the CDK4/Cdc2/Rb pathway. The addition of ribociclib effectively blocked this pathway and reversed resistance to infigratinib, resulting in prolonged cell differentiation and growth inhibition. CONCLUSIONS Our findings demonstrate that the combined inhibition of FGFR/CDK4/6 pathways is highly effective in providing long-lasting tumour growth inhibition and cell differentiation and reducing drug resistance. Therefore, further clinical investigations in patients with FGFR1-3-dependant HCC are warranted.
Collapse
Affiliation(s)
- Aldo Prawira
- Laboratory of Molecular EndocrinologyDivision of Molecular and Cellular ResearchNational Cancer CentreSingapore
| | - Thi Bich Uyen Le
- Laboratory of Molecular EndocrinologyDivision of Molecular and Cellular ResearchNational Cancer CentreSingapore
| | - Thanh Chung Vu
- Laboratory of Molecular EndocrinologyDivision of Molecular and Cellular ResearchNational Cancer CentreSingapore
| | - Hung Huynh
- Laboratory of Molecular EndocrinologyDivision of Molecular and Cellular ResearchNational Cancer CentreSingapore
| |
Collapse
|
9
|
Zhao Z, Song J, Zhang D, Wu F, Tu J, Ji J. Oxysophocarpine suppresses FGFR1-overexpressed hepatocellular carcinoma growth and sensitizes the therapeutic effect of lenvatinib. Life Sci 2021; 264:118642. [PMID: 33148422 DOI: 10.1016/j.lfs.2020.118642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
AIMS Hepatocellular carcinoma (HCC) is an aggressive solid tumor with restricted therapeutics. Lenvatinib is the second approved frontline drug for advanced HCC, however lenvatinib-resistant cases have been reported in clinical. Overexpression of fibroblast growth factor receptor (FGFR1) has been found to be associated with advanced HCC. This study was aimed to investigate the relationship between FGFR1 overexpression and lenvatinib resistance, and explore the potential candidate that can sensitize lenvatinib against FGFR1-overexpressed HCC. MAIN METHODS Development of FGFR1 overexpression was accomplished in Hep3B and HepG2 cell lines by pCDH-FGFR1 lentiviral vector. In vitro, cell proliferation, colony formation, cell migration and cell apoptosis assays were used to explore the effect of lenvatinib and Oxysophocarpine. In vivo, BALB/c nude mice were burdened with subcutaneous FGFR1-overexpressed Hep3B tumor to assess the therapeutic effect of lenvatinib and Oxysophocarpine. qRT-PCR and western blotting were further used to identify the underlying mechanism. KEY FINDINGS Here, we revealed that overexpressed FGFR1 and its downstream AKT/mTOR and ERK signaling activation could induce lenvatinib resistance in HCC. In vivo and in vitro results showed Oxysophocarpine inhibited the proliferation and induced the apoptosis of FGFR1-overexpressed HCC cells. Oxysophocarpine could further sensitize FGFR1-overexpressed HCC cells to lenvatinib treatment. Mechanism studies revealed that Oxysophocarpine downregulated FGFR1 expression along with downstream AKT/mTOR and ERK signaling to sensitize lenvatinib against FGFR1-overexpressed HCC. SIGNIFICANCES These data collectively provided evidence that FGFR1 overexpression could be a potential cause of lenvatinib resistance and Oxysophocarpine could be an ideal combined therapy with lenvatinib in HCC treatment.
Collapse
MESH Headings
- Alkaloids/pharmacology
- Alkaloids/therapeutic use
- Animals
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- MAP Kinase Signaling System/drug effects
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Phenylurea Compounds
- Proto-Oncogene Proteins c-akt/metabolism
- Quinolines
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- TOR Serine-Threonine Kinases/metabolism
- Mice
Collapse
Affiliation(s)
- Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Dengke Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Fazong Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China; Department of Radiology, the Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/The Central Hospital of Zhejiang Lishui, Lishui 323000, China.
| |
Collapse
|
10
|
Abstract
Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.
Collapse
|
11
|
Ziogas IA, Sioutas G, Mylonas KS, Tsoulfas G. Role of MicroRNA in the Diagnosis and Management of Hepatocellular Carcinoma. Microrna 2020; 9:25-40. [PMID: 31218966 DOI: 10.2174/2211536608666190619155406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors in the world and comes third in cancer-induced mortality. The need for improved and more specific diagnostic methods that can detect early-stage disease is immense, as it is amenable to curative modalities, while advanced HCC is associated with low survival rates. microRNA (miRNA) expression is deregulated in HCC and this can be implemented both diagnostically and therapeutically. OBJECTIVE To provide a concise review on the role of miRNA in diagnosis, prognosis, and treatment of HCC. METHODS We conducted a comprehensive review of the PubMed bibliographic database. RESULTS Multiple miRNAs are involved in the pathogenesis of HCC. Measurement of the levels of these miRNAs either in tumor tissue or in the blood constitutes a promising diagnostic, as well as prognostic tool. OncomiRs are miRNAs that promote tumorigenesis, thus inhibiting them by administering antagomiRs is a promising treatment option. Moreover, replacement of the depleted miRNAs is another potential therapeutic approach for HCC. Modification of miRNA levels may also regulate sensitivity to chemotherapeutic agents. CONCLUSION miRNA play a pivotal role in HCC pathogenesis and once the underlying mechanisms are elucidated, they will become part of everyday clinical practice against HCC.
Collapse
Affiliation(s)
- Ioannis A Ziogas
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
| | - Georgios Sioutas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos S Mylonas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsoulfas
- 1st Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Kim H, Worsley O, Yang E, Purbojati RW, Liang AL, Tan W, Moses DID, Hartono S, Fan V, Lim TKH, Schuster SC, Foo RS, Chow PKH, Pettersson S. Persistent changes in liver methylation and microbiome composition following reversal of diet-induced non-alcoholic-fatty liver disease. Cell Mol Life Sci 2019; 76:4341-4354. [PMID: 31119300 PMCID: PMC11105172 DOI: 10.1007/s00018-019-03114-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic liver disease that is thought to be reversible by changing the diet. To examine the impact of dietary changes on progression and cure of NAFLD, we fed mice a high-fat diet (HFD) or high-fructose diet (HFrD) for 9 weeks, followed by an additional 9 weeks, where mice were given normal chow diet. As predicted, the diet-induced NAFLD elicited changes in glucose tolerance, serum cholesterol, and triglyceride levels in both diet groups. Moreover, the diet-induced NAFLD phenotype was reversed, as measured by the recovery of glucose intolerance and high cholesterol levels when mice were given normal chow diet. However, surprisingly, the elevated serum triglyceride levels persisted. Metagenomic analysis revealed dietary-induced changes of microbiome composition, some of which remained altered even after reversing the diet to normal chow, as illustrated by species of the Odoribacter genus. Genome-wide DNA methylation analysis revealed a "priming effect" through changes in DNA methylation in key liver genes. For example, the lipid-regulating gene Apoa4 remained hypomethylated in both groups even after introduction to normal chow diet. Our results support that dietary change, in part, reverses the NAFLD phenotype. However, some diet-induced effects remain, such as changes in microbiome composition, elevated serum triglyceride levels, and hypomethylation of key liver genes. While the results are correlative in nature, it is tempting to speculate that the dietary-induced changes in microbiome composition may in part contribute to the persistent epigenetic modifications in the liver.
Collapse
Affiliation(s)
- Hyejin Kim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Oliver Worsley
- Department of Human Genetics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Edwin Yang
- Division of Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
- Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Rikky Wenang Purbojati
- Singapore Centre on Environmental Life Science Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Ai Leng Liang
- Division of Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Wilson Tan
- Department of Human Genetics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Daniela I Drautz Moses
- Singapore Centre on Environmental Life Science Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Septian Hartono
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Vanessa Fan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Stephan C Schuster
- Singapore Centre on Environmental Life Science Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Roger Sy Foo
- Department of Human Genetics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.
- Department of Medicine, Cardiovascular Research Institute, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore.
| | - Pierce Kah Hoe Chow
- Division of Surgical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
- Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Hepato-Pancreato-Biliary and Transplantation Surgery, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
| | - Sven Pettersson
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
- Singapore Centre on Environmental Life Science Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
- Department of Neurobiology, Care sciences and Society, Karolinska Institutet, Bioclincium, J30:10, Akademiska stråket 1, 17164, Stockholm, Sweden.
| |
Collapse
|
13
|
Nasr MA, Salah RA, Abd Elkodous M, Elshenawy SE, El-Badri N. Dysregulated MicroRNA Fingerprints and Methylation Patterns in Hepatocellular Carcinoma, Cancer Stem Cells, and Mesenchymal Stem Cells. Front Cell Dev Biol 2019; 7:229. [PMID: 31681762 PMCID: PMC6811506 DOI: 10.3389/fcell.2019.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the top causes of cancer mortality worldwide. Although HCC has been researched extensively, there is still a need for novel and effective therapeutic interventions. There is substantial evidence that initiation of carcinogenesis in liver cirrhosis, a leading cause of HCC, is mediated by cancer stem cells (CSCs). CSCs were also shown to be responsible for relapse and chemoresistance in several cancers, including HCC. MicroRNAs (miRNAs) constitute important epigenetic markers that regulate carcinogenesis by acting post-transcriptionally on mRNAs, contributing to the progression of HCC. We have previously shown that co-culture of cancer cells with mesenchymal stem cells (MSCs) could induce the reprogramming of MSCs into CSC-like cells. In this review, we evaluate the available data concerning the epigenetic regulation of miRNAs through methylation and the possible role of this regulation in stem cell and somatic reprogramming in HCC.
Collapse
Affiliation(s)
- Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| |
Collapse
|
14
|
Huang Q, Li H, Dai X, Zhao D, Guan B, Xia W. miR‑497 inhibits the proliferation and migration of A549 non‑small‑cell lung cancer cells by targeting FGFR1. Mol Med Rep 2019; 20:3959-3967. [PMID: 31485617 DOI: 10.3892/mmr.2019.10611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/14/2018] [Indexed: 11/05/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) signaling has been reported to contribute to the carcinogenic progression of various cancer types. Previous studies have demonstrated that FGFR1 expression is increased in non‑small cell lung cancer (NSCLC) and promotes cancer cell metastasis. However, the molecular mechanisms underlying increased FGFR1 expression in NSCLC remains largely unknown. In the current study, microRNA (miR)‑497 levels were observed to be inversely correlated with FGFR1 expression in tumor samples from patients with NSCLC. In the NSCLC cell line A549, miR‑497 overexpression inhibited cell proliferation and migration. Increased expression of miR‑497 led to a reduction in FGFR1 expression, at the mRNA and protein levels. In addition, transfection of miR‑497 mimics inactivated the protein kinase B (AKT) and c‑Jun N‑terminal kinase (JNK) signaling pathways, as reduced matrix metallopeptidase 26 expression; all of which are regulated by FGFR1. Using TargetScan software, FGFR1 was also identified as a predicted target gene of miR‑497, and a dual luciferase reporter assay confirmed that miR‑497 directly regulated FGFR1. Transfection of a recombinant FGFR1 overexpression vector reversed miR‑497 mimic‑induced arrest of cell growth and migration in A549 cells. In conclusion, the results of the present study identified miR‑497 as a potential tumor suppressor gene in NSCLC that may function via repressing FGFR1 expression, and AKT and JNK signaling.
Collapse
Affiliation(s)
- Qibin Huang
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Hongtao Li
- Department of Oncology, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Xiaofeng Dai
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Di Zhao
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Bingfeng Guan
- Department of Cardiothoracic Surgery, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| | - Wen Xia
- Department of Anesthesiology, Jingzhou First People's Hospital, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
15
|
Min L, Liu C, Kuang J, Wu X, Zhu L. miR-214 inhibits epithelial-mesenchymal transition of breast cancer cells via downregulation of RNF8. Acta Biochim Biophys Sin (Shanghai) 2019; 51:791-798. [PMID: 31294443 DOI: 10.1093/abbs/gmz067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous noncoding genes that regulate gene expression at the posttranscriptional level. In recent decades, miRNAs have been reported to play important roles in tumor growth and metastasis, while some reported functions of a specific miRNA in tumorigenesis are contradictory. In this study, we reevaluated the role of miR-214, which has been reported to serve as an oncogene or anti-oncogene in breast cancer metastasis. We found that miR-214 inhibited breast cancer via targeting RNF8, a newly identified regulator that could promote epithelial-mesenchymal transition (EMT). Specifically, the survival rate of breast cancer patients was positively correlated with miR-214 levels and negatively correlated with RNF8 expression. The overexpression of miR-214 inhibited cell proliferation and invasion of breast cancer, while suppression of miR-214 by chemically modified antagomir enhanced the proliferation and invasion of breast cancer cells. Furthermore, miR-214 could modulate the EMT process via downregulating RNF8. To our knowledge, this is the first report that reveals the role of the miR-214-RNF8 axis in EMT, and our results demonstrate a novel mechanism for miR-214 acting as a tumor suppressor through the regulation of EMT.
Collapse
Affiliation(s)
- Lu Min
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Jingyu Kuang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Xiaomin Wu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
16
|
Prabhakar K, Rodrίguez CI, Jayanthy AS, Mikheil DM, Bhasker AI, Perera RJ, Setaluri V. Role of miR-214 in regulation of β-catenin and the malignant phenotype of melanoma. Mol Carcinog 2019; 58:1974-1984. [PMID: 31338875 DOI: 10.1002/mc.23089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022]
Abstract
Wnt/β-catenin signaling plays an important role in melanocyte biology, especially in the early stages of melanocyte transformation and melanomagenesis. β-catenin, encoded by the gene CTNNB1, is an intracellular signal transducer of Wnt signaling and activates transcription of genes important for cell proliferation and survival. Wnt/β-catenin signaling is frequently activated in melanoma through oncogenic mutations of β-catenin and elevated β-catenin levels are positively correlated with melanoma aggressiveness. Molecular mechanisms that regulate β-catenin expression in melanoma are not fully understood. MicroRNA-214 is known to function as a tumor suppressor by targeting β-catenin in several types of cancer cells. Here, we investigated the regulation of β-catenin by miR-214 and its role in melanoma. We show that β-catenin mRNA levels are negatively correlated with miR-214 in melanoma. However, overexpression of miR-214 paradoxically increased β-catenin protein levels and promoted malignant properties of melanoma cells including resistance to mitogen-activated protein kinase inhibitors (MAPKi). RNA-seq analysis revealed that melanoma cells predominantly express a β-catenin mRNA isoform lacking miR-214 target site. Using matched miRNA and mRNA-seq and bioinformatics analysis, we identified novel miR-214 targets, ankyrin repeat domain 6 (ANKRD6) and C-terminal binding protein 1 (CTBP1), that are involved in negative regulation of Wnt signaling. Overexpression of miR-214 or knockdown of the novel miR-214 targets, ANKRD6 or CTBP1, increased melanoma cell proliferation, migration, and decreased sensitivity to MAPKi. Our data suggest that in melanoma cells β-catenin is not regulated by miR-214 and the functions of miR-214 in melanoma are mediated partly by regulating proteins involved in attenuation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Kirthana Prabhakar
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Carlos I Rodrίguez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ashika S Jayanthy
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Dareen M Mikheil
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aishwarya Iyer Bhasker
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ranjan J Perera
- Sanford-Burham Prebys Medical Discovery Institute, Orlando, Florida
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
17
|
Zhan W, Liao X, Chen Z, Li L, Tian T, Yu L, Wang W, Hu Q. Circular RNA hsa_circRNA_103809 promoted hepatocellular carcinoma development by regulating miR‐377‐3p/FGFR1/ERK axis. J Cell Physiol 2019; 235:1733-1745. [PMID: 31317555 DOI: 10.1002/jcp.29092] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Wei Zhan
- Department of Colorectal Surgery Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Xin Liao
- Department of Imaging Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Zhongsheng Chen
- Clinical Medical College Guizhou Medical University Guiyang Guizhou China
| | - Lianghe Li
- Clinical Medical College Guizhou Medical University Guiyang Guizhou China
| | - Tian Tian
- Centre of Clinical Laboratory Guiyang Maternal and Child Health Hospital Guiyang City Guizhou China
| | - Lei Yu
- Department of Pathology Guiyang Maternal and Child Health Hospital Guiyang Guizhou China
| | - Wei Wang
- Department of Gastroenterology Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang Hubei China
| | - Qiyan Hu
- Department of Oncology Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Xiangyang Hubei China
| |
Collapse
|
18
|
Kang X, Lin Z, Xu M, Pan J, Wang ZW. Deciphering role of FGFR signalling pathway in pancreatic cancer. Cell Prolif 2019; 52:e12605. [PMID: 30945363 PMCID: PMC6536421 DOI: 10.1111/cpr.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
Recently, fibroblast growth factors are identified to play a vital role in the development and progression of human pancreatic cancer. FGF pathway is critical involved in numerous cellular processes through regulation of its downstream targets, including proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. In this review article, we describe recent advances of FGFR signalling pathway in pancreatic carcinogenesis and progression. Moreover, we highlight the available chemical inhibitors of FGFR pathway for potential treatment of pancreatic cancer. Furthermore, we discuss whether targeting FGFR pathway is a novel therapeutic strategy for pancreatic cancer clinical management.
Collapse
Affiliation(s)
- Xiaodiao Kang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeng Lin
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minhui Xu
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Pan
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
The Effect of miR-98 and miR-214 on Apoptotic and Angiogenic Pathways in Hepatocellular Carcinoma HepG2 Cells. Indian J Clin Biochem 2019; 35:353-358. [PMID: 32647414 DOI: 10.1007/s12291-019-00824-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 02/26/2019] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the foremost causes of cancer related morbidity worldwide. An increasing number of studies have confirmed that microRNAs play an important role in the development, progression and metastasis of HCC. From those important miRNAs are miR-98 and miR-214. This study were conducted to explore the effect of these two miRNAs on some apoptotic and angiogenic genes namely, BCL-2, survivin, CCND1, CDC2, P53 and P21, VEGF, Hif-1α, MMP-2, MMP-9, Ang-1, Ang-2, and FGF-1. miRNAs mimics and inhibitors transfection was used to investigate the role of both studied molecules in apoptosis and angiogenesis in HepG2 cells. QRT-PCR was used for Quantitative gene and miRNA expression analyses. The study revealed that miR-98 could serve as a pro-apoptotic factor through the upregulation of P53 gene expression levels. Besides, the anti-angiogenic effect of this miRNA was evident through the down regulation of Ang-1 and FGF-1 genes. Meanwhile, miR-214 showed a pro-apoptotic role and anti-angiogenic effects. These effects were verified through the significant down regulation of BCL-2, CDC2, VEGF, Ang-1 and MMP-2. These results introduced a possible positive role played by both miR-98 and miR-214 on some pro-apoptotic and anti-angiogenic genes.
Collapse
|
20
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Sheng J, Zou X, Cheng Z, Xiang Y, Yang W, Lin Y, Cui R. Recent Advances in Herbal Medicines for Digestive System Malignancies. Front Pharmacol 2018; 9:1249. [PMID: 30524272 PMCID: PMC6256117 DOI: 10.3389/fphar.2018.01249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Herbal medicines, as an important part of traditional Chinese medicine (TCM), have been used to treat digestive system malignancies (DSM) for many years, and have gradually gained recognition worldwide. The role of herbal medicines in the comprehensive treatment of DSM is being improved from adjuvant treatment of the autologous immune function in cancer patients, to the treatment of both the symptoms and disease, direct inhibition of tumor cell growth and proliferation, and induction of tumor cell autophagy and apoptosis. Their specific mechanisms in these treatments are also being explored. The paper reviews the current anti-tumor mechanisms of TCM, including single herbal medicines, Chinese herbal formulations, Chinese medicine preparations and TCM extract, and their application in the comprehensive treatment of digestive system tumors, providing a reference for clinical application of TCM.
Collapse
Affiliation(s)
- Jiyao Sheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yien Xiang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Yang Lin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Kim SH, Ryu H, Ock CY, Suh KJ, Lee JY, Kim JW, Lee JO, Kim JW, Kim YJ, Lee KW, Bang SM, Kim JH, Lee JS, Ahn JB, Kim KJ, Rha SY. BGJ398, A Pan-FGFR Inhibitor, Overcomes Paclitaxel Resistance in Urothelial Carcinoma with FGFR1 Overexpression. Int J Mol Sci 2018; 19:ijms19103164. [PMID: 30326563 PMCID: PMC6214101 DOI: 10.3390/ijms19103164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/06/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel (PTX) is commonly used to treat urothelial carcinoma (UC) after platinum-based chemotherapy has failed. However, single-agent taxane therapy is not sufficient to inhibit tumor progression and drug resistance in advanced UC. Epithelial-to-mesenchymal transition (EMT) induced by fibroblast growth factor receptor (FGFR)1 signaling has been proposed as a mechanism of PTX resistance, but it is unclear whether this can be overcome by FGFR1 inhibition. The present study investigated whether FGFR1 overexpression contributes to PTX resistance and whether FGFR inhibition can enhance PTX efficacy in UC. The effects of PTX combined with the FGFR inhibitor BGJ398 were evaluated in UC cell lines by flow cytometry; Western blot analysis; cell viability, migration, and colony forming assays; and RNA interference. PTX+BGJ398 induced cell cycle arrest and apoptosis in UC cells with mesenchymal characteristics was accompanied by downregulation of cyclin D1 protein and upregulation of gamma-histone 2A family member X and cleaved poly(ADP-ribose) polymerase. Additionally, PTX+BGJ398 synergistically suppressed UC cell migration and colony formation via regulation of EMT-associated factors, while FGFR1 knockdown enhanced the antitumor effect of PTX. These findings provide a basis for development of effective strategies for overcoming PTX resistance in UC through inhibition of FGFR1 signaling.
Collapse
Affiliation(s)
- Se Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
- Department of Medicine, Graduate School of Yonsei University, Seoul 03722, Korea.
| | - Haram Ryu
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam 13605, Korea.
| | - Chan-Young Ock
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Koung Jin Suh
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Ji Yun Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Ji-Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jeong-Ok Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jin Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Yu Jung Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Keun-Wook Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Soo-Mee Bang
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Jong Seok Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea.
| | - Joong Bae Ahn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Kui-Jin Kim
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam 13605, Korea.
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
23
|
Maurizi G, Babini L, Della Guardia L. Potential role of microRNAs in the regulation of adipocytes liposecretion and adipose tissue physiology. J Cell Physiol 2018; 233:9077-9086. [PMID: 29932216 DOI: 10.1002/jcp.26523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022]
Abstract
Adipose tissue is a dynamic endocrine organ playing a pivotal role in metabolism modulation. Adipocytes differentiation requires a highly orchestrated series of changes of gene expression in precursor cells. At the same time, white mature adipocytes are plastic cells able to reversibly transdifferentiate toward fibroblast-like cells via the liposecretion process, returning back to a non-committed status of the cells. In particular, adipose tissue microenvironment along with external signaling molecules such as adipokines, cytokines and growth factors can regulate adipocytes physiology through complex molecular networks. MicroRNAs (miRNAs), a type of non-coding RNA, acting as fine regulators of biological processes and their expression is sensible to the environment and cellular status changes. MiRNAs are thought to play a pivotal role in regulating the physiology of adipose tissue as well as in the development of obesity and associated metabolic disturbances, although the underlying mechanisms have not been identified so far. Elucidating the molecular mechanisms orchestrating adipose tissue biology is required to better characterize obesity and its associated diseases. In this respect, the review aims to analyze the microRNAs potentially involved in adipogenesis highlighting their role in the process of liposecretion, adipocyte proliferation, and adipokines secretion. The role of microRNAs in the development of obesity and obesity-associated disorders is also discussed.
Collapse
Affiliation(s)
| | - Lucia Babini
- Università Politecnica delle Marche, Ancona, Italy
| | - Lucio Della Guardia
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Unità di Scienza dell'Alimentazione, Università degli studi di Pavia, Pavia, Italy
| |
Collapse
|
24
|
|
25
|
Wang ZF, Ma DG, Zhu Z, Mu YP, Yang YY, Feng L, Yang H, Liang JQ, Liu YY, Liu L, Lu HW. Astragaloside IV inhibits pathological functions of gastric cancer-associated fibroblasts. World J Gastroenterol 2017; 23:8512-8525. [PMID: 29358859 PMCID: PMC5752711 DOI: 10.3748/wjg.v23.i48.8512] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/29/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the inhibitory effect of astragaloside IV on the pathological functions of cancer-associated fibroblasts, and to explore the underlying mechanism. METHODS Paired gastric normal fibroblast (GNF) and gastric cancer-associated fibroblast (GCAF) cultures were established from resected tissues. GCAFs were treated with vehicle control or different concentrations of astragaloside IV. Conditioned media were prepared from GNFs, GCAFs, control-treated GCAFs, and astragaloside IV-treated GCAFs, and used to culture BGC-823 human gastric cancer cells. Proliferation, migration and invasion capacities of BGC-823 cells were determined by MTT, wound healing, and Transwell invasion assays, respectively. The action mechanism of astragaloside IV was investigated by detecting the expression of microRNAs and the expression and secretion of the oncogenic factor, macrophage colony-stimulating factor (M-CSF), and the tumor suppressive factor, tissue inhibitor of metalloproteinase 2 (TIMP2), in different groups of GCAFs. The expression of the oncogenic pluripotency factors SOX2 and NANOG in BGC-823 cells cultured with different conditioned media was also examined. RESULTS GCAFs displayed higher capacities to induce BGC-823 cell proliferation, migration, and invasion than GNFs (P < 0.01). Astragaloside IV treatment strongly inhibited the proliferation-, migration- and invasion-promoting capacities of GCAFs (P < 0.05 for 10 μmol/L, P < 0.01 for 20 μmol/L and 40 μmol/L). Compared with GNFs, GCAFs expressed a lower level of microRNA-214 (P < 0.01) and a higher level of microRNA-301a (P < 0.01). Astragaloside IV treatment significantly up-regulated microRNA-214 expression (P < 0.01) and down-regulated microRNA-301a expression (P < 0.01) in GCAFs. Reestablishing the microRNA expression balance subsequently suppressed M-CSF production (P < 0.01) and secretion (P < 0.05), and elevated TIMP2 production (P < 0.01) and secretion (P < 0.05). Consequently, the ability of GCAFs to increase SOX2 and NANOG expression in BGC-823 cells was abolished by astragaloside IV. CONCLUSION Astragaloside IV can inhibit the pathological functions of GCAFs by correcting their dysregulation of microRNA expression, and it is promisingly a potent therapeutic agent regulating tumor microenvironment.
Collapse
Affiliation(s)
- Zhen-Fei Wang
- Laboratory for Tumor Molecular Diagnosis, Affiliated People’s Hospital of Inner Mongolia Medical University, Huhhot 010020, Inner Mongolia Autonomous Region, China
| | - Da-Guang Ma
- Laboratory for Tumor Molecular Diagnosis, Affiliated People’s Hospital of Inner Mongolia Medical University, Huhhot 010020, Inner Mongolia Autonomous Region, China
| | - Zhe Zhu
- Department of cytotherapy for tumors, Affiliated People’s Hospital of Inner Mongolia Medical University, Huhhot 010020, Inner Mongolia Autonomous Region, China
| | - Yong-Ping Mu
- Laboratory for Tumor Molecular Diagnosis, Affiliated People’s Hospital of Inner Mongolia Medical University, Huhhot 010020, Inner Mongolia Autonomous Region, China
| | - Yong-Yan Yang
- Laboratory for Tumor Molecular Diagnosis, Affiliated People’s Hospital of Inner Mongolia Medical University, Huhhot 010020, Inner Mongolia Autonomous Region, China
| | - Li Feng
- Department of Abdominal Tumor Surgery, Affiliated People’s Hospital of Inner Mongolia Medical University, Huhhot 010020, Inner Mongolia Autonomous Region, China
| | - Hao Yang
- Department of Radiotherapy, Affiliated People’s Hospital of Inner Mongolia Medical University, Huhhot 010020, Inner Mongolia Autonomous Region, China
| | - Jun-Qing Liang
- Department of cytotherapy for tumors, Affiliated People’s Hospital of Inner Mongolia Medical University, Huhhot 010020, Inner Mongolia Autonomous Region, China
| | - Yong-Yan Liu
- Department of cytotherapy for tumors, Affiliated People’s Hospital of Inner Mongolia Medical University, Huhhot 010020, Inner Mongolia Autonomous Region, China
| | - Li Liu
- Central Laboratory, People’s Hospital of Wuhai City, Wuhai 016000, Inner Mongolia Autonomous Region, China
| | - Hai-Wen Lu
- Laboratory for Tumor Molecular Diagnosis, Affiliated People’s Hospital of Inner Mongolia Medical University, Huhhot 010020, Inner Mongolia Autonomous Region, China
- Affiliated Hospital of Inner Mongolia Medical University, Huhhot 010050, Inner Mongolia Autonomous Region, China
| |
Collapse
|
26
|
Schelch K, Kirschner MB, Williams M, Cheng YY, van Zandwijk N, Grusch M, Reid G. A link between the fibroblast growth factor axis and the miR-16 family reveals potential new treatment combinations in mesothelioma. Mol Oncol 2017; 12:58-73. [PMID: 29094504 PMCID: PMC5748487 DOI: 10.1002/1878-0261.12150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/27/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy with very limited therapeutic options. Fibroblast growth factor (FGF) signals play important roles in mesothelioma cell growth. Several FGFs and FGF receptors (FGFRs) are predicted targets of the miR‐15/16 family, which is downregulated in MPM. The aim of this study was to explore the link between the miR‐15/16 family and the FGF axis in MPM. Expression analyses via RT‐qPCR showed downregulation of the FGF axis after transfection with miR‐15/16 mimics. Direct interaction was confirmed by luciferase reporter assays. Restoration of miR‐15/16 led to dose‐dependent growth inhibition in MPM cell lines, which significantly correlated with their sensitivity to FGFR inhibition. Treatment with recombinant FGF2 prevented growth inhibition and further reduced the levels of FGF/R‐targeting microRNAs, indicating a vicious cycle between miR‐15/16 down‐ and FGF/FGFR signaling upregulation. Combined inhibition of two independent miR‐15/16 targets, the FGF axis and Bcl‐2, resulted in additive or synergistic activity. Our data indicate that post‐transcriptional repression of FGF‐mediated signals contributes to the tumor suppressor function of the microRNA‐15/16 family. Inhibiting hyperactivated FGF signals and Bcl‐2 might serve as a novel therapeutic combination strategy in MPM.
Collapse
Affiliation(s)
- Karin Schelch
- Asbestos Diseases Research Institute, Sydney, Australia.,Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria
| | - Michaela B Kirschner
- Asbestos Diseases Research Institute, Sydney, Australia.,Division of Thoracic Surgery, University Hospital Zurich, Switzerland
| | | | - Yuen Y Cheng
- Asbestos Diseases Research Institute, Sydney, Australia
| | - Nico van Zandwijk
- Asbestos Diseases Research Institute, Sydney, Australia.,School of Medicine, University of Sydney, Australia
| | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Austria
| | - Glen Reid
- Asbestos Diseases Research Institute, Sydney, Australia.,School of Medicine, University of Sydney, Australia
| |
Collapse
|
27
|
Feng Y, Duan F, Liu W, Fu X, Cui S, Yang Z. Prognostic value of the microRNA-214 in multiple human cancers: a meta-analysis of observational studies. Oncotarget 2017; 8:75350-75360. [PMID: 29088870 PMCID: PMC5650425 DOI: 10.18632/oncotarget.17642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/07/2017] [Indexed: 01/19/2023] Open
Abstract
Previous studies showed that microRNA-214 (miR-214) may act as a prognostic biomarker of cancer. However, the available evidence is controversial. This study summarizes evidence and evaluates the prognostic role of miR-214 in various cancers. We carried out a systematic literature review and assessed the quality of included studies based on Oxford Centre for Evidence-based Medicine Criteria and Newcastle-Ottawa Scale (NOS). Pooled hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) for overall survival (OS) and disease free survival/progressive free survival/recurrence free survival (DFS/PFS/RFS) were calculated to measure the effective value of miR-214 expression on prognosis. Thirteen studies were included in pooled analysis. We found that miR-214 was significantly correlated with OS (HR=2.21, 95%CI: 1.33-3.68, P=0.00), no significant difference was found with DFS/PFS/RFS (HR=1.73, 95%CI: 0.78-3.83, P=0.18) in various carcinomas. In subgroup analysis, higher expression of miR-214 was significantly associated with poor OS in Asians (HR=2.27, 95%CI: 1.09-4.73, P=0.00) and Caucasians (HR=2.04, 95%CI: 1.47-3.30, P=0.00). On the contrary, high miR-214 expression significantly predicted favorable DFS/PFS/RFS (HR=0.50, 95%CI: 0.31-0.82, P=0.00) in hepatocellular carcinoma (HCC) group. Our data indicates that high miR-214 could be a promising biomarker for prognosis prediction of cancer. However, further clinical studies are needed for the current insufficient relevant data.
Collapse
Affiliation(s)
- Yajing Feng
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fujiao Duan
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou, Henan, China
| | - Weigang Liu
- Medical Record Statistics Office, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Xiaoli Fu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuli Cui
- College of Professional Study, Northeastern University, Boston, Massachusetts, USA
| | - Zhenxing Yang
- Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Prognostic value of microRNAs in hepatocellular carcinoma: a meta-analysis. Oncotarget 2017; 8:107237-107257. [PMID: 29291025 PMCID: PMC5739810 DOI: 10.18632/oncotarget.20883] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Background Numerous articles reported that dysregulated expression levels of miRNAs correlated with survival time of HCC patients. However, there has not been a comprehensive meta-analysis to evaluate the accurate prognostic value of miRNAs in HCC. Design Meta-analysis. Materials and Methods Studies, published in English, estimating expression levels of miRNAs with any survival curves in HCC were identified up until 15 April, 2017 by performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two independent authors. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS). Results 54 relevant articles about 16 miRNAs, with 6464 patients, were ultimately included. HCC patients with high expression of tissue miR-9 (HR = 2.35, 95% CI = 1.46–3.76), miR-21 (HR = 1.76, 95% CI = 1.29–2.41), miR-34c (HR = 1.64, 95% CI = 1.05–2.57), miR-155 (HR = 2.84, 95% CI = 1.46–5.51), miR-221 (HR = 1.76, 95% CI = 1.02–3.04) or low expression of tissue miR-22 (HR = 2.29, 95% CI = 1.63–3.21), miR-29c (HR = 1.35, 95% CI = 1.10–1.65), miR-34a (HR = 1.84, 95% CI = 1.30–2.59), miR-199a (HR = 2.78, 95% CI = 1.89–4.08), miR-200a (HR = 2.64, 95% CI = 1.86–3.77), miR-203 (HR = 2.20, 95% CI = 1.61–3.00) have significantly poor OS (P < 0.05). Likewise, HCC patients with high expression of blood miR-21 (HR = 1.73, 95% CI = 1.07–2.80), miR-192 (HR = 2.42, 95% CI = 1.15–5.10), miR-224 (HR = 1.56, 95% CI = 1.14–2.12) or low expression of blood miR-148a (HR = 2.26, 95% CI = 1.11–4.59) have significantly short OS (P < 0.05). Conclusions In conclusion, tissue miR-9, miR-21, miR-22, miR-29c, miR-34a, miR-34c, miR-155, miR-199a, miR-200a, miR-203, miR-221 and blood miR-21, miR-148a, miR-192, miR-224 demonstrate significantly prognostic value. Among them, tissue miR-9, miR-22, miR-155, miR-199a, miR-200a, miR-203 and blood miR-148a, miR-192 are potential prognostic candidates for predicting OS in HCC.
Collapse
|
29
|
Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67:603-618. [PMID: 28438689 DOI: 10.1016/j.jhep.2017.04.009] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
The majority of the human genome is not translated into proteins but can be transcribed into RNA. Even though the resulting non-coding RNAs (ncRNAs) do not encode for proteins, they contribute to diseases such as cancer. Here, we review examples of the functions of ncRNAs in liver cancer and their potential use for the detection and treatment of liver cancer.
Collapse
Affiliation(s)
- Marcel Klingenberg
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany
| | - Akiko Matsuda
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
30
|
Xu B, Xu T, Liu H, Min Q, Wang S, Song Q. MiR-490-5p Suppresses Cell Proliferation and Invasion by Targeting BUB1 in Hepatocellular Carcinoma Cells. Pharmacology 2017; 100:269-282. [PMID: 28810242 DOI: 10.1159/000477667] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To verify that miR-490-5p could influence hepatocellular carcinoma (HCC) cells' proliferation, invasion, cycle, and apoptosis by targeting BUB1. METHODS Quantitative real time-PCR (QRT-PCR) was used to determine the miR-490-5p expression. Immunohistochemistry, qRT-PCR, and Western blot were employed to detect BUB1 and transforming growth factor-beta (TGFβ/Smad) signaling-related proteins expression in hepatic tissues and cells. The luciferase assay was used to confirm the targeting relationship between miR-490-5p and BUB1. The Cell Counting Kit-8, colony formation, Transwell invasion, scratch healing assays, and flow cytometry analysis were conducted to evaluate HCC cells proliferation, invasion, migration, and apoptosis alteration after transfection. RESULTS In HCC tissues and cells, lower expression of miR-490-5p was detected, while BUB1 was overexpressed than controls. The upregulation of miR-490-5p inhibited BUB1 expression and the overexpression of miR-490-5p or the under-expression of BUB1 inhibited HCC cells proliferation, migration, invasion, and increased the apoptosis rate. CONCLUSION MiR-490-5p could regulate TGFβ/Smad signaling pathways by inhibiting BUB1, which could then inhibit HCC cells proliferation, invasion, and migration as well as decrease cell viability and increase apoptosis.
Collapse
Affiliation(s)
- Bin Xu
- Department of Oncology I, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
31
|
Wang S, Ding Z. Fibroblast growth factor receptors in breast cancer. Tumour Biol 2017; 39:1010428317698370. [PMID: 28459213 DOI: 10.1177/1010428317698370] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.
Collapse
Affiliation(s)
- Shuwei Wang
- Department of General Surgery, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Zhongyang Ding
- Department of General Surgery, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, P.R. China
| |
Collapse
|
32
|
Liu HT, Wang YW, Xing AY, Shi DB, Zhang H, Guo XY, Xu J, Gao P. Prognostic Value of microRNA Signature in Patients with Gastric Cancers. Sci Rep 2017; 7:42806. [PMID: 28202938 PMCID: PMC5311868 DOI: 10.1038/srep42806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/13/2017] [Indexed: 01/28/2023] Open
Abstract
The occurrence of lymph node metastases (LNM) after endoscopic submucosal dissection (ESD) in patients with gastric cancer (GC) leads to poor prognosis. However, few biomarkers are available to predict LNM in GC patients. Thus, we measured expression of 6 cancer-related miRNAs using real-time RT-PCR in 102 GC samples that were randomized into a training set and a testing set (each, 51 cases). Using logistic regression, we identified 4-miRNA (miR-27b, miR-128, miR-100 and miR-214) signatures for predicting LNM in GC patients. Patients with high-risk scores for the 4-miRNA signature tended to have higher LNM than those with low-risk scores. Meanwhile, the ROC curve of the 4-miRNA signature was better for predicting LNM in GC patients. In addition, Cox regression analysis indicated that a 2-miRNA signature (miR-27b and miR-214) or a miR-214/N stage signature was predictive of survival for GC patients. This work describes a previously unrecognized 4-miRNA signature involved in LNM and a 2-miRNA signature or miR-214/N stage signature related to GC patients’ survival.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, P.R. China.,Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China
| | - Ya-Wen Wang
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, P.R. China.,Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China
| | - Ai-Yan Xing
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, P.R. China.,Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China
| | - Duan-Bo Shi
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, P.R. China.,Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China
| | - Hui- Zhang
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - Xiang-Yu Guo
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, P.R. China.,Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China
| | - Jing- Xu
- Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China.,Department of Pathology, Qingdao Central Hospital, Qingdao, P.R. China
| | - Peng Gao
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, P.R. China.,Department of Pathology, School of Medicine, Shandong University, Jinan, P.R. China
| |
Collapse
|
33
|
Xie X, Wang Z, Chen F, Yuan Y, Wang J, Liu R, Chen Q. Roles of FGFR in oral carcinogenesis. Cell Prolif 2017; 49:261-9. [PMID: 27218663 DOI: 10.1111/cpr.12260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play essential roles in organ development during the embryonic period, and regulate tissue repair in adults. Accumulating evidence suggests that alterations in FGFR signalling are involved in diverse types of cancer. In this review, we focus on aberrant regulation of FGFRs in pathogenesis of oral squamous cell carcinoma (OSCC), including altered expression and subcellular location, aberrant isoform splicing and mutations. We also provide an overview of oncogenic roles of each FGFR and its downstream signalling pathways in regulating OSCC cell proliferation and metastasis. Finally, we discuss potential application of FGFRs as anti-cancer targets in the preclinical environment and in clinical practice.
Collapse
Affiliation(s)
- Xiaoyan Xie
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Wang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fangman Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiayi Wang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
34
|
Wu L, Bai X, Xie Y, Yang Z, Yang X, Lin J, Zhu C, Wang A, Zhang H, Miao R, Wu Y, Robson SC, Zhao Y, Sang X, Zhao H. MetastamiRs: A promising choice for antihepatocellular carcinoma nucleic acid drug development. Hepatol Res 2017; 47:80-94. [PMID: 27138942 DOI: 10.1111/hepr.12737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/18/2016] [Accepted: 04/29/2016] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide, which can be explained at least in part by its propensity towards metastasis and the limited efficacy of adjuvant therapy. MetastamiRs are miRNAs that promote or suppress migration and metastasis of cancer cells, and their functional status is significantly correlated with HCC prognosis. Unlike targeted therapy, metastamiRs have the potential to target multiple genes and signaling pathways and dramatically suppress cancer metastasis. In this review, we discuss the regulatory role of metastamiRs in the HCC invasion-metastasis cascade. Moreover, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis has shown that many extensively studied metastamiRs target several critical signaling pathways and these have remarkable therapeutic potential in HCC. The information reviewed here may assist in further anti-HCC miRNA drug screening and development.
Collapse
Affiliation(s)
- Liangcai Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Xue Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengpei Zhu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anqiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haohai Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoyu Miao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Liver Center and The Transplant Institute, Departments of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Brookline, Massachusetts, USA
| | - Yan Wu
- Liver Center and The Transplant Institute, Departments of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Brookline, Massachusetts, USA
| | - Simon C Robson
- Liver Center and The Transplant Institute, Departments of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Brookline, Massachusetts, USA
| | - Yi Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center of Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Biomarker MicroRNAs for Diagnosis, Prognosis and Treatment of Hepatocellular Carcinoma: A Functional Survey and Comparison. Sci Rep 2016; 6:38311. [PMID: 27917899 PMCID: PMC5137156 DOI: 10.1038/srep38311] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors with high incidence and mortality rate. Precision and effective biomarkers are therefore urgently needed for the early diagnosis and prognostic estimation. MicroRNAs (miRNAs) are important regulators which play functions in various cellular processes and biological activities. Accumulating evidence indicated that the abnormal expression of miRNAs are closely associated with HCC initiation and progression. Recently, many biomarker miRNAs for HCC have been identified from blood or tissues samples, however, the universality and specificity on clinicopathological features of them are less investigated. In this review, we comprehensively surveyed and compared the diagnostic, prognostic, and therapeutic roles of HCC biomarker miRNAs in blood and tissues based on the cancer hallmarks, etiological factors as well as ethnic groups, which will be helpful to the understanding of the pathogenesis of biomarker miRNAs in HCC development and further provide accurate clinical decisions for HCC diagnosis and treatment.
Collapse
|
36
|
Xin R, Bai F, Feng Y, Jiu M, Liu X, Bai F, Nie Y, Fan D. MicroRNA-214 promotes peritoneal metastasis through regulating PTEN negatively in gastric cancer. Clin Res Hepatol Gastroenterol 2016; 40:748-754. [PMID: 27339596 DOI: 10.1016/j.clinre.2016.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/24/2016] [Accepted: 05/03/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE We aimed to investigate the effects of microRNA-214 (miR-214) on peritoneal metastasis as well as to elucidate its regulatory mechanism in gastric cancer (GC). METHODS The expression levels of miR-214 in human GC cell lines MKN-28NM, MKN-28M, GC9811 and GC9811-P were analyzed by quantitative real-time PCR. Lentiviral miR-214, lentiviral miR-214 inhibitor, and empty lentiviral vector were transfected to GC cell lines, respectively. The roles of miR-214 in cell invasion, migration, proliferation and colony-forming ability were then analyzed. Besides, the expression levels of PTEN in different transfected cells were determined by western blot analysis. RESULTS We found that miR-214 was up-regulated in GC9811-P cells with high metastatic potential to the peritoneum compared with that in GC9811 cells. In addition, in vitro overexpression of miR-214 promoted cell invasion, migration, proliferation and colony-forming ability of GC9811 cells, while down-regulation of miR-214 had opposite effects in GC9811-P cells. Besides, overexpression of miR-214 in GC9811 cells markedly down-regulated PTEN expression, whereas down-regulation of miR-214 in GC9811-P cells significantly increased PTEN expression. CONCLUSIONS Our findings indicate that miR-214 may promote peritoneal metastasis of GC cells via down-regulation of PTEN, thus leading to the progression of GC.
Collapse
Affiliation(s)
- Ruijuan Xin
- Ningxia Hui Autonomous Region People's Hospital, Department of Gastroenterology, Yinchuan, China
| | - Feihu Bai
- Ningxia Hui Autonomous Region People's Hospital, Department of Gastroenterology, Yinchuan, China
| | - Yaning Feng
- Ningxia Hui Autonomous Region People's Hospital, Department of Gastroenterology, Yinchuan, China
| | - Mengna Jiu
- Ningxia Medical University, Yinchuan, China
| | | | - Fangyun Bai
- Affiliated Hospital of Ningxia Medical University, Department of Gastroenterology, Yinchuan, China
| | - Yongzhan Nie
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Beilin District, Changlexi Road, 710000 Xi'an, China.
| | - Daiming Fan
- Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Beilin District, Changlexi Road, 710000 Xi'an, China
| |
Collapse
|
37
|
Wang G, Mao BJ. Mechanisms for microRNAs in pathogenesis of hepatocellular carcinoma and challenges in their clinical application. Shijie Huaren Xiaohua Zazhi 2016; 24:4430-4437. [DOI: 10.11569/wcjd.v24.i33.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly tumors worldwide, and it seriously endangers the health of people in China. Hepatocarcinogenesis is an extremely complex process that involves many risk factors. MicroRNAs (miRNAs) are a group of small, short and non-coding RNAs, and approximately one-third of human genes are regulated by miRNAs, which play important roles in tumor cell proliferation, cell cycle and apoptosis as well as tumor invasion, metastasis, and angiogenesis. Numerous studies have shown that miRNAs have a close relationship with hepatocarcinogenesis. In addition, miRNAs play a significant role in the diagnosis and therapy of HCC. In this review, we discuss the recent advances in the understanding of signaling pathways that are related to miRNAs in hepatocarcinogenesis, and the challenges faced in the clinical application of miRNAs.
Collapse
|
38
|
Wang P, Chen S, Fang H, Wu X, Chen D, Peng L, Gao Z, Xie C. miR-214/199a/199a* cluster levels predict poor survival in hepatocellular carcinoma through interference with cell-cycle regulators. Oncotarget 2016; 7:929-45. [PMID: 26498144 PMCID: PMC4808043 DOI: 10.18632/oncotarget.6137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/30/2015] [Indexed: 12/25/2022] Open
Abstract
AIMS To identify the clinical and functional association of miR-214/199a/199a* cluster in human hepatocellular carcinoma (HCC) and to clarify the mechanism of miR-214. METHODS Kaplan-Meier and Cox proportional regression analyses were used to determine the association of miR-214/199a/199a* cluster levels with the survival of HCC patients. The role of miR-214 in regulating HCC cell proliferation was studied with miR-214 mimics/inhibitor-treated cells. Furthermore, the inhibition effect of miR-214 on E2F2, cyclin-dependent kinase (CDK) 3 and CDK6 expression was assessed in HCC cell lines with miR-214 mimics/inhibitors to increase/decrease miR-214 expression. Direct binding of miR-214 to the 3'-untranslated regions of E2F2, CDK3, and CDK6 was verified by dual-luciferase reporter assay. RESULTS In analyzing HCC clinical specimens and cell lines, we discovered a uniform decrease in miR-214/199a/199a* expression in comparison with noncancerous tissue or normal liver epithelial cell lines. Higher miR-214 levels were related with improved patient survival. Overexpression of miR-214 in HCC cells inhibited proliferation by inducing G1-S checkpoint arrest. Conversely, RNA interference-mediated silencing of miR-214 promoted cell-cycle progression and accelerated the proliferation of HCC cells. E2F2, CDK3 and CDK6 were each directly targeted for inhibition by miR-214, and restoring their expression reversed miR-214 inhibition of cell-cycle progression. The relationship between expression of miR-214 and its targets was confirmed in HCC tumor xenografts and clinical specimens. CONCLUSIONS Our results demonstrate that miR-214 has tumor-suppressive activity in HCC through inhibition of E2F2, CDK3 and CDK6.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Song Chen
- Department of Radiology, Guangzhou Red Cross Hospital/The Fourth Affiliated Hospital of Jinan University Medical College, Guangzhou, Guangdong Province, China
| | - He Fang
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaojuan Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dabiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
39
|
Hu PH, Pan LH, Wong PTY, Chen WH, Yang YQ, Wang H, Xiang JJ, Xu M. 125I-labeled anti-bFGF monoclonal antibody inhibits growth of hepatocellular carcinoma. World J Gastroenterol 2016; 22:5033-5041. [PMID: 27275095 PMCID: PMC4886378 DOI: 10.3748/wjg.v22.i21.5033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/30/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory efficacy of 125I-labeled anti-basic fibroblast growth factor (bFGF) monoclonal antibody (mAb) in hepatocellular carcinoma (HCC).
METHODS: bFGF mAb was prepared by using the 1G9B9 hybridoma cell line with hybridization technology and extracted from ascites fluid through a Protein G Sepharose affinity column. After labeling with 125I through the chloramine-T method, bFGF mAb was further purified by a Sephadex G-25 column. Gamma radiation counter GC-1200 detected radioactivity of 125I-bFGF mAb. The murine H22 HCC xenograft model was established and randomized to interventions with control (phosphate-buffered saline), 125I-bFGF mAb, 125I plus bFGF mAb, bFGF mAb, or 125I. The ratios of tumor inhibition were then calculated. Expression of bFGF, fibroblast growth factor receptor (FGFR), platelet-derived growth factor, and vascular endothelial growth factor (VEGF) mRNA was determined by quantitative reverse transcriptase real-time polymerase chain reaction.
RESULTS: The purified bFGF mAb solution was 8.145 mg/mL with a titer of 1:2560000 and was stored at -20 °C. After coupling, 125I-bFGF mAb was used at a 1: 1280000 dilution, stored at 4 °C, and its specific radioactivity was 37 MBq/mg. The corresponding tumor weight in the control, 125I, bFGF mAb, 125I plus bFGF mAb, and 125I-bFGF mAb groups was 1.88 ± 0.25, 1.625 ± 0.21, 1.5 ± 0.18, 1.41 ± 0.16, and 0.98 ± 0.11 g, respectively. The tumor inhibition ratio in the 125I, bFGF mAb, 125I plus bFGF mAb, and 125I-bFGF mAb groups was 13.6%, 20.2%, 25.1%, and 47.9%, respectively. Growth of HCC xenografts was inhibited significantly more in the 125I-bFGF mAb group than in the other groups (P < 0.05). Expression of bFGF and FGFR mRNA in the 125I-bFGF mAb group was significantly decreased in comparison with other groups (P < 0.05). Groups under interventions revealed increased expression of VEGF mRNA (except for 125I group) compared with the control group.
CONCLUSION: 125I-bFGF mAb inhibits growth of HCC xenografts. The coupling effect of 125I-bFGF mAb is more effective than the concomitant use of 125I and bFGF mAb.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/radiotherapy
- Cell Line, Tumor
- Cell Proliferation/radiation effects
- Fibroblast Growth Factor 2/immunology
- Fibroblast Growth Factor 2/metabolism
- Gene Expression Regulation, Neoplastic
- Hybridomas
- Iodine Radioisotopes/pharmacology
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/radiotherapy
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radioimmunotherapy/methods
- Radiopharmaceuticals/pharmacology
- Real-Time Polymerase Chain Reaction
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Vascular Endothelial Growth Factor/genetics
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Burden/radiation effects
Collapse
|
40
|
Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, Goldmann J, Lajoie BR, Fan ZP, Sigova AA, Reddy J, Borges-Rivera D, Lee TI, Jaenisch R, Porteus MH, Dekker J, Young RA. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 2016; 351:1454-1458. [PMID: 26940867 PMCID: PMC4884612 DOI: 10.1126/science.aad9024] [Citation(s) in RCA: 682] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
Abstract
Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.
Collapse
Affiliation(s)
- Denes Hnisz
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Abraham S. Weintraub
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel S. Day
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Anne-Laure Valton
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
| | - Rasmus O. Bak
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Charles H. Li
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Johanna Goldmann
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Bryan R. Lajoie
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
| | - Zi Peng Fan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alla A. Sigova
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Jessica Reddy
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Diego Borges-Rivera
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Matthew H. Porteus
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-0103, USA
- Howard Hughes Medical Institute
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
41
|
WANG FANG, LI LIN, CHEN ZHUO, ZHU MINGZHI, GU YUANTING. MicroRNA-214 acts as a potential oncogene in breast cancer by targeting the PTEN-PI3K/Akt signaling pathway. Int J Mol Med 2016; 37:1421-8. [DOI: 10.3892/ijmm.2016.2518] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/25/2016] [Indexed: 11/06/2022] Open
|
42
|
Liese J, Peveling-Oberhag J, Doering C, Schnitzbauer AA, Herrmann E, Zangos S, Hansmann ML, Moench C, Welker MW, Zeuzem S, Bechstein WO, Ulrich F. A possible role of microRNAs as predictive markers for the recurrence of hepatocellular carcinoma after liver transplantation. Transpl Int 2016; 29:369-80. [PMID: 26697811 DOI: 10.1111/tri.12733] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/20/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022]
Abstract
With favourable 5-year survival rates up to 75%, liver transplantation (LT) is the treatment of choice for hepatocellular carcinoma (HCC). Nonetheless, tumour recurrence after LT remains a challenge. The aim of this retrospective study was to develop a predictive score for tumour recurrence after LT by combining clinical parameters with HCC biomarkers (microRNA). A microRNA (miRNA) microarray analysis was used to compare miRNA expression patterns in tissue samples of 40 patients with and without HCC recurrence after LT. In a screening cohort (n = 18), the miRNA analysis identified significant differences in the expression of 13 miRNAs in patients with tumour recurrence. Using the most significant miRNAs in this screening cohort, we could develop a predictive score, which combined the expression levels of miR-214, miR-3187 and the Milan criteria, and we could define low- and high-risk groups for tumour recurrence and death. The above score was evaluated in a second and independent cohort (n = 22). In contrast to the Milan criteria alone, this score was significantly associated with tumour recurrence. Our analysis indicated that the use of a specific miRNA expression pattern in combination with a limited tumour burden as defined by the Milan criteria may lead to a more accurate prediction of tumour recurrence.
Collapse
Affiliation(s)
- Juliane Liese
- Department of General and Visceral Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Jan Peveling-Oberhag
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Claudia Doering
- Dr Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Andreas A Schnitzbauer
- Department of General and Visceral Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modelling, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Stephan Zangos
- Center of Radiology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Martin L Hansmann
- Dr Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Christian Moench
- General, Visceral and Transplantation Surgery, Westpfalz Klinikum, Kaiserslautern, Germany
| | - Martin W Welker
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine 1, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Wolf O Bechstein
- Department of General and Visceral Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Frank Ulrich
- Department of General and Visceral Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,General and Visceral Surgery, Klinikum Wetzlar, Germany
| |
Collapse
|
43
|
Wang Y, Tian Y. miRNA for diagnosis and clinical implications of human hepatocellular carcinoma. Hepatol Res 2016; 46:89-99. [PMID: 26284466 DOI: 10.1111/hepr.12571] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies, as a result of being asymptomatic at early stage, subsequent late clinical confirmation and poor prognosis. It is urgent to search more accurate biomarkers for diagnosing early HCC and predicting prognosis. Many factors participate in liver carcinogenesis, including dysregulation of miRNA. miRNA were endogenously expressed non-coding single-stranded small RNA with 19-25 nucleotides. Accumulating evidences have showed that miRNA from circulation and solitary tumors may be useful to classify the differentiation degree and stages of HCC, detect the hepatitis B/C virus-related HCC, and predict the survival rate after surgical resection or orthotopic liver transplantation. In this review, we summarize dysregulated miRNA, their roles in diagnosis and clinical implications of HCC.
Collapse
Affiliation(s)
- Yurong Wang
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yaping Tian
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
44
|
miRNA-214: Expression, Therapeutic and Diagnostic Potential in Cancer. TUMORI JOURNAL 2015; 101:375-83. [PMID: 26108246 DOI: 10.5301/tj.5000318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate gene expression by binding to the 3' untranslated region of their target mRNAs. Recent work supports a role for miRNAs in the initiation and progression of human cancer. miRNA-214 not only mediates differentiation, senescence, angiogenesis, cell migration and virus replication but also acts as a tumor suppressor gene and oncogene. Increasing evidence indicates that miRNA-214 may serve as a biomarker in some cancer types. The aim of this review is to highlight and clarify the complexity of miRNA-214 activity, emphasizing its significant therapeutic and diagnostic potential.
Collapse
|
45
|
Zhu L, Gao J, Huang K, Luo Y, Zhang B, Xu W. miR-34a screened by miRNA profiling negatively regulates Wnt/β-catenin signaling pathway in Aflatoxin B1 induced hepatotoxicity. Sci Rep 2015; 5:16732. [PMID: 26567713 PMCID: PMC4645126 DOI: 10.1038/srep16732] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
Aflatoxin-B1 (AFB1), a hepatocarcinogenic mycotoxin, was demonstrated to induce the high rate of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the regulation of several biological processes in HCC. However, the function of miRNAs in AFB1-induced HCC has received a little attention. Here, we applied Illumina deep sequencing technology for high-throughout profiling of microRNAs in HepG2 cells lines after treatment with AFB1. Analysis of the differential expression profile of miRNAs in two libraries, we identified 9 known miRNAs and 1 novel miRNA which exhibited abnormal expression. KEGG analysis indicated that predicted target genes of differentially expressed miRNAs are involved in cancer-related pathways. Down-regulated of Drosha, DGCR8 and Dicer 1 indicated an impairment of miRNA biogenesis in response to AFB1. miR-34a was up-regulated significantly, down-regulating the expression of Wnt/β-catenin signaling pathway by target gene β-catenin. Anti-miR-34a can significantly relieved the down-regulated β-catenin and its downstream genes, c-myc and Cyclin D1, and the S-phase arrest in cell cycle induced by AFB1 can also be relieved. These results suggested that AFB1 might down-regulate Wnt/β-catenin signaling pathway in HepG2 cells by up-regulating miR-34a, which may involve in the mechanism of liver tumorigenesis.
Collapse
Affiliation(s)
- Liye Zhu
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Jing Gao
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| | - Kunlun Huang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| | - Yunbo Luo
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| | - Boyang Zhang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Wentao Xu
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| |
Collapse
|
46
|
Mao B, Wang G. MicroRNAs involved with hepatocellular carcinoma (Review). Oncol Rep 2015; 34:2811-20. [PMID: 26398882 DOI: 10.3892/or.2015.4275] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/13/2015] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies, which accounts for 90% of primary liver cancer. HCC usually presents with poor outcomes due to the high rates of tumor recurrence and widespread metastasis. However, the underlying mechanism of HCC initiation and progression, which significantly hindered the development of valid approaches for early detection and treatment remain to be elucidated. As a group of small non-coding RNAs, microRNAs (miRNAs) have been demonstrated to be involved in many types of diseases especially human malignancies. Numerous miRNAs are deregulated in HCC, which may shed some light on current investigations. Since miRNAs are stable and detected easily, their ectopic expression has been reported in HCC tissues, serum/plasma and cell lines. As previously described, miRNAs serve as tumor suppressors or oncogenes, indicating that miRNAs may be useful as diagnostic, therapeutic and prognostic markers of HCC. In the present review, we assessed the latest data regarding dysregulated miRNAs in HCC and reviewed the reported functions of these miRNAs as they apply to the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Bijing Mao
- Cancer Center, Institute of Surgical Research, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Ge Wang
- Cancer Center, Institute of Surgical Research, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| |
Collapse
|
47
|
Over-expression of TRIM37 promotes cell migration and metastasis in hepatocellular carcinoma by activating Wnt/β-catenin signaling. Biochem Biophys Res Commun 2015. [DOI: 10.1016/j.bbrc.2015.07.089] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
He S, Zhang DC, Wei C. MicroRNAs as biomarkers for hepatocellular carcinoma diagnosis and prognosis. Clin Res Hepatol Gastroenterol 2015; 39:426-34. [PMID: 25746139 DOI: 10.1016/j.clinre.2015.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/30/2014] [Accepted: 01/12/2015] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world, and it is the second leading cause of cancer-related deaths. Despite improvements in HCC therapy, the overall survival rate is still very low because of the late detection of the tumors. Thus, early detection of HCC offers the best chance of survival for patients. MicroRNAs (miRNAs) are evolutionarily conserved small noncoding RNAs involved in the regulation of gene expression and protein translation. Many studies have shown that they played a very important role in cancer progresses and outcomes. The aberrant expression of miRNAs is common in various human malignancies and it modulates cancer-associated genomic regions or fragile sites. As for the relationship between miRNAs and HCC, several studies have demonstrated that the aberrant expression of specific miRNAs can be detected in HCC patients' serum and plasma or HCC cells and tissues, and miRNAs have shown great promise as diagnostic and prognostic markers for HCC. In the present review, we discussed the applications of miRNAs as biomarkers for HCC diagnosis and prognosis, and the association between miRNAs polymorphisms and the risk of HCC as well.
Collapse
Affiliation(s)
- Song He
- Maanshan Center for Clinical Laboratory, Maanshan Municipal Hospital Group, 45, Hubei Road, 243000 Maanshan, China.
| | - De-Chun Zhang
- Molecular Medicine & Tumor Research Center, Chongqing Medical University, Chongqing, China
| | - Cheng Wei
- Maanshan Center for Clinical Laboratory, Maanshan Municipal Hospital Group, 45, Hubei Road, 243000 Maanshan, China
| |
Collapse
|
49
|
Anwar SL, Lehmann U. MicroRNAs: Emerging Novel Clinical Biomarkers for Hepatocellular Carcinomas. J Clin Med 2015; 4:1631-50. [PMID: 26295264 PMCID: PMC4555081 DOI: 10.3390/jcm4081631] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022] Open
Abstract
The discovery of small non-coding RNAs known as microRNAs has refined our view of the complexity of gene expression regulation. In hepatocellular carcinoma (HCC), the fifth most frequent cancer and the third leading cause of cancer death worldwide, dysregulation of microRNAs has been implicated in all aspects of hepatocarcinogenesis. In addition, alterations of microRNA expression have also been reported in non-cancerous liver diseases including chronic hepatitis and liver cirrhosis. MicroRNAs have been proposed as clinically useful diagnostic biomarkers to differentiate HCC from different liver pathologies and healthy controls. Unique patterns of microRNA expression have also been implicated as biomarkers for prognosis as well as to predict and monitor therapeutic responses in HCC. Since dysregulation has been detected in various specimens including primary liver cancer tissues, serum, plasma, and urine, microRNAs represent novel non-invasive markers for HCC screening and predicting therapeutic responses. However, despite a significant number of studies, a consensus on which microRNA panels, sample types, and methodologies for microRNA expression analysis have to be used has not yet been established. This review focuses on potential values, benefits, and limitations of microRNAs as new clinical markers for diagnosis, prognosis, prediction, and therapeutic monitoring in HCC.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover D30625, Germany.
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover D30625, Germany.
| |
Collapse
|
50
|
HE JIAN, TANG YAOYUN, TIAN YONGQUAN. MicroRNA-214 promotes proliferation and inhibits apoptosis via targeting Bax in nasopharyngeal carcinoma cells. Mol Med Rep 2015; 12:6286-92. [DOI: 10.3892/mmr.2015.4168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/10/2015] [Indexed: 11/06/2022] Open
|