1
|
Sui Q, Zhu C, Shi S, Xu J, Zhang J, Wang A, Chen P, Liang G, Zhang Y. Ganoderic acid A: an in-depth review of pharmacological effects and molecular docking analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119868. [PMID: 40316150 DOI: 10.1016/j.jep.2025.119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderic acid A (GAA, C30H44O7) is one of the most abundant and active components of Ganoderic acids (GAs). GAs are highly oxidized tetracyclic triterpenoid compounds mainly derived from Ganoderma lucidum (Curtis) P. Karst (Chinese: ). GAA is primarily isolated from the fruiting body of Ganoderma lucidum. Modern pharmacological investigations have established the broad pharmacological effects of GAA, highlighting its notable influence on managing various conditions, including inflammatory diseases, neurodegenerative diseases, and cancer. This review provides a comprehensive summary of GAA's pharmacological activities. MATERIAL AND METHODS The literature in this review were searched in PubMed and China National Knowledge Infrastructure (CNKI) using the keywords "Ganoderic acid A″, "Pharmacology" and "Pharmacokinetics". The literature cited in this review dates from 2000 to 2024. RESULTS According to the data, GAA exerts anti-inflammatory, antioxidant, antitumor, neuropsychopharmacological, hepatoprotective, cardiovascular, renoprotective, and lung protective effects by regulating a variety of signal transduction pathways, such as nuclear factor kappa-B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), Toll-like receptor 4 (TLR4), nuclear factor erythroid 2-related factor-2 (Nrf2), phosphoinositide-3-kinase (PI3K)/AKT, mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and Notch. Given its promising pharmacological activity, GAA holds excellent potential for treating human diseases. The pharmacokinetic properties of GAA have also been reviewed, revealing low bioavailability but high absorption and elimination rates. In addition, network pharmacology and molecular docking analyses verified that GAA plays a role in multiple diseases through MAPK3, tumor necrosis factor (TNF), caspase-3 (CASP3), peroxisome proliferator-activated receptor gamma (PPARG), and β-catenin (CTNNB1) signaling pathways. CONCLUSION GAA plays a pivotal role in various pathological and physiological processes, boasting broad application prospects. Furthermore, the network pharmacological results reveal the mechanisms of GAA in the treatment of multiple diseases. In the future, it is necessary to conduct further experiments to elucidate its specific mechanism of action, thus laying the foundation for the scientific utilization of GAA.
Collapse
Affiliation(s)
- Qi Sui
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Chengkai Zhu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Sha Shi
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Jiaqi Xu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Jingnan Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Ao Wang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Department of Pharmacy, School of Medicine, Hangzhou City University, 50 Huzhou Rd, Hangzhou, Zhejiang, 310015, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Chen
- Department of Pharmacy, School of Medicine, Hangzhou City University, 50 Huzhou Rd, Hangzhou, Zhejiang, 310015, China.
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yi Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
2
|
Patni B, Bhattacharyya M, Pokhriyal A, Pandey D. Remedying SARS-CoV-2 through nature: a review highlighting the potentiality of herbs, trees, mushrooms, and endophytic microorganisms in controlling Coronavirus. PLANTA 2025; 261:89. [PMID: 40089556 DOI: 10.1007/s00425-025-04647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/17/2025] [Indexed: 03/17/2025]
Abstract
MAIN CONCLUSION Medicinal plants, mushrooms, and endophytes offer a rich source of secondary metabolites (SMs), including flavonoids, alkaloids, tannins, and terpenoids, with proven antiviral properties against SARS-CoV-2. Plant-associated microorganisms that colonize in living tissues of different parts of a plant possess the ability to produce SMs of immense therapeutic value and this biological interaction between plants and microbes can be exploited to develop antiviral drugs against SARS-CoV-2. The unprecedented lethality of the SARS-CoV-2 virus during the recent global pandemic has prompted extensive research into new treatment options and preventive strategies for COVID-19. Phytochemicals, particularly those derived from medicinal plants, microbes, and mushrooms, show promising results in combating the virus when combined with synthetic components. These natural compounds include terpenes, phenolics, flavonoids, and alkaloids that possess antiviral properties. Medicinal plants and their endophytic microbes, and mushrooms, offer a rich source of secondary metabolites (SMs) with potential antiviral effects against SARS-CoV-2. Given the urgency of addressing the swift spread of the new coronavirus strain, exploring and understanding these SMs could lead to the development of innovative and potent antiviral drugs. This review provides a comprehensive overview of plant-, microbial- and mushroom-derived SMs, their classification, and their applications in treating diseases caused by the coronavirus family, offering insights into the potential future production of natural medicines.
Collapse
Affiliation(s)
- Babita Patni
- Department of Medicinal and Aromatic Plant, High Altitude Plant Physiology Research Centre, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, India.
| | - Malini Bhattacharyya
- Department of Medicinal and Aromatic Plant, High Altitude Plant Physiology Research Centre, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Anshika Pokhriyal
- Department of Medicinal and Aromatic Plant, High Altitude Plant Physiology Research Centre, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Devendra Pandey
- Lovely Professional University, Phagwara, Punjab, 147001, India
| |
Collapse
|
3
|
Oliveira JC, Negreiro JM, Nunes FM, Barbosa FG, Mafezoli J, Mattos MC, Fernandes MCR, Pessoa C, Furtado CLM, Zanatta G, Oliveira MCF. In Silico Study of the Anti-MYC Potential of Lanostane-Type Triterpenes. ACS OMEGA 2024; 9:50844-50858. [PMID: 39741863 PMCID: PMC11683602 DOI: 10.1021/acsomega.4c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025]
Abstract
One of the most investigated molecular targets for anticancer therapy is the proto-oncogene MYC, which is amplified and thus overexpressed in many types of cancer. Due to its structural characteristics, developing inhibitors for the target has proven to be challenging. In this study, the anti-MYC potential of lanostane-type triterpenes was investigated for the first time, using computational approaches that involved ensemble docking, prediction of structural properties and pharmacokinetic parameters, molecular dynamics (MD), and binding energy calculation using the molecular mechanics-generalized born surface area (MM-GBSA) method. The analysis of physicochemical properties, druglikeness, and pharmacokinetic parameters showed that ligands ganoderic acid E (I), ganoderlactone D (II), ganoderic acid Y (III), ganoderic acid Df (IV), lucidenic acid F (V), ganoderic acid XL4 (VI), mariesiic acid A (VII), and phellinol E (VIII) presented properties within the filter used. These eight ligands, in general, could interact with the molecular target favorably, with interaction energy values between -8.3 and -8.6 kcal mol-1. In MD, the results of RMSD, RMSF, radius of gyration, and hydrogen bonds of the complexes revealed that ligands I, IV, VI, and VII interacted satisfactorily with the protein during the simulations and assisted in its conformational and energetic stabilization. The binding energy calculation using the MM-GBSA method showed better results for the MYC-VII and MYC-I complexes (-44.98 and -41.96 kcal mol-1, respectively). These results support the hypothesis that such molecules can interact with MYC for a considerable period, which would be an essential condition for them to exert their inhibitory activity effectively.
Collapse
Affiliation(s)
- José
A. C. Oliveira
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Jonatas M. Negreiro
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Fátima M. Nunes
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Francisco G. Barbosa
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Jair Mafezoli
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Marcos C. Mattos
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| | - Maria C. R. Fernandes
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
| | - Claudia Pessoa
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
| | - Cristiana L. M. Furtado
- Drug Research
and Development Center, Federal University
of Ceará, Rua Coronel Nunes de Melo, 1000, Fortaleza, CE 60430-275, Brazil
- Graduate
Program in Medical Sciences, University
of Fortaleza, Rua Francisco
Segundo da Costa, 23-57, Fortaleza, CE 60811-650, Brazil
| | - Geancarlo Zanatta
- Department
of Biophysics, Bioscience Institute, Federal
University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Building 43422, Laboratory
204, Porto Alegre, RS 91501-970, Brazil
| | - Maria C. F. Oliveira
- Department
of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE 60455-760, Brazil
| |
Collapse
|
4
|
Raza SHA, Zhong R, Li X, Pant SD, Shen X, BinMowyna MN, Luo L, Lei H. Ganoderma lucidum triterpenoids investigating their role in medicinal applications and genomic protection. J Pharm Pharmacol 2024; 76:1535-1551. [PMID: 39450753 DOI: 10.1093/jpp/rgae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES Ganoderma lucidum (GL) is a white rot fungus widely used for its pharmacological properties and health benefits. GL consists of several biological components, including polysaccharides, sterols, and triterpenoids. Triterpenoids are often found in GL in the form of lanostane-type triterpenoids with quadrilateral carbon structures. KEY FINDINGS The study revealed that triterpenoids have diverse biological properties and can be categorized based on their functional groups. Triterpenoids derived from GL have shown potential medicinal applications. They can disrupt the cell cycle by inhibiting β-catenin or protein kinase C activity, leading to anti-cancer, anti-inflammatory, and anti-diabetic effects. They can also reduce the production of inflammatory cytokines, thus mitigating inflammation. Additionally, triterpenoids have been found to enhance the immune system's defenses against various health conditions. They possess antioxidant, antiparasitic, anti-hyperlipidemic, and antimicrobial activities, making them suitable for pharmaceutical applications. Furthermore, triterpenoids are believed to afford radioprotection to DNA, protecting it from radiation damage. SUMMARY This review focuses on the types of triterpenoids isolated from GL, their synthesis pathways, and their chemical structures. Additionally, it highlights the pharmacological characteristics of triterpenoids derived from GL, emphasizing their significant role in various therapeutic applications and health benefits for both humans and animals.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Mona N BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
5
|
Yu H, Wang S, Wang L, Wu W, Xu W, Wu S, Li X, Xu W, Huang Z, Lin Y, Wang H. Pan-genomic characterization and structural variant analysis reveal insights into spore development and species diversity in Ganoderma. Microb Genom 2024; 10:001328. [PMID: 39565084 PMCID: PMC11897173 DOI: 10.1099/mgen.0.001328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Understanding the genomic diversity and functional implications of Ganoderma species is crucial for elucidating their evolutionary history and biotechnological potential. Here, we present the first pan-genomic analysis of Ganoderma spp., combining five newly sequenced genomes with ten publicly available genomes. Our comprehensive comparative study unveiled a rich genomic landscape, identifying core genes shared among all Ganoderma strains and species-specific gene sets. Additionally, we identified structural variants impacting the expression of key genes, including insights into the MSH4 gene involved in DNA repair and recombination processes, which exhibits a 440 bp insertion in the promoter region and a leucine-to-serine mutation in the gene body, potentially increasing spore production in the S3 strain. Overall, our study provides valuable insights into the genomic architecture and functional diversity of Ganoderma, paving the way for further research on its evolutionary dynamics, biotechnological applications and pharmaceutical potential.
Collapse
Affiliation(s)
- Hang Yu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530005, PR China
| | - Shasha Wang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Lina Wang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Weixin Wu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wei Xu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Shuisheng Wu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Xiaoyan Li
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wen Xu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Zehao Huang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Yu Lin
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530005, PR China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
6
|
Wang S, Wang L, Shangguan J, Jiang A, Ren A. Research Progress on the Biological Activity of Ganoderic Acids in Ganoderma lucidum over the Last Five Years. Life (Basel) 2024; 14:1339. [PMID: 39459639 PMCID: PMC11509451 DOI: 10.3390/life14101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ganoderma lucidum (G. lucidum) is a traditional edible and medicinal mushroom in China. The main bioactive components in G. lucidum include triterpenoids, polysaccharides, steroids, and sterols. Ganoderic acids (GAs) are one of the most abundant triterpenoids found in G. lucidum, garnering significant attention from researchers in the fields of medicine and health care. We summarize the extensive studies on the physiological function of GAs in anti-cancer, anti-inflammatory, radiation protection, anti-aging, liver protection, anti-microbial, and neuroprotection areas, among others. This review provides a comprehensive overview of the recent advances in the bioactivities and pharmacological mechanisms of GAs, aiming to delineate the current research directions and the state of the art in this field. This analysis helps to rapidly identify new bioactivities of GAs and understand their mechanisms, leading to more effective treatments for various diseases.
Collapse
Affiliation(s)
| | | | | | - Ailiang Jiang
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (L.W.); (J.S.)
| | - Ang Ren
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (L.W.); (J.S.)
| |
Collapse
|
7
|
Ahmad MF, A. Alsayegh A, Ahmad FA, Akhtar MS, Alavudeen SS, Bantun F, Wahab S, Ahmed A, Ali M, Elbendary EY, Raposo A, Kambal N, H. Abdelrahman M. Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon 2024; 10:e25607. [PMID: 38356540 PMCID: PMC10865332 DOI: 10.1016/j.heliyon.2024.e25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Ganoderma lucidum is a versatile mushroom. Polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicinal mushrooms since ancient times. They are currently used as nutraceuticals and functional foods. G. lucidum extracts and their bioactive compounds have been used as an alternative to antioxidants and antimicrobial agents. Secondary metabolites with many medicinal properties make it a possible substitute that could be applied as immunomodulatory, anticancer, antimicrobial, anti-oxidant, anti-inflammatory, and anti-diabetic. The miraculous properties of secondary metabolites fascinate researchers for their development and production. Recent studies have paid close attention to the different physical, genetic, biochemical, and nutritional parameters that potentiate the production of secondary metabolites. This review is an effort to collect biologically active constituents from G. lucidum that reveal potential actions against diseases with the latest improvement in a novel technique to get maximum production of secondary metabolites. Studies are going ahead to determine the efficacy of numerous compounds and assess the valuable properties achieved by G. lucidum in favor of antimicrobial and antioxidant outcomes.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gru Gram, 122103, Haryana, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Sirajudeen S. Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Awais Ahmed
- Department of Management, Shri JJT University, Rajasthan, Post code; 333010, India
| | - M. Ali
- Department of Pharmacognosy, CBS College of Pharmacy & Technology (Pt. B. D. Sharma University of Health Sciences), Chandpur, Faridabad, Haryana, 121101, India
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
8
|
Wang S, Pang Z, Fan H, Tong Y. Advances in anti-EV-A71 drug development research. J Adv Res 2024; 56:137-156. [PMID: 37001813 PMCID: PMC10834817 DOI: 10.1016/j.jare.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
9
|
Sun X, Wang J, Cheng M, Qi Y, Han C. Strategies to Increase the Production of Triterpene Acids in Ligzhi or Reishi Medicinal Mushroom (Ganoderma lucidum, Agaricomycetes): A Review. Int J Med Mushrooms 2024; 26:25-41. [PMID: 38780421 DOI: 10.1615/intjmedmushrooms.2024052871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Ganoderic acids (GAs) are the main active ingredient of Ganoderma lucidum, which has been widely accepted as a medicinal mushroom. Due to the low yield of GAs produced by liquid cultured Ganoderma mycelium and solid cultured fruiting bodies, the commercial production and clinical application of GAs are limited. Therefore, it is important to increase the yield of GA in G. lucidum. A comprehensive literature search was performed with no set data range using the following keywords such as "triterpene," "ganoderic acids," "Ganoderma lucidum," and "Lingzhi" within the main databases including Web of Science, PubMed, and China National Knowledge Infrastructure (CNKI). The data were screened using titles and abstracts and those relevant to the topic were included in the paper and was not limited to studies published in English. Present review focuses on the four aspects: fermentation conditions and substrate, extrinsic elicitor, genetic engineering, and mutagenesis, which play significant roles in increasing triterpene acids production, thus providing an available reference for further research on G. lucidum fermentation.
Collapse
Affiliation(s)
- Xiaomei Sun
- Shandong University of Traditional Chinese Medicine
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
10
|
Shi L, Wang S, Zhang S, Wang J, Chen Y, Li Y, Liu Z, Zhao S, Wei B, Zhang L. Research progress on pharmacological effects and mechanisms of cepharanthine and its derivatives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2843-2860. [PMID: 37338575 DOI: 10.1007/s00210-023-02537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid compound found in plants of the Stephania genus, which has biological functions such as regulating autophagy, inhibiting inflammation, oxidative stress, and apoptosis. It is often used for the treatment of inflammatory diseases, viral infections, cancer, and immune disorders and has great clinical translational value. However, there is no detailed research on its specific mechanism and dosage and administration methods, especially clinical research is limited. In recent years, CEP has shown significant effects in the prevention and treatment of COVID-19, suggesting its potential medicinal value waiting to be discovered. In this article, we comprehensively introduce the molecular structure of CEP and its derivatives, describe in detail the pharmacological mechanisms of CEP in various diseases, and discuss how to chemically modify and design CEP to improve its bioavailability. In summary, this work will provide a reference for further research and clinical application of CEP.
Collapse
Affiliation(s)
- Liangliang Shi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shuaizhe Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiawei Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yaping Chen
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhiwei Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Sichen Zhao
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Benjun Wei
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| | - Liying Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Traditional Chinese Medicine Exploration and Innovation Transformation in Gansu Province, Lanzhou, China.
| |
Collapse
|
11
|
Feferbaum-Leite S, Santos IA, Grosche VR, da Silva GCD, Jardim ACG. Insights into enterovirus a-71 antiviral development: from natural sources to synthetic nanoparticles. Arch Microbiol 2023; 205:334. [PMID: 37730918 DOI: 10.1007/s00203-023-03660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
Enteroviruses are pathogens responsible for several diseases, being enterovirus A71 (EVA71) the second leading cause of hand, foot, and mouth disease (HFMD), especially in Asia-Pacific countries. HFMD is mostly common in infants and children, with mild symptoms. However, the disease can result in severe nervous system disorders in children as well as in immunosuppressed adults. The virus is highly contagious, and its transmission occurs via fecal-oral, oropharyngeal secretions, and fomites. The EVA71 burdens the healthy systems and economies around the world, however, up to date, there is no antiviral approved to treat infected individuals and the existent vaccines are not available or approved to be used worldwide. In this context, an extensive literature research was conducted to describe and summarize the recent advances in natural and/or synthetic compounds with antiviral activity against EVA71. The summarized data presented here might simply encourage the future studies in EVA71 antiviral development, by encouraging further research encompassing these compounds or even the application of the techniques and technologies to improve or produce new antiviral molecules.
Collapse
Affiliation(s)
- Shiraz Feferbaum-Leite
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil
| | | | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil.
| |
Collapse
|
12
|
Baruah P, Patra A, Barge S, Khan MR, Mukherjee AK. Therapeutic Potential of Bioactive Compounds from Edible Mushrooms to Attenuate SARS-CoV-2 Infection and Some Complications of Coronavirus Disease (COVID-19). J Fungi (Basel) 2023; 9:897. [PMID: 37755005 PMCID: PMC10532592 DOI: 10.3390/jof9090897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly infectious positive RNA virus, has spread from its epicenter to other countries with increased mortality and morbidity. Its expansion has hampered humankind's social, economic, and health realms to a large extent. Globally, investigations are underway to understand the complex pathophysiology of coronavirus disease (COVID-19) induced by SARS-CoV-2. Though numerous therapeutic strategies have been introduced to combat COVID-19, none are fully proven or comprehensive, as several key issues and challenges remain unresolved. At present, natural products have gained significant momentum in treating metabolic disorders. Mushrooms have often proved to be the precursor of various therapeutic molecules or drug prototypes. The plentiful bioactive macromolecules in edible mushrooms, like polysaccharides, proteins, and other secondary metabolites (such as flavonoids, polyphenols, etc.), have been used to treat multiple diseases, including viral infections, by traditional healers and the medical fraternity. Some edible mushrooms with a high proportion of therapeutic molecules are known as medicinal mushrooms. In this review, an attempt has been made to highlight the exploration of bioactive molecules in mushrooms to combat the various pathophysiological complications of COVID-19. This review presents an in-depth and critical analysis of the current therapies against COVID-19 versus the potential of natural anti-infective, antiviral, anti-inflammatory, and antithrombotic products derived from a wide range of easily sourced mushrooms and their bioactive molecules.
Collapse
Affiliation(s)
- Paran Baruah
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
- Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Aparup Patra
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Sagar Barge
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| | - Ashis K. Mukherjee
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; (P.B.); (A.P.); (S.B.); (M.R.K.)
| |
Collapse
|
13
|
Yang G, Yue Z, Pan P, Li Y. In Memory of the Virologist Jianguo Wu, 1957-2022. Viruses 2023; 15:1754. [PMID: 37632095 PMCID: PMC10457867 DOI: 10.3390/v15081754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
It is with deep sorrow that we mourn the passing of the virologist Professor Jianguo Wu [...].
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Zhaoyang Yue
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Pan Pan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
14
|
Chen X. A Tribute to Professor Jianguo Wu. Viruses 2023; 15:1720. [PMID: 37632062 PMCID: PMC10457838 DOI: 10.3390/v15081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
It has been a couple of months since Professor Jianguo Wu left us [...].
Collapse
Affiliation(s)
- Xin Chen
- Guangdong Provincial Key Laboratory of Virology, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Akash S, Bayıl I, Rahman MA, Mukerjee N, Maitra S, Islam MR, Rajkhowa S, Ghosh A, Al-Hussain SA, Zaki MEA, Jaiswal V, Sah S, Barboza JJ, Sah R. Target specific inhibition of West Nile virus envelope glycoprotein and methyltransferase using phytocompounds: an in silico strategy leveraging molecular docking and dynamics simulation. Front Microbiol 2023; 14:1189786. [PMID: 37455711 PMCID: PMC10338848 DOI: 10.3389/fmicb.2023.1189786] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Mosquitoes are the primary vector for West Nile virus, a flavivirus. The virus's ability to infiltrate and establish itself in increasing numbers of nations has made it a persistent threat to public health worldwide. Despite the widespread occurrence of this potentially fatal disease, no effective treatment options are currently on the market. As a result, there is an immediate need for the research and development of novel pharmaceuticals. To begin, molecular docking was performed on two possible West Nile virus target proteins using a panel of twelve natural chemicals, including Apigenin, Resveratrol, Hesperetin, Fungisterol, Lucidone, Ganoderic acid, Curcumin, Kaempferol, Cholic acid, Chlorogenic acid, Pinocembrin, and Sanguinarine. West Nile virus methyltransferase (PDB ID: 2OY0) binding affinities varied from -7.4 to -8.3 kcal/mol, whereas West Nile virus envelope glycoprotein affinities ranged from -6.2 to -8.1 kcal/mol (PDB ID: 2I69). Second, substances with larger molecular weights are less likely to be unhappy with the Lipinski rule. Hence, additional research was carried out without regard to molecular weight. In addition, compounds 01, 02, 03, 05, 06, 07, 08, 09, 10 and 11 are more soluble in water than compound 04 is. Besides, based on maximum binding affinity, best three compounds (Apigenin, Curcumin, and Ganoderic Acid) has been carried out molecular dynamic simulation (MDs) at 100 ns to determine their stability. The MDs data is also reported that these mentioned molecules are highly stable. Finally, advanced principal component analysis (PCA), dynamics cross-correlation matrices (DCCM) analysis, binding free energy and dynamic cross correlation matrix (DCCM) theoretical study is also included to established mentioned phytochemical as a potential drug candidate. Research has indicated that the aforementioned natural substances may be an effective tool in the battle against the dangerous West Nile virus. This study aims to locate a bioactive natural component that might be used as a pharmaceutical.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Imren Bayıl
- Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Türkiye
| | | | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, West Bengal, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Swastika Maitra
- Department of Microbiology, Adamas University, Kolkata, West Bengal, India
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Gwahati, Assam, India
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Vikash Jaiswal
- Department of Cardiovascular Research, Larkin Community Hospital, South Miami, FL, United States
| | - Sanjit Sah
- Global Consortium for Public Health and Research, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, India
- SR Sanjeevani Hospital, Kayanpur, Siraha, Nepal
| | | | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
- Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
16
|
Jiang L, Zhang W, Zhai DD, Wan G, Xia S, Meng J, Shi P, Chen N. Transcriptome profiling and bioinformatic analysis of the effect of ganoderic acid T prevents Sendai virus infection. Gene 2023; 862:147252. [PMID: 36740203 DOI: 10.1016/j.gene.2023.147252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/27/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Ganoderic acid T (GA-T) is an important triterpene of Ganoderma lucidum, which is utilized to treat viral infections. Sendai virus (SeV) is widely studied to determine the molecular biological characteristics of RNA viruses and employed to elucidate the mechanisms governing the innate immune response. However, the comprehensive mechanism governing the antiviral effects of GA-T against SeV infection remains unknown. In this study, SeV-infected host cells were treated with 16.3 μM GA-T, subsequently RNA-seq analysis was performed to screen the differentially expressed genes (DEGs). The RNA-seq data showed that GA-T treatment upregulated 934 DEGs and downregulated 1283 DEGs against viral infection, in particularly, IFNGR1, IL1A, and IL1R1 were upregulated, and mTOR, SMAD3, IFNL2 and IFNL3 were decreased. GO and KEGG analysis illustrated that DEGs were clustered in mTOR and IL-17 signalling pathways. Protein-protein interaction network analysis indicated the high degree of nodes, such as CXCL8, CSF2, CXCL1 and MYD88. Our results indicated that GA-T exerted its antiviral pharmacological effects through inhibition of the mTOR signalling pathway and adjustment of innate immunity system and the inflammatory response involving the IL-17 signalling pathway. Our results may help to elucidate the potential functions and underlying mechanisms governing the antiviral effects of GA-T.
Collapse
Affiliation(s)
- Liying Jiang
- Zhoupu Hospital in Pudong New Area & Jiading District Central Hospital Affiliated, Shanghai University of Medicine & Health Sciences Shanghai 201318, PR China
| | - Wei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Dan-Dan Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Guoqing Wan
- Zhoupu Hospital in Pudong New Area & Jiading District Central Hospital Affiliated, Shanghai University of Medicine & Health Sciences Shanghai 201318, PR China
| | - Shengli Xia
- Zhoupu Hospital in Pudong New Area & Jiading District Central Hospital Affiliated, Shanghai University of Medicine & Health Sciences Shanghai 201318, PR China
| | - Jihong Meng
- Department of Microbiology and Immunology, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, PR China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Nianhong Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, and Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen 518020, PR China.
| |
Collapse
|
17
|
Rašeta M, Mišković J, Čapelja E, Zapora E, Petrović Fabijan A, Knežević P, Karaman M. Do Ganoderma Species Represent Novel Sources of Phenolic Based Antimicrobial Agents? Molecules 2023; 28:3264. [PMID: 37050027 PMCID: PMC10096548 DOI: 10.3390/molecules28073264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Ganoderma species have been recognized as potential antimicrobial (AM) agents and have been used in traditional Chinese medicine (TCM) for a long time. The aim of this study is to examine the AM potential of autochthonous Ganoderma species (G. applanatum, G. lucidum, G. pfeifferi and G. resinaceum) from Serbia. The extraction of fungal material was prepared in different solvents (ethanol-EtOH, water-H2O, chloroform-CHCl3). Antibacterial activity (ABA) was determined using disk-diffusion, agar-well diffusion, and micro-dilution method, while for antifungal properties disk-diffusion and pour plate method were applied. Antiviral activity was tested on model DNA virus LK3 and determined by plaque assay. Statistical PCA analysis was applied for detection of correlation effects of phenolics and AM activities, while LC-MS/MS was performed for phenolics quantification. G. resinaceum CHCl3 extract expressed the most potent ABA against P. aeruginosa (MIC = 6.25 mg/mL), probably due to presence of flavonoids and 2,5-dihydroxybenzoic acid. Among H2O extracts, the highest ABA was determined for G. pfeifferi against both E. coli and S. aureus (21 and 19 mm, respectively). EtOH extracts of G. pfeifferi and G. resinaceum were the most effective against A. niger (23.8 and 20.15 mm, respectively), with special impact of phenolic acids and flavonoid isorhamnetin, while C. albicans showed the lowest susceptibility. The most potent antiviral inhibitor was G. lucidum (70.73% growth inhibition) due to the high amount of phenolic acids. To the best of our knowledge, this is the first report of a methodical AM profile of G. pfeifferi and G. resinaceum from the Balkan region including PCA analysis.
Collapse
Affiliation(s)
- Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jovana Mišković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Eleonora Čapelja
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Ewa Zapora
- Institute of Forest Sciences, Białystok University of Technology, Wiejska 45E, 15-351 Białystok, Poland
| | - Aleksandra Petrović Fabijan
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Petar Knežević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Maja Karaman
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| |
Collapse
|
18
|
de Sousa ALM, Rizaldo Pinheiro R, Furtado Araujo J, Mesquita Peixoto R, de Azevedo DAA, Cesar Lima AM, Marques Canuto K, Vasconcelos Ribeiro PR, de Queiroz Souza AS, Rocha Souza SC, de Amorim SL, Paula Amaral G, de Souza V, de Morais SM, Andrioli A, da Silva Teixeira MF. In vitro antiviral effect of ethanolic extracts from Azadirachta indica and Melia azedarach against goat lentivirus in colostrum and milk. Sci Rep 2023; 13:4677. [PMID: 36949145 PMCID: PMC10031174 DOI: 10.1038/s41598-023-31455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
This study aimed to evaluate, in vitro, the use of leaf extracts of Azadirachta indica (A. indica) and Melia azedarach (M. azedarach) as antivirals against caprine lentivirus (CLV) in colostrum and milk of goat nannies. These were collected from eight individuals and infected with the standard strain of CLV. Samples were then subdivided into aliquots and treated with 150 µg/mL of crude extract, and with ethyl acetate and methanol fractions for 30, 60, and 90 min. Next, somatic cells from colostrum and milk were co-cultured with cells from the ovine third eyelid. After this step, viral titers of the supernatants collected from treatments with greater efficacy in co-culture were assessed. The organic ethyl acetate fractions of both plants at 90 min possibly inhibited the viral activity of CLV by up to a thousandfold in colostrum. In milk, this inhibition was up to 800 times for the respective Meliaceae. In conclusion, the ethanolic fraction of ethyl acetate from both plants demonstrated efficacy against CLV in samples from colostrum and milk when subjected to treatment, which was more effective in colostrum.
Collapse
Affiliation(s)
- Ana Lidia Madeira de Sousa
- Laboratory of Virology (LABOVIR), State University of Ceará (UECE), Fortaleza, CE, Brazil.
- Faculdade Educar da Ibiapaba, Ípu, CE, Brazil.
| | | | | | - Renato Mesquita Peixoto
- Vale do Salgado University Center (UNIVS), Icó, CE, Brazil
- Terra Nordeste College (FATENE), Caucaia, CE, Brazil
| | | | - Ana Milena Cesar Lima
- Scholarship for Regional Scientific Development of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), Level C, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | - Kirley Marques Canuto
- Multiuser Laboratory of Natural Products Chemistry, Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | | | | | | | - Sara Lucena de Amorim
- Department of Veterinary Medicine, Federal University of Rondônia, Rolim de Moura, RO, Brazil
| | | | - Viviane de Souza
- Laboratory of Microbiology, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | - Selene Maia de Morais
- Laboratory of Chemistry and Natural Products (LQPN), Ceará State University, Fortaleza, CE, Brazil
| | - Alice Andrioli
- Laboratory of Virology, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | | |
Collapse
|
19
|
El-Dein MMN, El-Fallal AA, El-Sayed AKA, El-Esseily SR. Antimicrobial Activities of Ganoderma mbrekobenum Strain EGDA (Agaricomycetes) from Egypt. Int J Med Mushrooms 2023; 25:31-41. [PMID: 37824404 DOI: 10.1615/intjmedmushrooms.2023049502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ganoderma is a well-known genus of medicinal mushrooms. The biological activity of the fruiting bodies of G. mbrekobenum (previously identified as Ganoderma sp. EGDA, (AC: LN774971) is scarcely studied. The microorganisms including bacteria and fungi were chosen for screening of the antimicrobial activity produced by G. mbrekobenum strain EGDA. The bioactive compounds were extracted from aqueous, petroleum ether, chloroform, ethyl acetate, and methanol extracts. The higher antibacterial activity produced by methanol extract was against Bacillus subtilis and B. cereus (14.13 ± 0.12 mm, 13.03 ± 0.12 mm, respectively). Water fraction showed antibacterial effect against most of the test bacterial strains. The highest antifungal activity produced by methanol extract was against Fusarium oxysporum I and F. oxysporum f. sp. lycopersici (16.37 ± 0.03 mm 15.67 ± 0.19 mm, respectively). Gas chromatography/mass spectrometry analysis of the separated fractions revealed the identification of 46 compounds.
Collapse
Affiliation(s)
- Mahmoud M Nour El-Dein
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Amira A El-Fallal
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta City, Egypt
| | - Ahmed K A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta City, Egypt
| | - Shimaa R El-Esseily
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
20
|
Galappaththi MCA, Patabendige NM, Premarathne BM, Hapuarachchi KK, Tibpromma S, Dai DQ, Suwannarach N, Rapior S, Karunarathna SC. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022; 13:24. [PMID: 36671409 PMCID: PMC9856212 DOI: 10.3390/biom13010024] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
For centuries, Ganoderma has been used as a traditional medicine in Asian countries to prevent and treat various diseases. Numerous publications are stating that Ganoderma species have a variety of beneficial medicinal properties, and investigations on different metabolic regulations of Ganoderma species, extracts or isolated compounds have been performed both in vitro and in vivo. However, it has frequently been questioned whether Ganoderma is simply a dietary supplement for health or just a useful "medication" for restorative purposes. More than 600 chemical compounds including alkaloids, meroterpenoids, nucleobases, nucleosides, polysaccharides, proteins, steroids and triterpenes were extracted and identified from Ganoderma, with triterpenes serving as the primary components. In recent years, Ganoderma triterpenes and other small molecular constituents have aroused the interest of chemists and pharmacologists. Meanwhile, considering the significance of the triterpene constituents in the development of new drugs, this review describes 495 compounds from 25 Ganoderma species published between 1984 and 2022, commenting on their source, biosynthetic pathway, identification, biological activities and biosynthesis, together with applications of advanced analytical techniques to the characterization of Ganoderma triterpenoids.
Collapse
Affiliation(s)
- Mahesh C. A. Galappaththi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Postgraduate Institute of Science (PGIS), University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | | | - Kalani K. Hapuarachchi
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
21
|
Yuan W, Jiang C, Wang Q, Fang Y, Wang J, Wang M, Xiao H. Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast. Nat Commun 2022; 13:7740. [PMID: 36517496 PMCID: PMC9748899 DOI: 10.1038/s41467-022-35500-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Type II ganoderic acids (GAs) produced by the traditional medicinal mushroom Ganoderma are a group of triterpenoids with superior biological activities. However, challenges in the genetic manipulation of the native producer, low level of accumulation in the farmed mushroom, the vulnerabilities of the farming-based supply chain, and the elusive biosynthetic pathway have hindered the efficient production of type II GAs. Here, we assemble the genome of type II GAs accumulating G. lucidum accession, screen cytochrome P450 enzymes (CYPs) identified from G. lucidum in baker's yeast, identify key missing CYPs involved in type II GAs biosynthesis, and investigate the catalytic reaction sequence of a promiscuous CYP. Then, we engineer baker's yeast for bioproduciton of GA-Y (3) and GA-Jb (4) and achieve their production at higher level than those from the farmed mushroom. Our findings facilitate the further deconvolution of the complex GA biosynthetic network and the development of microbial cell factories for producing GAs at commercial scale.
Collapse
Affiliation(s)
- Wei Yuan
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chenjian Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| | - Qin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| | - Yubo Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| | - Jin Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China.
| |
Collapse
|
22
|
Boudagga S, Bouslama L, Papetti A, Colombo R, Arous F, Jaouani A. Antiviral activity of Inonotusin A an active compound isolated from Boletus bellinii and Boletus subtomentosus. Biologia (Bratisl) 2022; 77:3645-3655. [DOI: 10.1007/s11756-022-01219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
|
23
|
Arunachalam K, Sasidharan SP, Yang X. A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19. FOOD CHEMISTRY ADVANCES 2022; 1:100023. [PMID: 36686330 PMCID: PMC8887958 DOI: 10.1016/j.focha.2022.100023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 01/25/2023]
Abstract
The World Health Organization (WHO) declared COVID-19 as a pandemic on March 11, 2020, because of its widespread transmission and infection rates. The unique severe disease was found in Wuhan, China, since December 2019, and swiftly spread throughout the world. Natural chemicals derived from herbal medicines and medicinal mushrooms provide a significant resource for the development of novel antiviral drugs. Many natural drugs have been proven to have antiviral properties against a variety of virus strains, such as the coronavirus and the herpes simplex virus (HSV).. In this research, successful dietary treatments for different COVID illnesses were compared to potential of mushroom products in its therapy. In Google Scholar, Science Direct, PubMed, and Scopus, search keywords like COVID, COVID-19, SARS, MERS, mushrooms, and their compounds were utilized. In this review of the literature we foucsed popular mushrooms such as Agaricus subrufescens Peck, Agaricus blazei Murill, Cordyceps sinensis (Berk.) Sacc., Ganoderma lucidum (Curtis.) P. Karst., Grifola frondosa (Dicks.) Gray, Hericium erinaceus (Bull.) Pers., Inonotus obliquus (Arch. Ex Pers.) Pilát., Lentinula edodes (Berk.) Pegler, Pleurotus ostreatus (Jacq.) P. Kumm., Poria cocos F.A. Wolf, and Trametes versicolor (L.) Lloyd.,. Changed forms of β-Glucan seem to have a good impact on viral replication suppression and might be used in future studies. However, the results seems terpenoids, lectins, glycoproteins, lentinan, galactomannan, and polysaccharides from mushrooms are promising prophylactic or therapeutic agents against COVID-19.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors at: Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors at: Key Laboratory of Economic Plants and Biotechnology, The Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
24
|
Liu Y, Yang L, Wang H, Xiong Y. Recent Advances in Antiviral Activities of Triterpenoids. Pharmaceuticals (Basel) 2022; 15:1169. [PMID: 36297280 PMCID: PMC9607549 DOI: 10.3390/ph15101169] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 08/27/2023] Open
Abstract
Triterpenoids, important secondary plant metabolites made up of six isoprene units, are found widely in higher plants and are studied for their structural variety and wide range of bioactivities, including antiviral, antioxidant, anticancer, and anti-inflammatory properties. Numerous studies have demonstrated that different triterpenoids have the potential to behave as potential antiviral agents. The antiviral activities of triterpenoids and their derivatives are summarized in this review, with examples of oleanane, ursane, lupane, dammarane, lanostane, and cycloartane triterpenoids. We concentrated on the tetracyclic and pentacyclic triterpenoids in particular. Furthermore, the particular viral types and possible methods, such as anti-human immunodeficiency virus (HIV), anti-influenza virus, and anti-hepatitis virus, are presented in this article. This review gives an overview and a discussion of triterpenoids as potential antiviral agents.
Collapse
Affiliation(s)
- Yue Liu
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Liangyu Yang
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Hong Wang
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yongai Xiong
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
25
|
Oke MA, Afolabi FJ, Oyeleke OO, Kilani TA, Adeosun AR, Olanbiwoninu AA, Adebayo EA. Ganoderma lucidum: Unutilized natural medicine and promising future solution to emerging diseases in Africa. Front Pharmacol 2022; 13:952027. [PMID: 36071846 PMCID: PMC9441938 DOI: 10.3389/fphar.2022.952027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Ganoderma lucidum is a well-known medicinal mushroom that has been used for the prevention and treatment of different ailments to enhance longevity and health specifically in China, Japan, and Korea. It was known as "God's herb" in ancient China as it was believed to prolong life, enhance the youthful spirit and sustain/preserve vitality. G. lucidum is seldom collected from nature and is substantially cultivated on wood logs and sawdust in plastic bags or bottles to meet the international market demand. Both in vitro and in vivo studies on the copious metabolic activities of G. lucidum have been carried out. Varied groups of chemical compounds including triterpenoids, polysaccharides, proteins, amino acids, nucleosides, alkaloids, steroids, lactones, lectins, fatty acids, and enzymes with potent pharmacological activities have been isolated from the mycelia and fruiting bodies of G. lucidum. Several researchers have reported the abundance and diversification of its biological actions triggered by these chemical compounds. Triterpenoids and polysaccharides of G. lucidum have been reported to possess cytotoxic, hepatoprotective, antihypertensive, hypocholesterolemic, antihistaminic effects, antioxidant, antimicrobial, anti-inflammatory, hypoglycemic antiallergic, neuroprotective, antitumor, immunomodulatory and antiangiogenic activities. Various formulations have been developed, patented, and utilized as nutraceuticals, cosmeceuticals, and pharmaceuticals from G. lucidum extracts and active compounds. Thus, this review presents current updates on emerging infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with a particular focus on Ganoderma lucidum, an unutilized natural medicine as a promising future solution to emerging diseases in Africa. However, details such as the chemical compound and mode of action of each bioactive against different emerging diseases were not discussed in this study.
Collapse
Affiliation(s)
- M. A. Oke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - F. J. Afolabi
- Mushrooms Department, National Biotechnology Development Centre, Ogbomoso, Nigeria
| | - O. O. Oyeleke
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - T. A. Kilani
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - A. R. Adeosun
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
| | - A. A. Olanbiwoninu
- Department of Biological Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - E. A. Adebayo
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Microbiology and Nanobiotechnology Laboratory, LAUTECH, Ogbomoso, Nigeria
- Mushrooms Department, National Biotechnology Development Centre, Ogbomoso, Nigeria
| |
Collapse
|
26
|
Cör Andrejč D, Knez Ž, Knez Marevci M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front Pharmacol 2022; 13:934982. [PMID: 35935849 PMCID: PMC9353308 DOI: 10.3389/fphar.2022.934982] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 01/20/2023] Open
Abstract
Ganoderma lucidum is a very medicinal mushroom that has been utilized in Oriental medicine for many years. It has a wide range of pharmacological and therapeutic properties, and has been used for many years as a health promoter. It contains various biologically active compounds that improve the immune system and have antioxidant, antitumor, anti-inflammatory, antifungal, and antimicrobial properties. Active compounds include triterpenoids and polysaccharides, as well as proteins, lipids, phenolics, sterols, etc. In the following review, we summarize briefly their biological activities, such as antioxidant, anti-bacterial, anti-fungal, antitumor, anti-viral, and anti-inflammatory activity. Although Ganoderma has a number of medicinal effects that have been confirmed by the in vitro and in vivo studies summarised in this review, there are some limitations. Clinical trials face mainly a lack of pure constituents. Accurate identification of the compounds obtained is also problematic. In addition, most of the included studies were small, and there were concerns about the methodological quality of each study. Studies have shown that Ganoderma has valuable potential for the prevention and treatment of cancer. In any case, G. lucidum cannot be used as first-line therapy for cancer.
Collapse
Affiliation(s)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, Maribor, Slovenia.,Laboratory Faculty of Medicine, Maribor, Slovenia
| | | |
Collapse
|
27
|
Wan G, Fan Z, Zhai DD, Jiang L, Xia S, Gu X, Lu C, Shi P, Zeng X, Meng J, Chen N. Transcriptomic Profiling of Ganoderic Acid Me-Mediated Prevention of
Sendai Virus Infection. Curr Bioinform 2022; 17:586-598. [DOI: 10.2174/1574893617666220426134011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022]
Abstract
Objectives:
Ganoderic acid Me [GA-Me], a major bioactive triterpene extracted from Ganoderma lucidum, is often used to treat immune system diseases caused by viral infections. Although triterpenes have been widely employed in traditional medicine, the comprehensive mechanisms by which GA-Me acts against viral infections have not been reported. Sendai virus [SeV]-infected host cells have been widely employed as an RNA viral model to elucidate the mechanisms of viral infection.
Methods:
In this study, SeV- and mock-infected [Control] cells were treated with or without 54.3 μM GA-Me. RNA-Seq was performed to identify differentially expressed mRNAs, followed by qRT-PCR validation for selected genes. GO and KEGG analyses were applied to investigate potential mechanisms and critical pathways associated with these genes.
Results:
GA-Me altered the levels of certain genes’ mRNA, these genes revealed are associated pathways related to immune processes, including antigen processing and presentation in SeV-infected cells. Multiple signaling pathways, such as the mTOR pathway, chemokine signaling pathway, and the p53 pathways, correlate significantly with GA-Me activity against the SeV infection process. qRT-PCR results were consistent with the trend of RNA-Seq findings. Moreover, PPI network analysis identified 20 crucial target proteins, including MTOR, CDKN2A, MDM2, RPL4, RPS6, CREBBP, UBC, UBB, and NEDD8. GA-Me significantly changed transcriptome-wide mRNA profiles of RNA polymerase II/III, protein posttranslational and immune signaling pathways.
Conclusion:
These results should be further assessed to determine the innate immune response against SeV infection, which might help in elucidating the functions of these genes affected by GA-Me treatment in virus-infected cells, including cells infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Guoqing Wan
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences,
Shanghai, 201318, PR China
| | - Zheyu Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and
Technology, Shanghai 200237, PR China
| | - Dan-Dan Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou
450001, Henan Province, PR China
| | - Liying Jiang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
| | - Shengli Xia
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and
Technology, Shanghai 200237, PR China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen
People’s Hospital, 2nd Clinical Medical College of Jinan University, and Guangdong Provincial Key Laboratory of
Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen 518061, Guangdong Province, PR
China
| | - Jihong Meng
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences,
Shanghai 201318, PR China
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing 210009,
Jiangsu Province, PR China
| | - Nianhong Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and
Technology, Shanghai 200237, PR China
| |
Collapse
|
28
|
Zhang Y, Zhang G, Ling J. Medicinal Fungi with Antiviral Effect. Molecules 2022; 27:molecules27144457. [PMID: 35889330 PMCID: PMC9322162 DOI: 10.3390/molecules27144457] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Pandemics from various viruses make natural organisms face challenges over and over again. Therefore, new antiviral drugs urgently need to be found to solve this problem. However, drug research and development is a very difficult task, and finding new antiviral compounds is desirable. A range of medicinal fungi such as Ganoderma lucidum and Cordyceps sinensis are widely used all over the world, and they can enhance human immunity and direct anti-virus activities and other aspects to play an antiviral role. Medicinal fungi are used as foods or as food supplements. In this review, the species of medicinal fungi with antiviral activity in recent decades and the mechanism of antiviral components were reviewed from the perspectives of human, animal, and plant viruses to provide a comprehensive theory based on better clinical utilization of medicinal fungi as antiviral agents.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- Correspondence: (G.Z.); (J.L.); Tel.: +86-0531-89628200 (G.Z.); +86-0532-58631501 (J.L.)
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Correspondence: (G.Z.); (J.L.); Tel.: +86-0531-89628200 (G.Z.); +86-0532-58631501 (J.L.)
| |
Collapse
|
29
|
El Sheikha AF. Nutritional Profile and Health Benefits of Ganoderma lucidum "Lingzhi, Reishi, or Mannentake" as Functional Foods: Current Scenario and Future Perspectives. Foods 2022; 11:1030. [PMID: 35407117 PMCID: PMC8998036 DOI: 10.3390/foods11071030] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Ganoderma lucidum has a long history of medicinal uses in the Far East countries of more than 2000 years due to its healing properties. Recently, G. lucidum has come under scientific scrutiny to evaluate its content of bioactive components that affect human physiology, and has been exploited for potent components in the pharmacology, nutraceuticals, and cosmetics industries. For instance, evidence is accumulating on the potential of this mushroom species as a promising antiviral medicine for treating many viral diseases, such as dengue virus, enterovirus 71, and recently coronavirus disease of 2019 (COVID-19). Still, more research studies on the biotherapeutic components of G. lucidum are needed to ensure the safety and efficiency of G. lucidum and promote the development of commercial functional foods. This paper provides an extensive overview of the nutraceutical value of Ganoderma lucidum and the development of commercial functional food. Moreover, the geo-origin tracing strategies of this mushroom and its products are discussed, a highly important parameter to ensure product quality and safety. The discussed features will open new avenues and reveal more secrets to widely utilizing this mushroom in many industrial fields; i.e., pharmaceutical and nutritional ones, which will positively reflect the global economy.
Collapse
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China;
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, ON K1N 6N5, Canada
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, Shibin El Kom 32511, Egypt
| |
Collapse
|
30
|
Darshani P, Sen Sarma S, Srivastava AK, Baishya R, Kumar D. Anti-viral triterpenes: a review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1761-1842. [PMID: 35283698 PMCID: PMC8896976 DOI: 10.1007/s11101-022-09808-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/27/2022] [Indexed: 05/07/2023]
Abstract
Triterpenes are naturally occurring derivatives biosynthesized following the isoprene rule of Ruzicka. The triterpenes have been reported to possess a wide range of therapeutic applications including anti-viral properties. In this review, the recent studies (2010-2020) concerning the anti-viral activities of triterpenes have been summarized. The structure activity relationship studies have been described as well as brief biosynthesis of these triterpenes is discussed.
Collapse
Affiliation(s)
- Priya Darshani
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Shreya Sen Sarma
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Amit K. Srivastava
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| | - Rinku Baishya
- Natural Product Chemistry Group, CSIR-North East Institute of Science and Technology (NEIST), NH-37, Pulibor, Jorhat, Assam India
| | - Deepak Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata, India
| |
Collapse
|
31
|
Guo JC, Yang L, Ma QY, Ge YZ, Kong FD, Zhou LM, Fei Zhang, Xie QY, Yu ZF, Dai HF, Zhao YX. Triterpenoids and meroterpenoids with α-glucosidase inhibitory activities from the fruiting bodies of Ganoderma australe. Bioorg Chem 2021; 117:105448. [PMID: 34736135 DOI: 10.1016/j.bioorg.2021.105448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Macrofungi Ganoderma is a valuable medicinal fungus resource for human health and longevity in China. In this study, ten undescribed compounds including seven lostane-type triterpenoids, ganodaustralic acids A ∼ G (1-7), one pair of meroterpenoid enantiomers, (-)-6'-O-ethyllingzhiol (8) and (+)-6'-O-ethyllingzhiol (9), and one polyhydroxylated sterol, 3-O-acetyl-fomentarol C (10), together with eight known compounds (11-18), were isolated from the fruiting bodies of Ganoderma australe. The structures of the new compounds were elucidated by extensive spectroscopic analysis as well as NMR and electronic circular dichroism (ECD) calculations. Compounds 4, 8, 9, and 12 showed significant α-glucosidase inhibitory activities with IC50 values in the range of 4.1-11.7 μM, which were superior to that of positive control acarbose (213 μM). Only compound 7 exhibited weak cytotoxicity against SGC-7901 cells.
Collapse
Affiliation(s)
- Jiao-Cen Guo
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Li Yang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Qing-Yun Ma
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Ya-Zhe Ge
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan-Dong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Li-Man Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Fei Zhang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Qing-Yi Xie
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Zhi-Fang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hao-Fu Dai
- Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou 571101, China.
| | - You-Xing Zhao
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China.
| |
Collapse
|
32
|
Al-Salihi SAA, Alberti F. Naturally Occurring Terpenes: A Promising Class of Organic Molecules to Address Influenza Pandemics. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:405-419. [PMID: 33939136 PMCID: PMC8090910 DOI: 10.1007/s13659-021-00306-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/12/2021] [Indexed: 05/10/2023]
Abstract
Since the olden times, infectious diseases have largely affected human existence. The newly emerged infections are excessively caused by viruses that are largely associated with mammal reservoirs. The casualties of these emergencies are significantly influenced by the way human beings interact with the reservoirs, especially the animal ones. In our review we will consider the evolutionary and the ecological scales of such infections and their consequences on the public health, with a focus on the pathogenic influenza A virus. The nutraceutical properties of fungal and plant terpene-like molecules will be linked to their ability to lessen the symptoms of viral infections and shed light on their potential use in the development of new drugs. New challenging methods in antiviral discovery will also be discussed in this review. The authors believe that pharmacognosy is the "wave of future pharmaceuticals", as it can be continually produced and scaled up under eco-friendly requirements. Further diagnostic methods and strategies however are required to standardise those naturally occurring resources.
Collapse
Affiliation(s)
| | - Fabrizio Alberti
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
33
|
Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. Int J Biol Macromol 2021; 187:769-779. [PMID: 34197853 DOI: 10.1016/j.ijbiomac.2021.06.122] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Ganoderma lucidum (G. lucidum) polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicine for ancient times. Massive demands of G. lucidum have fascinated the researchers towards its application as functional food, nutraceutical and modern medicine owing to wide range of application in various diseases include immunomodulators, anticancer, antiviral, antioxidant, cardioprotective, hepatoprotective. G. lucidum polysaccharides exhibit immunomodulatory properties through boosting the action of antigen-presenting cells, mononuclear phagocyte system, along with humoral and cellular immunity. β-Glucans isolated from G. lucidum are anticipated to produce an immune response through pathogen associated molecular patterns (PAMPs). β-Glucans after binding with dectin-1 receptor present on different cells include macrophages, monocytes, dendritic cells and neutrophils produce signal transduction that lead to trigger the mitogen-activated protein kinases (MAPKs), T cells and Nuclear factor-κB (NF-κB) that refer to cytokines production and contributing to immune response. While triterpenoids produce antiviral effects through inhibiting various enzymes like neuraminidase, HIV-protease, DENV2 NS2B-NS3 protease and HSV multiplication. Polysaccharides and triterpenoids adjunct to other drugs exhibit potential action in prevention and treatment of various diseases. Immunomodulators and antiviral properties of this mushroom could be a potential source to overcome this current pandemic outbreak.
Collapse
|
34
|
El-Maradny YA, El-Fakharany EM, Abu-Serie MM, Hashish MH, Selim HS. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int J Biol Macromol 2021; 179:239-258. [PMID: 33676978 DOI: 10.1016/j.ijbiomac.2021.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
For thousands of years, fungi have been a valuable and promising source of therapeutic agents for treatment of various diseases. Mushroom is a macrofungus which has been cultivated worldwide for its nutritional value and medicinal applications. Several bioactive molecules were extracted from mushroom such as polysaccharides, lectins and terpenoids. Lectins are carbohydrate-binding proteins with non-immunologic origin. Lectins were classified according to their structure, origin and sugar specificity. This protein has different binding specificity with surface glycan moiety which determines its activity and therapeutic applications. A wide range of medicinal activities such as antitumor, antiviral, antimicrobial, immunomodulatory and antidiabetic were reported from sugar-binding proteins. However, glycan-binding protein from mushroom is not well explored as antiviral agent. The discovery of novel antiviral agents is a public health emergency to overcome the current pandemic and be ready for the upcoming viral pandemics. The mechanism of action of lectin against viruses targets numerous steps in viral life cycle such as viral attachment, entry and replication. This review described the history, classification, purification techniques, structure-function relationship and different therapeutic applications of mushroom lectin. In addition, we focus on the antiviral activity, purification and physicochemical characteristics of some mushroom lectins.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt; Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Mona H Hashish
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Heba S Selim
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
35
|
Seo DJ, Choi C. Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: A Review. Viruses 2021; 13:350. [PMID: 33672228 PMCID: PMC7926341 DOI: 10.3390/v13020350] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/03/2022] Open
Abstract
Mushrooms are used in their natural form as a food supplement and food additive. In addition, several bioactive compounds beneficial for human health have been derived from mushrooms. Among them, polysaccharides, carbohydrate-binding protein, peptides, proteins, enzymes, polyphenols, triterpenes, triterpenoids, and several other compounds exert antiviral activity against DNA and RNA viruses. Their antiviral targets were mostly virus entry, viral genome replication, viral proteins, and cellular proteins and influenced immune modulation, which was evaluated through pre-, simultaneous-, co-, and post-treatment in vitro and in vivo studies. In particular, they treated and relieved the viral diseases caused by herpes simplex virus, influenza virus, and human immunodeficiency virus (HIV). Some mushroom compounds that act against HIV, influenza A virus, and hepatitis C virus showed antiviral effects comparable to those of antiviral drugs. Therefore, bioactive compounds from mushrooms could be candidates for treating viral infections.
Collapse
Affiliation(s)
- Dong Joo Seo
- Department of Food Science and Nutrition, College of Health and Welfare and Education, Gwangju University 277 Hyodeok-ro, Nam-gu, Gwangju 61743, Korea;
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daeduck-myun, Anseong-si, Gyeonggi-do 17546, Korea
| |
Collapse
|
36
|
Liu Y, Lai G, Guo Y, Tang X, Shuai O, Xie Y, Wu Q, Chen D, Yuan X. Protective effect of Ganoderma lucidum spore extract in trimethylamine-N-oxide-induced cardiac dysfunction in rats. J Food Sci 2021; 86:546-562. [PMID: 33438268 DOI: 10.1111/1750-3841.15575] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022]
Abstract
Previous research has shown that the extracts from the Ganoderma lucidum spore (GS) have potentially cardioprotective effects, but there is still abundant room for development in determining its mechanism. In this study, the rat model of cardiac dysfunction was established by intraperitoneal injection of trimethylamine-N-oxide (TMAO), and the extracts of GS (oil, lipophilic components, and polysaccharides) were given intragastrically at a dose of 50 mg/kg/day to screen the pharmacological active components of GS. After 50 days of treatments, we found that the extraction from GS reduced the levels of total cholesterol, triglyceride, and low-density lipoprotein; increased the levels of high-density lipoprotein; and reduced the levels of serum TMAO when compared to the model group (P < 0.05); especially the GS polysaccharides (DT) and GS lipophilic components (XF) exhibited decreases in serum TMAO compared to TMAO-induced control. The results of 16S rRNA sequencing showed that GS could change the gut microbiota, increasing the abundance of Firmicutes and Proteobacteria in the DT-treated group and XF-treated group, while reducing the abundance of Actinobacteria and Tenericutes. Quantitative proteomics analysis showed that GS extracts (DT and XF) could regulate the expression of some related proteins, such as Ucp1 (XF-TMAO/M-TMAO ratio is 2.76), Mpz (8.52), Fasn (2.39), Nefl (1.85), Mtnd5 (0.83), Mtnd2 (0.36), S100a8 (0.69), S100a9 (0.70), and Bdh1 (0.72). The results showed that XF can maintain the metabolic balance and function of the heart by regulating the expression of some proteins related to cardiovascular disease, and DT can reduce the risk of cardiovascular diseases by targeting gut microbiota.
Collapse
Affiliation(s)
- Yadi Liu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guoxiao Lai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yinrui Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaocui Tang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ou Shuai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xujiang Yuan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
37
|
Gryzenhout M, Ghosh S, Tchotet Tchoumi JM, Vermeulen M, Kinge TR. Ganoderma: Diversity, Ecological Significances, and Potential Applications in Industry and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Liu W, Yuan R, Hou A, Tan S, Liu X, Tan P, Huang X, Wang J. Ganoderma triterpenoids attenuate tumour angiogenesis in lung cancer tumour-bearing nude mice. PHARMACEUTICAL BIOLOGY 2020; 58:1061-1068. [PMID: 33161828 PMCID: PMC7655057 DOI: 10.1080/13880209.2020.1839111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Ganoderma lucidum (Leyss. ex Fr.) Karst. (Polyporaceae) triterpenoids (GLTs), the main components and bioactive metabolites of G. lucidum, have antitumour activity. OBJECTIVE We investigated the effects of GLTs in lung cancer tumour-bearing nude mice and their potential mechanism. MATERIALS AND METHODS Forty BALB/c nude mice were randomly divided into four groups: saline control, GLT (1 g/kg/day), gefitinib (GEF, 15 mg/kg/day), and GLT (1 g/kg/day) + GEF (15 mg/kg/day) for 14 days. Cell viability was conducted using the Cell Counting Kit-8 assay. The tumour volume, inhibition rate, histopathological, microvessel density (MVD), mRNAs, and proteins were determined. RESULTS GLTs inhibited the cell viability of A549 cells with an IC50 value of 14.38 ± 0.29 mg/L, while the IC50 value of GEF was 10.26 ± 0.47 μmol/L. The tumour inhibition rate in the GLT + GEF group (51.54%) was significantly decreased relative to the saline control… group (p < 0.05). The MVD in the GLT + GEF group (2.9 ± 0.7) was significantly decreased than that in the saline control group (12.8 ± 1.4, p < 0.05). The angiostatin, endostatin, and Bax protein expression in the GLT, GEF, and GLT + GEF groups were significantly increased compared to those in the saline control group, while the VEGFR2 and Bcl-2 protein expression were decreased. DISCUSSION AND CONCLUSIONS Our study provided evidence that GLT and GEF combination therapy may be a promising candidate for the treatment of lung cancer and as an experimental basis for clinical treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | | | - Aihua Hou
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Song Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Xin Liu
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Pengcheng Tan
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Xiaoming Huang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Jinguo Wang
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| |
Collapse
|
39
|
Wang L, Li JQ, Zhang J, Li ZM, Liu HG, Wang YZ. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: a review. RSC Adv 2020; 10:42084-42097. [PMID: 35516772 PMCID: PMC9057998 DOI: 10.1039/d0ra07219b] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, some natural products isolated from the fungi of the genus Ganoderma have been found to have anti-tumor, liver protection, anti-inflammatory, immune regulation, anti-oxidation, anti-viral, anti-hyperglycemic and anti-hyperlipidemic effects. This review summarizes the research progress of some promising natural products and their pharmacological activities. The triterpenoids, meroterpenoids, sesquiterpenoids, steroids, alkaloids and polysaccharides isolated from Ganoderma lucidum and other species of Ganoderma were reviewed, including their corresponding chemical structures and biological activities. In particular, the triterpenes, polysaccharides and meroterpenoids of Ganoderma show a wide range of biological activities. Among them, the hydroxyl groups on the C-3, C-24 and C-25 positions of the lanostane triterpenes compound were the necessary active groups for the anti-HIV-1 virus. Previous study showed that lanostane triterpenes can inhibit human immunodeficiency virus-1 protease with an IC50 value of 20-40 μM, which has potential anti-HIV-1 activity. Polysaccharides can promote the production of TNF α and IFN-γ by macrophages and spleen cells in mice, and further inhibit or kill tumor cells. Some meroterpenoids contain oxygen-containing heterocycles, and they have significant antioxidant activity. In addition, Ganoderma has been used as a medicine to treat diseases for more than 2000 years, and we also reviewed its traditional uses.
Collapse
Affiliation(s)
- Li Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University Kunming 650201 China
| | - Jie-Qing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University Kunming 650201 China
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences Kunming 650200 China
| | - Zhi-Min Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences Kunming 650200 China
| | - Hong-Gao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University Kunming 650201 China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences Kunming 650200 China
| |
Collapse
|
40
|
Al-Ansari MM, Dhasarathan P, Ranjitsingh A, Al-Humaid LA. Ganoderma lucidum inspired silver nanoparticles and its biomedical applications with special reference to drug resistant Escherichia coli isolates from CAUTI. Saudi J Biol Sci 2020; 27:2993-3002. [PMID: 33100858 PMCID: PMC7569111 DOI: 10.1016/j.sjbs.2020.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022] Open
Abstract
In the search for alternative therapy for infections and other ailments, metallic nanoparticles, mainly silver nanoparticles (AgNPs) synthesized through bioengineered sources are extensively explored. Fungal bioactive compounds and their nanoparticles were reported with the potential biomedical application. A medicinal mushroom Ganoderma lucidum was reported as a repository of rich medicinal properties. In the current study, silver nanoparticles were synthesized using the extracts of G. lucidum and its antimicrobial activity was tested against drug-resistant Escherichia coli isolated from the catheter used for urinary tract infection (CAUTI). The GC-MS study of G. lucidum extracts showed the presence of ethyl acetoacetate ethylene acetal with the highest area percentage of 72.2% and retention time (RT 5873). Pyridine-3-ol is the second primary compound with a peak height of 6.44% and a retention time of 2.143. The third compound is l,4-Dioxane-2,3-diol, with an area of 8.09% and RT 5450. Butylated Hydroxy Toluene [BHT] is the fourth major compound with an area of 3.32%, and 9-Cedranone constitutes the fifth position in occupying the area percentage [1.88] and height 1.56%. Pyrrole is the sixth primary compound registering an area size of 0.96% and height 2.06%. The AgNPs synthesized using G. lucidum extract were in size range 23 and 58 nm as per SEM analysis and within the range wavelength 0.556-0.796 nm as per UV-Vis spectral study. FTIR Spectroscopy and X-ray diffraction analysis (XRD) were made to characterize the formed nanoparticles. The AgNPs synthesized effectively inhibited the growth of E. coli isolated from catheter-associated urinary tract infection and showed resistance to many drugs. The antioxidant potential of the synthesized nanoparticles assessed using DPPH radical scavenging activity, EC50 (µg/ml), and ARP data showed that the prepared nanoparticles were more potent in free radical scavenging activity than the standard quercetin. The cytotoxicity effect of Ag-NPs on breast cancer cell line- MDA-MB-231 confirmed its anticancer potential. The half-maximal inhibitory concentration (IC50) of Ag-NPs to inhibit 50% of the tumor was 9.2 g/mL. The synthesized GL-AgNPs was exhibited a multifocal biomedical potential.
Collapse
Affiliation(s)
- Mysoon M. Al-Ansari
- Department of Botany and Microbiology, Female Campus, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - P. Dhasarathan
- Department of Biotechnology, Prathyusha Engineering College, Chennai 600056, India
| | - A.J.A. Ranjitsingh
- Department of Biotechnology, Prathyusha Engineering College, Chennai 600056, India
| | - Latifah A. Al-Humaid
- Department of Botany and Microbiology, Female Campus, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Liu MT, Chen LX, Zhao J, Li SP. Ganoderma spore powder contains little triterpenoids. Chin Med 2020; 15:111. [PMID: 33062047 PMCID: PMC7552346 DOI: 10.1186/s13020-020-00391-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background Ganoderma spore is a minuscule germ cell ejected from Ganoderma gills during its growth maturity period, it has been considered with high exploitable potential in health-care products manufacture. Methods After testing sporoderm-broken rate, the triterpenoids in 12 batches of broken and unbroken Ganoderma spore powder (GSP) samples were compared with Ganoderma lucidum fruiting body (GL) by high performance thin-layer chromatography (HPTLC) and further verified by liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight mass spectrometry (LC–QTOF–MS); meanwhile, the dissolution of triterpenoids after bionic extraction was also investigated by HPTLC. Results The sporoderm-broken rate of all the broken GSP samples was over 85%. The relative peak area of triterpenoids in GSP samples were lower than 50% of that in fruiting body, and the dissolution of triterpenoids in artificial gastrointestinal fluid was lower than in methanol. Conclusions This study demonstrated that there were little triterpenoids in GSP. Triterpenoids in GSP also seldom be dissolved in artificial gastrointestinal fluid.
Collapse
Affiliation(s)
- Mei-Ting Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ling-Xiao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
42
|
Malekmohammad K, Rafieian-Kopaei M, Sardari S, Sewell RDE. Effective Antiviral Medicinal Plants and Biological Compounds Against Central Nervous System Infections: A Mechanistic Review. Curr Drug Discov Technol 2020; 17:469-483. [PMID: 31309894 DOI: 10.2174/1570163816666190715114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Infectious diseases are amongst the leading causes of death in the world and central nervous system infections produced by viruses may either be fatal or generate a wide range of symptoms that affect global human health. Most antiviral plants contain active phytoconstituents such as alkaloids, flavonoids, and polyphenols, some of which play an important antiviral role. Herein, we present a background to viral central nervous system (CNS) infections, followed by a review of medicinal plants and bioactive compounds that are effective against viral pathogens in CNS infections. METHODS A comprehensive literature search was conducted on scientific databases including: PubMed, Scopus, Google Scholar, and Web of Science. The relevant keywords used as search terms were: "myelitis", "encephalitis", "meningitis", "meningoencephalitis", "encephalomyelitis", "central nervous system", "brain", "spinal cord", "infection", "virus", "medicinal plants", and "biological compounds". RESULTS The most significant viruses involved in central nervous system infections are: Herpes Simplex Virus (HSV), Varicella Zoster Virus (VZV), West Nile Virus (WNV), Enterovirus 71 (EV71), Japanese Encephalitis Virus (JEV), and Dengue Virus (DENV). The inhibitory activity of medicinal plants against CNS viruses is mostly active through prevention of viral binding to cell membranes, blocking viral genome replication, prevention of viral protein expression, scavenging reactive Oxygen Species (ROS), and reduction of plaque formation. CONCLUSION Due to the increased resistance of microorganisms (bacteria, viruses, and parasites) to antimicrobial therapies, alternative treatments, especially using plant sources and their bioactive constituents, appear to be more fruitful.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sardari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, United Kingdom
| |
Collapse
|
43
|
Sangeetha B, Krishnamoorthy AS, Renukadevi P, Malathi VG, Jeya Sundara Sharmila D, Amirtham D. Antiviral activity of basidiomycetous fungi against Groundnut bud necrosis virus in tomato. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104570. [PMID: 32448423 DOI: 10.1016/j.pestbp.2020.104570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Tomato is an important vegetable crop which is severely affected by Groundnut bud necrosis virus (GBNV). Until now effective antiviral agents have not been reported for the management of necrosis disease caused by GBNV. Therefore, a study was undertaken to manage the necrosis disease caused by GBNV using culture filtrate of basidiomycetous fungi viz., Coprinopsiscinerea, Ganoderma lucidum and Lentinula edodes. In vitro studies were conducted in the indicator host cowpea and primary host tomato in glasshouse under insect proof condition; co-inoculation spraying of culture filtrate of Ganoderma lucidum at 0.1% concentration reduced the lesion numbers and inhibited the virus population build-up when compared to inoculated control in the indicator host cowpea upto 77.83%. DAC-ELISA test was performed to quantify the virus titre, indicated reduced virus titre in co- inoculation spray of culture filtrate of G. lucidum treated cowpea with OD value 0.17 ± 0.01 at 405 nm and in tomato plants 0.14 ± 0.01 respectively. The viral copy numbers were quantified by qPCR. About 2.0 × 101 viral copy numbers were observed in tomato plants treated with G. lucidum (co-inoculation) which was lesser than untreated inoculated control plants (2.4 × 108). In order to identify the antiviral properties of G. lucidum, GCMS analysis was carried out and we found the triterpenoid compound Squalene. This is the first study to analyse and confirm the antiviral activity of G. lucidum against a plant virus.
Collapse
Affiliation(s)
- B Sangeetha
- Department of Plant Pathology, Centre for Plant Protection studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - A S Krishnamoorthy
- Department of Plant Pathology, Centre for Plant Protection studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India.
| | - P Renukadevi
- Department of Sericulture, Forest College and Research Institute, Mettupalayam, Tamil Nadu 641301, India
| | - V G Malathi
- Department of Plant Pathology, Centre for Plant Protection studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - D Jeya Sundara Sharmila
- Department of Nano science and Technology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - D Amirtham
- Department of Food and Agricultural process engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| |
Collapse
|
44
|
Li Z, Cui B, Liu X, Wang L, Xian Q, Lu Z, Liu S, Cao Y, Zhao Y. Virucidal activity and the antiviral mechanism of acidic polysaccharides against Enterovirus 71 infection in vitro. Microbiol Immunol 2020; 64:189-201. [PMID: 31785100 DOI: 10.1111/1348-0421.12763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/13/2023]
Abstract
Enterovirus 71 (EV71) is the predominant pathogen for severe hand, foot, and mouth disease (HFMD) in children younger than 5 years, and currently no effective drugs are available for EV71. Thus, there is an urgent need to develop new drugs for the control of EV71 infection. In this study, LJ04 was extracted from Laminaria japonica using diethylaminoethyl cellulose-52 with 0.4 mol/l NaCl as the eluent, and its virucidal activity was evaluated based on its cytopathic effects on a microplate. LJ04 is composed of fucose, galactose, and mannose and mainly showed good virucidal activity against EV71. The antiviral mechanisms of LJ04 were the direct inactivation of the virus, the blockage of virus binding, disruptions to viral entry, and weak inhibitory activity against the nonstructural protein 3C. The two most important findings from this study were that LJ04 inhibited EV71 proliferation in HM1900 cells, which are a human microglia cell line, and that LJ04 can directly inactivate EV71 within 2 hr at 37°C. This study demonstrates for the first time the ability of a polysaccharide from L. japonica to inhibit viral and 3C activity; importantly, the inhibition of 3C might have a minor effect on the antiviral effect of LJ04. Consequently, our results identify LJ04 as a potential drug candidate for the control of severe EV71 infection in clinical settings.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Bin Cui
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaowen Liu
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Laicheng Wang
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qingjie Xian
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Zhaoxi Lu
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Shuntao Liu
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Yinguang Cao
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Yueran Zhao
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
45
|
Ganoderma lucidum Triterpenoids (GLTs) Reduce Neuronal Apoptosis via Inhibition of ROCK Signal Pathway in APP/PS1 Transgenic Alzheimer's Disease Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9894037. [PMID: 32089787 PMCID: PMC7008260 DOI: 10.1155/2020/9894037] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among senior citizen. Ganoderma lucidum triterpenoids (GLTs) have nutritional health benefits and has been shown to promote health and longevity, but a protective effect of GLTs on AD damage has not yet been reported. The objective of this research was to elucidate the phylactic effect of GLTs on AD model mice and cells and to explore its underlying mechanisms. Morris water maze (MWM) test was conducted to detect changes in the cognitive function of mice. Hematoxylin-eosin (HE) staining was applied to observe pathological changes in the hippocampus. Silver nitrate staining was applied to observe the hippocampal neuronal tangles (NFTs). Apoptosis of the hippocampal neurons in mouse brain tissue was determined by TUNEL staining. The expression levels of apoptosis-related protein Bcl2, Bax, and caspase 3/cleaved caspase 3; antioxidative protein Nrf2, NQO1, and HO1; and ROCK signaling pathway-associated proteins ROCK2 and ROCK1 were measured by western blot. In vivo experiments show that 5-month-old APP/PS1 mice appeared to have impaired acquisition of spatial learning and GLTs could reduce cognitive impairment in AD mice. Compared to normal mice, the hippocampus of APP/PS1 mouse's brains was severely damaged, while GLTs could alleviate this symptom by inhibiting apoptosis, relieving oxidative damage, and inactivating the ROCK signaling pathway. In in vitro cell experiments, Aβ 25-35 was applied to induce hippocampal neurons into AD model cells. GLTs promoted cell proliferation, facilitated superoxide dismutase (SOD) expression, and inhibited malondialdehyde (MDA) and lactic dehydrogenase (LDH) expression of neurons. Our study highlights that GLTs improve cognitive impairment, alleviate neuronal damage, and inhibit apoptosis in the hippocampus tissues and cells in AD through inhibiting the ROCK signaling pathway.
Collapse
|
46
|
Lim WZ, Cheng PG, Abdulrahman AY, Teoh TC. The identification of active compounds in Ganoderma lucidum var. antler extract inhibiting dengue virus serine protease and its computational studies. J Biomol Struct Dyn 2019; 38:4273-4288. [DOI: 10.1080/07391102.2019.1678523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wui Zhuan Lim
- Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Poh Guat Cheng
- Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Teow Chong Teoh
- Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Wound Healing and the Use of Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2684108. [PMID: 31662773 PMCID: PMC6778887 DOI: 10.1155/2019/2684108] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.
Collapse
|
48
|
Qu ZW, Zhou SY, Guan SX, Gao R, Duan ZW, Zhang X, Sun WY, Fan WL, Chen SS, Chen LJ, Lin JW, Ruan YY. Recombinant Expression and Bioactivity Comparison of Four Typical Fungal Immunomodulatory Proteins from Three Main Ganoderma Species. BMC Biotechnol 2018; 18:80. [PMID: 30547780 PMCID: PMC6295072 DOI: 10.1186/s12896-018-0488-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/28/2018] [Indexed: 02/09/2023] Open
Abstract
Background More than a dozen of fungal immunomodulatory proteins (FIPs) have been identified to date, most of which are from Ganoderma species. However, little is known about the similarities and differences between different Ganoderma FIPs’ bioactivities. In the current study, two FIP genes termed FIP-gap1 and FIP-gap2 from G. applanatum, along with LZ-8 and FIP-gsi, another two representative Ganoderma FIP genes from G. lucidum and G. sinense were functionally expressed in Pichia. Subsequently, bioactivities of four recombinant Ganoderma FIPs were demonstrated and compared. Results All the four Ganoderma FIP genes could be effectively expressed in P. pastoris GS115 at expression levels ranging from 197.5 to 264.3 mg L− 1 and simply purified by one step chromatography using HisTrap™ FF prepack columns. Amino acid sequence analysis showed that they all possessed the FIP conserved fragments. The homologies of different Ganoderma FIPs were from 72.6 to 86.4%. In vitro haemagglutination exhibited that FIP-gap1, FIP-gsi and LZ-8 could agglutinate human, sheep and mouse red blood cells but FIP-gap2 agglutinated none. Besides, the immunomodulation activities of these Ganoderma FIPs were as: rFIP-gap2 > rFIP-gap1 > rLZ-8 and rFIP-gsi in terms of proliferation stimulation and cytokine induction on murine splenocytes. Additionally, the cytotoxic activity of different FIPs was: rFIP-gap1 > rLZ-8 > rFIP-gsi > rFIP-gap2, examined by their inhibition of three human carcinomas A549, Hela and MCF-7. Conclusions Taken together, four typical Ganoderma FIP genes could be functionally expressed in P. pastoris, which might supply as feasible efficient resources for further study and application. Both similarities and differences were indeed observed between Ganoderma FIPs in their amino acid sequences and bioactivities. Comprehensively, rFIP-gaps from G. applanatum proved to be more effective in immunomodulation and cytotoxic assays in vitro than rLZ-8 (G. lucidum) and rFIP-gsi (G. sinense). Electronic supplementary material The online version of this article (10.1186/s12896-018-0488-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheng-Wei Qu
- Liaoning Province Key Laboratory of Agricultural Technology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Si-Ya Zhou
- Liaoning Province Key Laboratory of Agricultural Technology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shi-Xin Guan
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Gao
- Liaoning Province Key Laboratory of Agricultural Technology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zuo-Wen Duan
- Liaoning Province Key Laboratory of Agricultural Technology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Zhang
- Liaoning Province Key Laboratory of Agricultural Technology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wei-Yan Sun
- Liaoning Province Key Laboratory of Agricultural Technology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wen-Li Fan
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shui-Sen Chen
- Liaoning Province Key Laboratory of Agricultural Technology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li-Jing Chen
- Liaoning Province Key Laboratory of Agricultural Technology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing-Wei Lin
- Liaoning Province Key Laboratory of Agricultural Technology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yan-Ye Ruan
- Liaoning Province Key Laboratory of Agricultural Technology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
49
|
Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomäki V. Antiviral Agents From Fungi: Diversity, Mechanisms and Potential Applications. Front Microbiol 2018; 9:2325. [PMID: 30333807 PMCID: PMC6176074 DOI: 10.3389/fmicb.2018.02325] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 01/14/2023] Open
Abstract
Viral infections are amongst the most common diseases affecting people worldwide. New viruses emerge all the time and presently we have limited number of vaccines and only few antivirals to combat viral diseases. Fungi represent a vast source of bioactive molecules, which could potentially be used as antivirals in the future. Here, we have summarized the current knowledge of fungi as producers of antiviral compounds and discuss their potential applications. In particular, we have investigated how the antiviral action has been assessed and what is known about the molecular mechanisms and actual targets. Furthermore, we highlight the importance of accurate fungal species identification on antiviral and other natural products studies.
Collapse
Affiliation(s)
| | - Dhanik Reshamwala
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Pyry Veteli
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Henri Vanhanen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Varpu Marjomäki
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
50
|
Lin CJ, Liu CH, Wang JY, Lin CC, Li YF, Richardson CD, Lin LT. Small molecules targeting coxsackievirus A16 capsid inactivate viral particles and prevent viral binding. Emerg Microbes Infect 2018; 7:162. [PMID: 30254193 PMCID: PMC6156566 DOI: 10.1038/s41426-018-0165-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 01/13/2023]
Abstract
Coxsackievirus A16 (CVA16) is an etiologic agent of hand, foot, and mouth disease (HFMD) that affects young children, and although typically self-limited, severe complications, and fatal cases have been reported. Due to the lack of specific medication and vaccines against CVA16, there is currently a need to develop effective antivirals to better control CVA16 infections in epidemic areas. In this study, we identified the tannins chebulagic acid (CHLA) and punicalagin (PUG) as small molecules that can efficiently disrupt the CVA16 infection of human rhabdomyosarcoma cells. Both compounds significantly reduced CVA16 infectivity at micromolar concentrations without apparent cytotoxicity. A mechanistic analysis revealed that the tannins particularly targeted the CVA16 entry phase by inactivating cell-free viral particles and inhibiting viral binding. Further examination by molecular docking analysis pinpointed the targets of the tannins in the fivefold axis canyon region of the CVA16 capsid near the pocket entrance that functions in cell surface receptor binding. We suggest that CHLA and PUG are efficient antagonists of CVA16 entry and could be of value as antiviral candidates or as starting points for developing molecules to treat CVA16 infections.
Collapse
Affiliation(s)
- Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Hsuan Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jonathan Y Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Chun-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yi-Fang Li
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Christopher D Richardson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, B3K 6R8, Canada
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, , Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|