1
|
Tripathi T, Yadav J, Janjua D, Chaudhary A, Joshi U, Senrung A, Chhokar A, Aggarwal N, Bharti AC. Targeting Cervical Cancer Stem Cells by Phytochemicals. Curr Med Chem 2024; 31:5222-5254. [PMID: 38288813 DOI: 10.2174/0109298673281823231222065616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 09/06/2024]
Abstract
Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.
Collapse
Affiliation(s)
- Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology and Drug Delivery Laboratory, Department of Zoology, Daulat Ram College, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
2
|
Zhao Y, Chang X, Gu X, Li Y, Zheng Y, Fang H. Predictive Analysis of Quality Markers of Atractylodis Rhizoma Based on Fingerprint and Network Pharmacology. J AOAC Int 2023; 106:1402-1413. [PMID: 37208180 DOI: 10.1093/jaoacint/qsad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Atractylodes chinensis (DC.) Koidz. (A. chinensis) is a perennial herbaceous plant that is widely used as a Chinese medicine herb for gastric diseases. However, the bioactive compounds of this herbal medicine have not been defined, and quality control is imperfect. OBJECTIVE Although the method of quality evaluation method for A. chinensis by high-performance liquid chromatography (HPLC) fingerprinting has been reported in related papers, it remains unknown whether the chemical markers selected are representative of their clinical efficacy. To develop methods for qualitative analysis and improved quality evaluation of A. chinensis. METHOD In this study, HPLC was used to establish fingerprints and conduct similarity evaluation. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to reveal the differences of these fingerprints. Network pharmacology was used to analyze the corresponding targets of the active ingredients. Meantime, an active ingredient-target-pathway network was constructed to investigate the characteristics of the medical efficacy of A. chinensis and to predict potential Q-markers. RESULTS Combining network pharmacological effectiveness and composition specificity with the Q-marker concept, atractylodin (ATD), β-eudesmol, atractylenolide Ι (AT-I) and atractylenolide III (AT-III) were predicted to be potential Q-markers of A. chinensis that showed anti-inflammatory, antidepressant, anti-gastric, and antiviral effects by acting on 10 core targets and 20 key pathways. CONCLUSIONS The HPLC fingerprinting method established in this study is straightforward, and the identified four active constituents can be used as Q-markers of A. chinensis. These findings facilitate effective quality evaluation of A. chinensis and suggest this approach could be applied to evaluate the quality of other herbal medicines. HIGHLIGHTS The fingerprints of Atractylodis rhizoma were organically combined with network pharmacology to further clarify its criteria for quality control.
Collapse
Affiliation(s)
- Yanyun Zhao
- Hebei University of Chinese Medicine, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei Province 050091, P.R. China
- Inner Mongolia University, Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, College of Life Sciences, No.235 West College Road, Saihan District, Hohhot Inner Mongolia 010000, P.R. China
| | - Xinxin Chang
- Hebei University of Chinese Medicine, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei Province 050091, P.R. China
| | - Xian Gu
- Hebei University of Chinese Medicine, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei Province 050091, P.R. China
| | - Yang Li
- Hebei University of Chinese Medicine, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei Province 050091, P.R. China
| | - Yuguang Zheng
- Hebei University of Chinese Medicine, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei Province 050091, P.R. China
- Hebei Chemical and Pharmaceutical College, No. 88 Fangxing Road, Yuhua District, Shijiazhuang, Hebei Province 050026, P.R. China
| | - Huiyong Fang
- Hebei University of Chinese Medicine, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei Province 050091, P.R. China
| |
Collapse
|
3
|
Xie Z, Lin M, He X, Dong Y, Chen Y, Li B, Chen S, Lv G. Chemical Constitution, Pharmacological Effects and the Underlying Mechanism of Atractylenolides: A Review. Molecules 2023; 28:molecules28103987. [PMID: 37241729 DOI: 10.3390/molecules28103987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Atractylenolides, comprising atractylenolide I, II, and III, represent the principal bioactive constituents of Atractylodes macrocephala, a traditional Chinese medicine. These compounds exhibit a diverse array of pharmacological properties, including anti-inflammatory, anti-cancer, and organ-protective effects, underscoring their potential for future research and development. Recent investigations have demonstrated that the anti-cancer activity of the three atractylenolides can be attributed to their influence on the JAK2/STAT3 signaling pathway. Additionally, the TLR4/NF-κB, PI3K/Akt, and MAPK signaling pathways primarily mediate the anti-inflammatory effects of these compounds. Atractylenolides can protect multiple organs by modulating oxidative stress, attenuating the inflammatory response, activating anti-apoptotic signaling pathways, and inhibiting cell apoptosis. These protective effects extend to the heart, liver, lung, kidney, stomach, intestine, and nervous system. Consequently, atractylenolides may emerge as clinically relevant multi-organ protective agents in the future. Notably, the pharmacological activities of the three atractylenolides differ. Atractylenolide I and III demonstrate potent anti-inflammatory and organ-protective properties, whereas the effects of atractylenolide II are infrequently reported. This review systematically examines the literature on atractylenolides published in recent years, with a primary emphasis on their pharmacological properties, in order to inform future development and application efforts.
Collapse
Affiliation(s)
- Zhiyi Xie
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Minqiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yingjie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yigong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
4
|
Hu Q, Li Z, Li Y, Deng X, Chen Y, Ma X, Zeng J, Zhao Y. Natural products targeting signaling pathways associated with regulated cell death in gastric cancer: Recent advances and perspectives. Phytother Res 2023. [PMID: 37157181 DOI: 10.1002/ptr.7866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with high morbidity and mortality. The complexity of GC process lies in the multi-phenotypic linkage regulation, in which regulatory cell death (RCD) is the core link, which largely dominates the fate of GC cells and becomes a key determinant of GC development and prognosis. In recent years, increasing evidence has been reported that natural products can prevent and inhibit the development of GC by regulating RCDs, showing great therapeutic potential. In order to further clarify its key regulatory characteristics, this review focused on specific expressions of RCDs, combined with a variety of signaling pathways and their crosstalk characteristics, sorted out the key targets and action rules of natural products targeting RCD. It is highlighted that a variety of core biological pathways and core targets are involved in the decision of GC cell fate, including the PI3K/Akt signaling pathway, MAPK-related signaling pathways, p53 signaling pathway, ER stress, Caspase-8, gasdermin D (GSDMD), and so on. Moreover, natural products target the crosstalk of different RCDs by modulating above signaling pathways. Taken together, these findings suggest that targeting various RCDs in GC with natural products is a promising strategy, providing a reference for further clarifying the molecular mechanism of natural products treating GC, which warrants further investigations in this area.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Han Y, Bai C, He XM, Ren QL. P2X7 receptor involved in antitumor activity of atractylenolide I in human cervical cancer cells. Purinergic Signal 2023; 19:145-153. [PMID: 35235139 PMCID: PMC9984620 DOI: 10.1007/s11302-022-09854-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Atractylenolide I (Atr-I) was found to sensitize a variety of human cancer cells in previous studies. Purinergic P2X7R plays important role in different cancers. However, whether Atr-I could generate antitumor activity in human cervical cancer cells and P2X7R get involved in this effect remain unclear. In this study, Hela (HPV 18 +) and SiHa (HPV 16 +) cells were treated with different doses of Atr-I. The results indicated that agonist and antagonist of P2X7 receptors, BzATP and JNJ-47965567 (JNJ), could suppress the proliferation of Hela and SiHa cells. Atr-I demonstrated a considerable antitumor effect in both human cervical cancer cells in vitro. Atr-I combined with P2X7R agonist, BzATP, restored Atr-I-induced growth inhibition in Hela cells but not in SiHa cells. However, the combinatorial treatment of P2X7R antagonist JNJ and Atr-I has an additive effect on cell growth inhibition in SiHa cells rather than in Hela cells. It implied that P2X7R would get involved in the anti-human cervical cancer cells effect of Atr-I.
Collapse
Affiliation(s)
- Yue Han
- Department of Gynecology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Can Bai
- Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Xi-Meng He
- Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Qing-Ling Ren
- Department of Gynecology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
6
|
Sun Y, Liu Y, Cai Y, Han P, Hu S, Cao L. Atractylenolide I inhibited the development of malignant colorectal cancer cells and enhanced oxaliplatin sensitivity through the PDK1-FoxO1 axis. J Gastrointest Oncol 2022; 13:2382-2392. [PMID: 36388699 PMCID: PMC9660064 DOI: 10.21037/jgo-22-910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a type of ordinary malignancy of the gastrointestinal tract. Atractylenolide I (AT-I) has been shown to inhibit the process of CRC. However, the specific mechanism by which AT-I inhibits CRC is not yet well understood. METHODS Cell Counting Kit-8 and colony formation assays were conducted to examine cell proliferation. The cell apoptosis was detected by terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL). Cell invasion and migration were evaluated by wound-healing and Transwell assay. The angiogenesis capabilities of the cells were examined by tube formation experiments. Western blot was conducted to examine the apoptosis and angiogenesis-associated proteins, pyruvate dehydrogenase kinase 1 (PDK1), and Forkhead box protein O1 (FoxO1) expression. RESULTS We found that AT-I inhibited the proliferative, migratory and invasive abilities of Human colorectal cancer cell line HCT116 cells but stimulated cell death by promoting cell apoptosis via the PDK1/FoxO1 axis. In addition, the upregulation of PDK1 decreased the inhibitory effect of AT-I on HCT116 angiogenesis, and AT-I increased oxaliplatin sensitivity via the PDK1/FoxO1 axis. CONCLUSIONS Collectively, AT-I inhibited the malignant development of CRC cells and increased oxaliplatin sensitivity by decreasing PDK1 and inhibiting FoxO1 phosphorylation. Thus, AT-I has protective potential and could be a promising agent for CRC treatment.
Collapse
Affiliation(s)
- Ye Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yun Cai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pingping Han
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Jiang Y, Guo K, Wang P, Zhu Y, Huang J, Ruan S. The antitumor properties of atractylenolides: Molecular mechanisms and signaling pathways. Biomed Pharmacother 2022; 155:113699. [PMID: 36116253 DOI: 10.1016/j.biopha.2022.113699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
Drugs that exhibit a high degree of tumor cell selectivity while minimizing normal cell toxicity are an area of active research interest as a means of designing novel antitumor agents. The pharmacological benefits of Chinese herbal medicine-based treatments have been the focus of growing research interest in recent years. Sesquiterpenoids derived from the Atractylodes macrocephala volatile oil preparations exhibit in vitro and in vivo antitumor activity. Atracylenolides exhibit anti-proliferative, anti-metastatic, and immunomodulatory activity in a range of tumor cell lines in addition to being capable of regulating metabolic activity such that it is a promising candidate drug for the treatment of diverse cancers. The present review provides a summary of recent advances in Atractylenolide-focused antitumor research efforts.
Collapse
Affiliation(s)
- Yu Jiang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Kaibo Guo
- Department of Oncology, Affilited Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Ying Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Jiaqi Huang
- Department of postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
8
|
Rao X, Zhang C, Luo H, Zhang J, Zhuang Z, Liang Z, Wu X. Targeting Gastric Cancer Stem Cells to Enhance Treatment Response. Cells 2022; 11:cells11182828. [PMID: 36139403 PMCID: PMC9496718 DOI: 10.3390/cells11182828] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) was the fourth deadliest cancer in the world in 2020, and about 770,000 people died from GC that year. The death of patients with GC is mainly caused by the metastasis, recurrence, and chemotherapy resistance of GC cells. The cancer stem cell theory defines cancer stem cells (CSCs) as a key factor in the metastasis, recurrence, and chemotherapy resistance of cancer. It considers targeting gastric cancer stem cells (GCSCs) to be an effective method for the treatment of GC. For GCSCs, genes or noncoding RNAs are important regulatory factors. Many experimental studies have found that some drugs can target the stemness of gastric cancer by regulating these genes or noncoding RNAs, which may bring new directions for the clinical treatment of gastric cancer. Therefore, this review mainly discusses related genes or noncoding RNAs in GCSCs and drugs that target its stemness, thereby providing some information for the treatment of GC.
Collapse
|
9
|
Tan Y, Wang H, Xu B, Zhang X, Zhu G, Ge Y, Lu T, Gao R, Li J. Chinese herbal medicine combined with oxaliplatin-based chemotherapy for advanced gastric cancer: A systematic review and meta-analysis of contributions of specific medicinal materials to tumor response. Front Pharmacol 2022; 13:977708. [PMID: 36091754 PMCID: PMC9453215 DOI: 10.3389/fphar.2022.977708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: The incidence and mortality of gastric cancer ranks among the highest, and the 5-year survival rate of advanced gastric cancer (AGC) is less than 10%. Currently, chemotherapy is the main treatment for AGC, and oxaliplatin is an important part of the commonly used chemotherapy regimen for AGC. A large number of RCTs have shown that Chinese herbal medicine (CHM) combined with oxaliplatin-based chemotherapy can improve objective response rate (ORR) and disease control rate (DCR), reduce the toxic and side effects of chemotherapy. There is currently a lack of systematic evaluation of the evidence to account for the efficacy and safety of CHM combined with oxaliplatin-based chemotherapy in AGC. Therefore, we carried out this study and conducted the sensitivity analysis on the herbal composition to explore the potential anti-tumor efficacy. Methods: Databases of PubMed, EMBASE, CENTRAL, Web of Science, the Chinese Biomedical Literature Database, the China National Knowledge Infrastructure, the Wanfang database, and the Chinese Scientific Journals Database were searched from their inception to April 2022. RCTs evaluating the efficacy of CHM combined with oxaliplatin-based chemotherapy on AGC were included. Stata 16 was used for data synthesis, RoB 2 for quality evaluation of included RCTs, and GRADE for quality of synthesized evidence. Additional sensitivity analysis was performed to explore the potential anti-tumor effects of single herbs and combination of herbs. Results: Forty trials involving 3,029 participants were included. Most included RCTs were assessed as "Some concerns" of risk of bias. Meta-analyses showed that compare to oxaliplatin-based chemotherapy alone, that CHM combined with oxaliplatin-based chemotherapy could increase the objective response rate (ORR) by 35% [risk ratio (RR) = 1.35, 95% confidence intervals (CI) (1.25, 1.45)], and disease control rate (DCR) by 12% [RR = 1.12, 95% CI (1.08, 1.16)]. Subgroup analysis showed that compare to SOX, FOLFOX, and XELOX regimens alone, CHM plus SOX, CHM plus FOLFOX, and CHM plus XELOX could significantly increase the ORR and DCR. Sensitivity analysis identified seven herbs of Astragalus, Liquorice, Poria, Largehead Atractylodes, Chinese Angelica, Codonopsis, and Tangerine Peel with potentials to improve tumor response of oxaliplatin-based chemotherapy in AGC. Conclusion: Synthesized evidence showed moderate certainty that CHM plus oxaliplatin-based chemotherapy may promote improvement in tumor response in AGC. CHM treatment is safe for AGC. Due to the poor quality of included RCTs and small samplesizes, the quality of synthesized evidence was not high. Specific combinations of herbs appeared to produce higher contributions to ORR than the herb individually. Each of this seven above mentioned herbs has been shown in experimental studies to potentially contribute to the improvement of tumor response. To support this conclusion, these seven herbs are worthy of further clinical research. Systematic Review Registration: [http://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=262595], identifier [CRD42022262595].
Collapse
Affiliation(s)
- Ying Tan
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Heping Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxiao Zhang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuansha Ge
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Taicheng Lu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruike Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Wang M, Li XZ, Zhang MX, Ye QY, Chen YX, Chang X. Atractylenolide-I Sensitizes Triple-Negative Breast Cancer Cells to Paclitaxel by Blocking CTGF Expression and Fibroblast Activation. Front Oncol 2021; 11:738534. [PMID: 34692516 PMCID: PMC8526898 DOI: 10.3389/fonc.2021.738534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
This investigation was conducted to elucidate whether atractylenolide-I (ATL-1), which is the main component of Atractylodes macrocephala Koidz, can sensitize triple-negative breast cancer (TNBC) cells to paclitaxel and investigate the possible mechanism involved. We discovered that ATL-1 could inhibit tumor cell migration and increase the sensitivity of tumor cells to paclitaxel. ATL-1 downregulated the expression and secretion of CTGF in TNBC cells. Apart from inhibiting TNBC cell migration via CTGF, ATL-1 downregulated the expression of CTGF in fibroblasts and decreased the ability of breast cancer cells to transform fibroblasts into cancer-associated fibroblasts (CAFs), which in turn increased the sensitivity of TNBC cells to paclitaxel. In a mouse model, we found that ATL-1 treatments could enhance the chemotherapeutic effect of paclitaxel on tumors and reduce tumor metastasis to the lungs and liver. Primary cultured fibroblasts derived from inoculated tumors in mice treated with ATL-1 combined with paclitaxel expressed relatively low levels of CAF markers. Collectively, our data indicate that ATL-1 can sensitize TNBC cells to paclitaxel by blocking CTGF expression and fibroblast activation and could be helpful in future research to determine the value of ATL-1 in the clinical setting.
Collapse
Affiliation(s)
- Meng Wang
- First Department of Surgery, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Xue-Zhen Li
- Department of Breast Surgery, Guangdong Second Hospital of Traditional Chinese Medicine, Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming-Xing Zhang
- Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Qian-Yu Ye
- Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Ying-Xia Chen
- Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Xu Chang
- Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Deng M, Chen H, Long J, Song J, Xie L, Li X. Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics. Arch Pharm Res 2021; 44:633-654. [PMID: 34269984 DOI: 10.1007/s12272-021-01342-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
Atractylodes macrocephala Koidz is a widely used as a traditional Chinese medicine. Atractylenolides (-I, -II, and -III) are a class of lactone compounds derived from Atractylodes macrocephala Koidz. Research into atractylenolides over the past two decades has shown that atractylenolides have anti-cancer, anti-inflammatory, anti-platelet, anti-osteoporosis, and antibacterial activity; protect the nervous system; and regulate blood glucose and lipids. Because of structural differences, both atractylenolide-I and atractylenolide-II have remarkable anti-cancer activities, and atractylenolide-I and atractylenolide-III have remarkable anti-inflammatory and neuroprotective activities. We therefore recommend further clinical research on the anti-cancer, anti-inflammatory and neuroprotective effects of atractylenolides, determine their therapeutic effects, alone or in combination. To investigate their ability to regulate blood glucose and lipid, as well as their anti-platelet, anti-osteoporosis, and antibacterial activities, both in vitro and in vivo studies are necessary. Atractylenolides are rapidly absorbed but slowly metabolized; thus, solubilization studies may not be necessary. However, due to the inhibitory effects of atractylenolides on metabolic enzymes, it is necessary to pay attention to the possible side effects of combining atractylenolides with other drugs, in clinical application. In short, atractylenolides have considerable medicinal value and warrant further study.
Collapse
Affiliation(s)
- Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| |
Collapse
|
12
|
Erkisa M, Sariman M, Geyik OG, Geyik CG, Stanojkovic T, Ulukay E. Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Curr Med Chem 2021; 29:741-783. [PMID: 34182899 DOI: 10.2174/0929867328666210628131409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Cancer is still a deadly disease, and its treatment desperately needs to be managed in a very sophisticated way through fast-developing novel strategies. Most of the cancer cases eventually develop into recurrencies, for which cancer stem cells (CSCs) are thought to be responsible. They are considered as a subpopulation of all cancer cells of tumor tissue with aberrant regulation of self-renewal, unbalanced proliferation, and cell death properties. Moreover, CSCs show a serious degree of resistance to chemotherapy or radiotherapy and immune surveillance as well. Therefore, new classes of drugs are rushing into the market each year, which makes the cost of therapy increase dramatically. Natural products are also becoming a new research area as a diverse chemical library to suppress CSCs. Some of the products even show promise in this regard. So, the near future could witness the introduction of natural products as a source of new chemotherapy modalities, which may result in the development of novel anticancer drugs. They could also be a reasonably-priced alternative to highly expensive current treatments. Nowadays, considering the effects of natural compounds on targeting surface markers, signaling pathways, apoptosis, and escape from immunosurveillance have been a highly intriguing area in preclinical and clinical research. In this review, we present scientific advances regarding their potential use in the inhibition of CSCs and the mechanisms by which they kill the CSCs.
Collapse
Affiliation(s)
- Merve Erkisa
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Melda Sariman
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Oyku Gonul Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Caner Geyik Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Tatjana Stanojkovic
- Experimental Oncology Deparment, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Pasterova 14. Serbia
| | - Engin Ulukay
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| |
Collapse
|
13
|
Acupuncture Regulates Serum Differentially Expressed Proteins in Patients with Chronic Atrophic Gastritis: A Quantitative iTRAQ Proteomics Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9962224. [PMID: 34234838 PMCID: PMC8219412 DOI: 10.1155/2021/9962224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Objective To identify differentially expressed proteins (DEPs) in sera of patients with chronic atrophic gastritis (CAG) using isobaric tags for relative and absolute quantitation (iTRAQ) and to explore acupuncture's mechanism in CAG. Methods Peripheral sera from 8 healthy volunteers (HC), 8 chronic nonatrophic gastritis (NAG) patients, 8 CAG patients, and 8 CAG patients who underwent acupuncture treatment (CAG + ACU) were collected followed by labeling with iTRAQ reagent for protein identification and quantification using two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS). Representative DEPs were selected through bioinformatics, and proteins were verified by enzyme-linked immunosorbent assay (ELISA). Results A total of 4,448 unique peptides were identified, corresponding to 816 nonredundant proteins. A 1.4-fold difference was used as the threshold. Compared with the HC group, 75 and 106 DEPs were identified from CAG and NAG groups, respectively. Compared with the CAG group, 110 and 66 DEPs were identified from the NAG and CAG + ACU groups, respectively. The DEPs were mainly involved in protein binding and the Notch signaling pathway-related proteins, and the upregulated proteins included actin-binding proteins (thymosin beta-4, tropomyosin-4, profilin-1, transgelin-2), while the downregulated proteins included Notch2 and Notch3. After acupuncture, the expression of these proteins in CAG patients was less differentiated from that in healthy people. The level of the above 6 proteins were verified by ELISA, and the results were similar to the results of iTRAQ analysis. Conclusions Actin-binding proteins and Notch signaling pathway-related proteins were correlated with the development and progression of CAG and thus are potential diagnostic markers for CAG. Acupuncture may play a role in regulating actin-binding proteins and Notch signaling pathway-related proteins to play a therapeutic role in CAG.
Collapse
|
14
|
Bailly C. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties. Eur J Pharmacol 2020; 891:173735. [PMID: 33220271 DOI: 10.1016/j.ejphar.2020.173735] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
The rhizome of the plant Atractylodes macrocephala Koidz is the major constituent of the Traditional Chinese Medicine Baizhu, frequently used to treat gastro-intestinal diseases. Many traditional medicine prescriptions based on Baizhu and the similar preparation Cangzhu are used in China, Korea and Japan as Qi-booster. These preparations contain atractylenolides, a small group of sesquiterpenoids endowed with antioxidant and anti-inflammatory properties. Atractylenolides I, II and III also display significant anticancer properties, reviewed here. The capacity of AT-I/II/IIII to inhibit cell proliferation and to induce cancer cell death have been analyzed, together with their effects of angiogenesis, metastasis, cell differentiation and stemness. The immune-modulatory properties of ATs are discussed. AT-I has been tested clinically for the treatment of cancer-induced cachexia with encouraging results. ATs, alone or combined with cytotoxic drugs, could be useful to treat cancers or to reduce side effects of radio and chemotherapy. Several signaling pathways have been implicated in their multi-targeted mechanisms of action, in particular those involving the central regulators TLR4, NFκB and Nrf2. A drug-induced reduction of inflammatory cytokines production (TNFα, IL-6) also characterizes these molecules which are generally weakly cytotoxic and well tolerated in vivo. Inhibition of Janus kinases (notably JAK2 and JAK3 targeted by AT-I and AT-III, respectively) has been postulated. Information about their metabolism and toxicity are limited but the long-established traditional use of the Atractylodes and the diversity of anticancer effects reported with AT-I and AT-III should encourage further studies with these molecules and structurally related natural products.
Collapse
|
15
|
Abu-Izneid T, Rauf A, Shariati MA, Khalil AA, Imran M, Rebezov M, Uddin MS, Mahomoodally MF, Rengasamy KRR. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol Res 2020; 161:105165. [PMID: 32835868 DOI: 10.1016/j.phrs.2020.105165] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
Sesquiterpenes belong to the largest group of plant secondary metabolites, which consist of three isoprene building units. These compounds are widely distributed in various angiosperms, a few gymnosperms and bryophytes. Sesquiterpenes and their allied derivatives are bio-synthesized in various plant parts including leaves, fruits and roots. These plant-based metabolites are predominantly identified in the Asteraceae family, wherein up to 5000 complexes have been documented to date. Sesquiterpenes and their derivatives are characteristically associated with plant defence mechanisms owing to their antifungal, antibacterial and antiviral activities. Over the last two decades, these compounds have been reportedly demonstrated health promoting perspectives against a wide range of metabolic syndromes i.e. hyperglycemia, hyperlipidemia, cardiovascular complications, neural disorders, diabetes, and cancer. The high potential of sesquiterpenes and their derivatives against various cancers like breast, colon, bladder, pancreatic, prostate, cervical, brain, liver, blood, ovarium, bone, endometrial, oral, lung, eye, stomach and kidney are the object of this review. Predominantly, it recapitulates the literature elucidating sesquiterpenes and their derivatives while highlighting the mechanistic approaches associated with their potent anticancer activities such as modulating nuclear factor kappa (NF-kB) activity, inhibitory action against lipid peroxidation and retarding the production of reactive oxygen & nitrogen species (ROS&RNS).
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Md Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Kannan R R Rengasamy
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
16
|
Wang K, Huang W, Sang X, Wu X, Shan Q, Tang D, Xu X, Cao G. Atractylenolide I inhibits colorectal cancer cell proliferation by affecting metabolism and stemness via AKT/mTOR signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153191. [PMID: 32135457 DOI: 10.1016/j.phymed.2020.153191] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Atractylenolide I (ATL-1) is a natural herbal compound used in traditional Chinese medicine that has exhibited anti-cancer properties. The anti-tumorigenic activity of ATL-1 against colorectal cancer (CRC) and the underlying signaling pathways involved in its mechanisms are examined here. HYPOTHESIS ATL-1 exerts therapeutic effect against CRC by disrupting glucose metabolism and cancer stem cell maintenance via AKT/mTOR pathway regulation. STUDY DESIGN In vitro studies were performed in COLO205 and HCT116 CRC cell lines and in vivo studies were conducted in a mouse xenograft model of CRC tumor. METHODS CRC cells were treated with ATL-1 at various concentrations, with or without inhibitors of AKT or mTOR. Cell proliferation, apoptosis, invasion, stemness maintenance, glucose metabolism, and AKT/mTOR signaling were evaluated. CRC tumor-xenografted mice were treated with an AKT inhibitor and/or ATL-1, and glucose metabolism and stemness maintenance were examined in tumor tissues. RESULTS ATL-1 significantly inhibited the invasion of CRC cells by inducing their apoptosis, possibly via the excessive production of reactive oxygen species. Glucose metabolism (Warburg effect) was also altered and stem-like traits were suppressed by ATL-1. In addition, ATL-1 effectively acted as an inhibitor or AKT/mTOR by downregulating the phosphorylation of proteins related to the AKT/mTOR pathway. In vivo studies showed that tumor weight and volume were reduced by ATL-1 and that aerobic glycolysis, stemness maintenance, and AKT/mTOR activation were impaired by ATL-1 in colorectal tumors. CONCLUSIONS ATL-1 acts as an effective agent to suppress colorectal tumor progression, mainly by inhibiting CRC cell proliferation through altering apoptosis, glucose metabolism, and stem-like behavior. These processes were mediated by the AKT/mTOR signaling pathway both in vitro and in vivo. ATL-1 may be a potential agent to be used in molecular-targeted strategies for cancer treatment.
Collapse
Affiliation(s)
- Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Wei Huang
- First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine (TCM), Guiyang, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Dongxin Tang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofen Xu
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China.
| |
Collapse
|
17
|
Yang S, Zhang J, Yan Y, Yang M, Li C, Li J, Zhong L, Gong Q, Yu H. Network Pharmacology-Based Strategy to Investigate the Pharmacologic Mechanisms of Atractylodes macrocephala Koidz. for the Treatment of Chronic Gastritis. Front Pharmacol 2020; 10:1629. [PMID: 32063848 PMCID: PMC7000373 DOI: 10.3389/fphar.2019.01629] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic gastritis (CG) is an inflammatory disease. Atractylodes macrocephala Koidz (AMK) is employed in traditional Chinese medicine (TCM) to treat various disorders. AMK can be efficacious against CG, but the active ingredients, drug targets, and its exact molecular mechanism are not known. We employed network pharmacology to analyze the active ingredients, drug targets, and key pathways of AMK in CG treatment. Seventy-seven AMK candidate ingredients were selected from four databases, and 27 active ingredients were selected for CG treatment. Twenty-five overlapping gene symbols related to CG and drugs were obtained from GeneCards and OMIM databases. A protein–protein interaction (PPI) network and TCM comprehensive network (Drug–Ingredients–Gene symbols–Disease network) were constructed, and 528 Gene Ontology (GO) terms and 26 pathways were obtained by analyses of enrichment of GO pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We suggest that the interleukin-17 signaling pathway, C-type lectin receptor signaling pathway, tumor necrosis factor signaling pathway, and AGE-RAGE signaling pathway in diabetic complications might serve as the key points and principal pathways for CG treatment. We also evaluated the reliability of some important active ingredients and targets by in vitro experiments. We showed that AMK probably influences the inflammatory response, amino acid synthesis, and energy metabolism when treating CG. This study provides novel insights for researchers to explore the mechanism of action of TCM systematically.
Collapse
Affiliation(s)
- Songhong Yang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jinlian Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yiqi Yan
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Yang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chao Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junmao Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lingyun Zhong
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qianfeng Gong
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Huan Yu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
18
|
Notch signaling pathway regulates CD4 +CD25 +CD127 dim/- regulatory T cells and T helper 17 cells function in gastric cancer patients. Biosci Rep 2019; 39:BSR20182044. [PMID: 30988066 PMCID: PMC6522723 DOI: 10.1042/bsr20182044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 02/06/2023] Open
Abstract
Regulatory T cells (Tregs) and T helper 17 (Th17) cells contribute to cancer progression and prognosis. However, regulatory factors associated with Tregs-Th17 balance were not completely understood. We previously demonstrated an immune-modulatory capacity by Notch signaling inactivation to reverse Tregs-Th17 disequilibrium in chronic hepatitis C. Thus, the aim of current study was to assess the role of Notch signaling in modulation Tregs and Th17 cells function in gastric cancer (GC) patients. A total of 51 GC patients and 18 normal controls (NCs) were enrolled. Notch1 and Notch2 mRNA expressions were semiquantified by real-time polymerase chain reaction. Tregs/Th17 percentages, transcriptional factors, and cytokines production were investigated in response to the stimulation of Notch signaling inhibitor DAPT. Both Notch1 and Notch2 mRNA expressions were elevated in GC tissues and peripheral bloods in GC patients. CD4+CD25+CD127dim/- Tregs and Th17 cells percentage was also elevated in GC patients compared with in NCs. DAPT treatment did not affect frequency of either circulating Tregs or Th17 cells, however, reduced FoxP3/RORγt mRNA expression and interleukin (IL)-35/IL-17 production in purified CD4+ T cells from GC patients. Moreover, blockade of Notch signaling also inhibited the suppressive function of purified CD4+CD25+CD127dim/- Tregs from GC patients, which presented as elevation of cellular proliferation and IL-35 secretion. The current data further provided mechanism underlying Tregs-Th17 balance in GC patients. The link between Notch signaling and Th cells might lead to a new therapeutic target for GC patients.
Collapse
|
19
|
Kim JH, Lee Y, Lee G, Doh EJ, Hong S. Quantitative Interrelation between Atractylenolide I, II, and III in Atractylodes japonica Koidzumi Rhizomes, and Evaluation of Their Oxidative Transformation Using a Biomimetic Kinetic Model. ACS OMEGA 2018; 3:14833-14840. [PMID: 30555992 PMCID: PMC6289488 DOI: 10.1021/acsomega.8b02005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/23/2018] [Indexed: 05/20/2023]
Abstract
Analytical methods based on ultraperformance liquid chromatography/ion-trap mass spectrometry (UPLC/ion-trap MS) were developed for quantification of atractylenolide I, II, and III in the methanol extract of Atractylodes japonica rhizomes with a C18 column in an acidified water/acetonitrile gradient eluent in an LC system, and ion-trap MS coupled with electrospray ionization was employed under positive-ion mode. The three atractylenolides were quantified in all A. japonica samples, and the content of atractylenolide I, II, and III showed a significant correlation to each other. Such high correlation was explained by the mechanistic insights into the biosynthetic pathway of atractylenoide III and I from atractylenoide II by using the biomimetic cytochrome P450 model, [Fe(tmp)](CF3SO3) (tmp = meso-tetramesitylporphyrin). Atractylenolides could be transformed by oxidation via the oxidative enzyme in the A. japonica plant. The present study first reports the first oxidative transformation of atractylenolides using the heme iron model complex.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Division of Pharmacology,
School of Korean Medicine, Pusan National
University, 50612 Yangsan, Republic of Korea
- E-mail: . Phone: +82 51 510 8456. Fax: +82 510 510 8420 (J.-H.K.)
| | - Yuvin Lee
- Department
of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women’s University, 04310 Seoul, Republic of Korea
| | - Guemsan Lee
- Department of Herbology,
College of Korean Medicine, and Research Center of Traditional Korean Medicine, Wonkwang University, 54538 Iksan, Republic
of Korea
| | - Eui-Jeong Doh
- Department of Herbology,
College of Korean Medicine, and Research Center of Traditional Korean Medicine, Wonkwang University, 54538 Iksan, Republic
of Korea
| | - Seungwoo Hong
- Department
of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women’s University, 04310 Seoul, Republic of Korea
- E-mail: . Phone: +82 2 2077 7829. Fax: +82 2 2077 7829 (S.H.)
| |
Collapse
|
20
|
Pekkonen P, Alve S, Balistreri G, Gramolelli S, Tatti-Bugaeva O, Paatero I, Niiranen O, Tuohinto K, Perälä N, Taiwo A, Zinovkina N, Repo P, Icay K, Ivaska J, Saharinen P, Hautaniemi S, Lehti K, Ojala PM. Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and β1-integrin activation. eLife 2018; 7:e32490. [PMID: 29712618 PMCID: PMC5929907 DOI: 10.7554/elife.32490] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/24/2018] [Indexed: 12/29/2022] Open
Abstract
Lymphatic invasion and lymph node metastasis correlate with poor clinical outcome in melanoma. However, the mechanisms of lymphatic dissemination in distant metastasis remain incompletely understood. We show here that exposure of expansively growing human WM852 melanoma cells, but not singly invasive Bowes cells, to lymphatic endothelial cells (LEC) in 3D co-culture facilitates melanoma distant organ metastasis in mice. To dissect the underlying molecular mechanisms, we established LEC co-cultures with different melanoma cells originating from primary tumors or metastases. Notably, the expansively growing metastatic melanoma cells adopted an invasively sprouting phenotype in 3D matrix that was dependent on MMP14, Notch3 and β1-integrin. Unexpectedly, MMP14 was necessary for LEC-induced Notch3 induction and coincident β1-integrin activation. Moreover, MMP14 and Notch3 were required for LEC-mediated metastasis of zebrafish xenografts. This study uncovers a unique mechanism whereby LEC contact promotes melanoma metastasis by inducing a reversible switch from 3D growth to invasively sprouting cell phenotype.
Collapse
Affiliation(s)
- Pirita Pekkonen
- Research Programs Unit, Translational Cancer BiologyUniversity of HelsinkiHelsinkiFinland
| | - Sanni Alve
- Research Programs Unit, Translational Cancer BiologyUniversity of HelsinkiHelsinkiFinland
| | - Giuseppe Balistreri
- Research Programs Unit, Translational Cancer BiologyUniversity of HelsinkiHelsinkiFinland
| | - Silvia Gramolelli
- Research Programs Unit, Translational Cancer BiologyUniversity of HelsinkiHelsinkiFinland
| | | | - Ilkka Paatero
- Turku Centre for BiotechnologyUniversity of TurkuTurkuFinland
| | - Otso Niiranen
- Research Programs Unit, Translational Cancer BiologyUniversity of HelsinkiHelsinkiFinland
| | - Krista Tuohinto
- Research Programs Unit, Translational Cancer BiologyUniversity of HelsinkiHelsinkiFinland
| | - Nina Perälä
- Research Programs Unit, Translational Cancer BiologyUniversity of HelsinkiHelsinkiFinland
| | - Adewale Taiwo
- Research Programs Unit, Translational Cancer BiologyUniversity of HelsinkiHelsinkiFinland
| | - Nadezhda Zinovkina
- Research Programs Unit, Translational Cancer BiologyUniversity of HelsinkiHelsinkiFinland
| | - Pauliina Repo
- Genome-Scale BiologyUniversity of HelsinkiHelsinkiFinland
| | - Katherine Icay
- Genome-Scale BiologyUniversity of HelsinkiHelsinkiFinland
| | - Johanna Ivaska
- Turku Centre for BiotechnologyUniversity of TurkuTurkuFinland
- Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Pipsa Saharinen
- Research Programs Unit, Translational Cancer BiologyUniversity of HelsinkiHelsinkiFinland
- Wihuri Research InstituteHelsinkiFinland
| | | | - Kaisa Lehti
- Genome-Scale BiologyUniversity of HelsinkiHelsinkiFinland
- Department of MicrobiologyTumor and Cell Biology, Karolinska InstitutetStockholmSweden
- Foundation for the Finnish Cancer InstituteHelsinkiFinland
| | - Päivi M Ojala
- Research Programs Unit, Translational Cancer BiologyUniversity of HelsinkiHelsinkiFinland
- Foundation for the Finnish Cancer InstituteHelsinkiFinland
- Section of Virology, Division of Infectious Diseases, Department of MedicineImperial College LondonLondonUnited Kingdom
| |
Collapse
|
21
|
Zhou L, Liang X, Zhang L, Yang L, Nagao N, Wu H, Liu C, Lin S, Cai G, Liu J. MiR-27a-3p functions as an oncogene in gastric cancer by targeting BTG2. Oncotarget 2018; 7:51943-51954. [PMID: 27409164 PMCID: PMC5239526 DOI: 10.18632/oncotarget.10460] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 06/17/2016] [Indexed: 12/12/2022] Open
Abstract
microRNA-27a (miR-27a) is frequently dysregulated in human carcinoma, including gastric cancer. The B-cell translocation gene 2 (BTG2) has been implicated in gastric carcinogenesis. However, till now, the link between miR-27a and BTG2 in gastric cancer has not been reported. Here, we found that two isoforms of mature miR-27a, miR-27a-5p and miR-27-3p, were both frequently overexpressed in gastric cancer tissues and cell lines, whereas the expression level of miR-27-3p in gastric cancer was significantly higher than that of miR-27a-5p. And overexpression of miR-27a-3p, but not miR-27a-5p, markedly promoted gastric cancer cell proliferation in vitro as well as tumor growth in vivo. Further experiments revealed that BTG2 was a direct and functional target of miR-27a-3p in gastric cancer and miR-27a-3p inhibition obviously up-regulated the expression of BTG2. In turn, overexpression of BTG2 triggered G1/S cell cycle arrest, induced subsequent apoptosis, and inhibited C-myc activation following Ras/MEK/ERK signaling pathway, which involved in the biological effects of miR-27a-3p/BTG2 axis on gastric carcinogenesis and cancer progression. Overall, these results suggested that the miR-27a-3p/BTG2 axis might represent a promising diagnostic biomarker for gastric cancer patients and could be a potential therapeutic target in the management of gastric cancer.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Laboratory Medicine, Changzhen Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingling Zhang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liyan Yang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Norio Nagao
- Department of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, 727-0023 Japan
| | - Hongkun Wu
- Department of Laboratory Medicine, Changzhen Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chang Liu
- Department of Laboratory Medicine, Changzhen Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shengchao Lin
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032,China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
22
|
Atractylenolide II Inhibits Proliferation, Motility and Induces Apoptosis in Human Gastric Carcinoma Cell Lines HGC-27 and AGS. Molecules 2017; 22:molecules22111886. [PMID: 29099789 PMCID: PMC6150195 DOI: 10.3390/molecules22111886] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Atractylenolide II (AT-II) exhibits several biological and pharmacological functions, especially anti-cancer activity as the major sesquiterpene lactones isolated from Atractylodes macrocephala (also named Baizhu in Chinese). However, the effects and mechanisms of AT-II on human gastric cancer remain unclear. Cell Counting Kit-8 (CCK-8) assay, morphological changes, flow cytometry, wound healing assay and Western blot analysis were used to investigate the effects of AT-II on cell proliferation, apoptosis and motility of human gastric carcinoma cell lines HGC-27 and AGS. Our results indicated that AT-II could significantly inhibit cell proliferation, motility and induce apoptosis in a dose and time-dependent manner. Western blot analysis showed that the expression level of Bax was upregulated and the expression levels of B-cell lymphoma-2 (Bcl-2), phosphorylated-protein kinase B (p-Akt) and phosphorylated-ERK (p-ERK) were downregulated compared to control group. In conclusion, the findings suggested that AT-II exerted significant anti-tumor effects on gastric carcinoma cells by modulating Akt/ERK signaling pathway, which might shed light on therapy of gastric carcinoma.
Collapse
|
23
|
Song HP, Hou XQ, Li RY, Yu R, Li X, Zhou SN, Huang HY, Cai X, Zhou C. Atractylenolide I stimulates intestinal epithelial repair through polyamine-mediated Ca 2+ signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 28:27-35. [PMID: 28478810 DOI: 10.1016/j.phymed.2017.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/11/2017] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND An impairment of the integrity of the mucosal epithelial barrier can be observed in the course of various gastrointestinal diseases. The migration and proliferation of the intestinal epithelial (IEC-6) cells are essential repair modalities to the healing of mucosal ulcers and wounds. Atractylenolide I (AT-I), one of the major bioactive components in the rhizome of Atractylodes macrocephala Koidz. (AMR), possesses multiple pharmacological activities. This study was designed to investigate the therapeutic effects and the underlying molecular mechanisms of AT-I on gastrointestinal mucosal injury. METHODS Scratch method with a gel-loading microtip was used to detect IEC-6 cell migration. The real-time cell analyzer (RTCA) system was adopted to evaluate IEC-6 cell proliferation. Intracellular polyamines content was determined using high performance liquid chromatography (HPLC). Flow cytometry was used to measure cytosolic free Ca2+ concentration ([Ca2+]c). mRNA and protein expression of TRPC1 and PLC-γ1 were determined by real-time PCR and Western blotting assay respectively. RESULTS Treatment of IEC-6 cells with AT-I promoted cell migration and proliferation, increased polyamines content, raised cytosolic free Ca2+ concentration ([Ca2+]c), and enhanced TRPC1 and PLC-γ1 mRNA and protein expression. Depletion of cellular polyamines by DL-a-difluoromethylornithine (DFMO, an inhibitor of polyamine synthesis) suppressed cell migration and proliferation, decreased polyamines content, and reduced [Ca2+]c, which was paralleled by a decrease in TRPC1 and PLC-γ1 mRNA and protein expression in IEC-6 cells. AT-I reversed the effects of DFMO on polyamines content, [Ca2+]c, TRPC1 and PLC-γ1 mRNA and protein expression, and restored IEC-6 cell migration and proliferation to near normal levels. CONCLUSION Our data demonstrate that AT-I stimulates intestinal epithelial cell migration and proliferation via the polyamine-mediated Ca2+ signaling pathway. Therefore, AT-I may have the potential to be further developed as a promising therapeutic agent to treat diseases associated with gastrointestinal mucosal injury, such as inflammatory bowel disease and peptic ulcer.
Collapse
Affiliation(s)
- Hou-Pan Song
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xue-Qin Hou
- Institute of Pharmacology, Taishan Medical College, Taian, Shandong 271000, China
| | - Ru-Yi Li
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Rong Yu
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xin Li
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Sai-Nan Zhou
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Hui-Yong Huang
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiong Cai
- Hunan Provincial Key Laboratory of Diagnostic and Therapeutic Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| | - Chi Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China.
| |
Collapse
|
24
|
Fu Y, Li H, Hao X. The self-renewal signaling pathways utilized by gastric cancer stem cells. Tumour Biol 2017; 39:1010428317697577. [DOI: 10.1177/1010428317697577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of cancer-related mortality worldwide. Cancer stem cells are the source of tumor recurrence and metastasis. Self-renewal is a marker of cancer stem cells and also the basis of long-lasting survival and tumor progression. Although the mechanism of gastric cancer stem cell self-renewal is not clear, there are several signaling pathways and environmental factors known to be involved. This mini review describes recent developments in the self-renewal signaling pathway of gastric cancer stem cell research. Advancements made in this field of research will likely support the development of novel therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Ying Fu
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Xishan Hao
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| |
Collapse
|
25
|
Li W, Zhi W, Liu F, He Z, Wang X, Niu X. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro. Exp Cell Res 2017; 353:26-34. [PMID: 28274716 DOI: 10.1016/j.yexcr.2017.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/25/2022]
Abstract
Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1 (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Wenbing Zhi
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Fang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zehong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiuei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
26
|
Torquato HFV, Goettert MI, Justo GZ, Paredes-Gamero EJ. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells. Curr Genomics 2017; 18:156-174. [PMID: 28367074 PMCID: PMC5345336 DOI: 10.2174/1389202917666160803162309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.
Collapse
Affiliation(s)
- Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil
| | - Márcia I Goettert
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário Univates, Rio Grande do Sul, Brazil
| | - Giselle Z Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Departamento de Ciências Biológicas (Campus Diadema), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
27
|
Predicting and Overcoming Chemotherapeutic Resistance in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:59-104. [PMID: 29282680 DOI: 10.1007/978-981-10-6020-5_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our understanding of breast cancer and its therapeutic approach has improved greatly due to the advancement of molecular biology in recent years. Clinically, breast cancers are characterized into three basic types based on their immunohistochemical properties. They are triple-negative breast cancer, estrogen receptor (ER) and progesterone receptor (PR)-positive-HR positive breast cancer, and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Even though these subtypes have been characterized, assessment of a breast cancer's receptor status is still widely used to determine whether or not a targeted therapy could be applied. Moreover, drug resistance is common in all breast cancer types despite the different treatment modalities applied. The development of resistance to different therapeutics is not mutually exclusive. It seems that tumor could be resistant to multiple treatment strategies, such as being both chemoresistant and monoclonal antibody resistant. However, the underlying mechanisms are complicated and need further investigation. In this chapter, we aim to provide a brief review of the different types of breast cancer and their respective treatment strategies. We also review the possible mechanisms of potential drug resistance associated with each treatment type. We believe that a better understanding of the drug resistance mechanisms can lead to a more effective and efficient therapeutic success.
Collapse
|
28
|
Yupingfeng Pulvis Regulates the Balance of T Cell Subsets in Asthma Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6916353. [PMID: 27143988 PMCID: PMC4842077 DOI: 10.1155/2016/6916353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Abstract
Background. Yupingfeng Pulvis (HFBP) had played an active role in many diseases, especially respiratory tract infections. Exploring the possible prevention mechanism of HFBP may provide new ideas in clinical applications for this well-known herbal formula. Purpose. To study the possible mechanisms of therapy effect of HFBP on asthma mice via regulating the balance of Tregs and Th17 cells. Method. The female BALB/c mice were divided into five groups: control group, model group, prednisone (5.5 mg/kg) group, and 22 g/kg HFBP and 44 g/kg HFBP groups. Ovalbumin was used to make the asthma model of mice; the drug was ig administered daily after atomization for consecutive 15 d. The mice were killed after the last administration. The paraffin-embedded tissue sections of the lungs were stained by H&E. Tregs and Th17 cells in bronchoalveolar lavage fluid were detected by flow cytometry. IL-4, TGF-β, and TNF-α in the serum were detected by ELISA assay. Results. HFBP could alleviate the inflammation in the lung tissue of mice, decrease the proportion of Th17 cells, and increase the proportion of Treg cells in bronchoalveolar lavage fluid. HFBP could decrease IL-4 and TNF-α level and increase TGF-β level in blood. Conclusion. HFBP could treat the asthma through impacting the balance of Th17 cells and Treg cells as well as the levels of related inflammatory cytokines in asthma mice.
Collapse
|
29
|
Hoang LS, Tran MH, Lee JS, Ngo QMT, Woo MH, Min BS. Inflammatory Inhibitory Activity of Sesquiterpenoids from Atractylodes macrocephala Rhizomes. Chem Pharm Bull (Tokyo) 2016; 64:507-11. [DOI: 10.1248/cpb.c15-00805] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Le Son Hoang
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| | - Manh Hung Tran
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| | - Joo-Sang Lee
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| | - Quynh Mai Thi Ngo
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu
| |
Collapse
|
30
|
Ramesh S, Mehta G. A general, concise, ‘collective’ approach to eudesmanolide sesquiterpenoids: total synthesis of bioactive atractylenolides I–IV and related natural products. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.08.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Zheng Y, Zou F, Wang J, Yin G, Le V, Fei Z, Liu J. Photodynamic therapy-mediated cancer vaccination enhances stem-like phenotype and immune escape, which can be blocked by thrombospondin-1 signaling through CD47 receptor protein. J Biol Chem 2015; 290:8975-86. [PMID: 25697354 PMCID: PMC4423687 DOI: 10.1074/jbc.m114.624965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/17/2015] [Indexed: 01/11/2023] Open
Abstract
Like most of the strategies for cancer immunotherapy, photodynamic therapy-mediated vaccination has shown poor clinical outcomes in application. The aim of this study is to offer a glimpse at the mechanisms that are responsible for the failure based on cancer immuno-editing theory and to search for a positive solution. In this study we found that tumor cells were able to adapt themselves to the immune pressure exerted by vaccination. The survived tumor cells exhibited enhanced tumorigenic and stem-like phenotypes as well as undermined immunogenicity. Viewed as a whole, immune-selected tumor cells showed more malignant characteristics and the ability of immune escape, which might contribute to the eventual relapse. Thrombospondin-1 signaling via CD47 helped prevent tumor cells from becoming stem-like and rendered them vulnerable to immune attack. These findings prove that the TSP-1/CD47/SIRP-α signal axis is important to the evolution of tumor cells in the microenvironment of immunotherapy and identify thrombospondin-1 as a key signal with therapeutic benefits in overcoming long term relapse, providing new evidence for the clinical promise of cancer vaccination.
Collapse
Affiliation(s)
- Yuanhong Zheng
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| | - Fangyuan Zou
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| | - Jingjing Wang
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| | - Guifang Yin
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| | - Vanminh Le
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| | - Zhewei Fei
- Department of General Surgery, Xinhua Hospital Chongming Branch, Shanghai Jiaotong University School of Medicine, 25 Nanmen Road, Chengqiaozhen, Chongming Shanghai, 202150, China
| | - Jianwen Liu
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| |
Collapse
|