1
|
Gomez-Arroyo J, Houweling AC, Bogaard HJ, Aman J, Kitzmiller JA, Porollo A, Dooijes D, Meijboom LJ, Hale P, Pauciulo MW, Hong J, Zhu N, Welch C, Shen Y, Zacharias WJ, McCormack FX, Aldred MA, Weirauch MT, Graf S, Rhodes C, Chung WK, Whitsett JA, Martin LJ, Kalinichenko VV, Nichols WC. Role of Forkhead box F1 in the Pathobiology of Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.611448. [PMID: 39345371 PMCID: PMC11429893 DOI: 10.1101/2024.09.18.611448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Rationale Approximately 80% of patients with non-familial pulmonary arterial hypertension (PAH) lack identifiable pathogenic genetic variants. While most genetic studies of PAH have focused on predicted loss-of-function variants, recent approaches have identified ultra-rare missense variants associated with the disease. FOXF1 encodes a highly conserved transcription factor, essential for angiogenesis and vasculogenesis in human and mouse lungs. Objectives We identified a rare FOXF1 missense coding variant in two unrelated probands with PAH. FOXF1 is an evolutionarily conserved transcription factor required for lung vascular development and vascular integrity. Our aims were to determine the frequency of FOXF1 variants in larger PAH cohorts compared to the general population, study FOXF1 expression in explanted lung tissue from PAH patients versus control (failed-donor) lungs, and define potential downstream targets linked to PAH development. Methods Three independent, international, multicenter cohorts were analyzed to evaluate the frequency of FOXF1 rare variants. Various composite prediction models assessed the deleteriousness of individual variants. Bulk RNA sequencing datasets from human explanted lung tissues were compared to failed-donor controls to determine FOXF1 expression. Bioinformatic tools identified putative FOXF1 binding targets, which were orthogonally validated using mouse ChIP-seq datasets. Measurements and Main Results Seven novel or ultra-rare missense coding variants were identified across three patient cohorts in different regions of the FOXF1 gene, including the DNA binding domain. FOXF1 expression was dysregulated in PAH lungs, correlating with disease severity. Histological analysis showed heterogeneous FOXF1 expression, with the lowest levels in phenotypically abnormal endothelial cells within complex vascular lesions in PAH samples. A hybrid bioinformatic approach identified FOXF1 downstream targets potentially involved in PAH pathogenesis, including BMPR2 . Conclusions Large genomic and transcriptomic datasets suggest that decreased FOXF1 expression or predicted dysfunction is associated with PAH.
Collapse
|
2
|
Bai Y, Zhou R, Xie X, Zhu A, Nan Y, Wu T, Hu X, Cao Z, Ju D, Fan J. A Novel Bifunctional Fusion Protein (Anti-IL-17A-sST2) Protects against Acute Liver Failure, Modulating the TLR4/MyD88 Pathway and NLRP3 Inflammasome Activation. Biomedicines 2024; 12:1118. [PMID: 38791080 PMCID: PMC11117730 DOI: 10.3390/biomedicines12051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Acute liver failure (ALF) is a serious inflammatory disorder with high mortality rates, which poses a significant threat to human health. The IL-33/ST2 signal is a crucial regulator in inflammation responses associated with lipopolysaccharide (LPS)-induced macrophages. The IL-17A signaling pathway promotes the release of chemokines and inflammatory cytokines, recruiting neutrophils and T cells under LPS stimulation, thus facilitating inflammatory responses. Here, the potential therapeutic benefits of neutralizing the IL-17A signal and modulating the IL-33/ST2 signal in ALF were investigated. A novel dual-functional fusion protein, anti-IL-17A-sST2, was constructed, which displayed high purity and biological activities. The administration of anti-IL-17A-sST2 resulted in significant anti-inflammatory benefits in ALF mice, amelioration of hepatocyte necrosis and interstitial congestion, and reduction in TNF-α and IL-6. Furthermore, anti-IL-17A-sST2 injection downregulated the expression of TLR4 and NLRP3 as well as important molecules such as MyD88, caspase-1, and IL-1β. The results suggest that anti-IL-17A-sST2 reduced the secretion of inflammatory factors, attenuated the inflammatory response, and protected hepatic function by regulating the TLR4/MyD88 pathway and inhibiting the NLRP3 inflammasome, providing a new therapeutic approach for ALF.
Collapse
Affiliation(s)
- Yu Bai
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Rongrui Zhou
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinlei Xie
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - An Zhu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyang Nan
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Wu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaozhi Hu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhonglian Cao
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dianwen Ju
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Jiajun Fan
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
- Shanghai Hailu Biological Technology Co., Ltd., Shanghai 201200, China
| |
Collapse
|
3
|
Lai J, Huang C, Li B, Han Y. Soluble ST2 as a possible biomarker for inflammation in patients with acute heart failure. J Cardiovasc Med (Hagerstown) 2024; 25:186-192. [PMID: 38305120 DOI: 10.2459/jcm.0000000000001587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
AIM The aim of this study was to explore the relationship between peripheral circulating serum soluble suppression of tumorigenicity-2 (sST2) levels and inflammatory biomarkers in patients with acute heart failure (AHF). METHODS One hundred and eleven consecutive AHF patients with NYHA class II-IV were enrolled, and peripheral blood was collected within 24 h of admission for the detection of NT-ProBNP, sST2, hypersensitive troponin I, cytokines, precalcitoninogen, C-reactive protein, in addition to routine standard of care blood tests. RESULTS The median sST2 of 111 patients was 47.50 ng/ml (24.25-86.15 IQR), of whom 43 patients (38.7%) had sST2 35 ng/ml or less; linear correlation analysis showed that serum sST2 correlated with NT-ProBNP ( r2 = 0.32), NEU% ( r2 = 0.41), NLR ( r2 = 0.36), CRP ( r2 = 0.50), IL-18 ( r2 = 0.43) ( P < 0.001), and correlated with Hs-cTnI ( r2 = 0.19), NUE ( r2 = 0.25), LYM ( r2 = -0.23), IL-2RA ( r2 = 0.29) ( P < 0.05). Multiple linear regression analysis depicted that CRP (β = 0.318), IL-18 (β = 0.368), NEU% (β = 0.346), NLR (β = -0.304), and NT-ProBNP (β = 0.324) significantly correlated with sST2 values, respectively ( P < 0.05). ST2 levels have a linear association with length of hospitalization. CONCLUSION Peripheral blood inflammatory markers (CRP, IL-18, NEU%, NLR) in patients with AHF had a close relationship with sST2 levels, and the mechanism of action of sST2 may be related to the inflammatory response.
Collapse
Affiliation(s)
- Jiacheng Lai
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei
- Emergency and Trauma Center, The International Medical Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
| | - Chongjian Huang
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei
- Department of Emergency Medicine, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Bin Li
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei
| |
Collapse
|
4
|
Wang Z, Tang N. Unpacking the complexity of nuclear IL-33 (nIL-33): a crucial regulator of transcription and signal transduction. J Cell Commun Signal 2023:10.1007/s12079-023-00788-1. [PMID: 37878185 DOI: 10.1007/s12079-023-00788-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Interleukin-33 (IL-33) (NF-HEV), a chromatin-associated nuclear cytokine, is a member of the IL-1 family. IL-33 possesses a nuclear localization signal and a homeodomain (a structure resembling a helix-turn-helix) that can bind to nuclear chromatin. Research has revealed that IL-33 can function as a nuclear factor to regulate various biological processes. This review discusses the cellular localization, functional effects, and immune regulation of full length IL-33 (FLIL-33), cytokine IL-33 (sIL-33) and nuclear IL-33 (nIL-33). In addition, the post-translational modifications of nIL-33 and the hypothesis of using nIL-33 as a treatment method were also summarized. A multidisciplinary approach is required which integrates methods and techniques from genomics, proteomics, cell biology and immunology to provide comprehensive insights into the function and therapeutic potential of nIL-33.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
5
|
Kerkütlüoğlu M, Gunes H, Atilla N, Celik E, Dagli M, Seyithanoglu M. Relationship Between Soluble ST2 Level and Chronic Thromboembolic Pulmonary Hypertension (CTEPH) in Acute Pulmonary Embolism (PE) Patients. Cureus 2023; 15:e42449. [PMID: 37637518 PMCID: PMC10449396 DOI: 10.7759/cureus.42449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Chronic thromboembolic pulmonary hypertension (CTEPH) is a disease characterized by right heart failure following recurrent pulmonary embolism (PE). It is important to know the predictors of the development of CTEPH after PE as it is a treatable cause of pulmonary arterial hypertension. Soluble ST2 is a biomarker closely associated with heart failure and the inflammatory process. The aim of this study was to investigate the relationship between sST2 level and the development of CTEPH in patients with PE. METHODOLOGY Baseline characteristics, electrocardiographic findings, laboratory findings, transthoracic echocardiography (TTE) findings, location, and extent of involvement in CT pulmonary angiography were recorded in 100 patients with acute PE included in our prospective study. Treatment modalities and treatment durations were followed. Ventilation-perfusion scintigraphy was performed in patients with a systolic pulmonary artery pressure (sPAP) of 35 mmHg or more on TTE and residual thrombus on CT pulmonary angiography after at least three months of anticoagulant use. In the case of findings compatible with CTEPH in these examinations, patients were diagnosed with CTEPH by right heart catheterization. The sST2 levels obtained from all patients at admission were evaluated between the groups of patients with and without CTEPH. RESULTS CTEPH was observed in 11 of the 100 patients who participated in the trial, with a median follow-up of 284 ± 60 days. The mean age of the 11 patients with CTEPH was 67 ± 10 years; five were males and six were females. The mean age of 89 patients without CTEPH was 65 ± 18 years, 36 were males and 53 were females. The sST2 values of the group with CTEPH were found to be statistically significantly higher than those of patients without CTEPH [193.7 (184.3-244.7) vs 58.6 (29.5-122.9) p=0.020]. This receiver operating characteristic (ROC) curve shows that the optimal cutoff point of sST2 levels in the prediction of CTEPH was > 157.4 with specificity of 83.7% and sensitivity of 81.8% (area under the curve = 0.783; 95% CI, 1.005-1.027; p < 0.001). CONCLUSION In acute PE patients, sST2 levels may be a useful biomarker to predict the development of CTEPH.
Collapse
Affiliation(s)
- Murat Kerkütlüoğlu
- Cardiology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, TUR
| | - Hakan Gunes
- Cardiology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, TUR
| | - Nurhan Atilla
- Chest Disease, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, TUR
| | - Enes Celik
- Cardiology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, TUR
| | - Musa Dagli
- Cardiology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, TUR
| | - Muhammed Seyithanoglu
- Biochemistry, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, TUR
| |
Collapse
|
6
|
Brunetti G, Barile B, Nicchia GP, Onorati F, Luciani GB, Galeone A. The ST2/IL-33 Pathway in Adult and Paediatric Heart Disease and Transplantation. Biomedicines 2023; 11:1676. [PMID: 37371771 DOI: 10.3390/biomedicines11061676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
ST2 is a member of interleukin 1 receptor family with soluble sST2 and transmembrane ST2L isoforms. The ligand of ST2 is IL-33, which determines the activation of numerous intracytoplasmic mediators following the binding with ST2L and IL-1RAcP, leading to nuclear signal and cardiovascular effect. Differently, sST2 is released in the blood and works as a decoy receptor, binding IL-33 and blocking IL-33/ST2L interaction. sST2 is mainly involved in maintaining homeostasis and/or alterations of different tissues, as counterbalance/activation of IL-33/ST2L axis is typically involved in the development of fibrosis, tissue damage, inflammation and remodeling. sST2 has been described in different clinical reports as a fundamental prognostic marker in patients with cardiovascular disease, as well as marker for the treatment monitoring of patients with heart failure; however, further studies are needed to better elucidate its role. In this review we reported the current knowledge about its role in coronary artery disease, heart failure, heart transplantation, heart valve disease, pulmonary arterial hypertension, and cardiovascular interventions.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| |
Collapse
|
7
|
Thanikachalam PV, Ramamurthy S, Mallapu P, Varma SR, Narayanan J, Abourehab MA, Kesharwani P. Modulation of IL-33/ST2 signaling as a potential new therapeutic target for cardiovascular diseases. Cytokine Growth Factor Rev 2023; 71-72:94-104. [PMID: 37422366 DOI: 10.1016/j.cytogfr.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
IL-33 belongs to the IL-1 family of cytokines, which function as inducers of Th2 cytokine production by binding with ST2L and IL-1RAcP. This, in turn, activates various signaling pathways, including the mitogen-activated protein kinase (MAPK), the inhibitor of Kappa-B kinase (IKK) pathway, and the phospholipase D-sphingosine kinase pathway. IL-33 has demonstrated protective effects against various cardiovascular diseases (CVDs) by inducing Th2 cytokines and promoting alternative activating M2 polarization. However, the soluble decoy form of ST2 (sST2) mitigates the biological effects of IL-33, exacerbating CVDs. Furthermore, IL-33 also plays a significant role in the development of asthma, arthritis, atopic dermatitis, and anaphylaxis through the activation of Th2 cells and mast cells. In this review, we aim to demonstrate the protective role of IL-33 against CVDs from 2005 to the present and explore the potential of serum soluble ST2 (sST2) as a diagnostic biomarker for CVDs. Therefore, IL-33 holds promise as a potential therapeutic target for the treatment of CVDs.
Collapse
Affiliation(s)
- Punniyakoti Veeraveedu Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India.
| | - Srinivasan Ramamurthy
- College of Pharmacy and Health Sciences, University of Science and Technology of Fujairah, Fujairah, United Arab Emirates
| | - Poojitha Mallapu
- Department of Pharmacology, GRT Institute of Pharmaceutical Education and Research, Tiruttani, India
| | - Sudhir Rama Varma
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Jayaraj Narayanan
- Department of Basic Sciences, Center of Medical and Bio-allied Health Sciences Research, Ajman university, Ajman, United Arab Emirates
| | - Mohammed As Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
8
|
Akimoto M, Susa T, Okudaira N, Koshikawa N, Hisaki H, Iizuka M, Okinaga H, Takenaga K, Okazaki T, Tamamori-Adachi M. Hypoxia induces downregulation of the tumor-suppressive sST2 in colorectal cancer cells via the HIF-nuclear IL-33-GATA3 pathway. Proc Natl Acad Sci U S A 2023; 120:e2218033120. [PMID: 37094129 PMCID: PMC10160999 DOI: 10.1073/pnas.2218033120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
As a decoy receptor, soluble ST2 (sST2) interferes with the function of the inflammatory cytokine interleukin (IL)-33. Decreased sST2 expression in colorectal cancer (CRC) cells promotes tumor growth via IL-33-mediated bioprocesses in the tumor microenvironment. In this study, we discovered that hypoxia reduced sST2 expression in CRC cells and explored the associated molecular mechanisms, including the expression of key regulators of ST2 gene transcription in hypoxic CRC cells. In addition, the effect of the recovery of sST2 expression in hypoxic tumor regions on malignant progression was investigated using mouse CRC cells engineered to express sST2 in response to hypoxia. Our results indicated that hypoxia-dependent increases in nuclear IL-33 interfered with the transactivation activity of GATA3 for ST2 gene transcription. Most importantly, hypoxia-responsive sST2 restoration in hypoxic tumor regions corrected the inflammatory microenvironment and suppressed tumor growth and lung metastasis. These results indicate that strategies targeting sST2 in hypoxic tumor regions could be effective for treating malignant CRC.
Collapse
Affiliation(s)
- Miho Akimoto
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Noriyuki Okudaira
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Nobuko Koshikawa
- Department of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Nitona, Chuoh-ku, Chiba260-8717, Japan
| | - Harumi Hisaki
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
- Medical Education Center, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Keizo Takenaga
- Department of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Nitona, Chuoh-ku, Chiba260-8717, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| |
Collapse
|
9
|
Villéger R, Chulkina M, Mifflin RC, Markov NS, Trieu J, Sinha M, Johnson P, Saada JI, Adegboyega PA, Luxon BA, Beswick EJ, Powell DW, Pinchuk IV. Loss of alcohol dehydrogenase 1B in cancer-associated fibroblasts: contribution to the increase of tumor-promoting IL-6 in colon cancer. Br J Cancer 2023; 128:537-548. [PMID: 36482184 PMCID: PMC9938173 DOI: 10.1038/s41416-022-02066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increases in IL-6 by cancer-associated fibroblasts (CAFs) contribute to colon cancer progression, but the mechanisms involved in the increase of this tumor-promoting cytokine are unknown. The aim of this study was to identify novel targets involved in the dysregulation of IL-6 expression by CAFs in colon cancer. METHODS Colonic normal (N), hyperplastic, tubular adenoma, adenocarcinoma tissues, and tissue-derived myo-/fibroblasts (MFs) were used in these studies. RESULTS Transcriptomic analysis demonstrated a striking decrease in alcohol dehydrogenase 1B (ADH1B) expression, a gene potentially involved in IL-6 dysregulation in CAFs. ADH1B expression was downregulated in approximately 50% of studied tubular adenomas and all T1-4 colon tumors, but not in hyperplastic polyps. ADH1B metabolizes alcohols, including retinol (RO), and is involved in the generation of all-trans retinoic acid (atRA). LPS-induced IL-6 production was inhibited by either RO or its byproduct atRA in N-MFs, but only atRA was effective in CAFs. Silencing ADH1B in N-MFs significantly upregulated LPS-induced IL-6 similar to those observed in CAFs and lead to the loss of RO inhibitory effect on inducible IL-6 expression. CONCLUSION Our data identify ADH1B as a novel potential mesenchymal tumor suppressor, which plays a critical role in ADH1B/retinoid-mediated regulation of tumor-promoting IL-6.
Collapse
Affiliation(s)
- Romain Villéger
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Marina Chulkina
- Department of Medicine at PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Randy C Mifflin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Nikolay S Markov
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Judy Trieu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Mala Sinha
- Institute for Translational Sciences, UTMB, Galveston, TX, 77555, USA
| | - Paul Johnson
- Department of Surgery, UTMB, Galveston, TX, 77555, USA
| | - Jamal I Saada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Patrick A Adegboyega
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, 63106, USA
| | - Bruce A Luxon
- Institute for Translational Sciences, UTMB, Galveston, TX, 77555, USA
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Don W Powell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- Department of Neuroscience and Cell Biology, UTMB, Galveston, TX, 77555, USA
| | - Irina V Pinchuk
- Department of Medicine at PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
10
|
Ozgur E, Topcu DI, Bayraktar N, Alptekin NO. Peri-implant crevicular fluid and serum levels of soluble ST2 in peri-implant diseases: A pilot study. J Periodontal Res 2023; 58:204-211. [PMID: 36504319 DOI: 10.1111/jre.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/30/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Soluble ST2 (sST2) is a current biomarker of cardiovascular disease. It is used to predict susceptibility to cardiovascular diseases and to analyze their prognosis. Serum sST2 level increases in inflammatory diseases such as periodontitis. However, the level of sST2 in peri-implant diseases and crevicular fluid has not been investigated yet. Thus, the aim of this cross-sectional study is to analyze the level of sST2 in peri-implant health and diseases. METHODS Sixty-nine participants were divided into 3 groups as peri-implant health (PH), peri-implant mucositis (PM), and peri-implantitis (P-I). Peri-implant crevicular fluid (PICF) and serum samples were collected from each participant. The levels of sST2 and IL-6 in PICF and sST2, IL-6, and CRP in serum were compared between the groups. Pocket depth (PD), modified bleeding index (mBI), modified plaque index (mPI), keratinized mucosa index (KTW), and gingival/mucosal recession (REC) were recorded as clinical parameters. Biomarkers in the serum and PICF were analyzed by ELISA kit. RESULTS Sixty-nine patients were included in the study. The differences in the following parameters were statistically significant between groups: age (p = .009), implant function time (p = .027), PD (p < .001), mBI (p < .001), mPI (p < .001), and KTW (p = .043). The PICF volume of P-I and PM groups were statistically higher than PH (p < .001). The amount of sST2 in P-I and PM groups were higher than PH (p = .043). Serum CRP was higher in the P-I group than in other groups (p = .034). There were no significant differences in serum sST2 (p = .247) and IL-6 (p = .110) levels between groups. CONCLUSION The PICF levels of sST2 were significantly higher in PM and P-I groups compared to the healthy group. However, no significant difference was observed between the groups in terms of serum sST2 level.
Collapse
Affiliation(s)
- Engin Ozgur
- Department of Periodontology, Faculty of Dentistry, Başkent University, Ankara, Turkey
| | - Deniz Ilhan Topcu
- Department of Medical Biochemistry, Faculty of Medicine, Başkent University, Ankara, Turkey
| | - Nilufer Bayraktar
- Department of Medical Biochemistry, Faculty of Medicine, Başkent University, Ankara, Turkey
| | - Nilgun Ozlem Alptekin
- Department of Periodontology, Faculty of Dentistry, Başkent University, Ankara, Turkey
| |
Collapse
|
11
|
Keranov S, Widmann L, Jafari L, Liebetrau C, Keller T, Troidl C, Kriechbaum S, Voss S, Bauer P, Richter MJ, Tello K, Gall H, Ghofrani HA, Wiedenroth CB, Guth S, Seeger W, Hamm CW, Nef H, Dörr O. GDF-15 and soluble ST2 as biomarkers of right ventricular dysfunction in pulmonary hypertension. Biomark Med 2022; 16:1193-1207. [PMID: 36790217 DOI: 10.2217/bmm-2022-0395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Background: This study analyzed the utility of soluble ST2 (sST2) and GDF-15 as biomarkers of right ventricular (RV) function in patients with pulmonary hypertension (PH). Methods: GDF-15 and sST2 serum concentrations were measured in patients with PH (n = 628), dilated cardiomyopathy (n = 31) and left ventricular hypertrophy (n = 47), and in healthy controls (n = 61). Results: Median sST2 and GDF-15 levels in patients with left ventricular hypertrophy were higher than in patients with PH and dilated cardiomyopathy. In tertile analysis GDF-15 >1363 pg/ml and sST2 >38 ng/ml were associated with higher N-terminal pro-brain natriuretic peptide, RV systolic dysfunction, RV-pulmonary arterial uncoupling and hemodynamic impairment. Conclusion: GDF-15 and sST2 are potential biomarkers of RV dysfunction in patients with PH.
Collapse
Affiliation(s)
- Stanislav Keranov
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Bad Nauheim, 61231, Germany
| | - Laila Widmann
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany
| | - Leili Jafari
- Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | | | - Till Keller
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Bad Nauheim, 61231, Germany
- Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Christian Troidl
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Bad Nauheim, 61231, Germany
- Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Steffen Kriechbaum
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Bad Nauheim, 61231, Germany
- Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Sandra Voss
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Bad Nauheim, 61231, Germany
- Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Pascal Bauer
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany
| | - Manuel J Richter
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen & Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, 35392, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen & Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, 35392, Germany
| | - Henning Gall
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen & Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, 35392, Germany
| | - Hossein A Ghofrani
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen & Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, 35392, Germany
| | - Christoph B Wiedenroth
- Department of Thoracic Surgery, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Stefan Guth
- Department of Thoracic Surgery, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen & Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, 35392, Germany
| | - Christian W Hamm
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Bad Nauheim, 61231, Germany
- Department of Cardiology, Kerckhoff Heart & Lung Center, Bad Nauheim, 61231, Germany
| | - Holger Nef
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Bad Nauheim, 61231, Germany
| | - Oliver Dörr
- Department of Cardiology & Angiology, University of Giessen, Giessen, 35392, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Bad Nauheim, 61231, Germany
| |
Collapse
|
12
|
Chen J, Xiao P, Song D, Song D, Chen Z, Li H. Growth stimulation expressed gene 2 (ST2): Clinical research and application in the cardiovascular related diseases. Front Cardiovasc Med 2022; 9:1007450. [PMID: 36407452 PMCID: PMC9671940 DOI: 10.3389/fcvm.2022.1007450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
As an interleukin (IL)-1 receptor family member, scientists found that when circulating soluble growth stimulation expressed gene 2 (sST2) is low, its ligand, IL-33, will bind to ST2L to exert protective effects on various types of cells. On the other hand, competitive binding of IL-33 occurs when sST2 concentrations are increased, followed by a reduction in the amount available for cell protection. Based on this mechanism, the usage of sST2 is to identify the population of high-risk patients with cardiovascular disease. In recent years, the role of serum sST2 in the occurrence, diagnosis, prognosis, and treatment of cardiovascular diseases has been gradually accepted by doctors. This manuscript systemically reviews the biological functions and applications of sST2 in disease diagnosis and treatment, especially for cardiovascular diseases. In clinical testing, since IL-33 can negatively impact sST2 measurement accuracy, the properties of current assay kits have been summarized and discussed to provide a clear view of the clinical chemistry results. Although sST2 is a promising biomarker, there are few quantitative approaches available for clinical testing. In this context, a mass spectrometry (MS)-based approach might be an option, as this is a powerful analytical tool to distinguish structurally related molecules in the matrix and decrease false-positive results in clinical testing. Moreover, approaches developed based on MS would be an ideal way to further study sST2 standardization.
Collapse
Affiliation(s)
- Jinchao Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, China
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Peng Xiao
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
- *Correspondence: Peng Xiao,
| | - Dan Song
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Dewei Song
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, China
| | - Hongmei Li
- National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
- Hongmei Li,
| |
Collapse
|
13
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
14
|
Liu SF, Nambiar Veetil N, Li Q, Kucherenko MM, Knosalla C, Kuebler WM. Pulmonary hypertension: Linking inflammation and pulmonary arterial stiffening. Front Immunol 2022; 13:959209. [PMID: 36275740 PMCID: PMC9579293 DOI: 10.3389/fimmu.2022.959209] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease that arises from multiple etiologies and ultimately leads to right heart failure as the predominant cause of morbidity and mortality. In patients, distinct inflammatory responses are a prominent feature in different types of PH, and various immunomodulatory interventions have been shown to modulate disease development and progression in animal models. Specifically, PH-associated inflammation comprises infiltration of both innate and adaptive immune cells into the vascular wall of the pulmonary vasculature—specifically in pulmonary vascular lesions—as well as increased levels of cytokines and chemokines in circulating blood and in the perivascular tissue of pulmonary arteries (PAs). Previous studies suggest that altered hemodynamic forces cause lung endothelial dysfunction and, in turn, adherence of immune cells and release of inflammatory mediators, while the resulting perivascular inflammation, in turn, promotes vascular remodeling and the progression of PH. As such, a vicious cycle of endothelial activation, inflammation, and vascular remodeling may develop and drive the disease process. PA stiffening constitutes an emerging research area in PH, with relevance in PH diagnostics, prognostics, and as a therapeutic target. With respect to its prognostic value, PA stiffness rivals the well-established measurement of pulmonary vascular resistance as a predictor of disease outcome. Vascular remodeling of the arterial extracellular matrix (ECM) as well as vascular calcification, smooth muscle cell stiffening, vascular wall thickening, and tissue fibrosis contribute to PA stiffening. While associations between inflammation and vascular stiffening are well-established in systemic vascular diseases such as atherosclerosis or the vascular manifestations of systemic sclerosis, a similar connection between inflammatory processes and PA stiffening has so far not been addressed in the context of PH. In this review, we discuss potential links between inflammation and PA stiffening with a specific focus on vascular calcification and ECM remodeling in PH.
Collapse
Affiliation(s)
- Shao-Fei Liu
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Netra Nambiar Veetil
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
| | - Qiuhua Li
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Mariya M. Kucherenko
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
- *Correspondence: Mariya M. Kucherenko,
| | - Christoph Knosalla
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- German Center for Lung Research (DZL), Gießen, Germany
- The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Cramer M, Pineda Molina C, Hussey G, Turnquist HR, Badylak SF. Transcriptomic Regulation of Macrophages by Matrix-Bound Nanovesicle-Associated Interleukin-33. Tissue Eng Part A 2022; 28:867-878. [PMID: 35770892 PMCID: PMC9634988 DOI: 10.1089/ten.tea.2022.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The innate immune response, particularly the phenotype of responding macrophages, has significant clinical implications in the remodeling outcome following implantation of biomaterials and engineered tissues. In general, facilitation of an anti-inflammatory (M2-like) phenotype is associated with tissue repair and favorable outcomes, whereas pro-inflammatory (M1-like) activation can contribute to chronic inflammation and a classic foreign body response. Biologic scaffolds composed of extracellular matrix (ECM) and, more recently, matrix-bound nanovesicles (MBV) embedded within the ECM are known to direct macrophages toward an anti-inflammatory phenotype and stimulate a constructive remodeling outcome. The mechanisms of MBV-mediated macrophage activation are not fully understood, but interleukin-33 (IL-33) within the MBV appears critical for M2-like activation. Previous work has shown that IL-33 is encapsulated within the lumen of MBV and stimulates phenotypical changes in macrophages independent of its canonical surface receptor stimulation-2 (ST2). In the present study, we used next-generation RNA sequencing to determine the gene signature of macrophages following exposure to MBV with and without intraluminal IL-33. MBV-associated IL-33 instructed an anti-inflammatory phenotype in both wild-type and st2-/- macrophages by upregulating M2-like and downregulating M1-like genes. The repertoire of genes regulated by ST2-independent IL-33 signaling were broadly related to the inflammatory response and crosstalk between cells of both the innate and adaptive immune systems. These results signify the importance of the MBV intraluminal protein IL-33 in stimulating a pro-remodeling M2-like phenotype in macrophages and provides guidance for the designing of next-generation biomaterials and tissue engineering strategies. Impact statement The phenotype of responding macrophages is predictive of the downstream remodeling response to an implanted biomaterial. The clinical impact of macrophage phenotype has motivated studies to investigate the factors that regulate macrophage activation. Matrix-bound nanovesicles (MBV) embedded within the extracellular matrix direct macrophages toward an anti-inflammatory (M2)-like phenotype that is indicative of a favorable remodeling response. Although the mechanisms of MBV-mediated macrophage activation are not fully understood, the intraluminal protein interleukin-33 (IL-33) is clearly a contributing signaling molecule. The present study identifies those genes regulated by MBV-associated IL-33 that promote a pro-remodeling M2-like macrophage activation state and can guide future therapies in regenerative medicine.
Collapse
Affiliation(s)
- Madeline Cramer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heth R. Turnquist
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen F. Badylak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Yeoh WJ, Vu VP, Krebs P. IL-33 biology in cancer: An update and future perspectives. Cytokine 2022; 157:155961. [PMID: 35843125 DOI: 10.1016/j.cyto.2022.155961] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is constitutively expressed in the nucleus of epithelial, endothelial and fibroblast-like cells. Upon cell stress, damage or necrosis, IL-33 is released into the cytoplasm to exert its prime role as an alarmin by binding to its specific receptor moiety, ST2. IL-33 exhibits pleiotropic function in inflammatory diseases and particularly in cancer. IL-33 may play a dual role as both a pro-tumorigenic and anti-tumorigenic cytokine, dependent on tumor and cellular context, expression levels, bioactivity and the nature of the inflammatory environment. In this review, we discuss the differential contribution of IL-33 to malignant or inflammatory conditions, its multifaceted effects on the tumor microenvironment, while providing possible explanations for the discrepant findings described in the literature. Additionally, we examine the emerging and divergent functions of IL-33 in the nucleus, and aspects of IL-33 biology that are currently under-addressed.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
17
|
The Merkel Cell Polyomavirus T-Antigens and IL-33/ST2-IL1RAcP Axis: Possible Role in Merkel Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073702. [PMID: 35409061 PMCID: PMC8998536 DOI: 10.3390/ijms23073702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a causal factor in Merkel cell carcinoma (MCC). The oncogenic potential is mediated through its viral oncoproteins large T-antigen (LT) and small T-antigen (sT). Cytokines produced by tumor cells play an important role in cancer pathogenesis, and viruses affect their expression. Therefore, we compared human cytokine and receptor transcript levels in virus positive (V+) and virus negative (V−) MCC cell lines. Increased expression of IL-33, a potent modulator of tumor microenvironment, was observed in V+ MCC cell lines when compared to V− MCC-13 cells. Transient transfection studies with luciferase reporter plasmids demonstrated that LT and sT stimulated IL-33, ST2/IL1RL1 and IL1RAcP promoter activity. The induction of IL-33 expression was confirmed by transfecting MCC-13 cells with MCPyV LT. Furthermore, recombinant human cytokine domain IL-33 induced activation of MAP kinase and NF-κB pathways, which could be blocked by a ST2 receptor antibody. Immunohistochemical analysis demonstrated a significantly stronger IL-33, ST2, and IL1RAcP expression in MCC tissues compared to normal skin. Of interest, significantly higher IL-33 and IL1RAcP protein levels were observed in MCC patient plasma compared to plasma from healthy controls. Previous studies have demonstrated the implication of the IL-33/STL2 pathway in cancer. Because our results revealed a T-antigens-dependent induction of the IL-33/ST2 axis, IL-33/ST2 may play a role in the tumorigenesis of MCPyV-positive MCC. Therefore, neutralizing the IL-33/ST2 axis may present a novel therapeutic approach for MCC patients.
Collapse
|
18
|
Xu J, Tang J. Critical roles of interleukin-33/suppression of tumorigenicity 2 (IL-33/ST2) in pulmonary disorders. Chin Med J (Engl) 2022; 135:1508-1510. [PMID: 35170515 PMCID: PMC9481433 DOI: 10.1097/cm9.0000000000002007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
OUP accepted manuscript. Rheumatology (Oxford) 2022; 61:3989-3996. [DOI: 10.1093/rheumatology/keac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/27/2021] [Indexed: 11/14/2022] Open
|
20
|
Temporal Quantitative Phosphoproteomics Profiling of Interleukin-33 Signaling Network Reveals Unique Modulators of Monocyte Activation. Cells 2022; 11:cells11010138. [PMID: 35011700 PMCID: PMC8749991 DOI: 10.3390/cells11010138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 superfamily cytokines, is an endogenous danger signal and a nuclear-associated cytokine. It is one of the essential mediators of both innate and adaptive immune responses. Aberrant IL-33 signaling has been demonstrated to play a defensive role against various infectious and inflammatory diseases. Although the signaling responses mediated by IL-33 have been previously reported, the temporal signaling dynamics are yet to be explored. To this end, we applied quantitative temporal phosphoproteomics analysis to elucidate pathways and proteins induced by IL-33 in THP-1 monocytes. Employing a TMT labeling-based quantitation and titanium dioxide (TiO2)-based phosphopeptide enrichment strategy followed by mass spectrometry analysis, we identified and quantified 9448 unique phosphopeptides corresponding to 3392 proteins that showed differential regulation. Of these, 171 protein kinases, 60 phosphatases and 178 transcription factors were regulated at different phases of IL-33 signaling. In addition to the confirmed activation of canonical signaling modules including MAPK, NFκB, PI3K/AKT modules, pathway analysis of the time-dependent phosphorylation dynamics revealed enrichment of several cellular processes, including leukocyte adhesion, response to reactive oxygen species, cell cycle checkpoints, DNA damage and repair pathways. The detailed quantitative phosphoproteomic map of IL-33 signaling will serve as a potentially useful resource to study its function in the context of inflammatory and pathological conditions.
Collapse
|
21
|
Dai X, Muto J, Shiraishi K, Utsunomiya R, Mori H, Murakami M, Sayama K. TSLP impairs epidermal barrier integrity by stimulating the formation of nuclear IL-33/phosphorylated STAT3 complex in human keratinocytes. J Invest Dermatol 2022; 142:2100-2108.e5. [DOI: 10.1016/j.jid.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
|
22
|
Demyanets S, Stojkovic S, Huber K, Wojta J. The Paradigm Change of IL-33 in Vascular Biology. Int J Mol Sci 2021; 22:ijms222413288. [PMID: 34948083 PMCID: PMC8707059 DOI: 10.3390/ijms222413288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
In this review, we focus on the actual understanding of the role of IL-33 in vascular biology in the context of the historical development since the description of IL-33 as a member of IL-1 superfamily and the ligand for ST2 receptor in 2005. We summarize recent data on the biology, structure and signaling of this dual-function factor with both nuclear and extracellular cytokine properties. We describe cellular sources of IL-33, particularly within vascular wall, changes in its expression in different cardio-vascular conditions and mechanisms of IL-33 release. Additionally, we summarize the regulators of IL-33 expression as well as the effects of IL-33 itself in cells of the vasculature and in monocytes/macrophages in vitro combined with the consequences of IL-33 modulation in models of vascular diseases in vivo. Described in murine atherosclerosis models as well as in macrophages as an atheroprotective cytokine, extracellular IL-33 induces proinflammatory, prothrombotic and proangiogenic activation of human endothelial cells, which are processes known to be involved in the development and progression of atherosclerosis. We, therefore, discuss that IL-33 can possess both protective and harmful effects in experimental models of vascular pathologies depending on experimental conditions, type and dose of administration or method of modulation.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Kurt Huber
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Clinic Ottakring, 1160 Vienna, Austria;
- Medical School, Sigmund Freud University, 1020 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-73500; Fax: +43-1-40400-73586
| |
Collapse
|
23
|
Cannon DT, Nogueira L, Gutierrez-Gonzalez AK, Gilmore NK, Bigby TD, Breen EC. Role of IL-33 receptor (ST2) deletion in diaphragm contractile and mitochondrial function in the Sugen5416/hypoxia model of pulmonary hypertension. Respir Physiol Neurobiol 2021; 295:103783. [PMID: 34508866 DOI: 10.1016/j.resp.2021.103783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the pulmonary vasculature that leads to right ventricular failure. Skeletal muscle maladaptations limit physical activity and may contribute to disease progression. The role of alarmin/inflammatory signaling in PAH respiratory muscle dysfunction is unknown. We hypothesized that diaphragm mitochondrial and contractile functions are impaired in SU5416/hypoxia-induced pulmonary hypertension due to increased systemic IL-33 signaling. We induced pulmonary hypertension in adult C57Bl/6 J (WT) and ST2 (IL1RL1) gene ablated mice by SU5416/hypoxia (SuHx). We measured diaphragm fiber mitochondrial respiration, inflammatory markers, and contractile function ex vivo. SuHx reduced coupled and uncoupled permeabilized myofiber respiration by ∼40 %. During coupled respiration with complex I substrates, ST2-/- attenuated SuHx inhibition of mitochondrial respiration (genotype × treatment interaction F[1,67] = 3.3, p = 0.07, η2 = 0.04). Flux control ratio and coupling efficiency were not affected by SuHx or genotype. A higher substrate control ratio for succinate was observed in SuHx fibers and attenuated in ST2-/- fibers (F[1,67] = 5.3, p < 0.05, η2 = 0.07). Diaphragm TNFα, but not IL-33 or NFkB, was increased in SuHx vs. DMSO in both genotypes (F[1,43] = 4.7, p < 0.05, η2 = 0.1). Diaphragm force-frequency relationships were right-shifted in SuHx vs. WT (F[3,440] = 8.4, p < 0.05, η2 = 0.0025). There was no effect of ST2-/- on the force-frequency relationship. Force decay during a fatigue protocol at 100 Hz, but not at 40 Hz, was attenuated by SuHx vs. DMSO in both genotypes (F[1,41] = 5.6, p < 0.05, η2 = 0.11). SuHx mice exhibit a modest compensation in diaphragm contractility and mitochondrial dysfunction during coupled respiration; the latter partially regulated through ST2 signaling.
Collapse
Affiliation(s)
- Daniel T Cannon
- School of Exercise & Nutritional Sciences, San Diego State University, United States.
| | - Leonardo Nogueira
- Department of Medicine, University of California, San Diego, United States; Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | | | - Natalie K Gilmore
- Department of Medicine, University of California, San Diego, United States
| | - Timothy D Bigby
- Department of Medicine, University of California, San Diego, United States
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, United States
| |
Collapse
|
24
|
Sun Y, Wang L, Meng X, Gong S, Zhao Q, Shi L, Jiang R, He J, Wu W, Li Y, Luo C, Qiu H, Li J, Yuan P, Liu J. Soluble ST2 and mixed venous oxygen saturation for prediction of mortality in patients with pulmonary hypertension. J Thorac Dis 2021; 13:3478-3488. [PMID: 34277043 PMCID: PMC8264676 DOI: 10.21037/jtd-20-2732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/29/2021] [Indexed: 11/09/2022]
Abstract
Background Although soluble suppression of tumorigenicity-2 (sST2) has been identified as a clinical biomarker for pulmonary hypertension (PH) by previous studies, the implication of sST2 combined with hemodynamic parameters in PH has not been well studied. This study aimed to evaluate the relationship between sST2 and hemodynamic parameters and to evaluate the predictive value of sST2 for mortality in patients with PH. Methods One hundred eighty-four incident patients with PH and 14 healthy controls were retrospectively enrolled by Shanghai Pulmonary Hospital for this retrospective study. After all patients underwent right heart catheterization, blood samples were collected and serum sST2 concentration was assessed by the Presage™ ST2 assay. Kaplan-Meier curve and Cox regression analyses were used to predict survival and the association between survival and different factors such as sST2, SvO2. Results During a follow-up of 44.9 (IQR 28.5–64.4) months, 65 patients died. The median concentration of sST2 in PH patients was 33.1 ng/mL, which is higher than that in control group (23.1 ng/mL, P=0.005). Furthermore, for PH group, the level of sST2 was higher in non-survivors than that in survivors. Cox regression analyses demonstrated that sST2 and SvO2 were independent risk factors for survival. In Kaplan-Meier curve analyses, elevated sST2 level and reduced SvO2 predicted a poor outcome for patients with PH. Conclusions Higher sST2 was independently associated with increased mortality, as well as lower SvO2 in patients with PH. Especially, the combination of higher sST2 and lower SvO2 had the strongest predictive value of mortality in patients with PH.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Xiangrui Meng
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Lingzi Shi
- School of Clinical Medicine, Hebei Medical University, Shijiazhuang, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yuan Li
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Cijun Luo
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Hongling Qiu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jinling Li
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
25
|
McKechnie DG, Papacosta AO, Lennon LT, Welsh P, Whincup PH, Wannamethee SG. Inflammatory markers and incident heart failure in older men: the role of NT-proBNP. Biomark Med 2021; 15:413-425. [PMID: 33709785 PMCID: PMC8559131 DOI: 10.2217/bmm-2020-0669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To determine the relationship between baseline inflammation (CRP and IL-6) with natriuretic peptide (NP) activity (measured by NT-proBNP) and incident heart failure (HF) in older men. Methods & results: In the British Regional Heart Study, 3569 men without prevalent myocardial infarction or HF were followed for mean 16.3 years; 327 developed HF. Baseline CRP and IL-6 were significantly and positively associated with NT-proBNP. Those in the highest CRP and IL-6 quartiles had an elevated risk of HF after age and BMI adjustment (HR = 1.42 [1.01–1.98] and 1.71 [1.24–2.37], respectively), which markedly attenuated after NT-proBNP adjustment (HR = 1.15 [0.81–1.63] and 1.25 [0.89–1.75], respectively). Conclusion: NP activity is associated with pro-inflammatory biomarkers and may explain the link between inflammation and incident HF. Inflammation describes the body’s natural response to infections, injuries and toxins. Inflammation is a helpful response in the short term, but it is thought that long-lasting inflammation – for example, due to illnesses such as diabetes or obesity – may have harmful effects. Previous studies have found that people with higher levels of inflammatory molecules in the blood seem to be more likely to develop heart failure (HF) later on. The amount of fluid in the body is controlled, in part, by molecules in the blood known as ‘natriuretic peptides' (NPs). People with HF have much higher levels of NPs in their blood, and these are used to help diagnose HF. There are suggestions that inflammation and natriuretic peptides are linked to one another. Using a sample of men aged 60–79 years, who did not have HF, we compared blood markers of inflammation and NPs at a baseline examination. Men with higher blood inflammatory markers tended to have higher blood NP levels. We then followed these men up for an average of 16.3 years. Men with higher blood inflammatory markers at baseline were more likely to develop HF, as expected, even after accounting for differences in age and BMI. However, when we accounted for NP levels at baseline, the increased risk of HF with inflammation disappeared. This suggests that NP activity is important in the relationship between inflammation and the risk of HF. Future studies should account for this when examining the link. It is possible that NPs or, more likely, whatever is driving their release, may explain why people with inflammation are more likely to get HF.
Collapse
Affiliation(s)
- Douglas Gj McKechnie
- Department of Primary Care & Population Health, University College London, London, UK
| | - A Olia Papacosta
- Department of Primary Care & Population Health, University College London, London, UK
| | - Lucy T Lennon
- Department of Primary Care & Population Health, University College London, London, UK
| | - Paul Welsh
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Peter H Whincup
- Population Health Research Institute, St George's University of London, London, UK
| | - S Goya Wannamethee
- Department of Primary Care & Population Health, University College London, London, UK
| |
Collapse
|
26
|
Gatti F, Mia S, Hammarström C, Frerker N, Fosby B, Wang J, Pietka W, Sundnes O, Hol J, Kasprzycka M, Haraldsen G. Nuclear IL-33 restrains the early conversion of fibroblasts to an extracellular matrix-secreting phenotype. Sci Rep 2021; 11:108. [PMID: 33420328 PMCID: PMC7794291 DOI: 10.1038/s41598-020-80509-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
Interleukin (IL)-33 is a cytokine that appears to mediate fibrosis by signaling via its receptor ST2 (IL-33R/IL1RL1). It is also, however, a protein that after synthesis is sorted to the cell nucleus, where it appears to affect chromatin folding. Here we describe a novel role for nuclear IL-33 in regulating the fibroblast phenotype in murine kidney fibrosis driven by unilateral ureteral obstruction. Transcriptional profiling of IL-33-deficient kidneys 24 h after ligation revealed enhanced expression of fibrogenic genes and enrichment of gene sets involved in extracellular matrix formation and remodeling. These changes relied on intracellular effects of IL-33, because they were not reproduced by treatment with a neutralizing antibody to IL-33 that prevents IL-33R/ST2L receptor signaling nor were they observed in IL-33R/ST2-deficient kidneys. To further explore the intracellular function of IL-33, we established transcription profiles of human fibroblasts, observing that knockdown of IL-33 skewed the transcription profile from an inflammatory towards a myofibroblast phenotype, reflected in higher levels of COL3A1, COL5A1 and transgelin protein, as well as lower expression levels of IL6, CXCL8, CLL7 and CCL8. In conclusion, our findings suggest that nuclear IL-33 in fibroblasts dampens the initial profibrotic response until persistent stimuli, as enforced by UUO, can override this protective mechanism.
Collapse
Affiliation(s)
- Francesca Gatti
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Sobuj Mia
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Clara Hammarström
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Nadine Frerker
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Bjarte Fosby
- Department of Surgery, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Junbai Wang
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
| | - Wojciech Pietka
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Olav Sundnes
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Johanna Hol
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Monika Kasprzycka
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway
| | - Guttorm Haraldsen
- Department of Pathology, University of Oslo and Oslo University Hospital, PO Box 4950, 0424, Rikshospitalet, Norway.
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Rikshospitalet, Norway.
| |
Collapse
|
27
|
Song R, Struhl K. S100A8/S100A9 cytokine acts as a transcriptional coactivator during breast cellular transformation. SCIENCE ADVANCES 2021; 7:7/1/eabe5357. [PMID: 33523865 PMCID: PMC7775746 DOI: 10.1126/sciadv.abe5357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Cytokines are extracellular proteins that convey messages between cells by interacting with cognate receptors at the cell surface and triggering signaling pathways that alter gene expression and other phenotypes in an autocrine or paracrine manner. Here, we show that the calcium-dependent cytokines S100A8 and S100A9 are recruited to numerous promoters and enhancers in a model of breast cellular transformation. This recruitment is associated with multiple DNA sequence motifs recognized by DNA binding transcription factors that are linked to transcriptional activation and are important for transformation. The cytokines interact with these transcription factors in nuclear extracts, and they activate transcription when artificially recruited to a target promoter. Nuclear-specific expression of S100A8/A9 promotes oncogenic transcription and leads to enhanced breast transformation phenotype. These results suggest that, in addition to its classical cytokine function, S100A8/A9 can act as a transcriptional coactivator.
Collapse
Affiliation(s)
- Ruisheng Song
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, MA 02115, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston, MA 02115, USA.
| |
Collapse
|
28
|
Avcı A, Somuncu MU, Can M, Akgul F. Could sST2 Predict Contrast-Induced Nephropathy in ST-Segment Elevation Myocardial Infarction? Int J Gen Med 2020; 13:1297-1304. [PMID: 33273849 PMCID: PMC7708263 DOI: 10.2147/ijgm.s287834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023] Open
Abstract
Background and Aim One of the most worrying complications of primary percutaneous coronary interventions is contrast-induced nephropathy (CIN) that is associated with increased mortality and morbidity in myocardial infarction. In this study, we questioned whether soluble suppression of tumorigenesis-2 (sST2), which has thought to play a role in inflammatory processes, cardiac remodeling, and fibrosis could give an idea about the development of CIN in ST-elevation myocardial infarction (STEMI) patients. Patients and Methods This study is a cross-sectional observational study and includes 357 consecutive STEMI patients. Demographic features, medical history, laboratory parameters, and procedural characteristics were compared according to CIN's development. The multivariate logistic regression analysis was selected to detect independent risk factors of CIN. Results In the study, 81 patients (22.7%) who developed CIN were identified. The concentration of sST2 in CIN (+) group was higher than that of CIN (-) group (40.6±21.0 ng/mL vs 31.5±13.0 ng/L, p<0.001). Independent predictors of CIN development were diabetes mellitus (OR, 2.059; 95% CI, 1.093-3.879; p=0.025), eGFR (OR, 0.983; 95% CI, 0.972-0.995; p=0.006), lower systolic blood pressure (OR, 0.976; 95% CI, 0.960-0.993; p=0.006), total procedure time (OR, 1.030; 95% CI, 1.011-1.049; p=0.002), and sST2 (OR, 1.101; 95% CI; 1.046-1.160; p<0.001). Besides, the risk of developing CIN in the high sST2 group is 3.06 times higher than the low group sST2 group regardless of other risk factors. Conclusion sST2 levels on admission in STEMI patients are useful in predicting CIN development.
Collapse
Affiliation(s)
- Ahmet Avcı
- Department of Cardiology, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Mustafa Umut Somuncu
- Department of Cardiology, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Murat Can
- Department of Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Ferit Akgul
- Department of Cardiology, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
29
|
Nagaoka S, Yamada D, Eguchi H, Yokota Y, Iwagami Y, Asaoka T, Noda T, Kawamoto K, Gotoh K, Kobayashi S, Miyoshi E, Doki Y, Mori M. The blockade of interleukin-33 released by hepatectomy would be a promising treatment option for cholangiocarcinoma. Cancer Sci 2020; 112:347-358. [PMID: 33098728 PMCID: PMC7780022 DOI: 10.1111/cas.14709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/30/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-33 (IL-33), an alarmin released during tissue injury, facilitates the development of cholangiocarcinoma (CCA) in a murine model. However, it is unclear whether IL-33 is associated with human CCA. The aim of this study was to support the following hypothesis: IL-33 is released during hepatectomy for CCA, subsequently facilitating the development of subclinical CCA and eventually leading to recurrent disease. IL-33 expression was assessed in various samples from both humans and mice including resected liver and paired plasma samples collected at hepatectomy and after surgery, and its influences on recurrent disease and patient prognosis were determined. Homogenized human liver samples with high or low IL-33 expression were added to the culture medium of human CCA cells, and the changes in proliferation and migration were evaluated. To examine the effects of inhibiting the IL-33 release induced by hepatectomy, syngraft transplantation of murine CCA cells was performed in C57BL/6J mice with or without IL-33 blockade. The amount of IL-33 released into the plasma during hepatectomy correlated with the background liver expression. High expression of IL-33 in the liver was an independent risk factor for recurrence. Homogenized liver tissue strongly expressing IL-33 increased both the proliferation and migration of tumor cells. Mice who underwent hepatectomy exhibited CCA progression in the remnant liver, whereas blockade of IL-33 during hepatectomy inhibited tumor progression. Thus, we concluded that surgery for CCA with curative intent paradoxically induced IL-33 release, which facilitated CCA recurrence, and anti-IL-33 therapy during hepatectomy might reduce the risk of CCA recurrence.
Collapse
Affiliation(s)
- Satoshi Nagaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuki Yokota
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
30
|
Full-length IL-33 regulates Smad3 phosphorylation and gene transcription in a distinctive AP2-dependent manner. Cell Immunol 2020; 357:104203. [DOI: 10.1016/j.cellimm.2020.104203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
|
31
|
Abstract
Given the known neuroreparative actions of IL-33 in experimental models of central nervous system (CNS) injury, we predicted that compounds which induce IL-33 are likely to promote remyelination. We found anacardic acid as a candidate molecule to serve as a therapeutic agent to promote remyelination. Addition of anacardic acid to cultured oligodendrocyte precursor cells (OPCs) rapidly increased expression of myelin genes and myelin proteins, suggesting a direct induction of genes involved in myelination by anacardic acid. Also, when added to OPCs, anacardic acid resulted in the induction of IL-33. In vivo, treatment of with anacardic acid in doses which ranged from 0.025 mg/kg to 2.5 mg/kg, improved pathologic scores in experimental allergic encephalitis (EAE) and in the cuprizone model of demyelination/remyelination. Electron microscopic studies performed in mice fed with cuprizone and treated with anacardic acid showed lower g-ratio scores when compared to controls, suggesting increased remyelination of axons. In EAE, improvement in paralytic scores was seen when the drug was given prior to or following the onset of paralytic signs. In EAE and in the cuprizone model, areas of myelin loss, which are likely to remyelinate, was associated with a greater recruitment of IL-33-expressing OPCs in mice which received anacardic acid when compared to controls.
Collapse
|
32
|
Drake LY, Prakash YS. Contributions of IL-33 in Non-hematopoietic Lung Cells to Obstructive Lung Disease. Front Immunol 2020; 11:1798. [PMID: 32903501 PMCID: PMC7438562 DOI: 10.3389/fimmu.2020.01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-33 plays important roles in pulmonary immune responses and lung diseases including asthma and chronic obstructive pulmonary disease (COPD). There is substantial interest in identifying and characterizing cellular sources vs. targets of IL-33, and downstream signaling pathways involved in disease pathophysiology. While epithelial and immune cells have largely been the focus, in this review, we summarize current knowledge of expression, induction, and function of IL-33 and its receptor ST2 in non-hematopoietic lung cells in the context of health and disease. Under basal conditions, epithelial cells and endothelial cells are thought to be the primary resident cell types that express high levels of IL-33 and serve as ligand sources compared to mesenchymal cells (smooth muscle cells and fibroblasts). Under inflammatory conditions, IL-33 expression is increased in most non-hematopoietic lung cells, including epithelial, endothelial, and mesenchymal cells. In comparison to its ligand, the receptor ST2 shows low expression levels at baseline but similar to IL-33, ST2 expression is upregulated by inflammation in these non-hematopoietic lung cells which may then participate in chronic inflammation both as sources and autocrine/paracrine targets of IL-33. Downstream effects of IL-33 may occur via direct receptor activation or indirect interactions with the immune system, overall contributing to lung inflammation, airway hyper-responsiveness and remodeling (proliferation and fibrosis). Accordingly from a therapeutic perspective, targeting IL-33 and/or its receptor in non-hematopoietic lung cells becomes relevant.
Collapse
Affiliation(s)
- Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
33
|
Noninvasive Prognostic Biomarkers for Left-Sided Heart Failure as Predictors of Survival in Pulmonary Arterial Hypertension. Chest 2020; 157:1606-1616. [PMID: 31987881 DOI: 10.1016/j.chest.2019.12.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Three biomarkers, soluble suppression of tumorigenicity 2 (ST2), galectin 3 (Gal3), and N-terminal brain natriuretic peptide prohormone (NT-proBNP), are approved for noninvasive risk assessment in left-sided heart failure, and small observational studies have shown their prognostic usefulness in heterogeneous pulmonary hypertension cohorts. We examined associations between these biomarkers and disease severity and survival in a large cohort of patients with pulmonary arterial hypertension (PAH) (ie, group 1 pulmonary hypertension). We hypothesized that additive use of biomarkers in combination would improve the prognostic value of survival models. METHODS Biomarker measurements and clinical data were obtained from 2,017 adults with group 1 PAH. Associations among biomarker levels and clinical variables, including survival times, were examined with multivariable regression models. Likelihood ratio tests and the Akaike information criterion were used to compare survival models. RESULTS Higher ST2 and NT-proBNP were associated with higher pulmonary pressures and vascular resistance and lower 6-min walk distance. Higher ST2 and NT-proBNP levels were associated with increased risk of death (hazard ratios: 2.79; 95% CI, 2.21-3.53; P < .001 and 1.84; 95% CI, 1.62-2.10; P < .001, respectively). The addition of ST2 to survival models composed of other predictors of survival, including NT-proBNP, significantly improved model fit and predictive capacity. CONCLUSIONS ST2 and NT-proBNP are strong, noninvasive prognostic biomarkers in PAH. Despite its prognostic value in left-sided heart failure, Gal3 was not predictive in PAH. Adding ST2 to survival models significantly improves model predictive capacity. Future studies are needed to develop multimarker assays that improve noninvasive risk stratification in PAH.
Collapse
|
34
|
The role of the IL-33/ST2 axis in autoimmune disorders: Friend or foe? Cytokine Growth Factor Rev 2019; 50:60-74. [DOI: 10.1016/j.cytogfr.2019.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
|
35
|
Beaudoin J, Szymonifka J, Lavender Z, Deaño RC, Zhou Q, Januzzi JL, Singh JP, Truong QA. Relationship of soluble ST2 to pulmonary hypertension severity in patients undergoing cardiac resynchronization therapy. J Thorac Dis 2019; 11:5362-5371. [PMID: 32030254 DOI: 10.21037/jtd.2019.11.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Pulmonary hypertension (PH) is an adverse prognostic marker in patients undergoing cardiac resynchronization therapy (CRT). We sought to determine the relation of biomarkers of fibrosis [soluble ST2 (sST2), galectin-3], wall stretch [amino terminal pro-brain natriuretic peptide (NT-proBNP)], and necrosis [high-sensitivity troponin-I (hsTnI)] to PH severity in CRT patients. Methods Biomarkers and right ventricular systolic pressure (RVSP) were measured at CRT implant and 6-month later (n=111). PH was categorized into 3 groups based on RVSP: no (<35 mmHg), mild-moderate (35-60 mmHg), and severe (>60 mmHg). Patients were categorized as progressors (worsened PH), persistent PH (no change) and regressors (improved PH). Endpoints were 6-month CRT response and 2-year major adverse cardiac event (MACE). Results RVSP was associated with CRT nonresponse (P=0.02) and MACE (P=0.03). Severe PH patients had 5-fold increase risk for CRT nonresponse (OR 5.0, P=0.04) and MACE (HR 5.7, P=0.04) over non-PH patients. Progressors and persistent PH patients had >2-fold odds for CRT non-response (OR 2.8, P=0.45) and >11-fold increase in MACE compared to no PH patients or regressors (HR 11.6, P=0.02). Only NT-proBNP and sST2 were discernable between PH groups, with graded increase based on PH severity (both P≤0.02), and lower values in regressors versus non-regressors (both P≤0.01). Levels of sST2 decreased at 6 months in regressors (15 ng/mL, P=0.03) and increased slightly (3-8 ng/mL) in non-regressors, without difference for NT-proBNP (P=0.08). Conclusions sST2 levels are related with PH severity in CRT patients. Serial sST2 changes after CRT implant suggests potential role to monitor PH after CRT.
Collapse
Affiliation(s)
- Jonathan Beaudoin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec City, QC, Canada
| | | | | | - Roderick C Deaño
- Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qing Zhou
- Cardiac MR PET CT Program, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James L Januzzi
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jagmeet P Singh
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Quynh A Truong
- Department of Biostatistics, New York University, New York, NY, USA.,Division of Cardiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
36
|
The Prognostic Value of Soluble ST2 in Adults with Pulmonary Hypertension. J Clin Med 2019; 8:jcm8101517. [PMID: 31547136 PMCID: PMC6832164 DOI: 10.3390/jcm8101517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
Abstract
Soluble ST2 (sST2) is upregulated in response to myocardial stress and may serve as biomarker in adults with pulmonary hypertension (PH). This prospective cohort study investigated sST2 levels and its association with echocardiographic and hemodynamic measures, and adverse clinical outcomes in adults with PH of different etiologies. sST2 was measured during the diagnostic right heart catheterization for PH, in adult patients enrolled between May 2012 and October 2016. PH due to left heart failure was excluded. The association between sST2 and a primary endpoint composed of death or lung transplantation and a secondary composite endpoint including death, lung transplantation or heart failure, was investigated using Cox regression with adjustment for NT-proBNP. In total 104 patients were included (median age was 59 years, 66% woman, 51% pulmonary arterial hypertension). Median sST2 was 28 [IQR 20–46] ng/mL. Higher sST2 was associated with worse right ventricular dysfunction and higher mean pulmonary and right atrial pressures. Median follow-up was 3.3 [IQR 2.3–4.6] years. The primary and secondary endpoint occurred in 33 (31.7%) and 43 (41.3%) patients, respectively. sST2 was significantly associated with both endpoints (HR per 2-fold higher value 1.53, 95%CI 1.12–2.07, p = 0.007 and 1.45, 95%CI 1.10–1.90, p = 0.008, respectively). However, after adjustment for NT-proBNP, both associations did not reach statistical significance. In conclusions, higher sST2 levels are associated with more severe PH and right ventricular dysfunction and yields prognostic value in adults with PH, although not independently of NT-proBNP.
Collapse
|
37
|
Stier MT, Mitra R, Nyhoff LE, Goleniewska K, Zhang J, Puccetti MV, Casanova HC, Seegmiller AC, Newcomb DC, Kendall PL, Eischen CM, Peebles RS. IL-33 Is a Cell-Intrinsic Regulator of Fitness during Early B Cell Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1457-1467. [PMID: 31391233 PMCID: PMC6736727 DOI: 10.4049/jimmunol.1900408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
IL-33 is an IL-1 family member protein that is a potent driver of inflammatory responses in both allergic and nonallergic disease. This proinflammatory effect is mediated primarily by extracellular release of IL-33 from stromal cells and binding of the C-terminal domain of IL-33 to its receptor ST2 on targets such as CD4+ Th2 cells, ILC2, and mast cells. Notably, IL-33 has a distinct N-terminal domain that mediates nuclear localization and chromatin binding. However, a defined in vivo cell-intrinsic role for IL-33 has not been established. We identified IL-33 expression in the nucleus of progenitor B (pro-B) and large precursor B cells in the bone marrow, an expression pattern unique to B cells among developing lymphocytes. The IL-33 receptor ST2 was not expressed within the developing B cell lineage at either the transcript or protein level. RNA sequencing analysis of wild-type and IL-33-deficient pro-B and large precursor B cells revealed a unique, IL-33-dependent transcriptional profile wherein IL-33 deficiency led to an increase in E2F targets, cell cycle genes, and DNA replication and a decrease in the p53 pathway. Using mixed bone marrow chimeric mice, we demonstrated that IL-33 deficiency resulted in an increased frequency of developing B cells via a cell-intrinsic mechanism starting at the pro-B cell stage paralleling IL-33 expression. Finally, IL-33 was detectable during early B cell development in humans and IL33 mRNA expression was decreased in B cell chronic lymphocytic leukemia samples compared with healthy controls. Collectively, these data establish a cell-intrinsic, ST2-independent role for IL-33 in early B cell development.
Collapse
Affiliation(s)
- Matthew T Stier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ramkrishna Mitra
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Lindsay E Nyhoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jian Zhang
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Matthew V Puccetti
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Holly C Casanova
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Adam C Seegmiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dawn C Newcomb
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Peggy L Kendall
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Christine M Eischen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - R Stokes Peebles
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
38
|
Pusceddu I, Dieplinger B, Mueller T. ST2 and the ST2/IL-33 signalling pathway-biochemistry and pathophysiology in animal models and humans. Clin Chim Acta 2019; 495:493-500. [PMID: 31136737 DOI: 10.1016/j.cca.2019.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/26/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022]
Abstract
ST2 is an interleukin (IL)-1 receptor family member with transmembrane (ST2L) and soluble (sST2) isoforms. Structurally, the ST2 gene products are very similar in mice and humans. In humans and in mice, alternative promoter activation and splicing produce ST2L and sST2. ST2L represents the longest transcript, whereas sST2 is the truncated, soluble isoform. ST2L is the biological receptor for IL-33, a member of the IL-1 family. IL-33 is the functional ligand of ST2L and signals the presence of tissue damage to local immune cells. IL-33/ST2L signalling leads to the production of inflammatory cytokines/chemokines and to the induction of the immune response. Conversely, sST2 functions as a decoy receptor for IL-33, inhibiting the effects of IL-33/ST2L signalling. Animal studies have allowed the investigation of ST2 and the IL-33/ST2L signalling pathway at multiple levels. However, clinical studies have mainly focused on the determination of sST2 in the circulation. In humans, plasma concentrations of sST2 increase in several diseases, such as heart disease, pulmonary disease, burn injury and graft-versus-host disease. Consequently, increased plasma concentrations of sST2 are not specific for a single disorder in humans and are thus of limited value for diagnostic purposes. However, increased plasma concentrations of sST2 have been linked to a worse prognosis in numerous diseases. Nevertheless, the major source of circulating sST2 in healthy and diseased humans is currently not fully established. In addition, whether the downregulation of sST2 can improve the outcome of patients in the clinical setting has not been elucidated. The aim of the present review was to provide an update on the findings regarding the biochemistry and pathophysiology of ST2 and the sST2 signalling pathway in humans and experimental models.
Collapse
Affiliation(s)
- Irene Pusceddu
- Department of Clinical Pathology, Hospital of Bolzano, Bolzano, Italy
| | - Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz, Linz, Austria
| | - Thomas Mueller
- Department of Clinical Pathology, Hospital of Bolzano, Bolzano, Italy.
| |
Collapse
|
39
|
Somuncu MU, Akgun T, Cakır MO, Akgul F, Serbest NG, Karakurt H, Can M, Demir AR. The Elevated Soluble ST2 Predicts No-Reflow Phenomenon in ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. J Atheroscler Thromb 2019; 26:970-978. [PMID: 30996145 PMCID: PMC6845696 DOI: 10.5551/jat.48413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: The primary percutaneous procedure resulted in a significant improvement in the prognosis of myocardial infarction. However, no-reflow phenomenon restrains this benefit of the process. There are studies suggesting that soluble suppression of tumorigenicity (sST2) can be valuable in the diagnosis and progression of heart failure and myocardial infarction. In this study, we aimed to investigate the effect of sST2 on no-reflow phenomenon in ST-elevated myocardial infarction (STEMI). Method: This study included 379 patients (258 men; mean age, 60 ± 11 years) who underwent primary percutaneous treatment for STEMI. sST2 levels were measured from blood samples taken at admission. Patients were divided into two groups according to Thrombolysis in Myocardial Infarction(TIMI) flow grade: group 1 consists of TIMI 0,1,2, accepted as no-reflow, and group 2 consists of TIMI 3, accepted as reflow. Results: No-reflow phenomenon occurred in 60 patients (15.8%). The sST2 level was higher in the no-reflow group (14.2 ± 4.6 vs. 11.3 ± 5.0, p = 0.003). Moreover, regression analysis indicated that diabetes mellitus, lower systolic blood pressure, multivessel vascular disease, high plaque burden, and grade 0 initial TIMI flow rate were other independent predictors of the no-reflow phenomenon in our study. Besides, when the patients were divided into high and low sST2 groups according to the cut-off value from the Receiver operating characteristics analysis, being in the high sST2 group was associated with 2.7 times increased odds for no-reflow than being in the low sST2 group. Conclusion: sST2 is one of the independent predictors of the no-reflow phenomenon in STEMI patients undergoing primary percutaneous coronary intervention.
Collapse
Affiliation(s)
| | - Tunahan Akgun
- Department of Cardiology, Bulent Ecevit University Faculty of Medicine
| | | | - Ferit Akgul
- Department of Cardiology, Bulent Ecevit University Faculty of Medicine
| | | | - Huseyin Karakurt
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital
| | - Murat Can
- Department of Biochemistry, Bulent Ecevit University Faculty of Medicine
| | - Ali Riza Demir
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Center, Training and Research Hospital
| |
Collapse
|
40
|
Haider T, Simader E, Hacker P, Ankersmit HJ, Heinz T, Hajdu S, Negrin LL. Increased serum concentrations of soluble ST2 are associated with pulmonary complications and mortality in polytraumatized patients. Clin Chem Lab Med 2019; 56:810-817. [PMID: 29341938 DOI: 10.1515/cclm-2017-0762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND We sought to evaluate the role of soluble ST2 (suppression of tumorigenicity) serum concentrations in polytraumatized patients and its potential role as biomarker for pulmonary complications. METHODS We included severely injured patients (injury severity score≥16) admitted to our level I trauma center and analyzed serum samples obtained on the day of admission and on day 2. Furthermore, patients with isolated thoracic injury and healthy probands were included and served as control groups. Serum samples were analyzed for soluble ST2 concentrations with a commercially available ELISA kit. RESULTS A total of 130 patients were included in the present study. Five patients with isolated thoracic injury and eight healthy probands were further included. Serum analyses revealed significantly elevated concentrations of soluble ST2 in polytraumatized patients compared to patients suffering from isolated thoracic trauma and healthy probands. In polytraumatized patients who developed pulmonary complications (acute respiratory distress syndrome and pneumonia) and in patients who died, significantly higher serum concentrations of soluble ST2 were found on day 2 (p<0.001). Serum concentrations of soluble ST2 on day 2 were of prognostic value to predict pulmonary complications in polytraumatized patients (area under the curve=0.720, 95% confidence interval=0.623-0.816). Concomitant thoracic trauma had no further impact on serum concentrations of soluble ST2. CONCLUSIONS Serum concentrations of soluble ST2 are upregulated following polytrauma. Increased concentrations were associated with worse outcome.
Collapse
Affiliation(s)
- Thomas Haider
- Department of Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Simader
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Hacker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik J Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Heinz
- Department of Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Hajdu
- Department of Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Lukas L Negrin
- Department of Trauma Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Ghali R, Altara R, Louch WE, Cataliotti A, Mallat Z, Kaplan A, Zouein FA, Booz GW. IL-33 (Interleukin 33)/sST2 Axis in Hypertension and Heart Failure. Hypertension 2018; 72:818-828. [DOI: 10.1161/hypertensionaha.118.11157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rana Ghali
- From the Department of Pharmacology and Toxicology, American University of Beirut Medicine Center, Lebanon (R.G., A.K., F.A.Z.)
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (R.A., W.E.L., A.C.)
- KG Jebsen Center for Cardiac Research, Oslo, Norway (R.A., W.E.L., A.C.)
- Department of Pathology (R.A.), School of Medicine, University of Mississippi Medical Center, Jackson
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (R.A., W.E.L., A.C.)
- KG Jebsen Center for Cardiac Research, Oslo, Norway (R.A., W.E.L., A.C.)
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (R.A., W.E.L., A.C.)
- KG Jebsen Center for Cardiac Research, Oslo, Norway (R.A., W.E.L., A.C.)
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, United Kingdom (Z.M.)
- Institut National de la Sante et de la Recherche Medicale (Inserm), Unit 970, Paris Cardiovascular Research Center, France (Z.M.)
| | - Abdullah Kaplan
- From the Department of Pharmacology and Toxicology, American University of Beirut Medicine Center, Lebanon (R.G., A.K., F.A.Z.)
| | - Fouad A. Zouein
- From the Department of Pharmacology and Toxicology, American University of Beirut Medicine Center, Lebanon (R.G., A.K., F.A.Z.)
| | - George W. Booz
- Department of Pharmacology and Toxicology (G.W.B.), School of Medicine, University of Mississippi Medical Center, Jackson
| |
Collapse
|
42
|
Altara R, Ghali R, Mallat Z, Cataliotti A, Booz GW, Zouein FA. Conflicting vascular and metabolic impact of the IL-33/sST2 axis. Cardiovasc Res 2018; 114:1578-1594. [PMID: 29982301 DOI: 10.1093/cvr/cvy166] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/28/2018] [Indexed: 02/15/2024] Open
Abstract
Interleukin 33 (IL-33), which is expressed by several immune cell types, endothelial and epithelial cells, and fibroblasts, is a cytokine of the IL-1 family that acts both intra- and extracellularly to either enhance or resolve the inflammatory response. Intracellular IL-33 acts in the nucleus as a regulator of transcription. Once released from cells by mechanical stress, inflammatory cytokines, or necrosis, extracellular IL-33 is proteolytically processed to act in an autocrine/paracrine manner as an 'alarmin' on neighbouring or various immune cells expressing the ST2 receptor. Thus, IL-33 may serve an important role in tissue preservation and repair in response to injury; however, the actions of IL-33 are dampened by a soluble form of ST2 (sST2) that acts as a decoy receptor and is produced by endothelial and certain immune cells. Accumulating evidence supports the conclusion that sST2 is a biomarker of vascular health with diagnostic and/or prognostic value in various cardiovascular diseases, including coronary artery disease, myocardial infarction, atherosclerosis, giant-cell arteritis, acute aortic dissection, and ischaemic stroke, as well as obesity and diabetes. Although sST2 levels are positively associated with cardiovascular disease severity, the assumption that IL-33 is always beneficial is naïve. It is increasingly appreciated that the pathophysiological importance of IL-33 is highly dependent on cellular and temporal expression. Although IL-33 is atheroprotective and may prevent obesity and type 2 diabetes by regulating lipid metabolism, IL-33 appears to drive endothelial inflammation. Here, we review the current knowledge of the IL-33/ST2/sST2 signalling network and discuss its pathophysiological and translational implications in cardiovascular diseases.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Building 7, 4th floor, Kirkeveien 166, Oslo, Norway
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Rana Ghali
- Department of Pharmacology and Toxicology, American University of Beirut & Medical Center, Faculty of Medicine, Riad El-Solh, Beirut-Lebanon
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
- Institut National de la Sante et de la Recherche Medicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Paris, France
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Building 7, 4th floor, Kirkeveien 166, Oslo, Norway
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut & Medical Center, Faculty of Medicine, Riad El-Solh, Beirut-Lebanon
| |
Collapse
|
43
|
Interleukin 33 regulates gene expression in intestinal epithelial cells independently of its nuclear localization. Cytokine 2018; 111:146-153. [PMID: 30145369 DOI: 10.1016/j.cyto.2018.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/16/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Interleukin 33 (IL33) is a cytokine found in the extracellular space (mature IL33) or in the cell nucleus (full-length IL33). Nuclear accumulation of IL33 has been reported in intestinal epithelial cells (IEC) during intestinal inflammation and cancer, but a functional role for this nuclear form remains unclear. To study the role of nuclear IL33 in IEC, we generated transgenic mice expressing full-length IL33 in the intestinal epithelium (Vfl33 mice). Expression of full-length IL33 in the epithelium resulted in accumulation of IL33 protein in the nucleus and secretion of IL33. Over-expression of full-length IL33 by IEC did not promote gut inflammation, but induced expression of genes in the IEC and lamina propria lymphocytes (LPL) that correlated negatively with genes expressed in inflammatory bowel diseases (IBD). Because the IL33 receptor ST2 is expressed by IEC, there was the potential that both the mature and full-length forms could mediate this effect. To specifically interrogate the transcriptional role of nuclear IL33, we intercrossed the Vfl33 mice with ST2- deficient mice. ST2 deficiency completely abrogated the transcriptional effects elicited by IL33 expression, suggesting that the transcriptional effects of IL33 on IEC are mediated by its mature, not its nuclear form.
Collapse
|
44
|
Uasuf CG, Sano CD, Gangemi S, Albeggiani G, Cigna D, Dino P, Brusca I, Gjomarkaj M, Pace E. IL-33/s-ST2 ratio, systemic symptoms, and basophil activation in Pru p 3-sensitized allergic patients. Inflamm Res 2018; 67:671-679. [PMID: 29774370 DOI: 10.1007/s00011-018-1157-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although IL-33/ST2 axis is involved in the development of allergic diseases, its contribution in food allergy is still unknown. METHODS In this study, we assessed the serum levels of IL-33 and its s-ST2 receptor in 53 control patients (without allergic diseases), 47 peach (Pru p 3)-sensitized allergic patients (SAP), and in 68 non-Pru p 3-SAP. Basophil activation test (BAT) was used to assess the basophil activation due to allergen exposure before and after the addition of s-ST2 to the blood samples from 5 Pru p 3-SAP. RESULTS IL-33 levels in Pru p 3-SAP were higher than in non-Pru p 3-SAP and in normal controls. Lower s-ST2 levels were found in Pru p 3-SAP than in non-Pru p 3-SAP. IL-33/s-ST2 ratio was higher in Pru p 3-SAP than in both non-Pru p 3-SAP and controls. Higher IL-33/s-ST2 ratio was observed in Pru p 3-SAP with severe than in those with mild systemic symptoms. BAT analysis in Pru p 3-SAP showed a decrease in basophil activation due to Pru p 3 exposure after the addition of s-ST2 to the blood samples. CONCLUSIONS An imbalance in the baseline levels of IL-33/ST2 pathway is present in Pru p 3-SAP. The measurement of this pathway might be helpful to detect patients at a higher risk of developing severe systemic symptoms.
Collapse
Affiliation(s)
- Carina G Uasuf
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Caterina Di Sano
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Division of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| | - Giuseppe Albeggiani
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Diego Cigna
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Paola Dino
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Ignazio Brusca
- Clinical Pathology, Allergy Unit, Buccheri La Ferla Hospital, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Mark Gjomarkaj
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Elisabetta Pace
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy.
| |
Collapse
|
45
|
Vasseur P, Dion S, Filliol A, Genet V, Lucas-Clerc C, Jean-Philippe G, Silvain C, Lecron JC, Piquet-Pellorce C, Samson M. Endogenous IL-33 has no effect on the progression of fibrosis during experimental steatohepatitis. Oncotarget 2018; 8:48563-48574. [PMID: 28611297 PMCID: PMC5564708 DOI: 10.18632/oncotarget.18335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Interleukin (IL)-33 has been recently reported to be strongly pro-fibrogenic in various models of liver disease. Our aim was to study the role of endogenous IL-33 in a diet-induced model of steatohepatitis. IL-33 deficient mice and wild type (WT) littermates received a high-fat diet (HFD), or a standard diet for 12 weeks. The HFD-induced steatohepatitis was associated with an upregulation of IL-33 transcripts and protein. An insulin tolerance test revealed lower systemic insulin sensitivity in IL-33-/—HFD mice than in WT-HFD mice. Nevertheless, IL-33 deficiency did not affect the severity of liver inflammation by histological and transcriptomic analyses, nor the quantity of liver fibrosis. Livers from HFD mice had more myeloid populations, markedly fewer NKT cells and higher proportion of ST2+ Treg cells and ST2+ type 2 innate lymphoid cells (ILC2), all unaffected by IL-33 deficiency. In conclusion, deficiency of endogenous IL-33 does not affect the evolution of experimental diet-induced steatohepatitis towards liver fibrosis.
Collapse
Affiliation(s)
- Philippe Vasseur
- Service d'Hépato-Gastroentérologie, Centre Hospitalier Nord Deux-Sèvres, Thouars, France.,Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, Poitiers, France
| | - Sarah Dion
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Aveline Filliol
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Valentine Genet
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Catherine Lucas-Clerc
- Service de Biochimie, Centre Hospitalier Universitaire, Rennes, Université de Rennes, Rennes, France
| | - Girard Jean-Philippe
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Christine Silvain
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, Poitiers, France.,Service d'Hépato-Gastroentérologie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Jean-Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, Poitiers, France.,Service d'Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Claire Piquet-Pellorce
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| |
Collapse
|
46
|
Mast cells promote small bowel cancer in a tumor stage-specific and cytokine-dependent manner. Proc Natl Acad Sci U S A 2018; 115:1588-1592. [PMID: 29429965 PMCID: PMC5816178 DOI: 10.1073/pnas.1716804115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We show that distinct subsets of mast cells (MCs) expand with sequential oncogenic events in small bowel cancer. Mucosal mast cells (MMCs) previously detected early during Trichinella spiralis infection expand in adenomatous polyps in an IL-10–dependent manner. Connective tissue mast cells (CTMCs), earlier shown to expand during the resolution of inflammation following clearance of T. spiralis, are independent of IL-10 and associate with the transition of polyps to adenocarcinoma. IL-33 upregulates the CTMC lineage-specific protease murine mast cell protease 6 (mMCP6). Ablation of mMCP6 attenuates tumor growth. Thus, tissue sentinel cells respond to oncogenic events and cellular transformation in effect to help promote cancer. Delineating the types of MCs present at various stages of disease offers actionable cellular targets for therapeutic intervention in disease progression. Mast cells (MCs) are tissue resident sentinels that mature and orchestrate inflammation in response to infection and allergy. While they are also frequently observed in tumors, the contribution of MCs to carcinogenesis remains unclear. Here, we show that sequential oncogenic events in gut epithelia expand different types of MCs in a temporal-, spatial-, and cytokine-dependent manner. The first wave of MCs expands focally in benign adenomatous polyps, which have elevated levels of IL-10, IL-13, and IL-33, and are rich in type-2 innate lymphoid cells (ILC2s). These vanguard MCs adhere to the transformed epithelial cells and express murine mast cell protease 2 (mMCP2; a typical mucosal MC protease) and, to a lesser extent, the connective tissue mast cell (CTMC) protease mMCP6. Persistence of MCs is strictly dependent on T cell-derived IL-10, and their loss in the absence of IL-10–expressing T cells markedly delays small bowel (SB) polyposis. MCs expand profusely in polyposis-prone mice when T cells overexpress IL-10. The frequency of polyp-associated MCs is unaltered in response to broad-spectrum antibiotics, arguing against a microbial component driving their recruitment. Intriguingly, when polyps become invasive, a second wave of mMCP5+/mMCP6+ CTMCs expands in the tumor stroma and at invasive tumor borders. Ablation of mMCP6 expression attenuates polyposis, but invasive properties of the remaining lesions remain intact. Our findings argue for a multistep process in SB carcinogenesis in which distinct MC subsets, and their elaborated proteases, guide disease progression.
Collapse
|
47
|
Serrels B, McGivern N, Canel M, Byron A, Johnson SC, McSorley HJ, Quinn N, Taggart D, Von Kreigsheim A, Anderton SM, Serrels A, Frame MC. IL-33 and ST2 mediate FAK-dependent antitumor immune evasion through transcriptional networks. Sci Signal 2017; 10:eaan8355. [PMID: 29208683 PMCID: PMC6128400 DOI: 10.1126/scisignal.aan8355] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Focal adhesion kinase (FAK) mediates tumor cell-intrinsic behaviors that promote tumor growth and metastasis. We previously showed that FAK also induces the expression of inflammatory genes that inhibit antitumor immunity in the microenvironment. We identified a crucial, previously unknown role for the dual-function cytokine interleukin-33 (IL-33) in FAK-dependent immune evasion. In murine squamous cell carcinoma (SCC) cells, specifically nuclear FAK enhanced the expression of the genes encoding IL-33, the chemokine CCL5, and the soluble, secreted form of the IL-33 receptor, called soluble ST2 (sST2). The abundance of IL-33 and CCL5 was increased in FAK-positive SCC cells but not in normal keratinocytes. IL-33 associated with FAK in the nucleus, and the FAK-IL-33 complex interacted with a network of chromatin modifiers and transcriptional regulators, including TAF9, WDR82, and BRD4, which promote the activity of nuclear factor κB (NF-κB) and its induction of genes encoding chemokines, including CCL5. We did not detect secretion of IL-33 from FAK-positive SCC cells; thus, we propose that the increased production and secretion of sST2 likely sequesters IL-33 secreted by other cell types within the tumor environment, thus blocking its stimulatory effects on infiltrating host immune cells. Depleting FAK, IL-33, or sST2 from SCC cells before implantation induced tumor regression in syngeneic mice, except when CD8+ T cells were co-depleted. Our data provide mechanistic insight into how FAK controls the tumor immune environment, namely, through a transcriptional regulatory network mediated by nuclear IL-33. Targeting this axis may boost antitumor immunity in patients.
Collapse
Affiliation(s)
- Bryan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.
| | - Niamh McGivern
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Marta Canel
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Sarah C Johnson
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Henry J McSorley
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Niall Quinn
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - David Taggart
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alex Von Kreigsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Stephen M Anderton
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
48
|
Lock FE, Babaian A, Zhang Y, Gagnier L, Kuah S, Weberling A, Karimi MM, Mager DL. A novel isoform of IL-33 revealed by screening for transposable element promoted genes in human colorectal cancer. PLoS One 2017; 12:e0180659. [PMID: 28715472 PMCID: PMC5513427 DOI: 10.1371/journal.pone.0180659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences contain multiple regulatory motifs and hence are capable of influencing expression of host genes. TEs are known to be released from epigenetic repression and can become transcriptionally active in cancer. Such activation could also lead to lineage-inappropriate activation of oncogenes, as previously described in lymphomas. However, there are few reports of this mechanism occurring in non-blood cancers. Here, we re-analyzed whole transcriptome data from a large cohort of patients with colon cancer, compared to matched normal colon control samples, to detect genes or transcripts ectopically expressed through activation of TE promoters. Among many such transcripts, we identified six where the affected gene has described role in cancer and where the TE-driven gene mRNA is expressed in primary colon cancer, but not normal matched tissue, and confirmed expression in colon cancer-derived cell lines. We further characterized a TE-gene chimeric transcript involving the Interleukin 33 (IL-33) gene (termed LTR-IL-33), that is ectopically expressed in a subset of colon cancer samples through the use of an endogenous retroviral long terminal repeat (LTR) promoter of the MSTD family. The LTR-IL-33 chimeric transcript encodes a novel shorter isoform of the protein, which is missing the initial N-terminus (including many conserved residues) of Native IL-33. In vitro studies showed that LTR-IL-33 expression is required for optimal CRC cell line growth as 3D colonospheres. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in colon cancer.
Collapse
Affiliation(s)
- Frances E. Lock
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Artem Babaian
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Liane Gagnier
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sabrina Kuah
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Antonia Weberling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Mohammad M. Karimi
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, France
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Ciccia F, Rizzo A, Ferrante A, Guggino G, Croci S, Cavazza A, Salvarani C, Triolo G. New insights into the pathogenesis of giant cell arteritis. Autoimmun Rev 2017; 16:675-683. [DOI: 10.1016/j.autrev.2017.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 03/17/2017] [Indexed: 12/12/2022]
|
50
|
Griesenauer B, Paczesny S. The ST2/IL-33 Axis in Immune Cells during Inflammatory Diseases. Front Immunol 2017; 8:475. [PMID: 28484466 PMCID: PMC5402045 DOI: 10.3389/fimmu.2017.00475] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/05/2017] [Indexed: 12/16/2022] Open
Abstract
Il1rl1 (also known as ST2) is a member of the IL-1 superfamily, and its only known ligand is IL-33. ST2 exists in two forms as splice variants: a soluble form (sST2), which acts as a decoy receptor, sequesters free IL-33, and does not signal, and a membrane-bound form (ST2), which activates the MyD88/NF-κB signaling pathway to enhance mast cell, Th2, regulatory T cell (Treg), and innate lymphoid cell type 2 functions. sST2 levels are increased in patients with active inflammatory bowel disease, acute cardiac and small bowel transplant allograft rejection, colon and gastric cancers, gut mucosal damage during viral infection, pulmonary disease, heart disease, and graft-versus-host disease. Recently, sST2 has been shown to be secreted by intestinal pro-inflammatory T cells during gut inflammation; on the contrary, protective ST2-expressing Tregs are decreased, implicating that ST2/IL-33 signaling may play an important role in intestinal disease. This review will focus on what is known on its signaling during various inflammatory disease states and highlight potential avenues to intervene in ST2/IL-33 signaling as treatment options.
Collapse
Affiliation(s)
- Brad Griesenauer
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
- Department of Microbiology Immunology, Indiana University, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
- Department of Microbiology Immunology, Indiana University, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| |
Collapse
|