1
|
Song Y, Cao S, Sun X, Chen G. The interplay of hydrogen sulfide and microRNAs in cardiovascular diseases: insights and future perspectives. Mamm Genome 2024; 35:309-323. [PMID: 38834923 DOI: 10.1007/s00335-024-10043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Hydrogen sulfide (H2S) is recognized as the third gasotransmitter, after nitric oxide (NO) and carbon monoxide (CO). It is known for its cardioprotective properties, including the relaxation of blood vessels, promotion of angiogenesis, regulation of myocardial cell apoptosis, inhibition of vascular smooth muscle cell proliferation, and reduction of inflammation. Additionally, abnormal H2S generation has been linked to the development of cardiovascular diseases (CVD), such as pulmonary hypertension, hypertension, atherosclerosis, vascular calcification, and myocardial injury. MicroRNAs (miRNAs) are non-coding, conserved, and versatile molecules that primarily influence gene expression by repressing translation and have emerged as biomarkers for CVD diagnosis. Studies have demonstrated that H2S can ameliorate cardiac dysfunction by regulating specific miRNAs, and certain miRNAs can also regulate H2S synthesis. The crosstalk between miRNAs and H2S offers a novel perspective for investigating the pathophysiology, prevention, and treatment of CVD. The present analysis outlines the interactions between H2S and miRNAs and their influence on CVD, providing insights into their future potential and advancement.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Cao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Guozhen Chen
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong, China.
| |
Collapse
|
2
|
Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG, Baig MS. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol 2024; 154:107282. [PMID: 38325566 DOI: 10.1016/j.vph.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease in which fats, lipids, cholesterol, calcium, proliferating smooth muscle cells, and immune cells accumulate in the intima of the large arteries, forming atherosclerotic plaques. A complex interplay of various vascular and immune cells takes place during the initiation and progression of atherosclerosis. Multiple reports indicate that tight control of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) production is critical for maintaining vascular health. Unrestricted ROS and RNS generation may lead to activation of various inflammatory signaling pathways, facilitating atherosclerosis. Given these deleterious consequences, it is important to understand how ROS and RNS affect the signaling processes involved in atherogenesis. Conversely, RSS appears to exhibit an atheroprotective potential and can alleviate the deleterious effects of ROS and RNS. Herein, we review the literature describing the effects of ROS, RNS, and RSS on vascular smooth muscle cells, endothelial cells, and macrophages and focus on how changes in their production affect the initiation and progression of atherosclerosis. This review also discusses the contribution of ROS, RNS, and RSS in mediating various post-translational modifications, such as oxidation, nitrosylation, and sulfation, of the molecules involved in inflammatory signaling.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia; Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; The Cell Physiology and Pathology Laboratory, Turgenev State University of Orel, Orel, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shivani Vaja
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India.
| |
Collapse
|
3
|
He J, Gao Y, Yang C, Guo Y, Liu L, Lu S, He H. Navigating the landscape: Prospects and hurdles in targeting vascular smooth muscle cells for atherosclerosis diagnosis and therapy. J Control Release 2024; 366:261-281. [PMID: 38161032 DOI: 10.1016/j.jconrel.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Vascular smooth muscle cells (VSMCs) have emerged as pivotal contributors throughout all phases of atherosclerotic plaque development, effectively dispelling prior underestimations of their prevalence and significance. Recent lineage tracing studies have unveiled the clonal nature and remarkable adaptability inherent to VSMCs, thereby illuminating their intricate and multifaceted roles in the context of atherosclerosis. This comprehensive review provides an in-depth exploration of the intricate mechanisms and distinctive characteristics that define VSMCs across various physiological processes, firmly underscoring their paramount importance in shaping the course of atherosclerosis. Furthermore, this review offers a thorough examination of the significant strides made over the past two decades in advancing imaging techniques and therapeutic strategies with a precise focus on targeting VSMCs within atherosclerotic plaques, notably spotlighting meticulously engineered nanoparticles as a promising avenue. We envision the potential of VSMC-targeted nanoparticles, thoughtfully loaded with medications or combination therapies, to effectively mitigate pro-atherogenic VSMC processes. These advancements are poised to contribute significantly to the pivotal objective of modulating VSMC phenotypes and enhancing plaque stability. Moreover, our paper also delves into recent breakthroughs in VSMC-targeted imaging technologies, showcasing their remarkable precision in locating microcalcifications, dynamically monitoring plaque fibrous cap integrity, and assessing the therapeutic efficacy of medical interventions. Lastly, we conscientiously explore the opportunities and challenges inherent in this innovative approach, providing a holistic perspective on the potential of VSMC-targeted strategies in the evolving landscape of atherosclerosis research and treatment.
Collapse
Affiliation(s)
- Jianhua He
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China.
| | - Yu Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Can Yang
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yujie Guo
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Lisha Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Shan Lu
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China.
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
4
|
Youness RA, Habashy DA, Khater N, Elsayed K, Dawoud A, Hakim S, Nafea H, Bourquin C, Abdel-Kader RM, Gad MZ. Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review. Noncoding RNA 2024; 10:7. [PMID: 38250807 PMCID: PMC10801522 DOI: 10.3390/ncrna10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.
Collapse
Affiliation(s)
- Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Danira Ashraf Habashy
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Sousanna Hakim
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Reham M. Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| |
Collapse
|
5
|
Chen H, Li K, Qin Y, Zhou J, Li T, Qian L, Yang C, Ji X, Wu D. Recent advances in the role of endogenous hydrogen sulphide in cancer cells. Cell Prolif 2023; 56:e13449. [PMID: 36929586 PMCID: PMC10472536 DOI: 10.1111/cpr.13449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogen sulphide (H2 S) is a gaseous neurotransmitter that can be self-synthesized by living organisms. With the deepening of research, the pathophysiological mechanisms of endogenous H2 S in cancer have been increasingly elucidated: (1) promote angiogenesis, (2) stimulate cell bioenergetics, (3) promote migration and proliferation thereby invasion, (4) inhibit apoptosis and (5) activate abnormal cell cycle. However, the increasing H2 S levels via exogenous sources show the opposite trend. This phenomenon can be explained by the bell-shaped pharmacological model of H2 S, that is, the production of endogenous (low concentration) H2 S promotes tumour growth while the exogenous (high concentration) H2 S inhibits tumour growth. Here, we review the impact of endogenous H2 S synthesis and metabolism on tumour progression, summarize the mechanism of action of H2 S in tumour growth, and discuss the possibility of H2 S as a potential target for tumour treatment.
Collapse
Affiliation(s)
- Hao‐Jie Chen
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Ke Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Yang‐Zhe Qin
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Jing‐Jing Zhou
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Tao Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Lei Qian
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Chang‐Yong Yang
- School of Nursing and HealthHenan UniversityKaifengHenan475004China
| | - Xin‐Ying Ji
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
| | - Dong‐Dong Wu
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- School of StomatologyHenan UniversityKaifengHenan475004China
| |
Collapse
|
6
|
Liu A, Li R, Zaaboul F, He M, Li X, Shi J, Liu Y, Xu YJ. Proteomic analysis reveals the mechanisms of the astaxanthin suppressed foam cell formation. Life Sci 2023; 325:121774. [PMID: 37172817 DOI: 10.1016/j.lfs.2023.121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
AIMS Lipid metabolism in macrophages plays a key role in atherosclerosis development. Excessive low-density lipoprotein taken by macrophages leads to foam cell formation. In this study, we aimed to investigate the effect of astaxanthin on foam cells, and using mass spectrometry-based proteomic approaches to identified the protein expression changes of foam cells. MAIN METHODS The foam cell model was build, then treated with astaxanthin, and tested the content of TC and FC. And proteomics analysis was used in macrophage, macrophage-derived foam cells and macrophage-derived foam cells treated with AST. Then bioinformatic analyses were performed to annotate the functions and associated pathways of the differential proteins. Finally, western blot analysis further confirmed the differential expression of these proteins. KEY FINDINGS Total cholesterol (TC) while free cholesterol (FC) increased in foam cells treated with astaxanthin. The proteomics data set presents a global view of the critical pathways involved in lipid metabolism included PI3K/CDC42 and PI3K/RAC1/TGF-β1 pathways. These pathways significantly increased cholesterol efflux from foam cells and further improved foam cell-induced inflammation. SIGNIFICANCE The present finding provide new insights into the mechanism of astaxanthin regulate lipid metabolism in macrophage foam cells.
Collapse
Affiliation(s)
- Aiyang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ruizhi Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Farah Zaaboul
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xue Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Zhang Q, Wen XH, Tang SL, Zhao ZW, Tang CK. Role and therapeutic potential of gelsolin in atherosclerosis. J Mol Cell Cardiol 2023; 178:59-67. [PMID: 36967105 DOI: 10.1016/j.yjmcc.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Atherosclerosis is the major pathophysiological basis of a variety of cardiovascular diseases and has been recognized as a lipid-driven chronic inflammatory disease. Gelsolin (GSN) is a member of the GSN family. The main function of GSN is to cut and seal actin filaments to regulate the cytoskeleton and participate in a variety of biological functions, such as cell movement, morphological changes, metabolism, apoptosis and phagocytosis. Recently, more and more evidences have demonstrated that GSN is Closely related to atherosclerosis, involving lipid metabolism, inflammation, cell proliferation, migration and thrombosis. This article reviews the role of GSN in atherosclerosis from inflammation, apoptosis, angiogenesis and thrombosis.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hui Wen
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shi-Lin Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhen-Wang Zhao
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
8
|
Rodkin S, Nwosu C, Sannikov A, Tyurin A, Chulkov VS, Raevskaya M, Ermakov A, Kirichenko E, Gasanov M. The Role of Gasotransmitter-Dependent Signaling Mechanisms in Apoptotic Cell Death in Cardiovascular, Rheumatic, Kidney, and Neurodegenerative Diseases and Mental Disorders. Int J Mol Sci 2023; 24:ijms24076014. [PMID: 37046987 PMCID: PMC10094524 DOI: 10.3390/ijms24076014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular, rheumatic, kidney, and neurodegenerative diseases and mental disorders are a common cause of deterioration in the quality of life up to severe disability and death worldwide. Many pathological conditions, including this group of diseases, are based on increased cell death through apoptosis. It is known that this process is associated with signaling pathways controlled by a group of gaseous signaling molecules called gasotransmitters. They are unique messengers that can control the process of apoptosis at different stages of its implementation. However, their role in the regulation of apoptotic signaling in these pathological conditions is often controversial and not completely clear. This review analyzes the role of nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) in apoptotic cell death in cardiovascular, rheumatic, kidney, and neurodegenerative diseases. The signaling processes involved in apoptosis in schizophrenia, bipolar, depressive, and anxiety disorders are also considered. The role of gasotransmitters in apoptosis in these diseases is largely determined by cell specificity and concentration. NO has the greatest dualism; scales are more prone to apoptosis. At the same time, CO, H2S, and SO2 are more involved in cytoprotective processes.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Chizaram Nwosu
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, Rostov-on-Don 344022, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, Ufa 450008, Russia
| | | | - Margarita Raevskaya
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexey Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Evgeniya Kirichenko
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, Rostov-on-Don 344022, Russia
| |
Collapse
|
9
|
Zhang H, Du J, Huang Y, Tang C, Jin H. Hydrogen Sulfide Regulates Macrophage Function in Cardiovascular Diseases. Antioxid Redox Signal 2023; 38:45-56. [PMID: 35658575 DOI: 10.1089/ars.2022.0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is an endogenous gasotransmitter that plays a vital role in immune system regulation. Recently, the regulation of macrophage function by H2S has been extensively and actively recognized. Recent Advances: The mechanisms by which endogenous H2S controls macrophage function have attracted increasing attention. The generation of endogenous H2S from macrophages is mainly catalyzed by cystathionine-γ-lyase. H2S is involved in the macrophage activation and inflammasome formation, which contributes to macrophage apoptosis, adhesion, chemotaxis, and polarization. In addition, H2S has redox ability and interacts with reactive oxygen species to prevent oxidative stress. Moreover, H2S epigenetically regulates gene expression. Critical Issues: In this article, the generation of endogenous H2S in macrophages and its regulatory effect on macrophage function are reviewed. In addition, the signal transduction targeting macrophages by H2S is also addressed. Finally, the potential therapeutic effect of H2S on macrophages is discussed. Future Directions: Further experiments are required to explore the involvement of endogenous H2S in the regulation of macrophage function in various physiological and pathophysiological processes and elucidate the mechanisms involved. Regarding the clinical translation of H2S, further exploration of the application of H2S in inflammation-related diseases is needed. Antioxid. Redox Signal. 38, 45-56.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China.,Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People's Republic of China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
10
|
The Role of Hydrogen Sulfide in Plaque Stability. Antioxidants (Basel) 2022; 11:antiox11122356. [PMID: 36552564 PMCID: PMC9774534 DOI: 10.3390/antiox11122356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis is the greatest contributor to cardiovascular events and is involved in the majority of deaths worldwide. Plaque rapture or erosion precipitates life-threatening thrombi, resulting in the obstruction blood flow to the heart (acute coronary syndrome), brain (ischemic stroke) or low extremities (peripheral vascular diseases). Among these events, major causation dues to the plaque rupture. Although the initiation, procession, and precise time of controlling plaque rupture are unclear, foam cell formation and apoptosis, cell death, extracellular matrix components, protease expression and activity, local inflammation, intraplaque hemorrhage, and calcification contribute to the plaque instability. These alterations tightly associate with the function regulation of intraplaque various cell populations. Hydrogen sulfide (H2S) is gasotransmitter derived from methionine metabolism and exerts a protective role in the genesis of atherosclerosis. Recent progress also showed H2S mediated the plaque stability. In this review, we discuss the progress of endogenous H2S modulation on functions of vascular smooth muscle cells, monocytes/macrophages, and T cells, and the molecular mechanism in plaque stability.
Collapse
|
11
|
Gáll T, Nagy P, Garai D, Potor L, Balla GJ, Balla G, Balla J. Overview on hydrogen sulfide-mediated suppression of vascular calcification and hemoglobin/heme-mediated vascular damage in atherosclerosis. Redox Biol 2022; 57:102504. [PMID: 36240620 PMCID: PMC9576974 DOI: 10.1016/j.redox.2022.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/04/2022] Open
Abstract
Vulnerable atherosclerotic plaques with hemorrhage considerably contribute to cardiovascular morbidity and mortality. Calcification is the main characteristic of advanced atherosclerotic lesions and calcified aortic valve disease (CAVD). Lyses of red blood cells and hemoglobin (Hb) release occur in human hemorrhagic complicated lesions. During the interaction of cell-free Hb with plaque constituents, Hb is oxidized to ferric and ferryl states accompanied by oxidative changes of the globin moieties and heme release. Accumulation of both ferryl-Hb and metHb has been observed in atherosclerotic plaques. The oxidation hotspots in the globin chain are the cysteine and tyrosine amino acids associated with the generation of Hb dimers, tetramers and polymers. Moreover, fragmentation of Hb occurs leading to the formation of globin-derived peptides. A series of these pro-atherogenic cellular responses can be suppressed by hydrogen sulfide (H2S). Since H2S has been explored to exhibit a wide range of physiologic functions to maintain vascular homeostasis, it is not surprising that H2S may play beneficial effects in the progression of atherosclerosis. In the present review, we summarize the findings about the effects of H2S on atherosclerosis and CAVD with a special emphasis on the oxidation of Hb/heme in atherosclerotic plaque development and vascular calcification.
Collapse
Affiliation(s)
- Tamás Gáll
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary; Institute of Oncochemistry, University of Debrecen, Hungary
| | - Dorottya Garai
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | - László Potor
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | | | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, 11003, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
12
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
13
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
14
|
SREBP-1c impairs ULK1 sulfhydration-mediated autophagic flux to promote hepatic steatosis in high-fat-diet-fed mice. Mol Cell 2021; 81:3820-3832.e7. [PMID: 34233158 DOI: 10.1016/j.molcel.2021.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/21/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022]
Abstract
A metabolic imbalance between lipid synthesis and degradation can lead to hepatic lipid accumulation, a characteristic of patients with non-alcoholic fatty liver disease (NAFLD). Here, we report that high-fat-diet-induced sterol regulatory element-binding protein (SREBP)-1c, a key transcription factor that regulates lipid biosynthesis, impairs autophagic lipid catabolism via altered H2S signaling. SREBP-1c reduced cystathionine gamma-lyase (CSE) via miR-216a, which in turn decreased hepatic H2S levels and sulfhydration-dependent activation of Unc-51-like autophagy-activating kinase 1 (ULK1). Furthermore, Cys951Ser mutation of ULK1 decreased autolysosome formation and promoted hepatic lipid accumulation in mice, suggesting that the loss of ULK1 sulfhydration was directly associated with the pathogenesis of NAFLD. Moreover, silencing of CSE in SREBP-1c knockout mice increased liver triglycerides, confirming the connection between CSE, autophagy, and SREBP-1c. Overall, our results uncover a 2-fold mechanism for SREBP-1c-driven hepatic lipid accumulation through reciprocal activation and inhibition of hepatic lipid biosynthesis and degradation, respectively.
Collapse
|
15
|
Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam Cells as Therapeutic Targets in Atherosclerosis with a Focus on the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22052529. [PMID: 33802600 PMCID: PMC7961492 DOI: 10.3390/ijms22052529] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a major cause of human cardiovascular disease, which is the leading cause of mortality around the world. Various physiological and pathological processes are involved, including chronic inflammation, dysregulation of lipid metabolism, development of an environment characterized by oxidative stress and improper immune responses. Accordingly, the expansion of novel targets for the treatment of atherosclerosis is necessary. In this study, we focus on the role of foam cells in the development of atherosclerosis. The specific therapeutic goals associated with each stage in the formation of foam cells and the development of atherosclerosis will be considered. Processing and metabolism of cholesterol in the macrophage is one of the main steps in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esterification and cholesterol efflux, which ultimately leads to cholesterol equilibrium in the macrophage. Recently, many preclinical studies have appeared concerning the role of non-encoding RNAs in the formation of atherosclerotic lesions. Non-encoding RNAs, especially microRNAs, are considered regulators of lipid metabolism by affecting the expression of genes involved in the uptake (e.g., CD36 and LOX1) esterification (ACAT1) and efflux (ABCA1, ABCG1) of cholesterol. They are also able to regulate inflammatory pathways, produce cytokines and mediate foam cell apoptosis. We have reviewed important preclinical evidence of their therapeutic targeting in atherosclerosis, with a special focus on foam cell formation.
Collapse
Affiliation(s)
- Amin Javadifar
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Sahar Rastgoo
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 93338 Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93338 Lodz, Poland
- Correspondence: (M.B.); or (A.S.); Tel.: +98-5118002288 (M.B. & A.S.); Fax: +98-5118002287 (M.B. & A.S.)
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108-2718, USA;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Correspondence: (M.B.); or (A.S.); Tel.: +98-5118002288 (M.B. & A.S.); Fax: +98-5118002287 (M.B. & A.S.)
| |
Collapse
|
16
|
Emerging roles of non-coding RNAs in the metabolic reprogramming of tumor-associated macrophages. Immunol Lett 2021; 232:27-34. [PMID: 33577913 DOI: 10.1016/j.imlet.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 01/09/2023]
Abstract
Macrophages are the most common immune cells in the tumor microenvironment, and tumor-associated macrophages play an important role in cancer development. Metabolic reprogramming is important for the functional plasticity of macrophages. Studies investigating the relevance of non-coding RNAs (ncRNAs) in human cancer found that ncRNAs can regulate the metabolism of cancer cells and tumor-associated macrophages. NcRNAs include short ncRNAs, long ncRNAs (lncRNAs), and circular RNAs (circRNAs). The most common short ncRNAs are microRNAs, which regulate glucose, lipid, and amino acid metabolism in macrophages by acting on metabolism-related pathways and targeting metabolism-related enzymes and proteins, and are therefore involved in cancer progression. The role of lncRNAs and circRNAs in the metabolism of tumor-associated macrophages remains unclear. LncRNAs affect the glucose metabolism of macrophages, whereas their role in lipid and amino acid metabolism is not clear. CircRNAs regulate amino acid metabolism in macrophages. The roles of ncRNAs in energy metabolism and the underlying mechanisms need to be investigated further. Here, we summarize recent findings on the involvement of ncRNAs in metabolic reprogramming in tumor-associated macrophages, which affect the tumor microenvironment and play important roles in the development of cancer. Improving our understanding of the effects of ncRNAs on metabolic reprogramming of tumor-associated macrophages may facilitate the development of effective clinical therapies.
Collapse
|
17
|
MicroRNA-216a Promotes Endothelial Inflammation by Smad7/I κB α Pathway in Atherosclerosis. DISEASE MARKERS 2020; 2020:8864322. [PMID: 33282009 PMCID: PMC7688351 DOI: 10.1155/2020/8864322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023]
Abstract
Background The endothelium is the first line of defence against harmful microenvironment risks, and microRNAs (miRNAs) involved in vascular inflammation may be promising therapeutic targets to modulate atherosclerosis progression. In this study, we aimed to investigate the mechanism by which microRNA-216a (miR-216a) modulated inflammation activation of endothelial cells. Methods. A replicative senescence model of human umbilical vein endothelial cells (HUVECs) was established, and population-doubling levels (PDLs) were defined during passages. PDL8 HUVECs were transfected with miR-216a mimics/inhibitor or small interfering RNA (siRNA) of SMAD family member 7 (Smad7). Real-time PCR and Western blot assays were performed to detect the regulatory role of miR-216a on Smad7 and NF-κB inhibitor alpha (IκBα) expression. The effect of miR-216a on adhesive capability of HUVECs to THP-1 cells was examined. MiR-216a and Smad7 expression in vivo were measured using human carotid atherosclerotic plaques of the patients who underwent carotid endarterectomy (n = 41). Results Luciferase assays showed that Smad7 was a direct target of miR-216a. Smad7 mRNA expression, negatively correlated with miR-216a during endothelial aging, was downregulated in senescent PDL44 cells, compared with young PDL8 HUVECs. MiR-216a markedly increased endothelial inflammation and adhesive capability to monocytes in PDL8 cells by promoting the phosphorylation and degradation of IκBα and then activating NF-κB signalling pathway. The effect of miR-216a on endothelial cells was consistent with that blocked Smad7 by siRNAs. When inhibiting endogenous miR-216a, the Smad7/IκBα expression was rescued, which led to decreased endothelial inflammation and monocytes recruitment. In human carotid atherosclerotic plaques, Smad7 level was remarkably decreased in high miR-216a group compared with low miR-216a group. Moreover, miR-216a was negatively correlated with Smad7 and IκBα levels and positively correlated with interleukin 1 beta (IL1β) expression in vivo. Conclusion In summary, our findings suggest a new mechanism of vascular endothelial inflammation involving Smad7/IκBα signalling pathway in atherosclerosis.
Collapse
|
18
|
Zhang H, Bai Z, Zhu L, Liang Y, Fan X, Li J, Wen H, Shi T, Zhao Q, Wang Z. Hydrogen sulfide donors: Therapeutic potential in anti-atherosclerosis. Eur J Med Chem 2020; 205:112665. [DOI: 10.1016/j.ejmech.2020.112665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022]
|
19
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
20
|
Chen K, Zhao Z, Wang G, Zou J, Yu X, Zhang D, Zeng G, Tang C. Interleukin-5 promotes ATP-binding cassette transporter A1 expression through miR-211/JAK2/STAT3 pathways in THP-1-dervied macrophages. Acta Biochim Biophys Sin (Shanghai) 2020; 52:832-841. [PMID: 32785591 DOI: 10.1093/abbs/gmaa071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 01/26/2023] Open
Abstract
Interleukin-5 (IL-5) is manifested as its involvement in the process of atherosclerosis, but the mechanism is still unknown. In this study, we explored the effect of IL-5 on lipid metabolism and its underlying mechanisms in THP-1-derived macrophages. The quantitative polymerase chain reaction (qPCR) and western blot analysis results showed that IL-5 significantly up-regulated ATP-binding cassette transporter A1 (ABCA1) expression in a dose-dependent and time-dependent manner. [3H]-labeled cholesterol was used to assess the levels of cholesterol efflux, and the results showed that IL-5 increased ABCA1-mediated cholesterol efflux. A high-performance liquid chromatography assay indicated that cellular cholesterol content was decreased by IL-5 treatment in THP-1-derived macrophages. The selective inhibitor and small interfering RNA were used to block the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway. The results of the qPCR and western blot analysis showed that IL-5 activated JAK2/STAT3 pathway to up-regulate ABCA1 expression. Meanwhile, IL-5 reduced the expression level of miR-211. Furthermore, we found that JAK2 is a target gene of miR-211 and miR-211 mimic inhibited the expression of JAK2 and reduced the levels of p-STAT3 and ABCA1 as revealed by luciferase reporter assay, qPCR and western blot analysis. In summary, these findings indicated that IL-5 promotes ABCA1 expression and cholesterol efflux through the miR-211/JAK2/STAT3 signaling pathway in THP-1-derived macrophages.
Collapse
Affiliation(s)
- Kong Chen
- Department of Cardiology, The Second Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhenwang Zhao
- Department of Cardiology, The Second Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Gang Wang
- Department of Cardiology, The Second Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jin Zou
- Department of Cardiology, The Second Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Xiaohua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 460106, China
| | - Dawei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Gaofeng Zeng
- Department of Cardiology, The Second Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chaoke Tang
- Department of Cardiology, The Second Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
21
|
Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. MicroRNA sequences modulating inflammation and lipid accumulation in macrophage “foam” cells: Implications for atherosclerosis. World J Cardiol 2020; 12:303-333. [PMID: 32843934 PMCID: PMC7415235 DOI: 10.4330/wjc.v12.i7.303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of macrophage “foam” cells, laden with cholesterol and cholesteryl ester, within the intima of large arteries, is a hallmark of early “fatty streak” lesions which can progress to complex, multicellular atheromatous plaques, involving lipoproteins from the bloodstream and cells of the innate and adaptive immune response. Sterol accumulation triggers induction of genes encoding proteins mediating the atheroprotective cholesterol efflux pathway. Within the arterial intima, however, this mechanism is overwhelmed, leading to distinct changes in macrophage phenotype and inflammatory status. Over the last decade marked gains have been made in understanding of the epigenetic landscape which influence macrophage function, and in particular the importance of small non-coding micro-RNA (miRNA) sequences in this context. This review identifies some of the miRNA sequences which play a key role in regulating “foam” cell formation and atherogenesis, highlighting sequences involved in cholesterol accumulation, those influencing inflammation in sterol-loaded cells, and novel sequences and pathways which may offer new strategies to influence macrophage function within atherosclerotic lesions.
Collapse
Affiliation(s)
- Richard James Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Janice Marie Walsh Taylor
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Yvonne Dempsie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| |
Collapse
|
22
|
Chen Y, Zhang F, Yin J, Wu S, Zhou X. Protective mechanisms of hydrogen sulfide in myocardial ischemia. J Cell Physiol 2020; 235:9059-9070. [PMID: 32542668 DOI: 10.1002/jcp.29761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2 S), which has been identified as the third gaseous signaling molecule after nitric oxide (NO) and carbon monoxide (CO), plays an important role in maintaining homeostasis in the cardiovascular system. Endogenous H2 S is produced mainly by three endogenous enzymes: cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfur transferase. Numerous studies have shown that H2 S has a significant protective role in myocardial ischemia. The mechanisms by which H2 S affords cardioprotection include the antifibrotic and antiapoptotic effects, regulation of ion channels, protection of mitochondria, reduction of oxidative stress and inflammatory response, regulation of microRNA expression, and promotion of angiogenesis. Amplification of NO- and CO-mediated signaling through crosstalk between H2 S, NO, and CO may also contribute to the cardioprotective effect. Exogenous H2 S donors are expected to become effective drugs for the treatment of cardiovascular diseases. This review article focuses on the protective mechanisms and potential therapeutic applications of H2 S in myocardial ischemia.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Siyi Wu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Wang X, Xue X, Wang H, Xu F, Xin Z, Wang K, Cui M, Qin W. Quercetin inhibits human microvascular endothelial cells viability, migration and tube-formation in vitro through restraining microRNA-216a. J Drug Target 2019; 28:609-616. [PMID: 31791158 DOI: 10.1080/1061186x.2019.1700263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Quercetin belongs to the flavonoids family, which has been proven to have extensive pharmacological effects. Nevertheless, the function of quercetin in peripheral arterial disease (PAD) has not yet been reported. In the research, we purposed to disclose the effectiveness of quercetin in the pathogenesis of PAD.Methods: HMEC-1 cells were cultivated in Matrigel for 24 h to observe the tube-formation. Detections of cell viability, migration and apoptosis were through implementing CCK-8, Transwell and flow cytometry methods. Western blot was utilised for measuring angiogenesis-, migration- and apoptosis-correlative factors. MiR-216a expression was examined via qRT-PCR, and its functions in HMEC-1 cells were uncovered after miR-216a mimic transfection. Assessment of JAK2/STAT3 and PI3K/AKT pathways was via implementing western blot.Results: HMEC-1 cells were spontaneously vascularised under Matrigel condition. Quercetin predominantly repressed cell viability, migration, VEGF expression and facilitated apoptosis in HMEC-1 cells. Additionally, suppression of miR-216a was discovered in HMEC-1 cells after quercetin stimulation, meanwhile miR-216a overexpression annulled the functions of quercetin in HMEC-1 cells. Besides, quercetin deactivated PI3K/AKT and JAK/STAT pathways through adjusting miR-216a.Conclusion: The above-mentioned consequences exhibited that quercetin suppressed HMEC-1 cell viability, migration and tube-formation through hindering JAK2/STAT3 and PI3K/AKT pathway via declination of miR-216a.
Collapse
Affiliation(s)
- Xu Wang
- Department of Vascular Surgery, Jining No.1 People's Hospital, Jining, China
| | - Xia Xue
- Nursing Department, Jinxiang People's Hospital, Jining, China
| | - Haiqing Wang
- Department of Vascular Surgery, Jining No.1 People's Hospital, Jining, China
| | - Fei Xu
- Department of Vascular Surgery, Jining No.1 People's Hospital, Jining, China
| | - Zhenlei Xin
- Department of Vascular Surgery, Jining No.1 People's Hospital, Jining, China
| | - Kunpeng Wang
- Department of Vascular Surgery, Jining No.1 People's Hospital, Jining, China
| | - Ming Cui
- Department of Vascular Surgery, Jining No.1 People's Hospital, Jining, China
| | - Weiwei Qin
- Department of Vascular Surgery, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
24
|
Yang S, Li J, Chen Y, Zhang S, Feng C, Hou Z, Cai J, Wang Y, Hui R, Lv B, Zhang W. MicroRNA-216a promotes M1 macrophages polarization and atherosclerosis progression by activating telomerase via the Smad3/NF-κB pathway. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1772-1781. [DOI: 10.1016/j.bbadis.2018.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 01/11/2023]
|
25
|
Xiao J, Bai XQ, Liao L, Zhou M, Peng J, Xiang Q, Ren Z, Wen HY, Jiang ZS, Tang ZH, Wang MM, Liu LS. Hydrogen sulfide inhibits PCSK9 expression through the PI3K/Akt‑SREBP‑2 signaling pathway to influence lipid metabolism in HepG2 cells. Int J Mol Med 2019; 43:2055-2063. [PMID: 30864739 PMCID: PMC6443339 DOI: 10.3892/ijmm.2019.4118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule that plays important roles in the cardiovascular system. In our previous studies, we demonstrated that H2S regulates lipid metabolism. In the present study, we aimed to explore the mechanisms through which H2 regulates lipid metabolism in HepG2 cells in vitro. Treatment of the HepG2 cells with H2S inhibited the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) and increased the level of low-density lipoprotein receptor (LDLR) in a time- and dose-dependent manner. The knockdown of PCSK9 by siRNA effectively increased the levels of LDLR and 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate-labeled LDL (DiI-LDL) uptake in the H2S-treated HepG2 cells. Furthermore, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)-sterol regulatory element binding proteins 2 (SREBP-2) signaling pathway was confirmed to be involved in H2S-regulated PCSK9 expression. Notably, the HepG2 cells were incubated with 30% serum and DiI-LDL for 24 h, and the results revealed that H2S increased lipid uptake, but caused no increase in lipid accumulation. On the whole, the findings of this study demonstrate that H2S is involved in the regulation of lipid metabolism in HepG2 cells through the regulation of the expression of PCSK9 via the PI3K/Akt-SREBP-2 signaling pathway. To the very best of our knowledge, this study is the first to report that H2S can regulate the expression of PCSK9.
Collapse
Affiliation(s)
- Jun Xiao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xue-Qin Bai
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ling Liao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Min Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qiong Xiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong-Yan Wen
- Medical College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mei-Mei Wang
- Department of Pediatrics, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
26
|
Nobiletin reduces LPL-mediated lipid accumulation and pro-inflammatory cytokine secretion through upregulation of miR-590 expression. Biochem Biophys Res Commun 2019; 508:97-101. [DOI: 10.1016/j.bbrc.2018.11.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023]
|
27
|
Zhang L, Wang Y, Li Y, Li L, Xu S, Feng X, Liu S. Hydrogen Sulfide (H 2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol 2018; 9:1066. [PMID: 30298008 PMCID: PMC6160695 DOI: 10.3389/fphar.2018.01066] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is the main cause of death worldwide, but its pathogenesis is not yet clear. Hydrogen sulfide (H2S) is considered to be the third most important endogenous gasotransmitter in the organism after carbon monoxide and nitric oxide. It can be synthesized in mammalian tissues and can freely cross the cell membrane and exert many biological effects in various systems including cardiovascular system. More and more recent studies have supported the protective effects of endogenous H2S and exogenous H2S-releasing compounds (such as NaHS, Na2S, and GYY4137) in cardiovascular diseases, such as cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and atherosclerosis. Here, we provided an up-to-date overview of the mechanistic actions of H2S as well as the therapeutic potential of various classes of H2S donors in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingli Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, United States
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sheng Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Intracellular and Plasma Membrane Events in Cholesterol Transport and Homeostasis. J Lipids 2018; 2018:3965054. [PMID: 30174957 PMCID: PMC6106919 DOI: 10.1155/2018/3965054] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cholesterol transport between intracellular compartments proceeds by both energy- and non-energy-dependent processes. Energy-dependent vesicular traffic partly contributes to cholesterol flux between endoplasmic reticulum, plasma membrane, and endocytic vesicles. Membrane contact sites and lipid transfer proteins are involved in nonvesicular lipid traffic. Only “active" cholesterol molecules outside of cholesterol-rich regions and partially exposed in water phase are able to fast transfer. The dissociation of partially exposed cholesterol molecules in water determines the rate of passive aqueous diffusion of cholesterol out of plasma membrane. ATP hydrolysis with concomitant conformational transition is required to cholesterol efflux by ABCA1 and ABCG1 transporters. Besides, scavenger receptor SR-B1 is involved also in cholesterol efflux by facilitated diffusion via hydrophobic tunnel within the molecule. Direct interaction of ABCA1 with apolipoprotein A-I (apoA-I) or apoA-I binding to high capacity binding sites in plasma membrane is important in cholesterol escape to free apoA-I. ABCG1-mediated efflux to fully lipidated apoA-I within high density lipoprotein particle proceeds more likely through the increase of “active” cholesterol level. Putative cholesterol-binding linear motifs within the structure of all three proteins ABCA1, ABCG1, and SR-B1 are suggested to contribute to the binding and transfer of cholesterol molecules from cytoplasmic to outer leaflets of lipid bilayer. Together, plasma membrane events and intracellular cholesterol metabolism and traffic determine the capacity of the cell for cholesterol efflux.
Collapse
|
29
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
30
|
Yang S, Mi X, Chen Y, Feng C, Hou Z, Hui R, Zhang W. MicroRNA-216a induces endothelial senescence and inflammation via Smad3/IκBα pathway. J Cell Mol Med 2018. [PMID: 29512862 PMCID: PMC5908109 DOI: 10.1111/jcmm.13567] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial senescence contributes to atherosclerosis and coronary artery disease (CAD), but the mechanisms are yet to be clarified. We identified that microRNA‐216a (miR‐216a) significantly increased in senescent endothelial cells. The replicative senescence model of human umbilical vein endothelial cells (HUVECs) was established to explore the role of miR‐216a in endothelial ageing and dysfunction. Luciferase assay indicated that Smad3 was a direct target of miR‐216a. Stable expression of miR‐216a induced a premature senescence‐like phenotype in HUVECs with an impairment in proliferation and migration and led to an increased adhesion to monocytes by inhibiting Smad3 expression and thereafter modulating the degradation of NF‐κB inhibitor alpha (IκBα) and activation of adhesion molecules. Conversely, inhibition of endogenous miR‐216a in senescent HUVECs rescued Smad3 and IκBα expression and inhibited monocytes attachment. Plasma miR‐216a was significantly higher in old CAD patients (>50 years) and associated with increased 31% risk for CAD (odds ratio 1.31, 95% confidence interval 1.03‐1.66; P = .03) compared with the matched healthy controls (>50 years). Taken together, our data suggested that miR‐216a promotes endothelial senescence and inflammation as an endogenous inhibitor of Smad3/IκBα pathway, which might serve as a novel target for ageing‐related atherosclerotic diseases.
Collapse
Affiliation(s)
- Shujun Yang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Xuenan Mi
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Yu Chen
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Congrui Feng
- Beijing Institute for Brain Disorders Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Zhihui Hou
- Department of Radiology, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College& Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China.,Beijing Institute for Brain Disorders Center for Brain Disorders Research, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Huang C, Yu XH, Zheng XL, Ou X, Tang CK. Interferon-stimulated gene 15 promotes cholesterol efflux by activating autophagy via the miR-17-5p/Beclin-1 pathway in THP-1 macrophage-derived foam cells. Eur J Pharmacol 2018. [PMID: 29518394 DOI: 10.1016/j.ejphar.2018.02.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Macrophage autophagy contributes to the hydrolysis of cholesteryl ester into free cholesterol mainly for ATP-binding cassette transporter A1 (ABCA1)-dependent efflux. Interferon-stimulated gene 15 (ISG15) has been shown to regulate autophagy in multiple types of cells. The present study aimed to examine the effects of ISG15 on autophagy and cholesterol efflux in THP-1 macrophage-derived foam cells and to explore the underlying molecular mechanisms. Our results showed that overexpression of ISG15 promoted autophagy and cholesterol efflux and inhibited lipid accumulation without impact on ABCA1 expression. Inhibition of autophagy by 3-methyladenine (3-MA) abrogated the enhancing effects of ISG15 on cholesterol efflux. Both bioinformatics analysis and dual luciferase reporter assay identified Beclin-1 as a direct target of miR-17-5p. Moreover, ISG15 overexpression markedly decreased miR-17-5p levels and upregulated Beclin-1 expression. ISG15-induced enhancement of autophagy and cholesterol efflux was reversed by pretreatment with either miR-17-5p mimic or Beclin-1 siRNA. In conclusion, these findings suggest that ISG15 reduces miR-17-5p levels and thereby promotes Beclin-1-mediated autophagy, resulting in increased cholesterol efflux from THP-1 macrophage-derived foam cells.
Collapse
Affiliation(s)
- Chong Huang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta, Canada T2N 4N1
| | - Xiang Ou
- Department of Endocrinology, The First Hospital of Changsha, Changsha, Hunan 410005, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
32
|
Yuan S, Shen X, Kevil CG. Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. Antioxid Redox Signal 2017; 27:634-653. [PMID: 28398086 PMCID: PMC5576200 DOI: 10.1089/ars.2017.7096] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Hydrogen sulfide (H2S) metabolism leads to the formation of oxidized sulfide species, including polysulfide, persulfide, and others. Evidence is emerging that many biological effects of H2S may indeed be due to polysulfide and persulfide activation of signaling pathways and reactivity with discrete small molecules. Recent Advances: Exogenous oxidized sulfide species, including polysulfides, are more reactive than H2S with a wide range of molecules. Importantly, endogenous polysulfide and persulfide formation has been reported to occur via transsulfuration enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS). CRITICAL ISSUES In light of the recent understanding of oxidized sulfide metabolite formation and reactivity, comparatively few studies have been reported comparing cellular biological and in vivo effects of H2S donors versus polysulfide and persulfide donors. Likewise, it is equally unclear when, how, and to what extent persulfide and polysulfide formation occurs in vivo under pathophysiological conditions. FUTURE DIRECTIONS Additional studies regarding persulfide and polysulfide formation and molecular reactions are needed in nearly all aspects of biology to better understand how sulfide metabolites contribute to key chemical biology reactions involved in cardiovascular health and immune responses. Antioxid. Redox Signal. 27, 634-653.
Collapse
Affiliation(s)
- Shuai Yuan
- 1 Department of Cell Biology and Anatomy, LSU Health Sciences Center Shreveport , Shreveport, Louisiana
| | - Xinggui Shen
- 2 Department of Pathology and Translational Pathobiology, LSU Health Sciences Center Shreveport , Shreveport, Louisiana
| | - Christopher G Kevil
- 2 Department of Pathology and Translational Pathobiology, LSU Health Sciences Center Shreveport , Shreveport, Louisiana
| |
Collapse
|
33
|
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 2017; 95:1153-1165. [DOI: 10.1007/s00109-017-1575-8] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
|
34
|
Donnarumma E, Trivedi RK, Lefer DJ. Protective Actions of H2S in Acute Myocardial Infarction and Heart Failure. Compr Physiol 2017; 7:583-602. [PMID: 28333381 DOI: 10.1002/cphy.c160023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen sulfide (H2S) was identified as the third gasotransmitter in 1996 following the discoveries of the biological importance of nitric oxide and carbon monoxide. Although H2S has long been considered a highly toxic gas, the discovery of its presence and enzymatic production in mammalian tissues supports a critical role for this physiological signaling molecule. H2S is synthesized endogenously by three enzymes: cystathionine β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. H2S plays a pivotal role in the regulation of cardiovascular function as H2S has been shown to modulate: vasodilation, angiogenesis, inflammation, oxidative stress, and apoptosis. Perturbation of endogenous production of H2S has been associated with many pathological conditions of the cardiovascular system such as diabetes, heart failure, and hypertension. As such, modulation of the endogenous H2S signaling pathway or administration of exogenous H2S has been shown to be cytoprotective. This review article will provide a summary of the current body of evidence on the role of H2S signaling in the setting of myocardial ischemia and heart failure. © 2017 American Physiological Society. Compr Physiol 7:583-602, 2017.
Collapse
Affiliation(s)
- Erminia Donnarumma
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Rishi K Trivedi
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - David J Lefer
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
35
|
Ding T, Chen W, Li J, Ding J, Mei X, Hu H. High Glucose Induces Mouse Mesangial Cell Overproliferation via Inhibition of Hydrogen Sulfide Synthesis in a TLR-4-Dependent Manner. Cell Physiol Biochem 2017; 41:1035-1043. [DOI: 10.1159/000461483] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Overproliferation of mesangial cells was believed to play an important role in the progress of diabetic nephropathy, one of the primary complications of diabetes. Hydrogen sulfide (H2S), a well-known and pungent gas with the distinctive smell of rotten eggs, was discovered to play a protective role in diabetic nephropathy. Methods: MTT assay was used to examine the viability of mesangial cells. Small interfering RNA was used to knock down the expression of TLR4 while specific inhibitor LY294002 to suppress the function of PI3K. H2S generation rate was determined by a H2S micro-respiration sensor. Results: Glucose of 25mM induced significant mesangial cells proliferation, which was accomplished by significantly inhibited endogenous H2S synthesis. And exogenous H2S treatment by NaHS markedly mitigated the overproliferation of mouse mesangial cells. Furthermore, it was found that H2S deficiency could result in TLR4 activation. And H2S supplementation remarkably inhibited TLR4 expression and curbed the mesangial cell overproliferation. Besides, PI3K/Akt pathway inhibition also significantly ameliorated the cell overproliferation. Conclusion: High glucose (HG) induces mouse mesangial cell overproliferation via inhibition of hydrogen sulfide synthesis in a TLR-4-dependent manner. And PI3K/Akt pathway might also play a vital part in the HG-induced mesangial cell overproliferation.
Collapse
|
36
|
Xia XD, Zhou Z, Yu XH, Zheng XL, Tang CK. Myocardin: A novel player in atherosclerosis. Atherosclerosis 2017; 257:266-278. [PMID: 28012646 DOI: 10.1016/j.atherosclerosis.2016.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
|
37
|
Li D, Xiong Q, Peng J, Hu B, Li W, Zhu Y, Shen X. Hydrogen Sulfide Up-Regulates the Expression of ATP-Binding Cassette Transporter A1 via Promoting Nuclear Translocation of PPARα. Int J Mol Sci 2016; 17:ijms17050635. [PMID: 27136542 PMCID: PMC4881461 DOI: 10.3390/ijms17050635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/25/2022] Open
Abstract
ATP binding cassette transporter A1 (ABCA1) plays a key role in atherogenesis. Hydrogen sulfide (H2S), a gasotransmitter, has been reported to play an anti-atherosclerotic role. However, the underlying mechanisms are largely unknown. In this study we examined whether and how H2S regulates ABCA1 expression. The effect of H2S on ABCA1 expression and lipid metabolism were assessed in vitro by cultured human hepatoma cell line HepG2, and in vivo by ApoE−/− mice with a high-cholesterol diet. NaHS (an exogenous H2S donor) treatment significantly increased the expression of ABCA1, ApoA1, and ApoA2 and ameliorated intracellular lipid accumulation in HepG2 cells. Depletion of the endogenous H2S generator cystathionine γ-lyase (CSE) by small RNA interference (siRNA) significantly decreased the expression of ABCA1 and resulted in the accumulation of lipids in HepG2 cells. In vivo NaHS treatment significantly reduced the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL), diminished atherosclerotic plaque size, and increased hepatic ABCA1 expression in fat-fed ApoE−/− mice. Further study revealed that NaHS upregulated ABCA1 expression by promoting peroxisome proliferator-activated receptor α (PPARα) nuclear translocation. H2S up-regulates the expression of ABCA1 by promoting the nuclear translocation of PPARα, providing a fundamental mechanism for the anti-atherogenic activity of H2S. H2S may be a promising potential drug candidate for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Dong Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qinghui Xiong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201210, China.
- Improvinglife Biological Technology (Shanghai) Co., Ltd., Shanghai 201210, China.
| | - Jin Peng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Bin Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201210, China.
| | - Wanzhen Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yizhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201210, China.
| | - Xiaoyan Shen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201210, China.
| |
Collapse
|