1
|
Damian-Buda AC, Matei DM, Ciobanu L, Damian-Buda DZ, Pop RM, Buzoianu AD, Bocsan IC. Nesfatin-1: A Novel Diagnostic and Prognostic Biomarker in Digestive Diseases. Biomedicines 2024; 12:1913. [PMID: 39200377 PMCID: PMC11352118 DOI: 10.3390/biomedicines12081913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Nesfatin-1, deriving from a precursor protein, NUCB2, is a newly discovered molecule with anti-apoptotic, anti-inflammatory, antioxidant, and anorexigenic effects. It was initially identified in the central nervous system (CNS) and received increasing interest due to its energy-regulating properties. However, research showed that nesfatin-1 is also expressed in peripheral tissues, including the digestive system. The aim of this review is to give a résumé of the present state of knowledge regarding its structure, immunolocalization, and potential implications in diseases with inflammatory components. The main objective was to focus on its clinical importance as a diagnostic biomarker and potential therapeutic molecule in a variety of disorders, among which digestive disorders were of particular interest. Previous studies have shown that nesfatin-1 regulates the balance between pro- and antioxidant agents, which makes nesfatin-1 a promising therapeutic agent. Further in-depth research regarding the underlying mechanisms of action is needed for a better understanding of its effects.
Collapse
Affiliation(s)
- Adriana-Cezara Damian-Buda
- Pharmacology, Toxicology and Clinical Pharmacology Laboratory, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Daniela Maria Matei
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Lidia Ciobanu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | | | - Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| |
Collapse
|
2
|
Panditrao Lahane G, Dhar A. Renoprotective effect of Nesfatin-1 in Adenine-Induced Chronic kidney Disease: An in vitro and in vivo study. Biochem Pharmacol 2024; 225:116284. [PMID: 38750903 DOI: 10.1016/j.bcp.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Chronic Kidney Disease (CKD) presents a significant global health challenge with limited treatment options. Nesfatin-1, an anorexigenic peptide, has demonstrated antioxidant, anti-inflammatory, and anti-apoptotic properties in various diseases. However, the role of nesfatin-1 in CKD remains unclear. This study investigates the potential renoprotective effects of nesfatin-1 in adenine-induced CKD mice and in NRK-52E renal epithelial cells. Male C57BL/6J mice and NRK-52E renal epithelial cells were administered adenine to induce CKD. Various aspects of renal function, histopathology, oxidative stress, inflammation, apoptosis, and renal interstitial fibrosis were assessed and downstream pathways were investigated. Adenine-fed mice exhibited reduced nesfatin-1 expression and increased markers of kidney damage, including elevated blood urea nitrogen (BUN), serum creatinine, and histological abnormalities, reactive oxygen species (ROS), inflammation, apoptosis, and fibrosis. Treatment with nesfatin-1 in adenine induced mice significantly reversed these changes. Nesfatin-1 also lowered calcium levels and the expression of inflammatory markers, including IL-1β, IL-6, TNF-α, and Nf-kB. Furthermore, nesfatin-1 reduced the expression of apoptotic markers (Caspase-3, Caspase-1, Bax/Bcl2 ratio) and restored the balance of Bcl2 and MMP. Lastly, nesfatin-1 attenuated fibrotic markers (Tgf-β, Smad2/3,4, type IV collagen, α-SMA) in both adenine-induced CKD mice and NRK-52E cells. In conclusion, our results suggest that nesfatin-1 may enhance kidney function in adenine-induced CKD mice and NRK-52E cells. The renoprotective effects of nesfatin-1 are likely associated with its antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic properties.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana 500078, India.
| |
Collapse
|
3
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
4
|
Nasri A, Sands J, Unniappan S. Suppressive action of nesfatin-1 and nesfatin-1-like peptide on cortisol synthesis in human adrenal cortex cells. Sci Rep 2024; 14:3985. [PMID: 38368491 PMCID: PMC10874440 DOI: 10.1038/s41598-024-54758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/16/2024] [Indexed: 02/19/2024] Open
Abstract
Nucleobindin-derived peptides, nesfatin-1 [NESF-1] and nesfatin-1-like-peptide [NLP] have diverse roles in endocrine and metabolic regulation. While both peptides showed a stimulatory effect on the synthesis of proopiomelanocortin (POMC), the adrenocorticotropic hormone (ACTH) precursor in mouse corticotrophs, whether NESF-1 and NLP have any direct effect on glucocorticoid [GC] synthesis in the adrenal cortex remains unknown. The main aim of this study was to determine if NESF-1 and/or NLP act directly on adrenal cortex cells to regulate cortisol synthesis in vitro. Whether NLP injection affects stress-hormone gene expression in the adrenal gland and pituitary in vivo in mice was also assessed. In addition, cortisol synthetic pathway in Nucb1 knockout mice was studied. Human adrenal cortical [H295R] cells showed immunoreactivity for both NUCB1/NLP and NUCB2/NESF-1. NLP and NESF-1 decreased the abundance of steroidogenic enzyme mRNAs, and cortisol synthesis and release through the AC/PKA/CREB pathway in H295R cells. Similarly, intraperitoneal injection of NLP in mice decreased the expression of enzymes involved in glucocorticoid (GC) synthesis in the adrenal gland while increasing the expression of Pomc, Pcsk1 and Crhr1 in the pituitary. Moreover, the melanocortin 2 receptor (Mc2r) mRNA level was enhanced in the adrenal gland samples of NLP injected mice. However, the global genetic disruption in Nucb1 did not affect most steroidogenic enzyme mRNAs, and Pomc, Pcsk2 and Crhr1 mRNAs in mice adrenal gland and pituitary gland, respectively. Collectively, these data provide the first evidence for a direct inhibition of cortisol synthesis and secretion by NLP and NESF-1. NUCB peptides might still elicit a net stimulatory effect on GC synthesis and secretion through their positive effects on ACTH-MC2R pathway in the pituitary.
Collapse
Affiliation(s)
- Atefeh Nasri
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Jade Sands
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
5
|
El‐Shaer RAA, Ibrahim S, Hewady PM, Atef MM, El‐Deeb OS, Hafez YM, Amer RS, El‐Sharnoby JAE, AbuoHashish NA, Awad MM. Selenium protects against nesfatin-1 modulation of the hypothalamic-pituitary-testicular axis during hypothyroidism in male rats. Physiol Rep 2024; 12:e15923. [PMID: 38268116 PMCID: PMC10808778 DOI: 10.14814/phy2.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/26/2024] Open
Abstract
Normal gonadal function can be disrupted by hypothyroidism. Hypothyroidism disturbs testicular function directly and centrally by affecting the hypothalamic-pituitary-testicular axis with unclear mechanism. As nesfatin-1 neurons co-localized with TRH and GnRH neurons in the hypothalamus, it could play a role in centrally hypothyroidism induced testicular dysfunction. Selenium (Se), by affecting thyroid iodide supply, could relieve these disturbances. So, we aim to identify the role of nesfatin-1 as a link between testicular dysfunction and hypothyroidism through modulating the MAPK/ERK pathway while discussing the possible role of Se in alleviating hypothyroidism and associated testicular damage. Forty male rats were divided equally into: Control: distilled water, Se: Se orally, Propylthiouracil (PTU): PTU orally, PTU + Se: Se with PTU orally. Serum thyroid function, gonadal hormones, nesfatin-1, testicular redox status, sperm analysis, brain tissue GnRH, nucleobindin 2-derived polypeptide, pMAPK/ERK gene expression, histological changes and immunohistochemical expression of testicular proliferating cell antigen (PCNA) were done. PTU induced hypothyroidism and reduction of gonadal hormones which both were correlated with reduced nesfatin-1. There was testicular stress with reduced GnRH, NUCB2, pMAPK/ERK gene expression, and PCNA immunopositive cells. These parameters were reversed by Se. Nesfatin-1 could be the central link between hypothyroidism and disturbances of the hypothalamic pituitary testicular axis.
Collapse
Affiliation(s)
| | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of MedicineTanta UniversityTantaEgypt
| | | | | | | | | | - Rania Saed Amer
- Clinical Pathology Department, Faculty of MedicineTanta UniversityTantaEgypt
| | | | | | - Marwa Mahmoud Awad
- Medical Physiology Department, Faculty of MedicineTanta UniversityTantaEgypt
| |
Collapse
|
6
|
Pelczyńska M, Miller-Kasprzak E, Piątkowski M, Mazurek R, Klause M, Suchecka A, Bucoń M, Bogdański P. The Role of Adipokines and Myokines in the Pathogenesis of Different Obesity Phenotypes-New Perspectives. Antioxidants (Basel) 2023; 12:2046. [PMID: 38136166 PMCID: PMC10740719 DOI: 10.3390/antiox12122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity is a characteristic disease of the twenty-first century that is affecting an increasing percentage of society. Obesity expresses itself in different phenotypes: normal-weight obesity (NWO), metabolically obese normal-weight (MONW), metabolically healthy obesity (MHO), and metabolically unhealthy obesity (MUO). A range of pathophysiological mechanisms underlie the occurrence of obesity, including inflammation, oxidative stress, adipokine secretion, and other processes related to the pathophysiology of adipose tissue (AT). Body mass index (BMI) is the key indicator in the diagnosis of obesity; however, in the case of the NWO and MONW phenotypes, the metabolic disturbances are present despite BMI being within the normal range. On the other hand, MHO subjects with elevated BMI values do not present metabolic abnormalities. The MUO phenotype involves both a high BMI value and an abnormal metabolic profile. In this regard, attention has been focused on the variety of molecules produced by AT and their role in the development of obesity. Nesfatin-1, neuregulin 4, myonectin, irisin, and brain-derived neurotrophic factor (BDNF) all seem to have protective effects against obesity. The primary mechanism underlying the action of nesfatin-1 involves an increase in insulin sensitivity and reduced food intake. Neuregulin 4 sup-presses lipogenesis, decreases lipid accumulation, and reduces chronic low-grade inflammation. Myonectin lowers the amount of fatty acids in the bloodstream by increasing their absorption in the liver and AT. Irisin stimulates the browning of white adipose tissue (WAT) and consequently in-creases energy expenditure, additionally regulating glucose metabolism. Another molecule, BDNF, has anorexigenic effects. Decorin protects against the development of hyperglycemia, but may also contribute to proinflammatory processes. Similar effects are shown in the case of visfatin and chemerin, which may predispose to obesity. Visfatin increases adipogenesis, causes cholesterol accumulation in macrophages, and contributes to the development of glucose intolerance. Chemerin induces angiogenesis, which promotes the expansion of AT. This review aims to discuss the role of adipokines and myokines in the pathogenesis of the different obesity phenotypes.
Collapse
Affiliation(s)
- Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Ewa Miller-Kasprzak
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| | - Marcin Piątkowski
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Roksana Mazurek
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Mateusz Klause
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Anna Suchecka
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Magdalena Bucoń
- Faculty of Medicine, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 84 Szamarzewskiego Street, 60-569 Poznań, Poland; (E.M.-K.); (P.B.)
| |
Collapse
|
7
|
Nery Neto JADO, Yariwake VY, Câmara NOS, Andrade-Oliveira V. Enteroendocrine cells and gut hormones as potential targets in the crossroad of the gut-kidney axis communication. Front Pharmacol 2023; 14:1248757. [PMID: 37927592 PMCID: PMC10620747 DOI: 10.3389/fphar.2023.1248757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- José Arimatéa de Oliveira Nery Neto
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Lin IC, Chang CH, Chong YB, Kuo SH, Cheng YW, Lieu AS, Tseng TT, Lin CJ, Tsai HP, Kwan AL. Role of Nucleobindin-2 in the Clinical Pathogenesis and Treatment Resistance of Glioblastoma. Cells 2023; 12:2420. [PMID: 37830634 PMCID: PMC10572158 DOI: 10.3390/cells12192420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Glioblastoma (GBM) stands as the most prevalent primary malignant brain tumor, typically resulting in a median survival period of approximately thirteen to fifteen months after undergoing surgery, chemotherapy, and radiotherapy. Nucleobindin-2 (NUCB2) is a protein involved in appetite regulation and energy homeostasis. In this study, we assessed the impact of NUCB2 expression on tumor progression and prognosis of GBM. We further evaluated the relationship between NUCB2 expression and the sensitivity to chemotherapy and radiotherapy in GBM cells. Additionally, we compared the survival of mice intracranially implanted with GBM cells. High NUCB2 expression was associated with poor prognosis in patients with GBM. Knockdown of NUCB2 reduced cell viability, migration ability, and invasion ability of GBM cells. Overexpression of NUCB2 resulted in reduced apoptosis following temozolomide treatment and increased levels of DNA damage repair proteins after radiotherapy. Furthermore, mice intracranially implanted with NUCB2 knockdown GBM cells exhibited longer survival compared to the control group. NUCB2 may serve as a prognostic biomarker for poor outcomes in patients with GBM. Additionally, NUCB2 not only contributes to tumor progression but also influences the sensitivity of GBM cells to chemotherapy and radiotherapy. Therefore, targeting NUCB2 protein expression may represent a novel therapeutic approach for the treatment of GBM.
Collapse
Affiliation(s)
- I-Cheng Lin
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
| | - Yoon Bin Chong
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
| | - Shih-Hsun Kuo
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Yu-Wen Cheng
- Gradate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Tzu-Ting Tseng
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.C.); (Y.B.C.); (A.-S.L.); (T.-T.T.)
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
9
|
Ha J, Shin J, Seok E, Kim S, Sun S, Yang H. Estradiol and progesterone regulate NUCB2/nesfatin-1 expression and function in GH3 pituitary cells and THESC endometrial cells. Anim Cells Syst (Seoul) 2023; 27:129-137. [PMID: 37351263 PMCID: PMC10283468 DOI: 10.1080/19768354.2023.2226735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Estradiol (E2) and progesterone (P4) are essential sex steroid hormones that play critical roles in the pituitary gland and uterus. Recently, nesfatin-1, a polypeptide hormone that regulates appetite and energy homeostasis in the hypothalamus, was found to be expressed in the pituitary gland and uterus. In this study, we aimed to investigate the relationship between these two steroid hormones and the expression and function of nesfatin-1 in the pituitary gland and uterus using GH3 cells, a lacto-somatotroph cell line, and THESC cells, an endometrial stromal cell line. First, we verified the presence of nesfatin-1 and nesfatin-1 binding sites in GH3 and THESC cells. E2 increased the mRNA expression of NUCB2, the gene encoding the nesfatin-1 protein, in GH3 cells, while P4 had no significant effect. In THESC cells, NUCB2 mRNA expression was decreased by E2 but increased by P4. In addition, nesfatin-1 significantly increased growth hormone (GH) and prolactin (PRL) mRNA expression in GH3 cells, and E2 enhanced this effect. In THESC cells, nesfatin-1 significantly increased the mRNA expression of insulin-like growth factor binding protein 1 (IGFBP1) and PRL, which are decidualization marker genes, and P4 further enhanced this effect. These results suggest that nesfatin-1 may act as a local regulator of GH and PRL production in the pituitary gland and decidualization in the uterus, modulating its effects in response to E2 and P4.
Collapse
Affiliation(s)
- Jinah Ha
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Jungwoo Shin
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Eunji Seok
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Soohyun Kim
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Sojung Sun
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Hyunwon Yang
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| |
Collapse
|
10
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
11
|
Friedrich T, Stengel A. Current state of phoenixin-the implications of the pleiotropic peptide in stress and its potential as a therapeutic target. Front Pharmacol 2023; 14:1076800. [PMID: 36860304 PMCID: PMC9968724 DOI: 10.3389/fphar.2023.1076800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023] Open
Abstract
Phoenixin is a pleiotropic peptide, whose known functions have broadened significantly over the last decade. Initially first described as a reproductive peptide in 2013, phoenixin is now recognized as being implicated in hypertension, neuroinflammation, pruritus, food intake, anxiety as well as stress. Due to its wide field of involvement, an interaction with physiological as well as psychological control loops has been speculated. It has shown to be both able to actively reduce anxiety as well as being influenced by external stressors. Initial rodent models have shown that central administration of phoenixin alters the behavior of the subjects when confronted with stress-inducing situations, proposing an interaction with the perception and processing of stress and anxiety. Although the research on phoenixin is still in its infancy, there are several promising insights into its functionality, which might prove to be of value in the pharmacological treatment of several psychiatric and psychosomatic illnesses such as anorexia nervosa, post-traumatic stress disorder as well as the increasingly prevalent stress-related illnesses of burnout and depression. In this review, we aim to provide an overview of the current state of knowledge of phoenixin, its interactions with physiological processes as well as focus on the recent developments in stress response and the possible novel treatment options this might entail.
Collapse
Affiliation(s)
- T. Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - A. Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany,*Correspondence: A. Stengel,
| |
Collapse
|
12
|
Parlak Ak T, Yaman M, Bayrakdar A, Bulmus O. Expression of phoenixin-14 and nesfatin-1 in the hypothalamo-pituitary-gonadal axis in the phases of the estrous cycle. Neuropeptides 2023; 97:102299. [PMID: 36327662 DOI: 10.1016/j.npep.2022.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Phoenixin-14 (PNX-14) and nucleobindin 2 (NUCB2)/nesfatin-1 are regulatory neuropeptides expressed in the hypothalamus. These neuropeptides can be effective in hormonal regulation of the hypothalamo-pituitary-gonadal (HPG) axis and reproductive functions. In the present study, the distribution of PNX-14 and NUCB2/nesfatin-1 in the hypothalamus, pituitary, ovary, and uterus tissues during the phases of the estrous cycle in female rats was investigated. Eighteen Wistar Albino rats determined among animals showing regular estrous cycle by vaginal smear method were divided into three groups: proestrus (Group I), estrus (Group II) and diestrus (Group III). Serum gonadotropin-releasing hormone (GnRH), plasma PNX-14, and NUCB2/nesfatin-1 concentrations were the highest, moderate, and lowest in estrus, diestrus, and proestrus phases, respectively. PNX-14 immunoreactivity in the supraoptic and arcuate nuclei of the hypothalamus and NUCB2/nesfatin-1 immunoreactivity in the paraventricular nuclei were particularly evident in the estrus phase. These neuropeptide immunoreactivities were decreased in different cells of anterior pituitary during proestrus compared with those during estrus and diestrus. PNX-14 immunoreactivity in the ovary, especially during the estrus phase, was diffuse and intense in the granulosa and luteal cells and oocytes, and it was few and weak in theca cells. In addition, NUCB2/nesfatin-1 immunoreactivity was abundant and strong in granulosa and luteal cells, theca and interstitial cells, and oocytes during estrus. In the estrus phase, PNX-14 immunoreactivity was strong in the glandular epithelial cells and stromal cells of the endometrium, also NUCB2/nesfatin-1 immunoreactivity was strong in the epithelial and glandular epithelial cells. As a result, when the estrous cycle was evaluated, it was concluded that the changes in the distribution of PNX-14 and NUCB2/nesfatin-1 at all phases were related to GnRH and that these neuropeptides showed the highest immunoreactivity especially in the HPG axis and uterus tissues of estrus rats.
Collapse
Affiliation(s)
- Tuba Parlak Ak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Munzur, Tunceli 62000, Turkey.
| | - Mine Yaman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Turkey
| | - Ali Bayrakdar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Balıkesir University, Balikesir 10000, Turkey
| | - Ozgur Bulmus
- Department of Physiology, Faculty of Medicine, Balikesir University, Balikesir 10000, Turkey
| |
Collapse
|
13
|
Caroleo M, Carbone EA, Arcidiacono B, Greco M, Primerano A, Mirabelli M, Fazia G, Rania M, Hribal ML, Gallelli L, Foti DP, De Fazio P, Segura-Garcia C, Brunetti A. Does NUCB2/Nesfatin-1 Influence Eating Behaviors in Obese Patients with Binge Eating Disorder? Toward a Neurobiological Pathway. Nutrients 2023; 15:nu15020348. [PMID: 36678225 PMCID: PMC9864089 DOI: 10.3390/nu15020348] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Nesfatin-1 is a new anorexigenic neuropeptide involved in the regulation of hunger/satiety, eating, and affective disorders. We aimed to investigate nesfatin-1 secretion in vitro, in murine adipose cells, and in human adipose fat samples, as well as to assess the link between circulating nesfatin-1 levels, NUCB2 and Fat Mass and Obesity Gene (FTO) polymorphisms, BMI, Eating Disorders (EDs), and pathological behaviors. Nesfatin-1 secretion was evaluated both in normoxic fully differentiated 3T3-L1 mouse adipocytes and after incubation under hypoxic conditions for 24 h. Omental Visceral Adipose tissue (VAT) specimens of 11 obese subjects, and nesfatin-1 serum levels' evaluation, eating behaviors, NUCB2 rs757081, and FTO rs9939609 polymorphisms of 71 outpatients seeking treatment for EDs with different Body Mass Index (BMI) were studied. Significantly higher levels of nesfatin-1 were detected in hypoxic 3T3-L1 cultured adipocytes compared to normoxic ones. Nesfatin-1 was highly detectable in the VAT of obese compared to normal-weight subjects. Nesfatin-1 serum levels did not vary according to BMI, sex, and EDs diagnosis, but correlations with grazing; emotional, sweet, and binge eating; hyperphagia; social eating; childhood obesity were evident. Obese subjects with CG genotype NUCB2 rs757081 and AT genotype FTO rs9939609 polymorphisms had higher nesfatin-1 levels. It could represent a new biomarker of EDs comorbidity among obese patients.
Collapse
Affiliation(s)
- Mariarita Caroleo
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Elvira Anna Carbone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Greco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | | | - Maria Mirabelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Gilda Fazia
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marianna Rania
- University Hospital Mater Domini of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela Patrizia Foti
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Pasquale De Fazio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Segura-Garcia
- University Hospital Mater Domini of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-096-171-2408; Fax: +39-096-171-2393
| | - Antonio Brunetti
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
14
|
Weibert E, Hofmann T, Elbelt U, Rose M, Stengel A. NUCB2/nesfatin-1 is associated with severity of eating disorder symptoms in female patients with obesity. Psychoneuroendocrinology 2022; 143:105842. [PMID: 35752057 DOI: 10.1016/j.psyneuen.2022.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nesfatin-1 has been described as an anorexigenic peptide. Comprehensive evidence also points towards an involvement of nesfatin-1 in the modulation of emotional pathways with a sex-specific regulation of nesfatin-1 in association with anxiety. Although the implication of nesfatin-1 in the regulation of food intake is well-established in animals, data in humans are lacking. Therefore, we investigated a possible association of circulating NUCB2/nesfatin-1 with eating disorder symptoms in female and male patients displaying a wide range of body weight. METHODS We enrolled 243 inpatients (177 female, 66 male) hospitalized due to anorexia nervosa (n = 66) or obesity (n = 144) or with normal weight and suffering from somatoform, adjustment, depressive or anxiety disorders (n = 33). Plasma samples (NUCB2/nesfatin-1 levels measured by ELISA) and measures of eating disorder symptoms (by EDI-2, range 0-100) were obtained within three days after admission. RESULTS The study population displayed a distinct prevalence of eating disorder symptoms with female patients with anorexia nervosa (+ 77.0%, p < 0.001) and obesity (+ 87.9%, p < 0.001) reported significantly higher EDI-2 scores than normal weight patients of the same sex. Accordingly, males with anorexia nervosa (+ 39.7%, p < 0.05) and obesity (+ 51.7%, p < 0.001) had significantly higher EDI-2 scores than males with normal weight. Within the same BMI group, women displayed significantly higher scores than men (+ 21.4%, p < 0.05 in patients with anorexia nervosa, + 18.8%, p < 0.001 in participants with obesity). We observed a positive correlation between NUCB2/nesfatin-1 levels and EDI-2 total scores in female patients with obesity (r = 0.285, p = 0.015), whereas no associations were found in other subgroups. A positive correlation between NUCB2/nesfatin-1 levels and BMI was only observed in the male study population (r = 0.315, p = 0.018). CONCLUSIONS NUCB2/nesfatin-1 plasma levels were positively associated with EDI-2 total scores in women with obesity, while no association was observable in men. The lacking association of NUCB2/nesfatin-1 and EDI-2 total scores in female patients with anorexia nervosa might be due to already low NUCB2/nesfatin-1 plasma levels. Whether NUCB2/nesfatin-1 is selectively involved in eating behavior in women with obesity will have to be further investigated.
Collapse
Affiliation(s)
- Elena Weibert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Tobias Hofmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Ulf Elbelt
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Endokrinologikum Berlin, Berlin, Germany
| | - Matthias Rose
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Quantitative Health Sciences, Outcomes Measurement Science, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andreas Stengel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Lu Z, Cui D, Liu JYH, Jiang B, Ngan MP, Sakata I, Takemi S, Sakai T, Lin G, Chan SW, Rudd JA. The Actions of Centrally Administered Nesfatin-1 on Emesis, Feeding, and Locomotor Activity in Suncus murinus (House Musk Shrew). Front Pharmacol 2022; 13:858522. [PMID: 35462894 PMCID: PMC9019301 DOI: 10.3389/fphar.2022.858522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Nesfatin-1 is an anorectic peptide expressed in both peripheral tissues and brain areas involved in the regulation of feeding, emotion and emesis. The aim of the present study is to characterize the distribution of NUCB2/nesfatin-1 in Suncus murinus and to investigate the actions of nesfatin-1 to affect gastrointestinal contractility, emesis, food and water intake, and locomotor activity. The deduced amino acid sequence of S. murinus nesfatin-1 using in silico cloning showed high homology with humans and rodents. NUCB2 mRNA was detected throughout the entire brain and in the gastrointestinal tract, including the stomach and gut. Western blot analysis and immunohistochemistry confirmed the expression of nesfatin-1 protein in these regions. The NUCB2 mRNA levels in the hypothalamus, hippocampus and brainstem were significantly decreased, whereas that in the striatum were increased after 24 h starvation compared to ad libitum-fed animals (p < 0.05). In in vitro studies, nesfatin-1 (0.3–1,000 pM) failed to contract or relax the isolated gastric antrum and intestinal segments. In conscious, freely moving animals, intracerebroventricular administration of nesfatin-1 (1–50 pmol) induced emesis (p < 0.05) and suppressed 6-h cumulative food intake (p < 0.05), without affecting the latency to feeding. Nesfatin-1 (25 pmol, i.c.v.) decreased 24-h cumulative food and water intake by 28.3 and 35.4%, respectively (p < 0.01). No significant differences in locomotor activity were observed. In conclusion, NUCB2/nesfatin-1 might be a potent regulator of feeding and emesis in S. murinus. Further studies are required to elucidate the mechanism of actions of this peptide as a mediator linking the brainstem NUCB2/nesfatin-1 to forebrain system.
Collapse
Affiliation(s)
- Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, Hong Kong SAR, China
| | - Dexuan Cui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Julia Yuen Hang Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bin Jiang
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, Hong Kong SAR, China
| | - Man Piu Ngan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ichiro Sakata
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shota Takemi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takafumi Sakai
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ge Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, Hong Kong SAR, China
- *Correspondence: Sze Wa Chan,
| | - John A. Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022; 79:169. [PMID: 35239020 PMCID: PMC11072372 DOI: 10.1007/s00018-022-04193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jing Dong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
17
|
Rupp SK, Stengel A. Interactions between nesfatin-1 and the autonomic nervous system-An overview. Peptides 2022; 149:170719. [PMID: 34953946 DOI: 10.1016/j.peptides.2021.170719] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Nesfatin-1, an 82-amino acid polypeptide derived from the precursor protein nucleobindin-2 (NUCB2), was first discovered in 2006 in the rat hypothalamus. The effects and distribution of nesfatin-1 immunopositive neurons in the brain and spinal cord point towards a role of NUCB2/nesfatin-1 in autonomic regulation. Therefore, studies which have been conducted to investigate the interplay between nesfatin-1 and the autonomic nervous system were examined, and the outcomes of this research were summarized. NUCB2/nesfatin-1 immunoreactivity is widely distributed in autonomic centers of the brain and spinal cord in both rodents and humans. In several regions of the hypothalamus, midbrain and brainstem, nesfatin-1 modulates autonomic functions. On the other hand, the autonomic nervous system also influences the activity of nesfatin-1 neurons. Here, the vagus nerve seems to be a crucial factor in the regulation of nesfatin-1. In summary, although data here is still sparse, there is a clear interplay between nesfatin-1 and the autonomic nervous system, the precise clarification of which still requires further research to gain more insight into these complex relationships.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany; Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
18
|
Tezcan N, Özdemir-Kumral ZN, Yenal NÖ, Çilingir-Kaya ÖT, Virlan AT, Özbeyli D, Çetinel Ş, Yeğen BÇ, Koç M. Nesfatin-1 treatment preserves antioxidant status and attenuates renal fibrosis in rats with unilateral ureteral obstruction. Nephrol Dial Transplant 2022; 37:1238-1248. [PMID: 35218196 DOI: 10.1093/ndt/gfac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Nesfatin-1 (NES-1), an anorexigenic peptide, was reported to have anti-inflammatory and anti-apoptotic actions in several inflammation models. METHODS To elucidate potential renoprotective effects of NES-1, unilateral ureteral obstruction (UUO) was induced in male Sprague Dawley rats by ligating left ureters. The rats were injected intraperitoneally with either saline (SL) or NES-1 (10 μg/kg/day) for 7 or 14 days (n = 8 in each group). On the 7th or 14th day, obstructed kidneys were removed for the isolation of leukocytes for flow-cytometric analysis and for the assessments of biochemical and histopathological changes. RESULTS Opposite to glutathione levels, renal myeloperoxidase activity in the SL-treated UUO group was significantly increased compared to sham-operated group, while NES-1 treatment abolished the elevation. The percentages of CD8+/CD4+ T-lymphocytes infiltrating the obstructed kidneys were increased in SL-treated groups but treatment with NES-1 did not prevent lymphocyte infiltration. Elevated TNF-a levels in SL-treated UUO group was decreased with NES-1. Although total degeneration scores were similarly increased in all UUO groups, tubular dilatation scores were significantly increased in UUO groups and lowered by NES-1 only in the 7-day treated group. Elevated interstitial fibrosis scores in the SL-treated groups were decreased in both 7- and 14-day NES-1 treated groups, while alpha smooth muscle actin (α-SMA) and apoptosis scores were depressed in both NES-1 treated groups. CONCLUSION The present data demonstrate that UUO-induced renal fibrosis is ameliorated by NES-1, which appears to involve the inhibition of neutrophil infiltration and thereby amelioration of oxidative stress and inflammation. These data suggest that NES-1 may have a regulatory role in protecting the kidneys against obstruction-induced renal injury.
Collapse
Affiliation(s)
- Neslihan Tezcan
- Marmara University School of Medicine, Department of Internal Medicine, Turkey
| | | | - Naziye Özkan Yenal
- Marmara University Vocational School of Health Services, Department of Pathology Laboratory Techniques, Turkey
| | | | | | - Dilek Özbeyli
- Marmara University Vocational School of Health Services, Department of Pathology Laboratory Techniques, Turkey
| | - Şule Çetinel
- Marmara University School of Medicine, Department of Histology & Embryology, Turkey
| | - Berrak Ç Yeğen
- Marmara University School of Medicine, Department of Physiology, Turkey
| | - Mehmet Koç
- Marmara University School of Medicine, Department of Physiology, Turkey.,Marmara University School of Medicine, Division of Nephrology, Turkey
| |
Collapse
|
19
|
Kras K, Muszyński S, Tomaszewska E, Arciszewski MB. Minireview: Peripheral Nesfatin-1 in Regulation of the Gut Activity—15 Years since the Discovery. Animals (Basel) 2022; 12:ani12010101. [PMID: 35011207 PMCID: PMC8749754 DOI: 10.3390/ani12010101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Nesfatin-1 is a newly identified molecule derived from the precursor protein NEFA/nucleobindin2. In this minireview we analyzed the research on the nesfatin-1 localization in the gastrointestinal tract of the mammals. We also referred to the effects of the protein on disorders in the gastrointestinal tract. Abstract Nesfatin-1, discovered in 2006, is an anorexigenic molecule derived from the precursor protein NEFA/nucleobindin2. It is generally postulated that this molecule acts through a specific G protein-coupled receptor, as yet unidentified. Research conducted over the last 15 years has revealed both central and peripheral actions of nesfatin-1. Given its major central role, studies determining its inhibitory effect on food intake seem to be of major scientific interest. However, in recent years a number of experiments have found that peripheral organs, including those of the gastrointestinal tract (GIT), may also be a source (possibly even the predominant source) of nesfatin-1. This mini-review aimed to summarize the current state of knowledge regarding the expression and immunoreactivity of nesfatin-1 and its possible involvement (both physiological and pathological) in the mammalian GIT. Research thus far has shown very promising abilities of nesfatin-1 to restore the balance between pro-oxidants and antioxidants, to interplay with the gut microbiota, and to alter the structure of the intestinal barrier. This necessitates more extensive research on the peripheral actions of this molecule. More in-depth knowledge of such mechanisms (especially those leading to anti-inflammatory and anti-apoptotic effects) is important for a better understanding of the involvement of nefatin-1 in GIT pathophysiological conditions and/or for future therapeutic approaches.
Collapse
Affiliation(s)
- Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland;
- Correspondence:
| |
Collapse
|
20
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021. [DOI: 10.3390/ijms222011059
expr 982648605 + 846360072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
21
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
22
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
23
|
Nasri A, Unniappan S. Nucleobindin-derived nesfatin-1 and nesfatin-1-like peptide stimulate pro-opiomelanocortin synthesis in murine AtT-20 corticotrophs through the cAMP/PKA/CREB signaling pathway. Mol Cell Endocrinol 2021; 536:111401. [PMID: 34302909 DOI: 10.1016/j.mce.2021.111401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Nucleobindin (NUCB)-derived peptides, nesfatin-1 (NES-1) and nesfatin-1-like peptide (NLP) have several physiological roles in vertebrates. While NES-1 is implicated in stress, whether NUCB1/NLP and NUCB2/NES-1 have any effect on proopiomelanocortin (POMC) remains unknown. The main aim of this study was to determine if NES-1 and/or NLP affect POMC synthesis in mouse corticotrophs. Immunocytochemistry was employed to target NUCB colocalization with POMC in immortalized mouse tumoral corticotrophs (AtT-20 cells). The ability of NES-1 and NLP to modulate POMC mRNA and protein in AtT-20 cells was assessed by qPCR and Western blot, respectively. Moreover, cell-signaling molecules mediating the effect of NES-1 and NLP on POMC synthesis in mouse tumoral corticotrophs were studied using pharmacological blockers. Mouse tumoral corticotrophs showed immunoreactivity for both NUCB1/NLP and NUCB2/NES-1. Both NES-1 and NLP exerted a stimulatory effect on POMC transcript abundance and protein expression in a dose- and time-dependent manner. This effect was comparable to corticotropin-releasing factor (CRF, positive control) stimulation of POMC. Incubation of mouse tumoral corticotrophs with NES-1 or NLP upregulated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). The stimulatory effect of these peptides on POMC transcript abundance and protein expression was blocked by the PKA inhibitor, H89, and an adenylate cyclase inhibitor, 2',3'-dideoxyadenosine (DDA). These pharmacological studies indicate that NES-1 and NLP act through the cAMP/PKA/CREB cellular pathway to stimulate POMC synthesis. Our results provide molecular evidence to support a stimulatory role for nucleobindin-derived peptides on POMC synthesis from corticotrophs. Collectively, this research indicates that corticotrophs produce NUCBs, and the encoded peptides NES-1 and NLP could elicit a direct action to stimulate the pituitary stress hormone. This stimulatory effect is mediated by an uncharacterized G protein-coupled receptor (GPCR) that utilizes the cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Atefeh Nasri
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7V 1H2, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7V 1H2, Canada.
| |
Collapse
|
24
|
Dotania K, Tripathy M, Rai U. A comparative account of nesfatin-1 in vertebrates. Gen Comp Endocrinol 2021; 312:113874. [PMID: 34331938 DOI: 10.1016/j.ygcen.2021.113874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 was discovered as an anorexigenic peptide derived from proteolytic cleavage of the prepropeptide, nucleobindin 2 (NUCB2). It is widely expressed in central as well as peripheral tissues and is known to have pleiotropic effects such as regulation of feeding, reproduction, cardiovascular functions and maintenance of glucose homeostasis. In order to execute its multifaceted role, nesfatin-1 employs diverse signaling pathways though its receptor has not been identified till date. Further, nesfatin-1 is reported to be under the regulatory effect of feeding state, nutritional status as well as several metabolic and reproductive hormones. This peptide has also been associated with variety of human diseases, especially metabolic, reproductive, cardiovascular and mental disorders. The current review is aimed to present a consolidated picture and highlight lacunae for further investigation in order to develop a deeper comprehensive understanding on physiological significance of nesfatin-1 in vertebrates.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
25
|
Blanco AM, Pemberton JG, Gonzalez R, Hatef A, Pham V, Chang JP, Unniappan S. Nesfatin-1 is an inhibitor of the growth hormone-insulin-like growth factor axis in goldfish (Carassius auratus). J Neuroendocrinol 2021; 33:e13010. [PMID: 34312927 DOI: 10.1111/jne.13010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Nesfatin-1, an 82 amino acid peptide cleaved from the N-terminal of its precursor nucleobindin-2 (NUCB2), is emerging as a multifunctional peptide in fish. The present study aimed to determine whether nesfatin-1 plays a role in fish somatic growth by modulating the growth hormone (GH)/insulin-like growth factor (IGF) axis, using a representative teleost model, the goldfish (Carassius auratus). The results demonstrated that a single i.p. injection of synthetic goldfish nesfatin-1 significantly decreased the expression of hypothalamic pacap (approximately 90%) and pituitary Gh (approximately 90%) mRNAs at 15 minutes post-injection. Serum GH levels were also reduced as a result of nesfatin-1 administration, by approximately 45% and 55% at 15 and 30 minutes post-injection, respectively. Likewise, in vitro treatment of goldfish dispersed pituitary cells with nesfatin-1 reduced Gh secretion, suggesting that nesfatin-1 acts directly on pituitary somatotrophs to inhibit Gh release. Exposure of cultured liver fragments to nesfatin-1 (0.1, 1 and 10 nmol L-1 ) led to a significant reduction in igf-1 mRNA at 120 minutes and of igf-II mRNA at 30 and 60 minutes post-incubation. Collectively, these results indicate a suppressive role for nesfatin-1 on the goldfish GH/IGF axis. Immunohistochemical studies demonstrated that NUCB2/nesfatin-1-like immunoreactivity, although present in the goldfish pituitary, is not colocalised with GH in goldfish somatotrophs. Thus, nesfatin-1 does not appear to act in an autocrine manner to regulate GH secretion. Taken together, this research found that the pituitary gland is an important source of endogenous NUCB2/nesfatin-1 and also that nesfatin-1 directly suppresses the Gh/IGF axis in goldfish.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ronald Gonzalez
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Azadeh Hatef
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Vi Pham
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
26
|
Role of the Novel Peptide Phoenixin in Stress Response and Possible Interactions with Nesfatin-1. Int J Mol Sci 2021; 22:ijms22179156. [PMID: 34502065 PMCID: PMC8431171 DOI: 10.3390/ijms22179156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The novel peptide phoenixin was shown to be involved in several physiological processes ranging from reproduction to food intake. Interest in this protein has steadily increased over the last few years and its known implications have become much broader, playing a role in glucose homeostasis, anxiety, nociception, and pruritus. Phoenixin is expressed in a multitude of organs such as the small intestine, pancreas, and in the hypothalamus, as well as several other brain nuclei influencing numerous physiological functions. Its highly conserved amino-acid sequence amongst species leads to the assumption, that phoenixin might be involved in essential physiological functions. Its co-expression and opposing functionality to the extensively studied peptide nesfatin-1 has given rise to the idea of a possible counterbalancing role. Several recent publications focused on phoenixin’s role in stress reactions, namely restraint stress and lipopolysaccharide-induced inflammation response, in which also nesfatin-1 is known to be altered. This review provides an overview on the phoenixins and nesfatin-1 properties and putative effects, and especially highlights the recent developments on their role and interaction in the response to response.
Collapse
|
27
|
Cano G, Hernan SL, Sved AF. Centrally Projecting Edinger-Westphal Nucleus in the Control of Sympathetic Outflow and Energy Homeostasis. Brain Sci 2021; 11:1005. [PMID: 34439626 PMCID: PMC8392615 DOI: 10.3390/brainsci11081005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The centrally projecting Edinger-Westphal nucleus (EWcp) is a midbrain neuronal group, adjacent but segregated from the preganglionic Edinger-Westphal nucleus that projects to the ciliary ganglion. The EWcp plays a crucial role in stress responses and in maintaining energy homeostasis under conditions that require an adjustment of energy expenditure, by virtue of modulating heart rate and blood pressure, thermogenesis, food intake, and fat and glucose metabolism. This modulation is ultimately mediated by changes in the sympathetic outflow to several effector organs, including the adrenal gland, heart, kidneys, brown and white adipose tissues and pancreas, in response to environmental conditions and the animal's energy state, providing for appropriate energy utilization. Classic neuroanatomical studies have shown that the EWcp receives inputs from forebrain regions involved in these functions and projects to presympathetic neuronal populations in the brainstem. Transneuronal tracing with pseudorabies virus has demonstrated that the EWcp is connected polysynaptically with central circuits that provide sympathetic innervation to all these effector organs that are critical for stress responses and energy homeostasis. We propose that EWcp integrates multimodal signals (stress, thermal, metabolic, endocrine, etc.) and modulates the sympathetic output simultaneously to multiple effector organs to maintain energy homeostasis under different conditions that require adjustments of energy demands.
Collapse
Affiliation(s)
- Georgina Cano
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA; (S.L.H.); (A.F.S.)
| | | | | |
Collapse
|
28
|
Guvenc-Bayram G, Yalcin M. The intermediary role of the central cyclooxygenase / lipoxygenase enzymes in intracerebroventricular injected nesfatin-1-evoked cardiovascular effects in rats. Neurosci Lett 2021; 756:135961. [PMID: 34022265 DOI: 10.1016/j.neulet.2021.135961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/18/2023]
Abstract
That nesfatin-1 is a neuromodulatory peptide for the cardiovascular system is well documented. Several central receptors have been shown to mediate the cardiovascular effects of nesfatin-1. Immunohistochemistry and Western blot studies showed that nesfatin-1 activated the expression of the central cyclooxygenase (COX) -1, -2 and lipoxygenase (LOX). In addition, microdialysis study showed that nesfatin-1 increased the release of total prostaglandins and leukotrienes from the hypothalamus. The present study investigated whether the central COX and LOX enzymes have a direct mediating role in the MAP and HR responses of nesfatin-1. Intracerebroventricularly administered nesfatin-1 produced dose-dependent pressor and phasic HR responses in normotensive conscious rats Sprague Dawley. Central pretreatment with a COX1/2 inhibitor, ibuprofen, completely blocked the nesfatin-1-induced responses. However, central pretreatment with a nonselective LOX inhibitor, nordihydroguaiaretic acid, partially attenuated the cardiovascular responses induced by nesfatin-1. The results suggest that centrally administered nesfatin-1 activates the central enzymes COX and LOX, which may be involved in the cardiovascular responses as a novel central mechanism for nesfatin-1.
Collapse
Affiliation(s)
- Gokcen Guvenc-Bayram
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey
| | - Murat Yalcin
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, 16059, Turkey.
| |
Collapse
|
29
|
Özdemir-Kumral ZN, Koyuncuoğlu T, Arabacı-Tamer S, Çilingir-Kaya ÖT, Köroğlu AK, Yüksel M, Yeğen BÇ. High-fat Diet Enhances Gastric Contractility, but Abolishes Nesfatin-1-induced Inhibition of Gastric Emptying. J Neurogastroenterol Motil 2021; 27:265-278. [PMID: 33795544 PMCID: PMC8026381 DOI: 10.5056/jnm20206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS Gastrointestinal motility changes contribute to development and maintenance of obesity. Nesfatin-1 (NES-1) is involved in central appetite control. The aim is to elucidate effects of NES-1 and high-fat diet (HFD) on gastrointestinal motility and to explore myenteric neuron expressions of tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and neuronal nitric oxide synthase (nNOS) in HFDinduced oxidative injury. METHODS Sprague-Dawley rats were fed with normal diet (ND) or HFD. Gastric emptying rate was measured following NES-1 (5 pmol/rat, intracerebroventricular) preceded by subcutaneous injections of glucagon-like peptide 1 (GLP-1), cholecystokinin 1 (CCK-1), and gastrin/CCK-2 receptor antagonists. In carbachol-contracted gastric and ileal strips, contractile changes were recorded by adding NES- 1 (0.3 nmol/L), GLP-1, CCK-1, and gastrin/CCK-2 antagonists. RESULTS Neither HFD nor NES-1 changed methylcellulose emptying, but NES-1 delayed saline emptying in cannulated ND-rats. Inhibitory effect of NES-1 on gastric emptying in ND-rats was reversed by all antagonists, and abolished in HFD-rats. In HFD-rats, carbachol-induced contractility was enhanced in gastric, but inhibited in ileal strips. HFD increased body weight, while serum triglycerides, alanine transaminase, aspartate aminotransferase, glucose, and levels of malondialdehyde, glutathione, myeloperoxidase activity, and luminolchemiluminescence in hepatic, ileal, and adipose tissues were similar in ND- and HFD-rats, but only lucigenin-chemiluminescence was increased in HFD-rats. Vasoactive intestinal peptide (VIP) and TH immunoreactivities were depressed and nNOS immunoreactivity was increased in gastric tissues of HFD-rats, while VIP and TH were enhanced, but nNOS was reduced in their intestines. CONCLUSIONS HFD caused mild systemic inflammation, disrupted enteric innervation, enhanced gastric contractility, inhibited ileal contractility, and eliminated inhibitory effect of NES-1 on gastric motility.
Collapse
Affiliation(s)
| | - Türkan Koyuncuoğlu
- Departments of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Sevil Arabacı-Tamer
- Departments of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Özlem T Çilingir-Kaya
- Departments of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ayça K Köroğlu
- Departments of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
- Department of Histology and Embryology, Istinye University Faculty of Medicine; Istanbul, Turkey
| | - Meral Yüksel
- Marmara University Vocational School of Health Sciences, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Departments of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
30
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Hui J, Aulakh GK, Unniappan S, Singh B. Loss of Nucleobindin-2/Nesfatin-1 increases lipopolysaccharide-induced murine acute lung inflammation. Cell Tissue Res 2021; 385:87-103. [PMID: 33783610 DOI: 10.1007/s00441-021-03435-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
NUCB2/nesfatin-1 is expressed in variety of tissues. Treatment with nesfatin-1 reduces inflammation in rat models of subarachnoid hemorrhage-induced oxidative brain damage and traumatic brain injury as well as myocardial injury. There is only one study showing anti-inflammatory actions of nesfatin-1 on acute lung inflammation. To more precisely determine the role of NUCB2/nesfatin-1 in acute lung inflammation, we conducted a study using NUCB2/nesfatin-1 knockout (NKO) mice as well as neutrophils isolated from the bone marrows of WT and NKO mice. Our findings suggest that the absence of NUCB2/nesfatin-1 significantly increases the accumulation of adherent neutrophils by approximately 3 times compared with WT within LPS-treated lungs. Integrating this with observations from both BALF and neutrophil cytokine expression, we propose that although neutrophils lacking NUCB2/nesfatin-1 individually secrete less pro-inflammatory cytokines compared with stimulated WT cells, the result of knocking out NUCB2/nesfatin-1 is net pro-inflammatory. No change was found in NUCB2/nesfatin-1 mRNA or protein expression comparing WT LPS and PBS-treated samples. Taken together, our results show that NUCB2/nesfatin-1 is constitutively expressed in mouse lungs and neutrophils and demonstrates anti-inflammatory properties in mouse lungs during acute lung injury, by inhibiting adherent neutrophil accumulation and inflammatory cytokine expression.
Collapse
Affiliation(s)
- Jasmine Hui
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Gurpreet Kaur Aulakh
- Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Baljit Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
32
|
Rupp SK, Wölk E, Stengel A. Nesfatin-1 Receptor: Distribution, Signaling and Increasing Evidence for a G Protein-Coupled Receptor - A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:740174. [PMID: 34566899 PMCID: PMC8461182 DOI: 10.3389/fendo.2021.740174] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Nesfatin-1 is an 82-amino acid polypeptide, cleaved from the 396-amino acid precursor protein nucleobindin-2 (NUCB2) and discovered in 2006 in the rat hypothalamus. In contrast to the growing body of evidence for the pleiotropic effects of the peptide, the receptor mediating these effects and the exact signaling cascades remain still unknown. METHODS This systematic review was conducted using a search in the Embase, PubMed, and Web of Science databases. The keywords "nesfatin-1" combined with "receptor", "signaling", "distribution", "pathway", g- protein coupled receptor", and "binding" were used to identify all relevant articles reporting about potential nesfatin-1 signaling and the assumed mediation via a Gi protein-coupled receptor. RESULTS Finally, 1,147 articles were found, of which 1,077 were excluded in several steps of screening, 70 articles were included in this systematic review. Inclusion criteria were studies investigating nesfatin-1's putative receptor or signaling cascade, observational preclinical and clinical studies, experimental studies, registry-based studies, cohort studies, population-based studies, and studies in English language. After screening for eligibility, the studies were assigned to the following subtopics and discussed regarding intracellular signaling of nesfatin-1 including the potential receptor mediating these effects and downstream signaling of the peptide. CONCLUSION The present review sheds light on the various effects of nesfatin-1 by influencing several intracellular signaling pathways and downstream cascades, including the peptide's influence on various hormones and their receptors. These data point towards mediation via a Gi protein-coupled receptor. Nonetheless, the identification of the nesfatin-1 receptor will enable us to better investigate the exact mediating mechanisms underlying the different effects of the peptide along with the development of agonists and antagonists.
Collapse
Affiliation(s)
- Sophia Kristina Rupp
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Ellen Wölk
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Andreas Stengel,
| |
Collapse
|
33
|
Schalla MA, Goebel-Stengel M, Friedrich T, Kühne SG, Kobelt P, Rose M, Stengel A. Restraint stress affects circulating NUCB2/nesfatin-1 and phoenixin levels in male rats. Psychoneuroendocrinology 2020; 122:104906. [PMID: 33059202 DOI: 10.1016/j.psyneuen.2020.104906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
The two peptides phoenixin and nesfatin-1 are colocalized in hypothalamic nuclei involved in the mediation of food intake and behavior. Phoenixin stimulates food intake and is anxiolytic, while nesfatin-1 is an anorexigenic peptide shown to increase anxiety and anhedonia. Interestingly, central activation of both peptides can be stimulated by restraint stress giving rise to a role in the mediation of stress. Thus, the aim of the study was to test whether also peripheral circulating levels of NUCB2/nesfatin-1 and phoenixin are altered by restraint stress. Male ad libitum fed Sprague Dawley rats equipped with a chronic intravenous catheter were subjected to restraint stress and plasma levels of NUCB2/nesfatin-1, phoenixin and cortisol were measured over a period of 240 min and compared to levels of freely moving rats. Peripheral cortisol levels were significantly increased in restrained rats at 30, 60, 120 and 240 min compared to controls (p < 0.05). In contrast, restraint stress decreased plasma phoenixin levels at 15 min compared to unstressed conditions (0.8-fold, p < 0.05). Circulating NUCB2/nesfatin-1 levels were increased only at 240 min in restrained rats compared to those in unstressed controls (1.3-fold, p < 0.05). In addition, circulating NUCB2/nesfatin-1 levels correlated positively with phoenixin levels (r = 0.378, p < 0.001), while neither phoenixin nor nesfatin-1 were associated with cortisol levels (r = 0.0275, and r=-0.143, p> 0.05). These data suggest that both peptides, NUCB2/nesfatin-1 and phoenixin, are affected by restraint stress, although less pronounced than circulating cortisol.
Collapse
Affiliation(s)
- M A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Internal Medicine, HELIOS Kliniken GmbH, Rottweil, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - T Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - S G Kühne
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - P Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA
| | - A Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
34
|
Karadeniz Cerit K, Koyuncuoğlu T, Yağmur D, Peker Eyüboğlu İ, Şirvancı S, Akkiprik M, Aksu B, Dağlı ET, Yeğen BÇ. Nesfatin-1 ameliorates oxidative bowel injury in rats with necrotizing enterocolitis: The role of the microbiota composition and claudin-3 expression. J Pediatr Surg 2020; 55:2797-2810. [PMID: 32171536 DOI: 10.1016/j.jpedsurg.2020.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Ongoing high mortality due to necrotizing enterocolitis (NEC) necessitates the investigation of novel treatments to improve the outcome of the affected newborns. The aim was to elucidate the potential therapeutic impact of the nesfatin-1, a peptide with anti-inflammatory and anti-apoptotic effects in several inflammatory processes, on NEC-induced newborn rats. MATERIALS AND METHODS Sprague-Dawley pups were separated from their mothers, fed with a hyperosmolar formula and exposed to hypoxia, while control pups had no intervention. NEC-induced pups received saline or nesfatin-1 (0.2 μg/kg/day) for 3 days, while some nesfatin-1 treated pups were injected with capsaicin (50 μg/g) for the chemical ablation of afferent neurons. On the 4th day, clinical state and macroscopic gut assessments were made. In intestines, immunohistochemical staining of cycloxygenase-2 (COX-2), nuclear factor (NF)-κB-p65 (RelA), vascular endothelial growth factor (VEGF), claudin-3 and zonula occludens-1 (ZO-1) were performed, while gene expressions of COX-2, occludin, claudin-3, NF-κB-p65 (RelA) and VEGF were determined using q-PCR. In fecal samples, relative abundance of bacteria was quantified by q-PCR. Biochemical evaluation of oxidant/antioxidant parameters was performed in both intestinal and cerebral tissues. RESULTS Claudin-3 and ZO-1 immunoreactivity scores were significantly elevated in the nesfatin-1 treated control pups. Nesfatin-1 reduced NEC-induced high macroscopic and clinical scores, inhibited NF-κB-65 pathway and maintained the balance of oxidant/antioxidant systems. NEC increased the abundance of Proteobacteria with a concomitant reduction in Actinobacteria and Bacteroidetes, while nesfatin-1 treatment reversed these alterations. Modulatory effects of nesfatin-1 on microbiota and oxidative injury were partially reversed by capsaicin. Immunohistochemistry demonstrated that nesfatin-1 abolished NEC-induced reduction in claudin-3. Gene expressions of COX-2, NF-κB, occludin and claudin-3 were elevated in saline-treated NEC pups, while these up-regulated mRNA levels were not further altered in nesfatin-1-treated NEC pups. CONCLUSION Nesfatin-1 could be regarded as a potential preventive agent for the treatment of NEC.
Collapse
Affiliation(s)
| | - Türkan Koyuncuoğlu
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Damla Yağmur
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - İrem Peker Eyüboğlu
- Department of Medical Biology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Serap Şirvancı
- Department of Histology & Embryology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Mustafa Akkiprik
- Department of Medical Biology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Burak Aksu
- Department of Medical Microbiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - E Tolga Dağlı
- Department of Pediatric Surgery, Marmara University, School of Medicine, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
35
|
Nesfatin-1 and nesfatin-1-like peptide suppress growth hormone synthesis via the AC/PKA/CREB pathway in mammalian somatotrophs. Sci Rep 2020; 10:16686. [PMID: 33028951 PMCID: PMC7541516 DOI: 10.1038/s41598-020-73840-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Nesfatin-1 (NESF) and NESF-like peptide (NLP), encoded in nucleobindin 2 and 1 (NUCB2 and NUCB1), respectively, are orphan ligands and metabolic factors. We hypothesized that NESF and NLP suppress growth hormone (GH) synthesis, and aimed to determine whether mammalian somatotrophs are a source and site of action of these peptides. Using immortalized rat somatotrophs (GH3 cells), NUCB expression was determined by qPCR, immunofluorescence and Western blot. NESF and NLP binding to GH3 cells was tested using fluorescence imaging. Both time- and concentration-dependent studies were performed to test whether NESF and NLP affect GH. Moreover, the ability of these peptides to modulate the effects of ghrelin, and cell-signaling pathways were studied. GH3 cells express NUCB mRNAs and protein. Labeled NESF and NLP bind to the surface of GH3 cells, and incubation with either NESF or NLP decreased GH mRNA and protein expression, downregulated pit-1 mRNA, and blocked the GH stimulatory effects of ghrelin. Pre-incubation with either of these peptides reduced CREB phosphorylation by an AC-activator, but not when PKA was directly activated by a cAMP analog. Our results indicate that rat somatotrophs are a source of NUCBs, and that NESF and NLP downregulate GH synthesis through the AC/PKA/CREB signaling pathway.
Collapse
|
36
|
Wilz AM, Wernecke K, Appel L, Kahrs J, Dore R, Jöhren O, Lehnert H, Schulz C. Endogenous NUCB2/Nesfatin-1 Regulates Energy Homeostasis Under Physiological Conditions in Male Rats. Horm Metab Res 2020; 52:676-684. [PMID: 32722818 DOI: 10.1055/a-1196-2059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nesfatin-1 is the proteolytic cleavage product of Nucleobindin 2, which is expressed both in a number of brain nuclei (e. g., the paraventricular nucleus of the hypothalamus) and peripheral tissues. While Nucleobindin 2 acts as a calcium binding protein, nesfatin-1 was shown to affect energy homeostasis upon central nervous administration by decreasing food intake and increasing thermogenesis. In turn, Nucleobindin 2 mRNA expression is downregulated in starvation and upregulated in the satiated state. Still, knowledge about the physiological role of endogenous Nucleobindin 2/nesfatin-1 in the control of energy homeostasis is limited and since its receptor has not yet been identified, rendering pharmacological blockade impossible. To overcome this obstacle, we tested and successfully established an antibody-based experimental model to antagonize the action of nesfatin-1. This model was then employed to investigate the physiological role of endogenous Nucleobindin 2/nesfatin-1. To this end, we applied nesfatin-1 antibody into the paraventricular nucleus of satiated rats to antagonize the presumably high endogenous Nucleobindin 2/nesfatin-1 levels in this feeding condition. In these animals, nesfatin-1 antibody administration led to a significant decrease in thermogenesis, demonstrating the important role of endogenous Nucleobindin 2/nesfatin-1in the regulation of energy expenditure. Additionally, food and water intake were significantly increased, confirming and complementing previous findings. Moreover, neuropeptide Y was identified as a major downstream target of endogenous Nucleobindin 2/nesfatin-1.
Collapse
Affiliation(s)
- Anna-Maria Wilz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Kerstin Wernecke
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Lena Appel
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Johanna Kahrs
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Riccardo Dore
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
37
|
Schalla MA, Kühne SG, Friedrich T, Kobelt P, Goebel-Stengel M, Long M, Rivalan M, Winter Y, Mori M, Rose M, Stengel A. Central blockage of nesfatin-1 has anxiolytic effects but does not prevent corticotropin-releasing factor-induced anxiety in male rats. Biochem Biophys Res Commun 2020; 529:773-777. [DOI: 10.1016/j.bbrc.2020.05.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/21/2020] [Indexed: 11/24/2022]
|
38
|
Schalla MA, Unniappan S, Lambrecht NWG, Mori M, Taché Y, Stengel A. NUCB2/nesfatin-1 - Inhibitory effects on food intake, body weight and metabolism. Peptides 2020; 128:170308. [PMID: 32229144 DOI: 10.1016/j.peptides.2020.170308] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Since its discovery in 2006 by Oh-I and colleagues, NUCB2/nesfatin-1 encoded by nucleobindin-2 (NUCB2) has drawn sustained attention as reflected in over 500 publications. Among those, more than half focused on the alterations of food intake, body weight and metabolism (glucose, fat) induced by nesfatin-1 and/or NUCB2/nesfatin-1. In the current review we discuss the existing literature focusing on NUCB2/nesfatin-1's influence on food intake, body weight and glucose as well as fat metabolism and highlight gaps in knowledge.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nils W G Lambrecht
- Department of Pathology and Laboratory Medicine, VA Medical Center, Long Beach, California, USA
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yvette Taché
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA; Department of Medicine, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
39
|
Sun S, Shin J, Jang J, Hwang S, Kim J, Kong J, Yang H. 17Beta-Estradiol Regulates NUCB2/ Nesfatin-1 Expression in Mouse Oviduct. Dev Reprod 2020; 24:43-52. [PMID: 32411917 PMCID: PMC7201062 DOI: 10.12717/dr.2020.24.1.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/26/2022]
Abstract
NUCB2/nesfatin-1 known to regulate appetite and energy homeostasis is expressed not only in the hypothalamus, but also in various organs and tissues. Our previous reports also demonstrated that NUCB2/nesfatin-1 was expressed in the reproductive organs, including the ovaries, uterus, and testes of mice. However, it is yet known whether NUCB2/nesfatin-1 is expressed in the oviduct and how its expression is regulated. Therefore, we investigated the expression of NUCB2/nesfatin-1 in the oviduct and its expression is regulated by gonadotropin. Immunohistochemical staining results showed that nesfatin-1 protein was localized in epithelial cells of the oviduct. As a result of quantitative real-time PCR (qRT-PCR) and Western blot, NUCB2/nesfatin-1 was detected strongly in the oviducts. During the estrus cycle, NUCB2/nesfatin-1 expression in the oviducts was markedly higher in the proestrus stage than in other estrus stages. In order to elucidate whether the expression of NUCB2 mRNA is controlled by the gonadotropins, we injected PMSG and hCG and measured NUCB2 mRNA level in the oviduct after injection. Its level was increased in the oviduct after PMSG injection, but no significant change after hCG injection. In addition, NUCB2 mRNA levels were markedly reduced after ovariectomy, while recovered after 17β-estradiol (E2) injection, but not by progesterone (P4). This study demonstrated that NUCB2/nesfatin-1 is highly expressed in the oviduct of mouse and its expression is regulated by E2 secreted by the ovaries. These results suggest that NUCB2/nesfatin-1 expressed by the oviduct may affect the function of the oviduct regulated by the ovaries.
Collapse
Affiliation(s)
- Sojung Sun
- Dept. of Bioenvironmental Technology, Seoul Women's University, Seoul 01797, Korea
| | - Jungwoo Shin
- Dept. of Bioenvironmental Technology, Seoul Women's University, Seoul 01797, Korea
| | - Jiwon Jang
- Dept. of Bioenvironmental Technology, Seoul Women's University, Seoul 01797, Korea
| | - Seungyeon Hwang
- Dept. of Bioenvironmental Technology, Seoul Women's University, Seoul 01797, Korea
| | - Jeongwoo Kim
- Dept. of Bioenvironmental Technology, Seoul Women's University, Seoul 01797, Korea
| | - Jinseong Kong
- Dept. of Bioenvironmental Technology, Seoul Women's University, Seoul 01797, Korea
| | - Hyunwon Yang
- Dept. of Bioenvironmental Technology, Seoul Women's University, Seoul 01797, Korea
| |
Collapse
|
40
|
Guvenc-Bayram G, Altinbas B, Iqbal A, Cerci E, Udum D, Yilmaz MS, Erdost H, Yalcin-Ulger E, Ilhan T, Ersoy F, Uz E, Yalcin M. Intracerebroventricularly injected nesfatin-1 activates central cyclooxygenase and lipoxygenase pathways. Auton Neurosci 2020; 226:102670. [PMID: 32334147 DOI: 10.1016/j.autneu.2020.102670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/20/2023]
Abstract
Nesfatin-1 is a multifunctional neuropeptide having crucial autonomic roles. It is well known that nesfatin-1 collaborates with other central neuromodulatory systems, such as central corticotropin-releasing hormone, melanocortin, oxytocin, and cholinergic systems to show its autonomic effects. Central arachidonic acid cascade plays an important role to provide the homeostasis by exhibiting similar autonomic effects to nesfatin-1. Based on these similarities, the current study was designed to show the effects of intracerebroventricularly (ICV) injected nesfatin-1 on the hypothalamic arachidonic acid (AA) cascade. Immunochemistry and western blot approaches demonstrated that ICV administration of nesfatin-1 provokes an increase in the hypothalamic cyclooxygenase (COX) -1, -2 and lipoxygenase (LOX) protein expression. Moreover, the microdialysis study demonstrated that centrally injected nesfatin-1 increased the posterior hypothalamic extracellular AA products. In conclusion, these findings report that while nesfatin-1 is generating its autonomic effects, it also might be using central prostaglandins and leukotrienes by activating central COX and LOX pathways.
Collapse
Affiliation(s)
- Gokcen Guvenc-Bayram
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey; Department of Physiology, Faculty of Veterinary Medicine\, Dokuz Eylul University, Kiraz, Izmir 35890, Turkey
| | - Burcin Altinbas
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey; Department of Physiology, Faculty of Medicine, Sanko University, Gaziantep 27090, Turkey
| | - Awais Iqbal
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Uludag University, Bursa 16059, Turkey
| | - Ece Cerci
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey
| | - Duygu Udum
- Department of Biochemistry, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey
| | - Mustafa Sertac Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Uludag University, Bursa 16059, Turkey
| | - Hatice Erdost
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey
| | - Ebru Yalcin-Ulger
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey
| | - Tuncay Ilhan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey
| | - Figen Ersoy
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Uludag University, Bursa 16059, Turkey
| | - Elif Uz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Uludag University, Bursa 16059, Turkey
| | - Murat Yalcin
- Department of Physiology, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey.
| |
Collapse
|
41
|
Angelone T, Rocca C, Pasqua T. Nesfatin-1 in cardiovascular orchestration: From bench to bedside. Pharmacol Res 2020; 156:104766. [PMID: 32201244 DOI: 10.1016/j.phrs.2020.104766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Since the discovery of Nesfatin-1 in 2006, intensive research was finalized to further and deeper investigate the precise physiological functions of the peptide at both central and peripheral levels, rapidly enriching the knowledge regarding this intriguing molecule. Nesfatin-1 is a hypothalamic peptide generated via the post-translational processing of its precursor Nucleobindin 2, a protein supposed to play a role in many biological processes thanks to its ability to bind calcium and to interact with different intracellular proteins. Nesfatin-1 is mainly known for its anorexic properties, but it also controls water intake and glucose homeostasis. Recent experimental evidences describe the peptide as a possible direct/indirect orchestrator of central and peripheral cardiovascular control. A specific Nesfatin-1 receptor still remains to be identified although numerous studies suggest that the peptide activates extra- and intracellular regulatory pathways by involving several putative binding sites. The present paper was designed to systematically review the latest findings about Nesfatin-1, focusing on its cardiovascular regulatory properties under normal and physiopathological conditions. The hope is to provide the conceptual basis to consider Nesfatin-1 not only as a pleiotropic neuroendocrine molecule, but also as a homeostatic modulator of the cardiovascular function and with a crucial role in cardiovascular diseases.
Collapse
Affiliation(s)
- Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy; National Institute of Cardiovascular Research I.N.R.C., Bologna, Italy.
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Dept of Biology, Ecology and Earth Sciences, University of Calabria, Rende, CS, Italy.
| |
Collapse
|
42
|
Idrizaj E, Garella R, Squecco R, Baccari MC. Adipocytes-released Peptides Involved in the Control of Gastrointestinal Motility. Curr Protein Pept Sci 2019; 20:614-629. [PMID: 30663565 DOI: 10.2174/1389203720666190121115356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| |
Collapse
|
43
|
Leung AKW, Ramesh N, Vogel C, Unniappan S. Nucleobindins and encoded peptides: From cell signaling to physiology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:91-133. [PMID: 31036300 DOI: 10.1016/bs.apcsb.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nucleobindins (NUCBs) are DNA and calcium binding, secreted proteins with various signaling functions. Two NUCBs, nucleobindin-1 (NUCB1) and nucleobindin-2 (NUCB2), were discovered during the 1990s. These two peptides are shown to have diverse functions, including the regulation of inflammation and bone formation, among others. In 2006, Oh-I and colleagues discovered that three peptides encoded within the NUCB2 could be processed by prohormone convertases. These peptides were named nesfatin-1, 2 and 3, mainly due to the satiety and fat influencing properties of nesfatin-1. However, it was found that nesfatin-2 and -3 have no such effects. Nesfatin-1, especially its mid-segment, is very highly conserved across vertebrates. Although the receptor(s) that mediate nesfatin-1 effects are currently unknown, it is now considered an endogenous peptide with multiple functions, affecting central and peripheral tissues to regulate metabolism, reproduction, endocrine and other functions. We recently identified a nesfatin-1-like peptide (NLP) encoded within the NUCB1. Like nesfatin-1, NLP suppressed feed intake in mice and fish, and stimulated insulin secretion from pancreatic beta cells. There is considerable evidence available to indicate that nucleobindins and its encoded peptides are multifunctional regulators of cell biology and whole animal physiology. This review aims to briefly discuss the structure, distribution, functions and mechanism of action nucleobindins and encoded peptides.
Collapse
Affiliation(s)
- Adelaine Kwun-Wai Leung
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Naresh Ramesh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Christine Vogel
- Department of Biology, New York University, New York, NY, United States
| | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, Saskatoon, SK, Canada.
| |
Collapse
|
44
|
Weibert E, Hofmann T, Stengel A. Role of nesfatin-1 in anxiety, depression and the response to stress. Psychoneuroendocrinology 2019; 100:58-66. [PMID: 30292960 DOI: 10.1016/j.psyneuen.2018.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/02/2018] [Accepted: 09/26/2018] [Indexed: 01/20/2023]
Abstract
Nesfatin-1 has been discovered a decade ago and since then drawn a lot of attention. The initially proposed anorexigenic effect was followed by the description of several other involvements such as a role in gastrointestinal motility, glucose homeostasis, cardiovascular functions and thermoregulation giving rise to a pleiotropic action of this peptide. The recent years witnessed mounting evidence on the involvement of nesfatin-1 in emotional processes as well. The present review will describe the peptide's relations to anxiety, depressiveness and stress in animal models and humans and also discuss existing gaps in knowledge in order to stimulate further research.
Collapse
Affiliation(s)
- Elena Weibert
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tobias Hofmann
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
45
|
Kaya O, Yilmaz M, Bayram S, Gunduz O, Kizilay G, Ozturk L. Effects of cannabinoid modulation on hypothalamic nesfatin-1 and insulin resistance. CHINESE J PHYSIOL 2019; 62:182-187. [DOI: 10.4103/cjp.cjp_50_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Mirakhor Samani S, Ghasemi H, Rezaei Bookani K, Shokouhi B. SERUM NESFATIN-1 LEVEL IN HEALTHY SUBJECTS WITH WEIGHT-RELATED ABNORMALITIES AND NEWLY DIAGNOSED PATIENTS WITH TYPE 2 DIABETES MELLITUS; A CASE-CONTROL STUDY. ACTA ENDOCRINOLOGICA-BUCHAREST 2019; -5:69-73. [PMID: 31149062 DOI: 10.4183/aeb.2019.69] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Context Nesfatin-1 is a novel peptide with both central and peripheral anorexigenic regulatory properties. Besides its effects on food intake, few studies have suggested a possible role for this peptide in the pathogenesis of diabetes mellitus type 2. Objective To compare serum levels of nesfatin-1 between healthy, normal-weight persons and three groups including healthy underweight, healthy obese and diabetic subjects. Design Prospective, case-control study, performed between January 2015 and January 2016. Subjects and Methods Fasting levels in serum nesfatin-1 were measured in 30 healthy, normal-weight individuals (controls), 30 healthy underweight persons, 30 healthy obese persons, and 30 patients with newly diagnosed diabetes type 2 using standard enzyme-linked immunosorbent assay (ELISA) kits. Results The mean serum nesfatin-1 level was significantly higher in controls (2.61 ng/mL) compared to that in obese (1.13 ng/mL) and diabetic (0.99 ng/mL) patients; and significantly lower than that in the underweight group (3.50 ng/mL). The obese and diabetic groups were comparable in this regard. No significant association was found between serum nesfatin-1 level and age, sex, or body mass index. Conclusions Serum nesfatin-1 is possibly associated with weight-related abnormalities in otherwise healthy subjects and diabetes type 2. Obesity and diabetes type 2 may share a common pathologic point in this regard.
Collapse
Affiliation(s)
- S Mirakhor Samani
- Qazvin University of Medical Sciences, Department of Pathology, Qazvin, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Ghasemi
- Department of Internal Medicine, Tabriz, Iran
| | | | - B Shokouhi
- Urmia University of Medical Sciences, Department of Internal Medicine, Urmia, Iran
| |
Collapse
|
47
|
Sun S, Yang H. Tissue-Specific Localization NUCB2/nesfatin-1 in the Liver and Heart of Mouse Fetus. Dev Reprod 2018; 22:331-339. [PMID: 30680332 PMCID: PMC6344366 DOI: 10.12717/dr.2018.22.4.331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/17/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
NUCB2/nesfatin-1 is first known to be expressed in the hypothalamus while controlling appetite and energy metabolism. However, recent studies have shown that NUCB2/nesfatin-1 was expressed in the various organs as well as the hypothalamus. Our previous reports also demonstrated that NUCB2/nesfatin-1 was expressed in the ovary, testis, pituitary gland, lung, kidney, and stomach of fetal and adult mice. However, the role of NUCB2/nesfatin-1 in mouse fetus remains unknown. Thus, the aim of this study was to investigate whether NUCB2/nestatin-1 is expressed in mouse fetus at the developmental stage in which organogenesis begins. To do this, we performed in situ hybridization (ISH) and immunohistochemistry (IHC) staining to examine the distribution of NUCB2 mRNA and nesfatin-1 protein in the mouse fetal organs during early developmental stages, especially at embryonic day (E) 10.5. As a result of ISH, NUCB2 mRNA positive signals were more frequent in the liver, but there were relatively few positive signals in heart. On the other hand, no positive signals were detected in other organs. These ISH results were validated by IHC staining and qRT-PCR analysis. Expression of nesfatin-1 protein detected by IHC staining was similar to that of NUCB2 mRNA detected by ISH in the liver and heart. In addition, the levels of NUCB2 mRNA expression analyzed by qRT-PCR were significantly increased in the liver and heart compared to other organs of the mouse fetus at E13.5, whereas its level was extensively decreased in the liver, but increased in the lung, stomach, and kidney of the mouse fetus at E17.5. These results suggest that NUCB2/nesfatin-1 may play an important role in liver and heart development and physiological functions in the developmental process of mouse fetus. Further studies are needed on the function of NUCB2/nesfatin-1, which is highly expressed in the various organs, including liver and heart during mouse development.
Collapse
Affiliation(s)
- Sojung Sun
- Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University, Seoul 01797, Korea
| | - Hyunwon Yang
- Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University, Seoul 01797, Korea
| |
Collapse
|
48
|
Kühne SG, Schalla MA, Friedrich T, Kobelt P, Goebel-Stengel M, Long M, Rivalan M, Winter Y, Rose M, Stengel A. Nesfatin-1 30-59 Injected Intracerebroventricularly Increases Anxiety, Depression-Like Behavior, and Anhedonia in Normal Weight Rats. Nutrients 2018; 10:nu10121889. [PMID: 30513901 PMCID: PMC6315806 DOI: 10.3390/nu10121889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 11/30/2022] Open
Abstract
Nesfatin-1 is a well-established anorexigenic peptide. Recent studies indicated an association between nesfatin-1 and anxiety/depression-like behavior. However, it is unclear whether this effect is retained in obesity. The aim was to investigate the effect of nesfatin-130-59—the active core of nesfatin-1—on anxiety and depression-like behavior in normal weight (NW) and diet-induced (DIO) obese rats. Male rats were intracerebroventricularly (ICV) cannulated and received nesfatin-130-59 (0.1, 0.3, or 0.9 nmol/rat) or vehicle 30 min before testing. Nesfatin-130-59 at a dose of 0.3 nmol reduced sucrose consumption in the sucrose preference test in NW rats compared to vehicle (–33%, p < 0.05), indicating depression-like/anhedonic behavior. This dose was used for all following experiments. Nesfatin-130-59 also reduced cookie intake during the novelty-induced hypophagia test (−62%, p < 0.05). Moreover, nesfatin-130-59 reduced the number of entries into the center zone in the open field test (−45%, p < 0.01) and the visits of open arms in the elevated zero maze test (−39%, p < 0.01) in NW rats indicating anxiety. Interestingly, DIO rats showed no behavioral alterations after the injection of nesfatin-130-59 (p > 0.05). These results indicate an implication of nesfatin-130-59 in the mediation of anxiety and depression-like behavior/anhedonia under normal weight conditions, while in DIO rats, a desensitization might occur.
Collapse
Affiliation(s)
- Stephanie Gladys Kühne
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Martha Anna Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Tiemo Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Peter Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Miriam Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
- Department of Internal Medicine, Helios Clinic, 78628 Rottweil, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Melissa Long
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - Marion Rivalan
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - York Winter
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
49
|
Schalla MA, Stengel A. Current Understanding of the Role of Nesfatin-1. J Endocr Soc 2018; 2:1188-1206. [PMID: 30302423 PMCID: PMC6169466 DOI: 10.1210/js.2018-00246] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Nesfatin-1 was discovered in 2006 and implicated in the regulation of food intake. Subsequently, its widespread central and peripheral distribution gave rise to additional effects. Indeed, a multitude of actions were described, including modulation of gastrointestinal functions, glucose and lipid metabolism, thermogenesis, mediation of anxiety and depression, as well as cardiovascular and reproductive functions. Recent years have witnessed a great increase in our knowledge of these effects and their underlying mechanisms, which will be discussed in the present review. Lastly, gaps in knowledge will be highlighted to foster further studies.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
50
|
Arabaci Tamer S, Yildirim A, Köroğlu MK, Çevik Ö, Ercan F, Yeğen BÇ. Nesfatin-1 ameliorates testicular injury and supports gonadal function in rats induced with testis torsion. Peptides 2018; 107:1-9. [PMID: 30031042 DOI: 10.1016/j.peptides.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/29/2022]
Abstract
Testicular torsion causes ischemia-reperfusion injury and an increased risk of infertility. Nesfatin-1 is a novel peptide with antioxidant, anti-inflammatory and anti-apoptotic properties. In the present study, we aimed to investigate the putative beneficial effects of nesfatin-1 on oxidative injury and impaired testicular function induced by testis torsion. Under anesthesia, male Sprague-Dawley rats (180-230 g; n = 24) had sham-operation or they underwent testicular torsion by rotating the left testis 720° and fixing it for 2 h, followed by a 2-h detorsion. Rats in each group were treated intraperitoneally with either nesfatin-1 (0.3 μg/kg) or saline prior to the torsion or sham-torsion. At the end of the 4-h experimental period, tissue samples were removed for evaluation of spermatozoa, molecular and histochemical analyses. In saline-treated torsion/detorsion group, a high percentage of abnormal spermatozoa with head defects was observed, which was abolished in nesfatin-1-treated torsion/detorsion group. The levels of 8-OHdG, tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, caspase-3 were increased in the saline-treated torsion/detorsion group as compared to sham-operated group, while nesfatin-1 pre-treatment significantly decreased the expressions of the pro-inflammatory cytokines, depressed apoptosis, and also reduced the tubular degeneration. In addition, nesfatin-1 in torsion/detorsion group elevated expressions of transforming growth factor (TGF)-beta and reduced expressions of protein kinase B (AKT) and cAMP response element binding protein (CREB) in the testis tissue. The present findings show that nesfatin-1, by regulating AKT and CREB signaling pathways and pro-inflammatory/anti-inflammatory cytokine balance, preserves the spermatogenic cells and ameliorates torsion-detorsion-induced tubular degeneration.
Collapse
Affiliation(s)
- Sevil Arabaci Tamer
- Marmara University, School of Medicine, Department of Physiology, Istanbul, Turkey
| | - Alper Yildirim
- Marmara University, School of Medicine, Department of Physiology, Istanbul, Turkey
| | - M Kutay Köroğlu
- Marmara University, School of Medicine, Department of Histology & Embryology, Istanbul, Turkey
| | - Özge Çevik
- Adnan Menderes University, School of Medicine, Department of Biochemistry, Aydin, Turkey
| | - Feriha Ercan
- Marmara University, School of Medicine, Department of Histology & Embryology, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Marmara University, School of Medicine, Department of Physiology, Istanbul, Turkey.
| |
Collapse
|