1
|
Xiao J, Xu Z. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications. Life Sci 2024; 357:123092. [PMID: 39368772 DOI: 10.1016/j.lfs.2024.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes that leads to vision loss. The striking features of DR are hard exudate, cotton-wool spots, hemorrhage, and neovascularization. The dysregulated retinal cells, encompassing microvascular endothelial cells, pericytes, Müller cells, and adjacent retinal pigment epithelial cells, are involved in the pathological processes of DR. According to recent research, oxidative stress, inflammation, ferroptosis, pyroptosis, apoptosis, and angiogenesis contribute to DR. Recent advancements have highlighted that noncoding RNAs could regulate diverse targets in pathological processes that contribute to DR. Noncoding RNAs, including long noncoding RNAs, microRNAs (miRNA), and circular RNAs, are dysregulated in DR, and interact with miRNA, mRNA, or proteins to control the pathological processes of DR. Hence, modulation of noncoding RNAs may have therapeutic effects on DR. Small extracellular vesicles may be valuable tools for transferring noncoding RNAs and regulating the genes involved in progression of DR. However, the roles of noncoding RNA in developing DR are not fully understood; it is critical to summarize the mechanisms for noncoding RNA regulation of pathological processes and pathways related to DR. This review provides a fundamental understanding of the relationship between noncoding RNAs and DR, exploring the mechanism of how noncoding RNA modulates different signaling pathways, and pave the way for finding potential therapeutic strategies for DR.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Chien HW, Wang K, Chao SC, Lee CY, Lin HY, Yang SF. The Genetic Variants of Long Noncoding RNA MEG3 and Its Association to the Clinical Features of Diabetic Retinopathy. Curr Eye Res 2024; 49:980-987. [PMID: 38717215 DOI: 10.1080/02713683.2024.2350590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/14/2024] [Accepted: 04/25/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE This study aimed to investigate the potential correlation between the single-nucleotide polymorphism (SNP) of maternally expressed gene 3 (MEG3) and the clinical manifestations of diabetic retinopathy (DR). METHODS Five loci of MEG3 SNPs including rs4081134 (G/A), rs10144253 (T/C), rs7158663 (G/A), rs3087918 (T/G) and rs11160608 (A/C) were genotyped by TaqMan allelic discrimination in 457 non-DR patients and 280 DR individuals. RESULTS The distribution frequency of MEG3 SNP rs7158663 GA (AOR: 0.683, 95% CI: 0.478-0.975, p = 0.036) and MEG3 SNP rs7158663 GA + AA (AOR: 0.686, 95% CI: 0.487-0.968, p = 0.032) were significantly lower in the DR group. And the MEG3 SNP rs7158663 GA + AA (AOR: 0.610, 95% CI: 0.377-0.985, p = 0.043) demonstrated a significantly lower distribution frequency in the male DR group. Besides, the DR patients with MEG3 SNP rs7158663 GA + AA genotype showed a significantly lower HbA1c level than the DR patients with MEG3 SNP rs7158663 GG genotype (7.29 ± 1.23 versus 7.74 ± 1.49, p = 0.013). Moreover, in the analysis using data from gene expression data series database, a higher MEG3 level was significantly correlated to a lower miR-182 level in the database (p = 0.0114). CONCLUSIONS In this study, the distribution frequency of MEG3 SNP rs7158663 GA + AA genotype was lower in DR, while the DR would develop under lower HbA1c level in DM patients with this MEG3 SNP variant.
Collapse
Affiliation(s)
- Hsiang-Wen Chien
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai Wang
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, Taiwan
| | - Shih-Chun Chao
- Department of Ophthalmology, Show Chwan Memorial Hospital, Taiwan
- Department of Optometry, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chia-Yi Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Nobel Eye Institute, Taipei, Taiwan
- Department of Ophthalmology, Jen-Ai Hospital Dali Branch, Taichung, Taiwan
| | - Hung-Yu Lin
- Department of Ophthalmology, Show Chwan Memorial Hospital, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Tapia A, Liu X, Malhi NK, Yuan D, Chen M, Southerland KW, Luo Y, Chen ZB. Role of long noncoding RNAs in diabetes-associated peripheral arterial disease. Cardiovasc Diabetol 2024; 23:274. [PMID: 39049097 PMCID: PMC11271017 DOI: 10.1186/s12933-024-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.
Collapse
Affiliation(s)
- Alonso Tapia
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Muxi Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
4
|
Gandhi P, Wang Y, Li G, Wang S. The role of long noncoding RNAs in ocular angiogenesis and vascular oculopathy. Cell Biosci 2024; 14:39. [PMID: 38521951 PMCID: PMC10961000 DOI: 10.1186/s13578-024-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are RNA transcripts over 200 nucleotides in length that do not code for proteins. Initially considered a genomic mystery, an increasing number of lncRNAs have been shown to have vital roles in physiological and pathological conditions by regulating gene expression through diverse mechanisms depending on their subcellular localization. Dysregulated angiogenesis is responsible for various vascular oculopathies, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and corneal neovascularization. While anti-VEGF treatment is available, it is not curative, and long-term outcomes are suboptimal, and some patients are unresponsive. To better understand these diseases, researchers have investigated the role of lncRNAs in regulating angiogenesis and models of vascular oculopathies. This review summarizes recent research on lncRNAs in ocular angiogenesis, including the pro-angiogenic lncRNAs ANRIL, HOTAIR, HOTTIP, H19, IPW, MALAT1, MIAT, NEAT1, and TUG1, the anti-angiogenic lncRNAs MEG3 and PKNY, and the human/primate specific lncRNAs lncEGFL7OS, discussing their functions and mechanisms of action in vascular oculopathies.
Collapse
Affiliation(s)
- Pranali Gandhi
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Yuzhi Wang
- Louisiana State University School of Medicine, New Orleans, LA, 70112, USA
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P.R. China.
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
- Department of Ophthalmology, Tulane University, New Orleans, LA, 70112, USA.
- Tulane Personalized Health Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Gradisteanu Pircalabioru G, Musat M, Elian V, Iliescu C. Liquid Biopsy: A Game Changer for Type 2 Diabetes. Int J Mol Sci 2024; 25:2661. [PMID: 38473908 DOI: 10.3390/ijms25052661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
As the burden of type 2 diabetes (T2D) continues to escalate globally, there is a growing need for novel, less-invasive biomarkers capable of early diabetes detection and monitoring of disease progression. Liquid biopsy, recognized for its minimally invasive nature, is increasingly being applied beyond oncology, and nevertheless shows its potential when the collection of the tissue biopsy is not possible. This diagnostic approach involves utilizing liquid biopsy markers such as cell-free nucleic acids, extracellular vesicles, and diverse metabolites for the molecular diagnosis of T2D and its related complications. In this context, we thoroughly examine recent developments in T2D liquid biopsy research. Additionally, we discuss the primary challenges and future prospects of employing liquid biopsy in the management of T2D. Prognosis, diagnosis and monitoring of T2D through liquid biopsy could be a game-changing technique for personalized diabetes management.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050094 Bucharest, Romania
| | - Madalina Musat
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, 011683 Bucharest, Romania
| | - Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 5-7 Ion Movila Street, 030167 Bucharest, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Prof. Dr. N. C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Ciprian Iliescu
- eBio-Hub Research-Center, National University of Science and Technology "Politehnica" Bucharest, 6 Iuliu Maniu Bulevard, Campus Building, 061344 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050094 Bucharest, Romania
- National Research and Development Institute in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania
| |
Collapse
|
7
|
Farrim MI, Gomes A, Milenkovic D, Menezes R. Gene expression analysis reveals diabetes-related gene signatures. Hum Genomics 2024; 18:16. [PMID: 38326874 PMCID: PMC10851551 DOI: 10.1186/s40246-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Diabetes is a spectrum of metabolic diseases affecting millions of people worldwide. The loss of pancreatic β-cell mass by either autoimmune destruction or apoptosis, in type 1-diabetes (T1D) and type 2-diabetes (T2D), respectively, represents a pathophysiological process leading to insulin deficiency. Therefore, therapeutic strategies focusing on restoring β-cell mass and β-cell insulin secretory capacity may impact disease management. This study took advantage of powerful integrative bioinformatic tools to scrutinize publicly available diabetes-associated gene expression data to unveil novel potential molecular targets associated with β-cell dysfunction. METHODS A comprehensive literature search for human studies on gene expression alterations in the pancreas associated with T1D and T2D was performed. A total of 6 studies were selected for data extraction and for bioinformatic analysis. Pathway enrichment analyses of differentially expressed genes (DEGs) were conducted, together with protein-protein interaction networks and the identification of potential transcription factors (TFs). For noncoding differentially expressed RNAs, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which exert regulatory activities associated with diabetes, identifying target genes and pathways regulated by these RNAs is fundamental for establishing a robust regulatory network. RESULTS Comparisons of DEGs among the 6 studies showed 59 genes in common among 4 or more studies. Besides alterations in mRNA, it was possible to identify differentially expressed miRNA and lncRNA. Among the top transcription factors (TFs), HIPK2, KLF5, STAT1 and STAT3 emerged as potential regulators of the altered gene expression. Integrated analysis of protein-coding genes, miRNAs, and lncRNAs pointed out several pathways involved in metabolism, cell signaling, the immune system, cell adhesion, and interactions. Interestingly, the GABAergic synapse pathway emerged as the only common pathway to all datasets. CONCLUSIONS This study demonstrated the power of bioinformatics tools in scrutinizing publicly available gene expression data, thereby revealing potential therapeutic targets like the GABAergic synapse pathway, which holds promise in modulating α-cells transdifferentiation into β-cells.
Collapse
Affiliation(s)
- M I Farrim
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisbon, Portugal
- Universidad de Alcalá, Escuela de Doctorado, Madrid, Spain
| | - A Gomes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisbon, Portugal
| | - D Milenkovic
- Department of Nutrition, University of California Davis, Davis, USA
| | - R Menezes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisbon, Portugal.
| |
Collapse
|
8
|
Zhong Y, Xia J, Liao L, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in diabetic retinopathy: A narrative review. Int J Biol Macromol 2024; 259:128182. [PMID: 37977468 DOI: 10.1016/j.ijbiomac.2023.128182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes, having extensive and resilient effects on those who suffer from it. As yet, the underlying cell mechanisms of this microvascular disorder are largely unclear. Recently, growing evidence suggests that epigenetic mechanisms can be responsible for gene deregulation leading to the alteration of key processes in the development and progression of DR, in addition to the widely recognized pathological mechanisms. It is noteworthy that seemingly unending epigenetic modifications, caused by a prolonged period of hyperglycemia, may be a prominent factor that leads to metabolic memory, and brings epigenetic entities such as non-coding RNA into the equation. Consequently, further investigation is necessary to truly understand this mechanism. Exosomes are responsible for carrying signals from cells close to the vasculature that are participating in abnormal signal transduction to faraway organs and cells by sailing through the bloodstream. These signs indicate metabolic disorders. With the aid of their encased structure, they can store diverse signaling molecules, which then can be dispersed into the blood, urine, and tears. Herein, we summarized various non-coding RNAs (ncRNAs) that are related to DR pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in this disease.
Collapse
Affiliation(s)
- Yuhong Zhong
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Juan Xia
- Endocrinology Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China
| | - Li Liao
- Department of Respiratory and Critical Care Medicine 3, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, Chengdu 610000, Sichuan, China.
| | - Mohammad Reza Momeni
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Jalink EA, Schonk AW, Boon RA, Juni RP. Non-coding RNAs in the pathophysiology of heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 10:1300375. [PMID: 38259314 PMCID: PMC10800550 DOI: 10.3389/fcvm.2023.1300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.
Collapse
Affiliation(s)
- Elisabeth A. Jalink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Amber W. Schonk
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Frankfurt Rhein/Main, Frankfurt, Germany
| | - Rio P. Juni
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| |
Collapse
|
10
|
Priyadarshini A, Madan R, Das S. Genetics and epigenetics of diabetes and its complications in India. Hum Genet 2024; 143:1-17. [PMID: 37999799 DOI: 10.1007/s00439-023-02616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Diabetes mellitus (DM) has become a significant health concern with an increasing rate of morbidity and mortality worldwide. India ranks second in the number of diabetes cases in the world. The increasing burden of DM can be explained by genetic predisposition of Indians to type 2 diabetes mellitus (T2DM) coupled with rapid urbanization and socio-economic development in the last 3 decades leading to drastic changes in lifestyle. Environment and lifestyle changes contribute to T2DM development by altering epigenetic processes such as DNA methylation, histone post-translational modifications, and long non-coding RNAs, all of which regulate chromatin structure and gene expression. Although the genetic predisposition of Indians to T2DM is well established, how environmental and genetic factors interact and lead to T2DM is not well understood. In this review, we discuss the prevalence of diabetes and its complications across different states in India and how various risk factors contribute to its pathogenesis. The review also highlights the role of genetic predisposition among the Indian population and epigenetic factors involved in the etiology of diabetes. Lastly, we review current treatments and emphasize the knowledge gap with respect to genetic and epigenetic factors in the Indian context. Further understanding of the genetic and epigenetic determinants will help in risk prediction and prevention as well as therapeutic interventions, which will improve the clinical management of diabetes and associated macro- and micro-vascular complications.
Collapse
Affiliation(s)
- Ankita Priyadarshini
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Riya Madan
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Sadhan Das
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India.
| |
Collapse
|
11
|
Hussein RM. Long non-coding RNAs: The hidden players in diabetes mellitus-related complications. Diabetes Metab Syndr 2023; 17:102872. [PMID: 37797393 DOI: 10.1016/j.dsx.2023.102872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND AIM Long non-coding RNAs (lncRNAs) have been recognized as important regulators of gene expression in various human diseases. Diabetes mellitus (DM) is a long-term metabolic disorder associated with serious macro and microvascular complications. This review discusses the potential lncRNAs involved in DM-related complications such as dysfunction of pancreatic beta islets, nephropathy, retinopathy, cardiomyopathy, and peripheral neuropathy. METHODS An extensive literature search was conducted in the Scopus database to find information from reputed biomedical articles published on lncRNAs and diabetic complications from 2014 to 2023. All review articles were collected and statistically analyzed, and the findings were summarized. In addition, the potential lncRNAs involved in DM-related complications, molecular mechanisms, and gene targets were discussed in detail. RESULTS The lncRNAs ANRIL, E33, MALAT1, PVT1, Erbb4-IR, Gm4419, Gm5524, MIAT, MEG3, KNCQ1OT1, Uc.48+, BC168687, HOTAIR, and NONRATT021972 were upregulated in several diabetic complications. However, βlinc1, H19, PLUTO, MEG3, GAS5, uc.322, HOTAIR, MIAT, TUG1, CASC2, CYP4B1-PS1-001, SOX2OT, and Crnde were downregulated. Remarkably, lncRNAs MALAT1, ANRIL, MIAT, MEG3, H19, and HOTAIR were overlapping in more than one diabetic complication and were considered potential lncRNAs. CONCLUSION Several lncRNAs are identified as regulators of DM-related complications. The expression of lncRNAs is up or downregulated depending on the disease context, target genes, and regulatory partners. However, most lncRNAs target oxidative stress, inflammation, apoptosis, fibrosis, and angiogenesis pathways to mediate their protective/pathogenic mechanism of action and contribute to DM-related complications.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan.
| |
Collapse
|
12
|
Perisset S, Potilinski MC, Gallo JE. Role of Lnc-RNAs in the Pathogenesis and Development of Diabetic Retinopathy. Int J Mol Sci 2023; 24:13947. [PMID: 37762249 PMCID: PMC10531058 DOI: 10.3390/ijms241813947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Important advances in diabetic retinopathy (DR) research and management have occurred in the last few years. Neurodegenerative changes before the onset of microvascular alterations have been well established. So, new strategies are required for earlier and more effective treatment of DR, which still is the first cause of blindness in working age. We describe herein gene regulation through Lnc-RNAs as an interesting subject related to DR. Long non-coding RNAs (Lnc-RNAs) are non-protein-coding transcripts larger than 200 nucleotides. Lnc-RNAs regulate gene expression and protein formation at the epigenetic, transcriptional, and translational levels and can impact cell proliferation, apoptosis, immune response, and oxidative stress. These changes are known to take part in the mechanism of DR. Recent investigations pointed out that Lnc-RNAs might play a role in retinopathy development as Metastasis-Associated Lung Adenocarcinoma Transcript (Lnc-MALAT1), Maternally expressed gene 3 (Lnc-MEG3), myocardial-infarction-associated transcript (Lnc-MIAT), Lnc-RNA H19, Lnc-RNA HOTAIR, Lnc-RNA ANRIL B-Raf proto-oncogene (Lnc-RNA BANCR), small nucleolar RNA host gene 16 (Lnc-RNA SNHG16) and others. Several molecular pathways are impacted. Some of them play a role in DR pathophysiology, including the PI3K-Akt signaling axis, NAD-dependent deacetylase sirtuin-1 (Sirti1), p38 mitogen-activated protein kinase (P38/mapk), transforming growth factor beta signaling (TGF-β) and nuclear factor erythroid 2-related factor 2 (Nrf2). The way Lnc-RNAs affect diabetic retinopathy is a question of great relevance. Performing a more in-depth analysis seems to be crucial for researchers if they want to target Lnc-RNAs. New knowledge on gene regulation and biomarkers will enable investigators to develop more specialized therapies for diabetic retinopathy, particularly in the current growing context of precision medicine.
Collapse
Affiliation(s)
- Sofia Perisset
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Universidad Austral—CONICET, Pilar B1629, Buenos Aires, Argentina; (S.P.); (M.C.P.)
| | - M. Constanza Potilinski
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Universidad Austral—CONICET, Pilar B1629, Buenos Aires, Argentina; (S.P.); (M.C.P.)
| | - Juan E. Gallo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Universidad Austral—CONICET, Pilar B1629, Buenos Aires, Argentina; (S.P.); (M.C.P.)
- Departamento de Oftalmología, Hospital Universitario Austral, Pilar B1629, Buenos Aires, Argentina
| |
Collapse
|
13
|
Chen C, Ding P, Yan W, Wang Z, Lan Y, Yan X, Li T, Han J. Pharmacological roles of lncRNAs in diabetic retinopathy with a focus on oxidative stress and inflammation. Biochem Pharmacol 2023; 214:115643. [PMID: 37315816 DOI: 10.1016/j.bcp.2023.115643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Diabetic retinopathy (DR) is a complication caused by abnormal glucose metabolism, which affects the vision and quality of life of patients and severely impacts the society at large.DR has a complex pathogenic process. Evidence from multiple studies have shown that oxidative stress and inflammation play pivotal roles in DR.Additionally, with the rapid development of various genetic detection methods, the abnormal expression of long non-coding RNAs (lncRNAs) have been confirmed to promote the development of DR.Research has demonstrated the potential of lncRNAs as ideal biomarkers and theranostic targets in DR. In this narrative review, we will focus on the research results on mechanisms underlying DR, list lncRNAs confirmed to be closely related to these mechanisms, and discuss their potential clinical application value and limitations.
Collapse
Affiliation(s)
- Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China; Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Weiming Yan
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Yanyan Lan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| |
Collapse
|
14
|
Szeto CC, So H, Poon PYK, Luk CCW, Ng JKC, Fung WWS, Chan GCK, Chow KM, Lai FMM, Tam LS. Urinary Long Non-Coding RNA Levels as Biomarkers of Lupus Nephritis. Int J Mol Sci 2023; 24:11813. [PMID: 37511572 PMCID: PMC10380660 DOI: 10.3390/ijms241411813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that long non-coding RNA (lncRNA) plays important roles in the regulation of gene expression. We determine the role of using urinary lncRNA as a non-invasive biomarker for lupus nephritis. METHOD We studied three cohorts of lupus nephritis patients (31, 78, and 12 patients, respectively) and controls (6, 7, and 24 subjects, respectively). The urinary sediment levels of specific lncRNA targets were studied using real-time quantitative polymerase chain reactions. RESULTS The severity of proteinuria inversely correlated with urinary maternally expressed gene 3 (MEG3) (r = -0.423, p = 0.018) and ANRIL levels (r = -0.483, p = 0.008). Urinary MEG3 level also inversely correlated with the SLEDAI score (r = -0.383, p = 0.034). Urinary cancer susceptibility candidate 2 (CASC2) levels were significantly different between histological classes of nephritis (p = 0.026) and patients with pure class V nephritis probably had the highest levels, while urinary metastasis-associated lung carcinoma transcript 1 (MALAT1) level significantly correlated with the histological activity index (r = -0.321, p = 0.004). Urinary taurine-upregulated gene 1 (TUG1) level was significantly lower in pure class V lupus nephritis than primary membranous nephropathy (p = 0.003) and minimal change nephropathy (p = 0.04), and urinary TUG1 level correlated with eGFR in class V lupus nephritis (r = 0.706, p = 0.01). CONCLUSIONS We identified certain urinary lncRNA targets that may help the identification of lupus nephritis and predict the histological class of nephritis. Our findings indicate that urinary lncRNA levels may be developed as biomarkers for lupus nephritis.
Collapse
Affiliation(s)
- Cheuk-Chun Szeto
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences (LiHS), Hong Kong, China
| | - Ho So
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Peter Yam-Kau Poon
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences (LiHS), Hong Kong, China
| | - Cathy Choi-Wan Luk
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences (LiHS), Hong Kong, China
| | - Jack Kit-Chung Ng
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Winston Wing-Shing Fung
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gordon Chun-Kau Chan
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kai-Ming Chow
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Fernand Mac-Moune Lai
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Lai-Shan Tam
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
15
|
Cheng J, Huang A, Cheng J, Pei X, Yu L, Jin G, Xu E. Profile analysis of differentially expressed long non‑coding RNAs in metabolic memory induced by high glucose in human umbilical vein endothelial cells. Exp Ther Med 2023; 25:288. [PMID: 37206566 PMCID: PMC10189608 DOI: 10.3892/etm.2023.11987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/21/2023] [Indexed: 05/21/2023] Open
Abstract
Numerous long non-coding RNAs (lncRNAs) are dysregulated in the hyperglycemia-induced phenomenon of metabolic memory (MM). In the present study, the significance of these lncRNAs in MM was explored by screening for MM-involved differentially expressed lncRNAs (MMDELs) in human umbilical vein endothelial cells (HUVECs) induced by high glucose. A total of nine HUVEC samples were divided into three groups to mimic conditions of low and high glucose environments, as well as induce the state of metabolic memory. The expression of lncRNAs was profiled using RNA sequencing. Bioinformatic analysis was performed using the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases to explore the parental genes from which the lncRNAs are transcribed and target genes of the MMDELs and generate enrichment datasets. Reverse transcription-quantitative PCR was performed to validate the expression levels of the selected lncRNAs. The present study identified 308 upregulated and 157 downregulated MMDELs, which were enriched in numerous physiologic processes. Key functional enrichment terms included 'cell cycle', 'oocyte meiosis' and 'p53 signaling pathway'. In conclusion, certain MMDELs may regulate the expression level of highly associated mRNAs through various mechanisms and pathways, thereby interfering with several processes, such as the regulation of the cell cycle, and affecting vascular endothelial cell function. Furthermore, the disorders of these lncRNAs can be retained in MM, further investigation into the functions of these lncRNAs may result in novel insights and treatments, which could help control MM in patients with diabetes.
Collapse
Affiliation(s)
- Jingya Cheng
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Anqi Huang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Ji Cheng
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Xiaoyan Pei
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Lei Yu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
- Correspondence to: Professor Guoxi Jin, Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Longzihu, Bengbu, Anhui 233004, P.R. China
| | - Erqin Xu
- Department of Physical Diagnostics, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
16
|
Bink DI, Pauli J, Maegdefessel L, Boon RA. Endothelial microRNAs and long noncoding RNAs in cardiovascular ageing. Atherosclerosis 2023; 374:99-106. [PMID: 37059656 DOI: 10.1016/j.atherosclerosis.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
Atherosclerosis and numerous other cardiovascular diseases develop in an age-dependent manner. The endothelial cells that line the vessel walls play an important role in the development of atherosclerosis. Non-coding RNA like microRNAs and long non-coding RNAs are known to play an important role in endothelial function and are implicated in the disease progression. Here, we summarize several microRNAs and long non-coding RNAs that are known to have an altered expression with endothelial aging and discuss their role in endothelial cell function and senescence. These processes contribute to aging-induced atherosclerosis development and by targeting the non-coding RNAs controlling endothelial cell function and senescence, atherosclerosis can potentially be attenuated.
Collapse
Affiliation(s)
- Diewertje I Bink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reinier A Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands; Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany; German Centre for Cardiovascular Research DZHK, Partner site Frankfurt Rhein/Main, Frankfurt Am Main, Germany.
| |
Collapse
|
17
|
Sharma A, Singh NK. Long Non-Coding RNAs and Proliferative Retinal Diseases. Pharmaceutics 2023; 15:pharmaceutics15051454. [PMID: 37242701 DOI: 10.3390/pharmaceutics15051454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Retinopathy refers to disorders that affect the retina of the eye, which are frequently caused by damage to the retina's vascular system. This causes leakage, proliferation, or overgrowth of blood vessels through the retina, which can lead to retinal detachment or breakdown, resulting in vision loss and, in rare cases, blindness. In recent years, high-throughput sequencing has significantly hastened the discovery of new long non-coding RNAs (lncRNAs) and their biological functions. LncRNAs are rapidly becoming recognized as critical regulators of several key biological processes. Current breakthroughs in bioinformatics have resulted in the identification of several lncRNAs that may have a role in retinal disorders. Nevertheless, mechanistic investigations have yet to reveal the relevance of these lncRNAs in retinal disorders. Using lncRNA transcripts for diagnostic and/or therapeutic purposes may aid in the development of appropriate treatment regimens and long-term benefits for patients, as traditional medicines and antibody therapy only provide temporary benefits that must be repeated. In contrast, gene-based therapies can provide tailored, long-term treatment solutions. Here, we will discuss how different lncRNAs affect different retinopathies, including age-related macular degeneration (AMD), diabetic retinopathy (DR), central retinal vein occlusion (CRVO), proliferative vitreoretinopathy (PVR), and retinopathy of prematurity (ROP), which can cause visual impairment and blindness, and how these retinopathies can be identified and treated using lncRNAs.
Collapse
Affiliation(s)
- Anamika Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
18
|
Wang S. Ribonucleic Acid (RNA) Therapeutics: Role of Long Noncoding RNAs in Ocular Vascular Diseases. J Ocul Pharmacol Ther 2023; 39:237-239. [PMID: 37172295 DOI: 10.1089/jop.2023.29104.editorial] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Affiliation(s)
- Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
- Department of Ophthalmology, Tulane University, New Orleans, Louisiana, USA
- Department of Tulane Personalized Health Institute, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
19
|
Guo H, Wu H, Li Z. The Pathogenesis of Diabetes. Int J Mol Sci 2023; 24:ijms24086978. [PMID: 37108143 PMCID: PMC10139109 DOI: 10.3390/ijms24086978] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is the most common metabolic disorder, with an extremely serious effect on health systems worldwide. It has become a severe, chronic, non-communicable disease after cardio-cerebrovascular diseases. Currently, 90% of diabetic patients suffer from type 2 diabetes. Hyperglycemia is the main hallmark of diabetes. The function of pancreatic cells gradually declines before the onset of clinical hyperglycemia. Understanding the molecular processes involved in the development of diabetes can provide clinical care with much-needed updates. This review provides the current global state of diabetes, the mechanisms involved in glucose homeostasis and diabetic insulin resistance, and the long-chain non-coding RNA (lncRNA) associated with diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
20
|
Evaluation of H19, Mest, Meg3, and Peg3 genes affecting growth and metabolism in umbilical cord blood cells of infants born to mothers with gestational diabetes and healthy mothers in Rafsanjan City, Iran. J Dev Orig Health Dis 2023; 14:182-189. [PMID: 35904097 DOI: 10.1017/s2040174422000393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hyperglycemia during the first trimester leads to an increased risk of innate malformations as well as death at times close to delivery dates. The methylated genes include those from paternal H19 and PEG3 and those from maternal MEST and MEG3 that are necessary for the growth and regulation of the human fetus and its placenta. The aim of this study was to evaluate and compare the expression of these genes in the cord blood of healthy infants born to mothers with gestational diabetes mellitus (GDM) and healthy mothers.This case-control study was conducted on the cord blood of 40 infants born to mothers with GDM and 35 infants born to healthy mothers. Mothers were identified by measuring oral glucose tolerance in the 24th-26th week of pregnancy. Cord blood was obtained post-delivery, and cord blood mononuclear cells were immediately extracted, using Ficoll solution. Then, RNA extraction and cDNA synthesis were performed, and gene expression of MEG3, PEG3, H19, and MEST was assessed through quantitative real-time PCR.Findings show that the expression levels of MEG3, PEG3, H19, and MEST genes were significantly decreased in mononuclear cord blood cells of infants born to mothers with GDM when compared to those of the healthy control group.These findings reveal that the reduction of imprinted genes in mothers with GDM is most likely due to changes in their methylation by an epigenetic process. Considering the importance of GDM due to its high prevalence and its side effects both for mother and fetus, recognizing their exact mechanisms is of high importance. This has to be studied more widely.
Collapse
|
21
|
Cao W, Zhang N, He X, Xing Y, Yang N. Long non-coding RNAs in retinal neovascularization: current research and future directions. Graefes Arch Clin Exp Ophthalmol 2023; 261:615-626. [PMID: 36171459 DOI: 10.1007/s00417-022-05843-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Retinal neovascularization (RNV) is an intractable pathological hallmark of numerous ocular blinding diseases, including diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. However, current therapeutic methods have potential side effects and limited efficacy. Thus, further studies on the pathogenesis of RNV-related disorders and novel therapeutic targets are critically required. Long non-coding RNAs (lncRNAs) have various functions and participate in almost all biological processes in living cells, such as translation, transcription, signal transduction, and cell cycle control. In addition, recent research has demonstrated critical modulatory roles of various lncRNAs in RNV. In this review, we summarize current knowledge about the expression and regulatory functions of lncRNAs related to the progression of pathological RNV. METHODS We searched databases such as PubMed and Web of Science to gather and review information from the published literature. CONCLUSIONS In general, lncRNA MEG3 attenuates RNV, thus protecting the retina from excessive and dysregulated angiogenesis under high glucose stress. In contrast, lncRNAs MALAT1, MIAT, ANRIL, HOTAIR, HOTTIP, and SNHG16, have been identified as causative molecules in the pathological progression of RNV. Comprehensive and in-depth studies of the roles of lncRNAs in RNV indicate that targeting lncRNAs may be an alternative therapeutic approach in the near future, enabling new options for attenuating RNV progression and treating RNV-related retinal diseases.
Collapse
Affiliation(s)
- Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Xuejun He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
22
|
Bai Z, Hu K, Yu J, Shen Y, Chen C. Macrophage migration inhibitory factor protects bone marrow mesenchymal stem cells from hypoxia/ischemia-induced apoptosis by regulating lncRNA MEG3. J Zhejiang Univ Sci B 2022; 23:989-1001. [PMID: 36518052 PMCID: PMC9758713 DOI: 10.1631/jzus.b2200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This research was performed to explore the effect of macrophage migration inhibitory factor (MIF) on the apoptosis of bone marrow mesenchymal stem cells (BMSCs) in ischemia and hypoxia environments. METHODS The cell viability of BMSCs incubated under hypoxia/ischemia (H/I) conditions with or without pretreatment with MIF or triglycidyl isocyanurate (TGIC) was detected using cell counting kit-8 (CCK-8) analysis. Plasmids containing long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) or β-catenin small interfering RNA (siRNA) were used to overexpress or downregulate the corresponding gene, and the p53 signaling pathway was activated by pretreatment with TGIC. The influences of MIF, overexpression of lncRNA MEG3, activation of the p53 signaling pathway, and silencing of β-catenin on H/I-induced apoptosis of BMSCs were revealed by western blotting, flow cytometry, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining. RESULTS From the results of CCK-8 assay, western blotting, and flow cytometry, pretreatment with MIF significantly decreased the H/I-induced apoptosis of BMSCs. This effect was inhibited when lncRNA MEG3 was overexpressed by plasmids containing MEG3. The p53 signaling pathway was activated by TGIC, and β-catenin was silenced by siRNA. From western blot results, the expression levels of β-catenin in the nucleus and phosphorylated p53 (p-p53) were downregulated and upregulated, respectively, when the lncRNA MEG3 was overexpressed. Through flow cytometry, MIF was also shown to significantly alleviate the increased reactive oxygen species (ROS) level of BMSCs caused by H/I. CONCLUSIONS In summary, we conclude that MIF protected BMSCs from H/I-induced apoptosis by downregulating the lncRNA MEG3/p53 signaling pathway, activating the Wnt/β-catenin signaling pathway, and decreasing ROS levels.
Collapse
Affiliation(s)
- Zhibiao Bai
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou 325006, China
- Department of Orthopaedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Kai Hu
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou 325006, China
| | - Jiahuan Yu
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou 325006, China
| | - Yizhe Shen
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou 325006, China
| | - Chun Chen
- First Clinical Medicine Institute, Wenzhou Medical University, Wenzhou 325006, China.
- Department of Orthopaedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China.
| |
Collapse
|
23
|
Identification of lncRNAs Associated with the Pathogenesis of Diabetic Retinopathy: From Sequencing Analysis to Validation via In Vivo and In Vitro Experiments. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1755945. [PMID: 36299680 PMCID: PMC9592201 DOI: 10.1155/2022/1755945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022]
Abstract
This study is aimed at screening for differentially expressed long noncoding RNAs (lncRNAs) associated with the pathogenesis of diabetic retinopathy and verifying the role of lncZNRD1 in high glucose-induced injury of retinal microvascular endothelial cells. The retinal tissues of normal and diabetic rats were collected for high-throughput sequencing of differentially expressed lncRNAs. Retinal microvascular endothelial cells were treated with 50 mM glucose for 4 h, 8 h, 24 h, 48 h, and 72 h. Our results showed that compared with the control group, there were 736 differentially expressed lncRNAs in the retina tissue of the model group, including 226 upregulated genes and 736 downregulated genes. Based on the differentially expressed lncRNAs, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the ErbB signaling pathway, transforming growth factor- (TGF-) β signaling pathway, PI3K − Akt signaling pathway, cyclic adenosine 3,5-monophosphate (cAMP) signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and hypoxia-inducible factor-1 (HIF-1) signaling pathway were likely involved in the regulation of diabetic retinopathy. Compared with the control group, the expression of lncZNRD1-AS1 was significantly increased in retinal microvascular endothelial cells after treatment with high glucose for 24 h. Silencing lncZNRD1 promoted high glucose-induced apoptosis of microvascular endothelial cells. Additionally, silencing lncZNRD1 increased the expression levels of ALDH7A1 and ALDH3A2. In conclusion, lncZNRD1-AS1 demonstrated potentially beneficial function against high glucose-induced retina cell injury by regulating ALDH7A1 and ALDH3A2 expressions.
Collapse
|
24
|
Song Z, He C, Wen J, Yang J, Chen P. Long Non-coding RNAs: Pivotal Epigenetic Regulators in Diabetic Retinopathy. Curr Genomics 2022; 23:246-261. [PMID: 36777876 PMCID: PMC9875540 DOI: 10.2174/1389202923666220531105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) is a severe complication of diabetes; however, its mechanism is not fully understood. Evidence has recently revealed that long non-coding RNAs (lncRNAs) are abnormally expressed in DR, and lncRNAs may function as pivotal regulators. LncRNAs are able to modulate gene expression at the epigenetic level by acting as scaffolds of histone modification complexes and sponges of binding with microRNAs (miRNAs). LncRNAs are believed to be important epigenetic regulators, which may become beneficial in the diagnosis and therapy of DR. However, the mechanisms of lncRNAs in DR are still unclear. In this review, we summarize the possible functions and mechanisms of lncRNAs in epigenetic regulation to target genes in the progression of DR.
Collapse
Affiliation(s)
- Zhaoxia Song
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang He
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China;,Address correspondence to this author at the Department of Medical Genetics, College of Basic Medical Sciences, Jilin University. Address: Room 413, 126 Xinmin Street, Changchun, Jilin 130021, China; Tel/Fax: 0086-18584362191; E-mail:
| |
Collapse
|
25
|
Rashidmayvan M, Sahebi R, Ghayour-Mobarhan M. Long non-coding RNAs: a valuable biomarker for metabolic syndrome. Mol Genet Genomics 2022; 297:1169-1183. [PMID: 35854006 DOI: 10.1007/s00438-022-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become important regulators of gene expression because they affect a wide range of biological processes, such as cell growth, death, differentiation, and aging. More and more evidence suggests that lncRNAs play a role in maintaining metabolic homeostasis. When certain lncRNAs are out of balance, metabolic disorders like diabetes, obesity, and heart disease get worse. In this review, we talk about what we know about how lncRNAs control metabolism, with a focus on diseases caused by long-term inflammation and the characteristics of the metabolic syndrome. We looked at lncRNAs and their molecular targets in the pathogenesis of signaling pathways. We also talked about how lncRNAs are becoming more and more interesting as diagnostic and therapeutic targets for improving metabolic homeostasis.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Chen F, Li W, Zhang D, Fu Y, Yuan W, Luo G, Liu F, Luo J. MALAT1 regulates hypertrophy of cardiomyocytes by modulating the miR-181a/HMGB2 pathway. Eur J Histochem 2022; 66:3426. [PMID: 35726535 PMCID: PMC9251611 DOI: 10.4081/ejh.2022.3426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
Noncoding RNAs are important for regulation of cardiac hypertrophy. The function of MALAT1 (a long noncoding mRNA), miR-181a, and HMGB2; their contribution to cardiac hypertrophy; and the regulatory relationship between them during this process remain unknown. In the present study, we treated primary cardiomyocytes with angiotensin II (Ang II) to mimic cardiac hypertrophy. MALAT1 expression was significantly downregulated in Ang II-treated cardiomyocytes compared with control cardiomyocytes. Ang II-induced cardiac hypertrophy was suppressed by overexpression of MALAT1 and promoted by genetic knockdown of MALAT1. A dual-luciferase reporter assay demonstrated that MALAT1 acted as a sponge for miR-181a and inhibited its expression during cardiac hypertrophy. Cardiac hypertrophy was suppressed by overexpression of a miR-181a inhibitor and enhanced by overexpression of a miR-181a mimic. HMGB2 was downregulated during cardiac hypertrophy and was identified as a target of miR-181a by bioinformatics analysis and a dual-luciferase reporter assay. miR-181a overexpression decreased the mRNA and protein levels of HMGB2. Rescue experiments indicated that MALAT1 overexpression reversed the effect of miR-181a on HMGB2 expression. In summary, the results of the present study show that MALAT1 acts as a sponge for miR-181a and thereby regulates expression of HMGB2 and development of cardiac hypertrophy. The novel MALAT1/miR-181a/HMGB2 axis might play a crucial role in cardiac hypertrophy and serve as a new therapeutic target.
Collapse
Affiliation(s)
- Feng Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong; Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi .
| | - Wenfeng Li
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong; Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi .
| | - Dandan Zhang
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Youlin Fu
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Wenjin Yuan
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Gang Luo
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Fuwei Liu
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| | - Jun Luo
- Department of Cardiology, Ganzhou People's Hospital, Nanchang University, Ganzhou, Jiangxi.
| |
Collapse
|
27
|
Rasoulinejad SA, Sarreshtehdari N, Mafi AR. The crosstalk between VEGF signaling pathway and long non-coding RNAs in neovascular retinal diseases: Implications for anti-VEGF therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Juni RP, ’t Hart KC, Houtkooper RH, Boon R. Long non‐coding RNAs in cardiometabolic disorders. FEBS Lett 2022; 596:1367-1387. [DOI: 10.1002/1873-3468.14370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rio P. Juni
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
| | - Kelly C. ’t Hart
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases Amsterdam University Medical Centers; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Science, University of Amsterdam Frankfurt am Main Germany
| | - Reinier Boon
- Department of Physiology Amsterdam University Medical Centers Amsterdam Cardiovascular Science Frankfurt am Main Germany
- Institute for Cardiovascular Regeneration Centre for Molecular Medicine Goethe University Frankfurt am Main Frankfurt am Main Germany
- German Centre for Cardiovascular Research DZHK Partner site Frankfurt Rhein/Main Frankfurt am Main Germany
| |
Collapse
|
29
|
Construction and Analysis of lncRNA-Associated ceRNA Network in Atherosclerotic Plaque Formation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4895611. [PMID: 35463977 PMCID: PMC9033352 DOI: 10.1155/2022/4895611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
Atherosclerosis (AS) is a vascular disease with plaque formation. Unstable plaques can be expected to result in cardiovascular disease, such as myocardial infarction and stroke. Studies have verified that long noncoding RNAs (lncRNAs) play a critical role in atherosclerotic plaque formation (APF), including MALAT1, GAS5, and H19. A ceRNA network is a combination of these two interacting processes, which regulate the occurrence and progression of many diseases. However, lncRNA-associated ceRNA network in terms of APF is limited. This study sought to discover novel potential biomarkers and ceRNA network for APF. We designed a triple network based on the lncRNA-miRNA and mRNA-miRNA pairs obtained from lncRNASNP and starBase. Differentially expressed genes (DEGs) and lncRNAs in human vascular tissues derived from the Gene Expression Omnibus database (GSE43292, GSE97210) were systematically selected and analyzed. A ceRNA network was constructed by hypergeometric test, including 8 lncRNAs, 243 miRNAs, and 8 mRNAs. APF-related ceRNA structure was discovered for the first time by combining network analysis and statistical validation. Topological analysis determined the key lncRNAs with the highest centroid. GO and KEGG enrichment analysis indicated that the ceRNA network was primarily enriched in “regulation of platelet-derived growth factor receptor signaling pathway,” “negative regulation of leukocyte chemotaxis,” and “axonal fasciculation.” A functional lncRNA, HAND2-AS1, was identified in the ceRNA network, and the main miRNA (miRNA-570-3p) regulated by HAND2-AS1 was further screened. This present study elucidated the important function of lncRNA in the origination and progression of APF and indicated the potential use of these hub nodes as diagnostic biomarkers and therapeutic targets.
Collapse
|
30
|
Akhlaghipour I, Bina AR, Mogharrabi MR, Fanoodi A, Ebrahimian AR, Khojasteh Kaffash S, Babazadeh Baghan A, Khorashadizadeh ME, Taghehchian N, Moghbeli M. Single-nucleotide polymorphisms as important risk factors of diabetes among Middle East population. Hum Genomics 2022; 16:11. [PMID: 35366956 PMCID: PMC8976361 DOI: 10.1186/s40246-022-00383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that leads to the dysfunction of various tissues and organs, including eyes, kidneys, and cardiovascular system. According to the World Health Organization, diabetes prevalence is 8.8% globally among whom about 90% of cases are type 2 diabetes. There are not any significant clinical manifestations in the primary stages of diabetes. Therefore, screening can be an efficient way to reduce the diabetic complications. Over the recent decades, the prevalence of diabetes has increased alarmingly among the Middle East population, which has imposed exorbitant costs on the health care system in this region. Given that the genetic changes are among the important risk factors associated with predisposing people to diabetes, we examined the role of single-nucleotide polymorphisms (SNPs) in the pathogenesis of diabetes among Middle East population. In the present review, we assessed the molecular pathology of diabetes in the Middle East population that paves the way for introducing an efficient SNP-based diagnostic panel for diabetes screening among the Middle East population. Since, the Middle East has a population of 370 million people; the current review can be a reliable model for the introduction of SNP-based diagnostic panels in other populations and countries around the world.
Collapse
|
31
|
LncRNAS—modulators of neurovascular units in diabetic retinopathy. Eur J Pharmacol 2022; 925:174937. [DOI: 10.1016/j.ejphar.2022.174937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023]
|
32
|
Rampin A, Carrabba M, Mutoli M, Eman CL, Testa G, Madeddu P, Spinetti G. Recent Advances in KEAP1/NRF2-Targeting Strategies by Phytochemical Antioxidants, Nanoparticles, and Biocompatible Scaffolds for the Treatment of Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:707-728. [PMID: 35044251 DOI: 10.1089/ars.2021.0134] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Modulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response is a key aspect in the onset of diabetes-related cardiovascular complications. With this review, we provide an overview of the recent advances made in the development of Nrf2-targeting strategies for the treatment of diabetes, with particular attention toward the activation of Nrf2 by natural antioxidant compounds, nanoparticles, and oxidative stress-modulating biocompatible scaffolds. Recent Advances: In the past 30 years, studies addressing the use of antioxidant therapies to treat diabetes have grown exponentially, showing promising but yet inconclusive results. Animal studies and clinical trials on the Nrf2 pathway have shown promising results, suggesting that its activation can delay or reverse some of the cardiovascular impairments in diabetes. Critical Issues: Hyperglycemia- and oscillating glucose levels-induced reactive oxygen species (ROS) accumulation is progressively emerging as a central factor in the onset and progression of diabetes-related cardiovascular complications, including endothelial dysfunction, retinopathy, heart failure, stroke, critical limb ischemia, ulcers, and delayed wound healing. In this context, accumulating evidence suggests a central role for Nrf2-mediated antioxidant response, one of the most studied cellular defensive mechanisms against ROS accumulation. Future Directions: Innovative approaches such as tissue engineering and nanotechnology are converging toward targeting oxidative stress in diabetes. Antioxid. Redox Signal. 36, 707-728.
Collapse
Affiliation(s)
- Andrea Rampin
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Michele Carrabba
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Martina Mutoli
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Charlotte L Eman
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Gianluca Testa
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy.,Interdepartmental Center for Nanotechnology Research-NanoBem, University of Molise, Campobasso, Italy
| | - Paolo Madeddu
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Gaia Spinetti
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
33
|
Dhawan P, Vasishta S, Balakrishnan A, Joshi MB. Mechanistic insights into glucose induced vascular epigenetic reprogramming in type 2 diabetes. Life Sci 2022; 298:120490. [DOI: 10.1016/j.lfs.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
|
34
|
Chu PM, Yu CC, Tsai KL, Hsieh PL. Regulation of Oxidative Stress by Long Non-Coding RNAs in Vascular Complications of Diabetes. Life (Basel) 2022; 12:life12020274. [PMID: 35207562 PMCID: PMC8877270 DOI: 10.3390/life12020274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is a well-known metabolic disorder with numerous complications, such as macrovascular diseases (e.g., coronary heart disease, diabetic cardiomyopathy, stroke, and peripheral vascular disease), microvascular diseases (e.g., diabetic nephropathy, retinopathy, and diabetic cataract), and neuropathy. Multiple contributing factors are implicated in these complications, and the accumulation of oxidative stress is one of the critical ones. Several lines of evidence have suggested that oxidative stress may induce epigenetic modifications that eventually contribute to diabetic vascular complications. As one kind of epigenetic regulator involved in various disorders, non-coding RNAs have received great attention over the past few years. Non-coding RNAs can be roughly divided into short (such as microRNAs; ~21–25 nucleotides) or long non-coding RNAs (lncRNAs; >200 nucleotides). In this review, we briefly discussed the research regarding the roles of various lncRNAs, such as MALAT1, MEG3, GAS5, SNHG16, CASC2, HOTAIR, in the development of diabetic vascular complications in response to the stimulation of oxidative stress.
Collapse
Affiliation(s)
- Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
- Correspondence:
| |
Collapse
|
35
|
Old and New Biomarkers Associated with Endothelial Dysfunction in Chronic Hyperglycemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:7887426. [PMID: 34987703 PMCID: PMC8723873 DOI: 10.1155/2021/7887426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
Chronic hyperglycemia and vascular damage are strictly related. Biomarkers of vascular damage have been intensively studied in the recent years in the quest of reliable cardiovascular risk assessment tools able to facilitate risk stratification and early detection of vascular impairment. The present study is a narrative review with the aim of revising the available evidence on current and novel markers of hyperglycemia-induced vascular damage. After a discussion of classic tools used to investigate endothelial dysfunction, we provide an in-depth description of novel circulating biomarkers (chemokines, extracellular vesicles, and epigenetic and metabolomic biomarkers). Appropriate use of a single as well as a cluster of the discussed biomarkers might enable in a near future (a) the prompt identification of targeted and customized treatment strategies and (b) the follow-up of cardiovascular treatment efficacy over time in clinical research and/or in clinical practice.
Collapse
|
36
|
Biswas S, Coyle A, Chen S, Gostimir M, Gonder J, Chakrabarti S. Expressions of Serum lncRNAs in Diabetic Retinopathy - A Potential Diagnostic Tool. Front Endocrinol (Lausanne) 2022; 13:851967. [PMID: 35464068 PMCID: PMC9022211 DOI: 10.3389/fendo.2022.851967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
With increasing incidence of diabetes worldwide, there is an ever-expanding number of patients with chronic diabetic complications such as diabetic retinopathy (DR), one of the leading causes of blindness in the working age population. Early screening for the onset and severity of DR is essential for timely intervention. With recent advancements in genomic technologies, epigenetic alterations in DR are beginning to unravel. Long non-coding RNAs (lncRNAs), which are key epigenetic mediators, have demonstrated implications in several (DR) related processes. Based on the previous research, we have developed a serum-based, multi-panel PCR test using 9 lncRNAs (ANRIL, MALAT1, WISPER, ZFAS1, H19, HOTAIR, HULC, MEG3, and MIAT) to identify and validate whether this panel could be used as a diagnostic and prognostic tool for DR. We initially used a cell culture model (human retinal endothelial cells) and confirmed that 25 mM glucose induces upregulations of ANRIL, HOTAIR, HULC, MALAT1, and ZFAS1, and downregulation of H19 compared to 5 mM glucose controls. Then as an initial proof-of-concept, we tested vitreous humor and serum samples from a small cohort of non-diabetic (N=10) and diabetic patients with proliferative retinopathy (PDR, N=11) and measured the levels of the 9 lncRNAs. Differential expressions of lncRNAs were found in the vitreous and serum of patients and showed significant correlations. We expanded our approach and assessed the same lncRNAs using samples from a larger cohort of diabetic (n= 59; M/F:44/15) and non-diabetic patients (n= 11; M/F:4/7). Significant increased lncRNA expressions of ANRIL, H19, HOTAIR, HULC, MIAT, WISPER and ZFAS1 were observed in the serum of diabetic patients (with varying stages of DR) compared to non-diabetics. No significant correlations were demonstrated between lncRNA expressions and creatinine or glycated hemoglobin (HbA1C) levels. Using ROC and further analyses, we identified distinct lncRNA phenotype combinations, which may be used to identify patients with DR. Data from this study indicate that a panel of serum lncRNAs may be used for a potential screening test for DR. Further large-scale studies are needed to validate this notion.
Collapse
Affiliation(s)
- Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Ali Coyle
- School of Biomedical Engineering, Western University, London, ON, Canada
| | - Shali Chen
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Miso Gostimir
- Department of Ophthalmology, Western University, London, ON, Canada
| | - John Gonder
- Department of Ophthalmology, Western University, London, ON, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- *Correspondence: Subrata Chakrabarti,
| |
Collapse
|
37
|
Chen J, Liao L, Xu H, Zhang Z, Zhang J. Long non-coding RNA MEG3 inhibits neovascularization in diabetic retinopathy by regulating microRNA miR-6720-5p and cytochrome B5 reductase 2. Bioengineered 2021; 12:11872-11884. [PMID: 34978518 PMCID: PMC8810095 DOI: 10.1080/21655979.2021.2000721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is a major cause of vision loss in working and elderly populations. long non-coding RNA (LncRNA) MEG3 is thought to have some effect on DR, but the exact mechanism remains to be clarified. The expression levels of lncRNA MEG3, miR-6720-5p, and cytochrome B5 reductase 2 (CYB5R2) in human retinal microvascular endothelial cells (hRMECs) were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell migration, and tube formation assays were used to determine the cell viability, migration, and tube formation ability of hRMECs, respectively. The interaction of MEG3, miR-6720-5p, and CYB5R2 was detected and explored by a luciferase assay. The expression of MEG3 and CYB5R2 was upregulated and that of miR-6720-5p was downregulated in patients with DR and hRMECs treated with high glucose. Knocking down MEG3 or CYB5R2 promoted proliferation, migration, and neovascularization in hRMECs. The intervention of miR-6720-5p reversed the effect of MEG3 knockdown on hRMEC function, and this effect was eliminated by silencing CYB5R2. Therefore, MEG3 acted as a sponge to suppress miR-6720-5p and regulate the expression of CYB5R2, thereby inhibiting DR neovascularization.
Collapse
Affiliation(s)
- Jinpeng Chen
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, China
| | - Lin Liao
- Department of Ophthalmology, Wuhan Fourth Hospital, Wuhan, China
| | - Huiyong Xu
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, China
| | - Zheng Zhang
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, China
| | - Jian Zhang
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, China
| |
Collapse
|
38
|
Alaqeeli M, Mayaki D, Hussain SNA. Long Non-coding RNA Rhabdomyosarcoma 2-Associated Transcript Regulates Angiogenesis in Endothelial Cells. Front Physiol 2021; 12:729157. [PMID: 34744768 PMCID: PMC8567064 DOI: 10.3389/fphys.2021.729157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) are non-coding RNAs that have more than 200 nucleotides. They have recently emerged as important regulators of angiogenesis. To identify novel lncRNAs that may be involved in the regulation of angiogenesis, we detected the mRNA of 84 lncRNAs in human umbilical vein endothelial cells (HUVECs) exposed to hypoxia for 24h. One of these, rhabdomyosarcoma 2-associated transcript (RMST), is significantly upregulated by hypoxia. Little is known about the presence and roles of RMST in EC function. Objective: The main objective of the study was to investigate the regulation of RMST in ECs and to determine its role in EC survival, proliferation, migration, and differentiation. Methods: Using qPCR, basal mRNA levels of 10 RMST isoforms in HUVECs were measured. Levels were then measured in response to 24h of hypoxia, 7days of differentiation in a co-culture assay, and exposure to four different angiogenesis factors. Functional roles of RMST in EC survival, migration, and differentiation were quantified by using a loss-of-function approach (transfection with single-stranded antisense LNA GapmeRs). EC survival was measured using cell counts and crystal violet assays. Cell migration and differentiation were measured using scratch wound healing and Matrigel® differentiation assays, respectively. Results: Five RMST isoforms (RMST-202, -203, -204, -206, and -207) were detected in HUVECs and human microvascular endothelial cells (HMEC-1s). Other types of vascular cells, including human aortic valve interstitial cells and human aortic smooth muscle cells, did not display this expression profile. RMST was significantly upregulated in response to 24h of hypoxia and in response to 7days of HUVEC co-culture with human lung fibroblasts. RMST was significantly downregulated by angiopoietin-2 (Ang-2), but not by VEGF, FGF-2, or angiopoietin-1 (Ang-1). Selective knockdown of RMST demonstrated that it promotes EC survival in response to serum deprivation. It is also required for VEGF- and Ang-1-induced EC survival and migration, but not for differentiation. Conclusion: We conclude that RMST is expressed in human ECs and that this expression is upregulated in response to hypoxia and during differentiation into capillary-like structures. We also conclude that RMST plays important roles in EC survival and migration.
Collapse
Affiliation(s)
- Maha Alaqeeli
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Department of Critical Care, McGill University Health Centre, Montréal, QC, Canada
| | - Dominique Mayaki
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Department of Critical Care, McGill University Health Centre, Montréal, QC, Canada
| | - Sabah N A Hussain
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada
| |
Collapse
|
39
|
Alipoor B, Nikouei S, Rezaeinejad F, Malakooti-Dehkordi SN, Sabati Z, Ghasemi H. Long non-coding RNAs in metabolic disorders: pathogenetic relevance and potential biomarkers and therapeutic targets. J Endocrinol Invest 2021; 44:2015-2041. [PMID: 33792864 DOI: 10.1007/s40618-021-01559-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been suggested that dysregulation of long non-coding RNAs (lncRNAs) could be associated with the incidence and development of metabolic disorders. AIM Accordingly, this narrative review described the molecular mechanisms of lncRNAs in the development of metabolic diseases including insulin resistance, diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and coronary artery diseases (CAD). Furthermore, we investigated the up-to-date findings on the association of deregulated lncRNAs in the metabolic disorders, and potential use of lncRNAs as biomarkers and therapeutic targets. CONCLUSION LncRNAs/miRNA/regulatory proteins axis plays a crucial role in progression of metabolic disorders and may be used in development of therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- B Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - S Nikouei
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - F Rezaeinejad
- Department of Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Z Sabati
- MSc student of Hematology, Student Research Committee, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - H Ghasemi
- Abadan Faculty of Medical Sciences, Abadan, Iran.
| |
Collapse
|
40
|
Chen C, Huang Y, Xia P, Zhang F, Li L, Wang E, Guo Q, Ye Z. Long noncoding RNA Meg3 mediates ferroptosis induced by oxygen and glucose deprivation combined with hyperglycemia in rat brain microvascular endothelial cells, through modulating the p53/GPX4 axis. Eur J Histochem 2021; 65:3224. [PMID: 34587716 PMCID: PMC8490947 DOI: 10.4081/ejh.2021.3224] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with diabetes are exposed to a higher risk of perioperative stroke than non-diabetics mainly due to persistent hyperglycemia. LncRNA Meg3 has been considered as an important mediator in regulating ischemic stroke. However, the functional and regulatory roles of Meg3 in diabetic brain ischemic injury remain unclear. In this study, rat brain microvascular endothelial cells (RBMVECs) were exposed to 6 h of oxygen and glucose deprivation (OGD), and subsequent reperfusion via incubating cells with glucose of various high concentrations for 24 h to imitate in vitro diabetic brain ischemic injury. It was shown that the marker events of ferroptosis and increased Meg3 expression occurred after the injury induced by OGD combined with hyperglycemia. However, all ferroptotic events were reversed with the treatment of Meg3-siRNA. Moreover, in this in vitro model, p53 was also characterized as a downstream target of Meg3. Furthermore, p53 knockdown protected RBMVECs against OGD + hyperglycemic reperfusion-induced ferroptosis, while the overexpression of p53 exerted opposite effects, implying that p53 served as a positive regulator of ferroptosis. Additionally, the overexpression or knockdown of p53 significantly modulated GPX4 expression in RBMVECs exposed to the injury induced by OGD combined with hyperglycemic treatment. Furthermore, GPX4 expression was suppressed again after the reintroduction of p53 into cells silenced by Meg3. Finally, chromatin immunoprecipitation assay uncovered that p53 was bound to GPX4 promoter. Altogether, these data revealed that, by modulating GPX4 transcription and expression, the Meg3-p53 signaling pathway mediated the ferroptosis of RBMVECs upon injury induced by OGD combined with hyperglycemic reperfusion.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan Province.
| | - Yan Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, Hunan Province.
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province.
| |
Collapse
|
41
|
Smit-McBride Z, Morse LS. MicroRNA and diabetic retinopathy-biomarkers and novel therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1280. [PMID: 34532417 PMCID: PMC8421969 DOI: 10.21037/atm-20-5189] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
Diabetic retinopathy (DR) accounts for ~80% of legal blindness in persons aged 20-74 years and is associated with enormous social and health burdens. Current therapies are invasive, non-curative, and in-effective in 15-25% of DR patients. This review outlines the potential utility of microRNAs (miRNAs) as biomarkers and potential therapy for diabetic retinopathy. miRNAs are small noncoding forms of RNA that may play a role in the pathogenesis of DR by altering the level of expression of genes via single nucleotide polymorphism and regulatory loops. A majority of miRNAs are intracellular and specific intracellular microRNAs have been associated with cellular changes associated with DR. Some microRNAs are extracellular and called circulatory microRNAs. Circulatory miRNAs have been found to be differentially expressed in serum and bodily fluid in patients with diabetes mellitus (DM) with and without retinopathy. Some miRNAs have been associated with the severity of DR, and future studies may reveal whether circulatory miRNAs could serve as novel reliable biomarkers to detect or predict retinopathy progression. Therapeutic strategies can be developed utilizing the natural miRNA/long noncoding RNA (lncRNA) regulatory loops. miRNAs and lncRNAs are two major families of the non-protein-coding transcripts. They are regulatory molecules for fundamental cellular processes via a variety of mechanisms, and their expression and function are tightly regulated. The recent evidence indicates a cross-talk between miRNAs and lncRNAs. Therefore, dysregulation of miRNAs and lncRNAs is critical to human disease pathogenesis, such as diabetic retinopathy. miRNAs are long-distance communicators and reprogramming agents, and they embody an entirely novel paradigm in cellular and tissue signaling and interaction. By targeting specific miRNAs, whole pathways implicated in the pathogenesis of DR may potentially be altered. Understanding the endogenous roles of miRNAs in the pathogenesis of diabetic retinopathy could lead to novel diagnostic and therapeutic approaches to managing this frequently blinding retinal condition.
Collapse
Affiliation(s)
- Zeljka Smit-McBride
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| | - Lawrence S Morse
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
42
|
Blasiak J, Hyttinen JMT, Szczepanska J, Pawlowska E, Kaarniranta K. Potential of Long Non-Coding RNAs in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:9178. [PMID: 34502084 PMCID: PMC8431062 DOI: 10.3390/ijms22179178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with poorly known pathogenesis and lack of effective treatment. Age and family history are the strongest AMD risk factors, and several loci were identified to contribute to AMD. Recently, also the epigenetic profile was associated with AMD, and some long non-coding RNAs (lncRNAs) were shown to involve in AMD pathogenesis. The Vax2os1/2 (ventral anterior homeobox 2 opposite strand isoform 1) lncRNAs may modulate the balance between pro- and anti-angiogenic factors in the eye contributing to wet AMD. The stress-induced dedifferentiation of retinal pigment epithelium cells can be inhibited by the ZNF503-AS1 (zinc finger protein 503 antisense RNA 2) and LINC00167 lncRNAs. Overexpression of the PWRN2 (Prader-Willi region non-protein-coding RNA 2) lncRNA aggravated RPE cells apoptosis and mitochondrial impairment induced by oxidative stress. Several other lncRNAs were reported to exert protective or detrimental effects in AMD. However, many studies are limited to an association between lncRNA and AMD in patients or model systems with bioinformatics. Therefore, further works on lncRNAs in AMD are rational, and they should be enriched with mechanistic and clinical studies to validate conclusions obtained in high-throughput in vitro research.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Juha M. T. Hyttinen
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
43
|
Abstract
Diabetic retinopathy (DR), which is known as a severe complication of type 2 diabetes mellitus, can cause varying degrees of damage to visual acuity. The pathogenesis of DR is multifactorial and not fully understood. Many previous research studies have revealed that an aberrant level of some long non-coding RNAs (lncRNAs) may accelerate the development of DR. These lncRNAs are regulatory factors and research related to them is always underway. In this review, we will update several types of lncRNAs based on the previous studies which are related to the development of DR and discuss its potential mechanisms of action and connections. Generally, the review will help us know more about lncRNAs and provide directions for future research related to DR.
Collapse
Affiliation(s)
- Qinying Huang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jinying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
44
|
Hamdani N, Costantino S, Mügge A, Lebeche D, Tschöpe C, Thum T, Paneni F. Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. Eur Heart J 2021; 42:1940-1958. [PMID: 36282124 DOI: 10.1093/eurheartj/ehab197] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Described as the 'single largest unmet need in cardiovascular medicine', heart failure with preserved ejection fraction (HFpEF) remains an untreatable disease currently representing 65% of new heart failure diagnoses. HFpEF is more frequent among women and associates with a poor prognosis and unsustainable healthcare costs. Moreover, the variability in HFpEF phenotypes amplifies complexity and difficulties in the approach. In this perspective, unveiling novel molecular targets is imperative. Epigenetic modifications-defined as changes of DNA, histones, and non-coding RNAs (ncRNAs)-represent a molecular framework through which the environment modulates gene expression. Epigenetic signals acquired over the lifetime lead to chromatin remodelling and affect transcriptional programmes underlying oxidative stress, inflammation, dysmetabolism, and maladaptive left ventricular remodelling, all conditions predisposing to HFpEF. The strong involvement of epigenetic signalling in this setting makes the epigenetic information relevant for diagnostic and therapeutic purposes in patients with HFpEF. The recent advances in high-throughput sequencing, computational epigenetics, and machine learning have enabled the identification of reliable epigenetic biomarkers in cardiovascular patients. Contrary to genetic tools, epigenetic biomarkers mirror the contribution of environmental cues and lifestyle changes and their reversible nature offers a promising opportunity to monitor disease states. The growing understanding of chromatin and ncRNAs biology has led to the development of several Food and Drug Administration approved 'epidrugs' (chromatin modifiers, mimics, anti-miRs) able to prevent transcriptional alterations underpinning left ventricular remodelling and HFpEF. In the present review, we discuss the importance of clinical epigenetics as a new tool to be employed for a personalized management of HFpEF.
Collapse
Affiliation(s)
- Nazha Hamdani
- Institute of Physiology, Ruhr University, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany.,Clinical Pharmacology, Ruhr University, Bochum, Germany
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland
| | - Andreas Mügge
- Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany
| | - Djamel Lebeche
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY 10029, USA.,Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Medicine, Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover 30625, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
45
|
Tan A, Li T, Ruan L, Yang J, Luo Y, Li L, Wu X. Knockdown of Malat1 alleviates high-glucose-induced angiogenesis through regulating miR-205-5p/VEGF-A axis. Exp Eye Res 2021; 207:108585. [PMID: 33887222 DOI: 10.1016/j.exer.2021.108585] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR), characterized by intraretinal vessel formation, is a major complication in diabetes. Neovascularization is an important characteristic of DR, but its formation mechanism remains unclear. In this research, Malat1, miR-205-5p, and VEGF-A levels in high glucose (HG) treat-human retinal microvascular endothelial cells (hRMECs) was detected with qRT-PCR. CCK-8 assay, transwell assay, and tube formation assay was applied to access hRMEC viability, migration, and angiogenesis. Expression level of endothelial-mesenchymal transition (EndMT) markers (VE-cadherin, FSP1, and α-SMA) was detected by western blotting assay. Interaction among Malat1, miR-205-5p, and VEGF-A was confirmed by dual-luciferase reporter assay. Furthermore, in vivo DR mouse model was induced, and the effect of Malat1 on DR and EndMT markers was confirmed through hematoxylin-eosin (HE) staining and western blotting. As a result, Malat1 and VEGF-A was upregulated while miR-205-5p was suppressed under HG conditions. Malat1 could sponge miR-205-5p to regulate VEGF-A expression. Malat1 knockdown inhibited hRMEC proliferation, migration, and tube formation by targeting miR-205-5p under HG conditions. Furthermore, inhibition of Malat1 prevented the HG-induced EndMT process. In summary, Malat1 knockdown diminished hRMEC dysfunctions by regulating miR-205-5p/VEGF-A, providing a useful insight for exploring new therapeutic target for DR.
Collapse
Affiliation(s)
- Anjun Tan
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Tianrong Li
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Libo Ruan
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Jingjing Yang
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Yuanyuan Luo
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, No. 1168 Chunrong West Road, Kunming, 650500, Yunnan, China.
| | - Xinan Wu
- The School of Public Health, Kunming Medical University, No. 1168 Chunrong West Road, Kunming, 650500, Yunnan, China.
| |
Collapse
|
46
|
Chen C, Jiang Y, Yan T, Chen Y, Yang M, Lv M, Xi F, Lu J, Zhao B, Luo Q. Placental maternally expressed gene 3 differentially methylated region methylation profile is associated with maternal glucose concentration and newborn birthweight. J Diabetes Investig 2021; 12:1074-1082. [PMID: 33090678 PMCID: PMC8169366 DOI: 10.1111/jdi.13432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS/INTRODUCTION Emerging evidence shows that epigenetic modifications occurring during fetal development in response to intrauterine exposures could be one of the mechanisms involved in the early determinants of adult metabolic disorders. This study aimed to investigate whether the placental maternally expressed gene 3 (MEG3) deoxyribonucleic acid (DNA) methylation profile is associated with maternal gestational diabetes mellitus status and newborn birthweight. MATERIALS AND METHODS Samples for measurement were collected from 23 women with gestational diabetes mellitus and 23 healthy controls. MEG3 gene expression and DNA methylation levels were assessed using quantitative real-time polymerase chain reaction and MethylTargetTM, respectively. Pearson correlation analyses were used to examine associations between placental DNA methylation levels and clinical variables of interest. The associated results were adjusted by multivariate linear regression for maternal age, body mass index, height, gestational age and newborn sex as confounders. RESULTS We found that the DNA methylation levels in the MEG3 differentially methylated region were significantly different between the gestational diabetes mellitus and control groups on the maternal side of the placenta (40.64 ± 2.15 vs 38.33 ± 2.92; P = 0.004). Furthermore, the mean MEG3 DNA methylation levels were correlated positively with maternal fasting glucose concentrations (R = 0.603, P < 0.001) and newborn birthweight (R = 0.568, P < 0.001). CONCLUSIONS The placental DNA methylation status in the MEG3 differentially methylated region was correlated with maternal glucose concentrations and newborn birthweight. These epigenetic adaptations might contribute to late-onset obesity, underlining the adverse intrauterine environment.
Collapse
Affiliation(s)
- Cheng Chen
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Ying Jiang
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Ting Yan
- Jinhua Municipal Central HospitalJinhuaChina
| | - Yuan Chen
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Mengmeng Yang
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Min Lv
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Fangfang Xi
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Juefei Lu
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Baihui Zhao
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiong Luo
- Department of ObstetricsWomen’s HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
47
|
Kelaini S, Chan C, Cornelius VA, Margariti A. RNA-Binding Proteins Hold Key Roles in Function, Dysfunction, and Disease. BIOLOGY 2021; 10:biology10050366. [PMID: 33923168 PMCID: PMC8146904 DOI: 10.3390/biology10050366] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
RNA-binding proteins (RBPs) are multi-faceted proteins in the regulation of RNA or its RNA splicing, localisation, stability, and translation. Amassing proof from many recent and dedicated studies reinforces the perception of RBPs exerting control through differing expression levels, cellular localization and post-transcriptional alterations. However, since the regulation of RBPs is reliant on the micro-environment and events like stress response and metabolism, their binding affinities and the resulting RNA-RBP networks may be affected. Therefore, any misregulation and disruption in the features of RNA and its related homeostasis can lead to a number of diseases that include diabetes, cardiovascular disease, and other disorders such as cancer and neurodegenerative diseases. As such, correct regulation of RNA and RBPs is crucial to good health as the effect RBPs exert through loss of function can cause pathogenesis. In this review, we will discuss the significance of RBPs and their typical function and how this can be disrupted in disease.
Collapse
|
48
|
Liu J, Qu X. The roles of long non-coding RNAs in ocular diseases. Exp Eye Res 2021; 207:108561. [PMID: 33812869 DOI: 10.1016/j.exer.2021.108561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
In recent years, lncRNAs have been shown to regulate gene expression at the epigenetic, transcriptional and translational level, thus exerting various functions in biological and pathological processes involving cell proliferation, apoptosis, cell cycle and immune response. An increasing number of researches have unveiled that lncRNAs are dysregulated in pathogenesis and the development of different ocular diseases, such as glaucoma, cataract, retinal disease and ocular tumors. Also, it has been reported that lncRNAs may exert significant roles in various ocular diseases. Here, we summarized the functions of lncRNAs on relevant ocular diseases and further clarified their mechanisms. Here, several previous studies with detailed information of lncRNAs which have been proved to be the diagnostic or prognostic biomarkers and potential therapeutic targets were included. Also, it is our hope to provide a thorough knowledge of the functions of lncRNAs in eye diseases and the methods by which lncRNAs can influence ocular diseases.
Collapse
Affiliation(s)
- Jinlu Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Xiaohan Qu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
49
|
Gu Y, Rampin A, Alvino VV, Spinetti G, Madeddu P. Cell Therapy for Critical Limb Ischemia: Advantages, Limitations, and New Perspectives for Treatment of Patients with Critical Diabetic Vasculopathy. Curr Diab Rep 2021; 21:11. [PMID: 33651185 PMCID: PMC7925447 DOI: 10.1007/s11892-021-01378-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW To provide a highlight of the current state of cell therapy for the treatment of critical limb ischemia in patients with diabetes. RECENT FINDINGS The global incidence of diabetes is constantly growing with consequent challenges for healthcare systems worldwide. In the UK only, NHS costs attributed to diabetic complications, such as peripheral vascular disease, amputation, blindness, renal failure, and stroke, average £10 billion each year, with cost pressure being estimated to get worse. Although giant leaps forward have been registered in the scope of early diagnosis and optimal glycaemic control, an effective treatment for critical limb ischemia is still lacking. The present review aims to provide an update of the ongoing work in the field of regenerative medicine. Recent advancements but also limitations imposed by diabetes on the potential of the approach are addressed. In particular, the review focuses on the perturbation of non-coding RNA networks in progenitor cells and the possibility of using emerging knowledge on molecular mechanisms to design refined protocols for personalized therapy. The field of cell therapy showed rapid progress but has limitations. Significant advances are foreseen in the upcoming years thanks to a better understanding of molecular bottlenecks associated with the metabolic disorders.
Collapse
Affiliation(s)
- Y Gu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - A Rampin
- Laboratory of Cardiovascular Research, IRCCS, MultiMedica, Milan, Italy
| | - V V Alvino
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - G Spinetti
- Laboratory of Cardiovascular Research, IRCCS, MultiMedica, Milan, Italy
| | - P Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
50
|
He Y, Dan Y, Gao X, Huang L, Lv H, Chen J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am J Physiol Endocrinol Metab 2021; 320:E598-E608. [PMID: 33284093 DOI: 10.1152/ajpendo.00089.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diabetic retinopathy (DR) is one of the serious complications that occurs in diabetic patients that frequently causes blindness. Long noncoding RNAs (lncRNAs) have been associated with DR pathology. This study aimed to determine the underlying mechanism of lncRNA maternally expressed gene 3 (MEG3) in association with DNA methyltransferase 1 (DNMT1) in the endothelial-mesenchymal transition (endMT) that occurs in DR. A rat model of DR was induced by streptozotocin (STZ) injection, and a high-glucose (HG)-induced cell model was established by exposing microvascular endothelial cells obtained from retina of rats to HG. Subsequently, MEG3 was overexpressed in rat and cell models to characterize its impact on endMT in DR and the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, the methylation level of MEG3 promoter region was determined with the application of methylation-specific polymerase chain reaction, followed by chromatin immunoprecipitation assay for methyltransferase enrichment. Finally, we examined the regulation of DNMT1 on MEG3 methylation and endMT in the HG-induced cell model. The results obtained revealed downregulated MEG3 expression in DR rat and cell models. Overexpressed MEG3 was shown to suppress endMT in DR rat and cell models through the inhibition of the PI3K/Akt/mTOR signaling pathway. Notably, DNMT1 could promote MEG3 promoter methylation to inhibit MEG3 expression by recruiting methyltransferase, which activated the PI3K/Akt/mTOR signaling pathway to accelerate endMT in DR. These findings further highlighted the inhibitory effect of MEG3 on endMT in DR, thus presenting a novel therapeutic target candidate for DR treatment.
Collapse
Affiliation(s)
- Yue He
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yujiao Dan
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaorong Gao
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Huang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|