1
|
Abreo Medina ADP, Shi M, Wang Y, Wang Z, Huang K, Liu Y. Exploring Extracellular Vesicles: A Novel Approach in Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2717-2731. [PMID: 39846785 DOI: 10.1021/acs.jafc.4c09209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents an increasing public health concern. The underlying pathophysiological mechanisms of NAFLD remains unclear, and as a result, there is currently no specific therapy for this condition. However, recent studies focus on extracellular vesicles (EVs) as a novelty in their role in cellular communication. An imbalance in the gut microbiota composition may contribute to the progression of NAFLD, making the gut-liver axis a promising target for therapeutic strategies. This review aims to provide a comprehensive overview of EVs in NAFLD. Additionally, exosome-like nanovesicles derived from plants (PELNs) and probiotics-derived extracellular vesicles (postbiotics) have demonstrated the potential to re-establish intestinal equilibrium and modulate gut microbiota, thus offering the potential to alleviate NAFLD via the gut-liver axis. Further research is needed using multiple omics approaches to comprehensively characterize the cargo including protein, metabolites, genetic material packaged, and biological activities of extracellular vesicles derived from diverse microbes and plants.
Collapse
Affiliation(s)
- Andrea Del Pilar Abreo Medina
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengdie Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongyu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutrition Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Malladi N, Lahamge D, Somwanshi BS, Tiwari V, Deshmukh K, Balani JK, Chakraborty S, Alam MJ, Banerjee SK. Paricalcitol attenuates oxidative stress and inflammatory response in the liver of NAFLD rats by regulating FOXO3a and NFκB acetylation. Cell Signal 2024; 121:111299. [PMID: 39004324 DOI: 10.1016/j.cellsig.2024.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The lack of therapeutics along with complex pathophysiology made non-alcoholic fatty liver disease (NAFLD) a research hotspot. Studies showed that the deficiency of Vitamin D plays a vital role in NAFLD pathogenesis. While several research studies focused on vitamin D supplementation in NAFLD, there is still a need to understand the regulatory mechanism of direct vitamin D receptor activation in NAFLD. In the present study, we explored the role of direct Vitamin D receptor activation using paricalcitol in choline-deficient high-fat diet-induced NAFLD rat liver and its modulation on protein acetylation. Our results showed that paricalcitol administration significantly reduced the fat accumulation in HepG2 cells and the liver of NAFLD rats. Paricalcitol attenuated the elevated serum level of alanine transaminase, aspartate transaminase, insulin, low-density lipoprotein, triglyceride, and increased high-density lipoprotein in NAFLD rats. Paricalcitol significantly decreased the increased total protein acetylation by enhancing the SIRT1 and SIRT3 expression in NAFLD liver. Further, the study revealed that paricalcitol reduced the acetylation of NFκB and FOXO3a in NAFLD liver along with a decrease in the mRNA expression of IL1β, NFκB, TNFα, and increased catalase and MnSOD. Moreover, total antioxidant activity, glutathione, and catalase were also elevated, whereas lipid peroxidation, myeloperoxidase, and reactive oxygen species levels were significantly decreased in the liver of NAFLD after paricalcitol administration. The study concludes that the downregulation of SIRT1 and SIRT3 in NAFLD liver was associated with an increased acetylated NFκB and FOXO3a. Paricalcitol effectively reversed hepatic inflammation and oxidative stress in NAFLD rats through transcriptional regulation of NFκB and FOXO3a, respectively, by inhibiting their acetylation.
Collapse
Affiliation(s)
- Navya Malladi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Devidas Lahamge
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Balaji Sanjay Somwanshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Kajal Deshmukh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Jagdish Kumar Balani
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Samhita Chakraborty
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
3
|
Chen Z, Shang Y, Ou Y, Shen C, Cao Y, Hu H, Yang R, Liu T, Liu Q, Song M, Zong D, Xiang X, Peng Y, Ouyang R. Obstructive Sleep Apnea Plasma-Derived Exosomes Mediate Cognitive Impairment Through Hippocampal Neuronal Cell Pyroptosis. Am J Geriatr Psychiatry 2024; 32:922-939. [PMID: 38290937 DOI: 10.1016/j.jagp.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Obstructive sleep apnea (OSA) is associated with impaired cognitive function. Exosomes are secreted by most cells and play a role in OSA-associated cognitive impairment (CI). The aim of this study was to investigate whether OSA plasma-derived exosomes cause CI through hippocampal neuronal cell pyroptosis, and to identify exosomal miRNAs in OSA plasma-derived. MATERIALS AND METHODS Plasma-derived exosomes were isolated from patients with severe OSA and healthy comparisons. Daytime sleepiness and cognitive function were assessed using the Epworth Sleepiness Scale (ESS) and the Beijing version of the Montreal Cognitive Assessment Scale (MoCA). Exosomes were coincubated with mouse hippocampal neurons (HT22) cells to evaluate the effect of exosomes on pyroptosis and inflammation of HT22 cells. Meanwhile, exosomes were injected into C57BL/6 male mice via caudal vein, and then morris water maze was used to evaluate the spatial learning and memory ability of the mice, so as to observe the effects of exosomes on the cognitive function of the mice. Western blot and qRT-PCR were used to detect the expressions of Gasdermin D (GSDMD) and Caspase-1 to evaluate the pyroptosis level. The expression of IL-1β, IL-6, IL-18 and TNF-α was detected by qRT-PCR to assess the level of inflammation. Correlations of GSDMD and Caspase-1 expression with clinical parameters were evaluated using Spearman's rank correlation analysis. In addition, plasma exosome miRNAs profile was identified, followed by Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. RESULTS Compared to healthy comparisons, body mass index (BMI), apnea-hypopnea index (AHI), oxygen desaturation index (ODI), and ESS scores were increased in patients with severe OSA, while lowest oxygen saturation during sleep (LSaO2), mean oxygen saturation during sleep (MSaO2) and MoCA scores were decreased. Compared to the PBS group (NC) and the healthy comparison plasma-derived exosomes (NC-EXOS), the levels of GSDMD and Caspase-1 and IL-1β, IL-6, IL-18 and TNF-α were increased significantly in the severe OSA plasma-derived exosomes (OSA-EXOS) coincubated with HT22 cells. Compared to the NC and NC-EXOS groups, the learning and memory ability of mice injected with OSA-EXOS was decreased, and the expression of GSDMD and Caspase-1 in hippocampus were significantly increased, along with the levels of IL-1β, IL-6, IL-18 and TNF-α. Spearman correlation analysis found that clinical AHI in HCs and severe OSA patients was positively correlated with GSDMD and Caspase-1 in HT22 cells from NC-EXOS and OSA-EXOS groups, while negatively correlated with clinical MoCA. At the same time, clinical MoCA in HCs and severe OSA patients was negatively correlated with GSDMD and Caspase-1 in HT22 cells from NC-EXOS and OSA-EXOS groups. A unique exosomal miRNAs profile was identified in OSA-EXOS group compared to the NC-EXOS group, in which 28 miRNAs were regulated and several KEGG and GO pathways were identified. CONCLUSIONS The results of this study show a hypothesis that plasma-derived exosomes from severe OSA patients promote pyroptosis and increased expression of inflammatory factors in vivo and in vitro, and lead to impaired cognitive function in mice, suggesting that OSA-EXOS can mediate CI through pyroptosis of hippocampal neurons. In addition, exosome cargo from OSA-EXOS showed a unique miRNAs profile compared to NC-EXOS, suggesting that plasma exosome associated miRNAs may reflect the differential profile of OSA related diseases, such as CI.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Yulin Shang
- Ophthalmology and Otorhinolaryngology (YS), Zigui County Traditional Chinese Medicine Hospital, Zigui, China
| | - Yanru Ou
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Chong Shen
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Ying Cao
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Hui Hu
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Ruibing Yang
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Ting Liu
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Qingqing Liu
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Min Song
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Dandan Zong
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China
| | - Xudong Xiang
- Department of Emergency (XX), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yating Peng
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China.
| | - Ruoyun Ouyang
- Department of Respiratory Medicine (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Research Unit of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Pulmonary (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Critical Care Medicine in Hunan Province, Changsha, Hunan, China; Diagnosis and Treatment Center of Respiratory Disease (ZC, YO, CS, YC, HH, RY, TL, QL, MS, DZ, YP, RO), Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Song S, Wang A, Wu S, Li H, He H. Biomaterial Fg/P(LLA-CL) regulates macrophage polarization and recruitment of mesenchymal stem cells after endometrial injury. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:39. [PMID: 39073624 PMCID: PMC11286705 DOI: 10.1007/s10856-024-06807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
The process of endometrial repair after injury involves the synergistic action of various cells including immune cells and stem cells. In this study, after combing Fibrinogen(Fg) with poly(L-lacticacid)-co-poly(ε-caprolactone)(P(LLA-CL)) by electrospinning, we placed Fg/P(LLA-CL) into the uterine cavity of endometrium-injured rats, and bioinformatic analysis revealed that Fg/P(LLA-CL) may affect inflammatory response and stem cell biological behavior. Therefore, we verified that Fg/P(LLA-CL) could inhibit the lipopolysaccharide (LPS)-stimulated macrophages from switching to the pro-inflammatory M1 phenotype in vitro. Moreover, in the rat model of endometrial injury, Fg/P(LLA-CL) effectively promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype and enhanced the presence of mesenchymal stem cells at the injury site. Overall, Fg/P(LLA-CL) exhibits significant influence on macrophage polarization and stem cell behavior in endometrial injury, justifying further exploration for potential therapeutic applications in endometrial and other tissue injuries.
Collapse
Affiliation(s)
- Sirui Song
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Anfeng Wang
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Siyu Wu
- Department of Gynecology and Obstetrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Hongbing He
- Shanghai Pine & Power Biotech Co. Ltd, Shanghai, 201108, China.
| |
Collapse
|
5
|
Zhang R, Liu Z, Li R, Wang X, Ai L, Li Y. An integrated bioinformatics analysis to identify the shared biomarkers in patients with obstructive sleep apnea syndrome and nonalcoholic fatty liver disease. Front Genet 2024; 15:1356105. [PMID: 39081807 PMCID: PMC11286465 DOI: 10.3389/fgene.2024.1356105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Background Obstructive sleep apnea (OSA) syndrome and nonalcoholic fatty liver disease (NAFLD) have been shown to have a close association in previous studies, but their pathogeneses are unclear. This study explores the molecular mechanisms associated with the pathogenesis of OSA and NAFLD and identifies key predictive genes. Methods Using the Gene Expression Omnibus (GEO) database, we obtained gene expression profiles GSE38792 for OSA and GSE89632 for NAFLD and related clinical characteristics. Mitochondrial unfolded protein response-related genes (UPRmtRGs) were acquired by collating and collecting UPRmtRGs from the GeneCards database and relevant literature from PubMed. The differentially expressed genes (DEGs) associated with OSA and NAFLD were identified using differential expression analysis. Gene Set Enrichment Analysis (GSEA) was conducted for signaling pathway enrichment analysis of related disease genes. Based on the STRING database, protein-protein interaction (PPI) analysis was performed on differentially co-expressed genes (Co-DEGs), and the Cytoscape software (version 3.9.1) was used to visualize the PPI network model. In addition, the GeneMANIA website was used to predict and construct the functional similar genes of the selected Co-DEGs. Key predictor genes were analyzed using the receiver operating characteristic (ROC) curve. Results The intersection of differentially expressed genes shared between OSA and NAFLD-related gene expression profiles with UPRmtRGs yielded four Co-DEGs: ASS1, HDAC2, SIRT3, and VEGFA. GSEA obtained the relevant enrichment signaling pathways for OSA and NAFLD. PPI network results showed that all four Co-DEGs interacted (except for ASS1 and HDAC2). Ultimately, key predictor genes were selected in the ROC curve, including HDAC2 (OSA: AUC = 0.812; NAFLD: AUC = 0.729), SIRT3 (OSA: AUC = 0.775; NAFLD: AUC = 0.750), and VEGFA (OSA: AUC = 0.812; NAFLD: AUC = 0.861) (they have a high degree of accuracy in predicting whether a subject will develop two diseases). Conclusion In this study, four co-expression differential genes for OSA and NAFLD were obtained, and they can predict the occurrence of both diseases. Transcriptional mechanisms involved in OSA and NAFLD interactions may be better understood by exploring these key genes. Simultaneously, this study provides potential diagnostic and therapeutic markers for patients with OSA and NAFLD.
Collapse
Affiliation(s)
- Rou Zhang
- Kunming Medical University, Kunming, China
| | - Zhijuan Liu
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ran Li
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaona Wang
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Ai
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongxia Li
- Department of Respiratory Medicine and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Meng D, Ren S. Mairin from Huangqi Decoction Mitigates Liver Cirrhosis through
Suppression of Pro-inflammatory Signaling Pathways: A Network
Pharmacology and Experimental Study. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/0122103155273345231210170121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/04/2025]
Abstract
Background::
Liver cirrhosis is a consequence of various chronic liver conditions and may
lead to liver failure and cancer. Huangqi Decoction (HQD) is a Traditional Chinese Medicine (TCM)
effective for treating liver conditions, including cirrhosis. Therefore, both the active ingredients and
the pharmacological actions of HQD deserve further exploration. The active components and pharmacological
actions of HQD in preventing and treating liver cirrhosis were investigated using network
pharmacology. The actions of the principal active ingredient, Mairin, were investigated empirically.
Methods::
Using network pharmacology, the critical components of HQD were identified from multiple
databases, and UPLC screening and targets were investigated using Swiss Target Prediction.
Targets associated with liver cirrhosis were identified using the GeneCards database. GO and KEGG
enrichment analysis of targets that overlapped between HQD and cirrhosis were analyzed in DAVID,
and a “component-target-pathway” network for HQD was created in Cytoscape 3.7.2. The biological
functions of the key active component, Mairin, were investigated using in silico docking, cell experiments,
and evaluation in a carbon-tetrachloride (CCl4)-induced mouse model of liver cirrhosis.
CCK-8 and F-actin assays were used to measure cell viability and hepatic stellate cell (HSC) activation,
respectively; fibrosis was measured by histological and immunohistochemical evaluations, and
the levels of the cirrhosis-related protein α-SMA and predicted essential target proteins in the PI3KAKT,
NFκB-IκBα, and NLRP3-IL18 pathways were determined by western blotting.
Results::
Fourteen active HQD components, 72 targets, and 10 pathways common to HQD and cirrhosis
were identified. Network analysis indicated the association of Mairin with most targets and
with inflammation through the PI3K/Akt, NF-κB, and NLRP3 pathways. Dose-dependent reductions
in the activation and proliferation of LX-2 cells after Mairin treatment were observed. Mairin reversed
the histopathological changes in the livers of cirrhosis model mice. Mairin also significantly
reduced the α-SMA, NF-κB, IκBα, NLRP3, and IL-18 protein levels while increasing those of p-
PI3K and p-Akt, suggesting that Mairin mitigates liver cirrhosis through modulation of the PI3KAKT,
NFκB-IκBα, and NLRP3-IL18 pathways.
Conclusions::
Using a comprehensive investigative process involving network pharmacology, bioinformatics,
and experimental verification, it was found that Mairin, an active component of HQD,
may be useful for developing specific treatments for preventing and treating liver cirrhosis.
Collapse
Affiliation(s)
- Di Meng
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Shuang Ren
- Department of Traditional Chinese Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Tian J, Li W, Zeng L, Li Y, Du J, Li Y, Li B, Su G. HBI-8000 improves heart failure with preserved ejection fraction via the TGF-β1/MAPK signalling pathway. J Cell Mol Med 2024; 28:e18238. [PMID: 38509729 PMCID: PMC10955178 DOI: 10.1111/jcmm.18238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of total heart failure patients and is characterized by peripheral circulation, cardiac remodelling and comorbidities (such as advanced age, obesity, hypertension and diabetes) with limited treatment options. Chidamide (HBI-8000) is a domestically produced benzamide-based histone deacetylase isoform-selective inhibitor used for the treatment of relapsed refractory peripheral T-cell lymphomas. Based on our in vivo studies, we propose that HBI-8000 exerts its therapeutic effects by inhibiting myocardial fibrosis and myocardial hypertrophy in HFpEF patients. At the cellular level, we found that HBI-8000 inhibits AngII-induced proliferation and activation of CFs and downregulates the expression of fibrosis-related factors. In addition, we observed that the HFpEF group and AngII stimulation significantly increased the expression of TGF-β1 as well as phosphorylated p38MAPK, JNK and ERK, whereas the expression of the above factors was significantly reduced after HBI-8000 treatment. Activation of the TGF-β1/MAPK pathway promotes the development of fibrotic remodelling, and pretreatment with SB203580 (p38MAPK inhibitor) reverses this pathological change. In conclusion, our data suggest that HBI-8000 inhibits fibrosis by modulating the TGF-β1/MAPK pathway thereby improving HFpEF. Therefore, HBI-8000 may become a new hope for the treatment of HFpEF patients.
Collapse
Affiliation(s)
- Jing Tian
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Wenjing Li
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Lu Zeng
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| | - Yang Li
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Jiamin Du
- Department of Cardiology, Jinan Central Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Ying Li
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| | - Bin Li
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| | - Guohai Su
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| |
Collapse
|
8
|
Bu LF, Xiong CY, Zhong JY, Xiong Y, Li DM, Hong FF, Yang SL. Non-alcoholic fatty liver disease and sleep disorders. World J Hepatol 2024; 16:304-315. [PMID: 38577533 PMCID: PMC10989311 DOI: 10.4254/wjh.v16.i3.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 02/18/2024] [Indexed: 03/27/2024] Open
Abstract
Studies have shown that non-alcoholic fatty liver disease (NAFLD) may be associated with sleep disorders. In order to explore the explicit relationship between the two, we systematically reviewed the effects of sleep disorders, especially obstructive sleep apnea (OSA), on the incidence of NAFLD, and analyzed the possible mechanisms after adjusting for confounding factors. NAFLD is independently associated with sleep disorders. Different sleep disorders may be the cause of the onset and aggravation of NAFLD. An excessive or insufficient sleep duration, poor sleep quality, insomnia, sleep-wake disorders, and OSA may increase the incidence of NAFLD. Despite that some research suggests a unidirectional causal link between the two, specifically, the onset of NAFLD is identified as a result of changes in sleep characteristics, and the reverse relationship does not hold true. Nevertheless, there is still a lack of specific research elucidating the reasons behind the higher risk of developing sleep disorders in individuals with NAFLD. Further research is needed to establish a clear relationship between NAFLD and sleep disorders. This will lay the groundwork for earlier identification of potential patients, which is crucial for earlier monitoring, diagnosis, effective prevention, and treatment of NAFLD.
Collapse
Affiliation(s)
- Lu-Fang Bu
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344000, Jiangxi Province, China
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, Jiangxi Province, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, Jiangxi Province, China
| | - Chong-Yu Xiong
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344000, Jiangxi Province, China
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, Jiangxi Province, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, Jiangxi Province, China
| | - Jie-Yi Zhong
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344000, Jiangxi Province, China
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, Jiangxi Province, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, Jiangxi Province, China
| | - Yan Xiong
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344000, Jiangxi Province, China
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, Jiangxi Province, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, Jiangxi Province, China
| | - Dong-Ming Li
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344000, Jiangxi Province, China
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, Jiangxi Province, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, Jiangxi Province, China
| | - Fen-Fang Hong
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344000, Jiangxi Province, China
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, Jiangxi Province, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, Jiangxi Province, China.
| |
Collapse
|
9
|
Song R, Baker TL, Watters JJ, Kumar S. Obstructive Sleep Apnea-Associated Intermittent Hypoxia-Induced Immune Responses in Males, Pregnancies, and Offspring. Int J Mol Sci 2024; 25:1852. [PMID: 38339130 PMCID: PMC10856042 DOI: 10.3390/ijms25031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Obstructive sleep apnea (OSA), a respiratory sleep disorder associated with cardiovascular diseases, is more prevalent in men. However, OSA occurrence in pregnant women rises to a level comparable to men during late gestation, creating persistent effects on both maternal and offspring health. The exact mechanisms behind OSA-induced cardiovascular diseases remain unclear, but inflammation and oxidative stress play a key role. Animal models using intermittent hypoxia (IH), a hallmark of OSA, reveal several pro-inflammatory signaling pathways at play in males, such as TLR4/MyD88/NF-κB/MAPK, miRNA/NLRP3, and COX signaling, along with shifts in immune cell populations and function. Limited evidence suggests similarities in pregnancies and offspring. In addition, suppressing these inflammatory molecules ameliorates IH-induced inflammation and tissue injury, providing new potential targets to treat OSA-associated cardiovascular diseases. This review will focus on the inflammatory mechanisms linking IH to cardiovascular dysfunction in males, pregnancies, and their offspring. The goal is to inspire further investigations into the understudied populations of pregnant females and their offspring, which ultimately uncover underlying mechanisms and therapeutic interventions for OSA-associated diseases.
Collapse
Affiliation(s)
- Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Tracy L. Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Jyoti J. Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
10
|
Moradi MT, Fadaei R, Sharafkhaneh A, Khazaie H, Gozal D. The role of lncRNAs in intermittent hypoxia and sleep Apnea: A review of experimental and clinical evidence. Sleep Med 2024; 113:188-197. [PMID: 38043330 DOI: 10.1016/j.sleep.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
In this narrative review, we present a comprehensive assessment on the putative roles of long non-coding RNAs (lncRNAs) in intermittent hypoxia (IH) and sleep apnea. Collectively, the evidence from cell culture, animal, and clinical research studies points to the functional involvement of lncRNAs in the pathogenesis, diagnosis, and potential treatment strategies for this highly prevalent disorder. Further research is clearly warranted to uncover the mechanistic pathways and to exploit the therapeutic potential of lncRNAs, thereby improving the management and outcomes of patients suffering from sleep apnea.
Collapse
Affiliation(s)
- Mohammad-Taher Moradi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Amir Sharafkhaneh
- Sleep Disorders and Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - David Gozal
- Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Dr, Huntington, WV, 25701, USA.
| |
Collapse
|
11
|
Verma S, Ishteyaque S, Washimkar KR, Verma S, Nilakanth Mugale M. Mitochondrial-mediated nuclear remodeling and macrophage polarizations: A key switch from liver fibrosis to HCC progression. Exp Cell Res 2024; 434:113878. [PMID: 38086504 DOI: 10.1016/j.yexcr.2023.113878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Liver fibrosis is a significant health burden worldwide and has emerged as the leading cause of Hepatocellular carcinoma (HCC) incidence. Mitochondria are the dynamic organelles that regulate the differentiation, survival, and polarization of macrophages. Nuclear-DNA-associated proteins, micro-RNAs, as well as macrophage polarization are essential for maintaining intracellular and extra-cellular homeostasis in the liver parenchyma. Dysregulated mitochondrial coding genes (ETS complexes I, II, III, IV, and V), non-coding RNAs (mitomiRs), and nuclear alteration lead to the production of reactive oxygen species (ROS) and inflammation which are implicated in the transition of liver fibrosis into HCC. Recent findings indicated the protecting effect of E74-like factor 3/peroxisome proliferator-activated receptor-γ (Elf-3/PPAR-γ). HDAR-y inhibits the deacetylation of PPAR-y and maintains the PPAR-y pathway. Elf-3 plays a tumor suppressive role through epithelial-mesenchymal transition-related gene and zinc finger E-box binding homeobox 2 (ZEB-2) domain. Additionally, the development of HCC includes the PI3K/Akt/mTOR and transforming Growth Factor β (TGF-β) pathway that promotes the Epithelial-mesenchymal transition (EMT) through Smad/Snail/Slug signaling cascade. In contrast, the TLR2/NOX2/autophagy axis promotes M2 polarization in HCC. Thus, a thorough understanding of the mitochondrial and nuclear reciprocal relationship related to macrophage polarization could provide new research opportunities concerning diseases with a significant impact on liver parenchyma towards developing liver fibrosis or liver cancer. Moreover, this knowledge can be used to develop new therapeutic strategies to treat liver diseases.
Collapse
Affiliation(s)
- Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sharmeen Ishteyaque
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Abdurehman D, Guoruoluo Y, Lu X, Li J, Abudulla R, Liu G, Xin X, Aisa HA. Optimization of preparation method of hepatoprotective active components from Coreopsis tinctoria Nutt. and its action mechanism in vivo. Biomed Pharmacother 2023; 167:115590. [PMID: 37776638 DOI: 10.1016/j.biopha.2023.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Capitula of Coreopsis tinctoria are widely used as a flower tea with great health benefits due to rich content of flavonoids and phenolic acids. The hepatoprotective effect of C. tinctoria and its bioactive basis have seldom been investigated until now. In the present study, capitula of C. tinctoria were extracted with a method optimized by response surface methodology (RSM) and BoxBehnken design (BBD) and further purified by macroporous resin HPD-300 to obtain a fraction (CE) enriched with flavonoids and phenolic acids. The contents of the four most abundant compounds, isookanin-7-O-β-d-glucoside (1), quercetigetin-7-O-β-d-glucoside (2), okanin (3), and marein (4), were determined by HPLC as 9.98, 5.21, 41.78 and 1.85 mg/g, respectively. Seventy-four compounds including fifity-five flavonoids, fifteen organic acids (twelve of them were phenolic compounds), and three coumarins were tentatively identified in CE by LC-HRMS/MS. In vivo hepatoprotective effect and potential mechanism of CE were studied with a high-fat diet-induced NASH mouse model. CE administration decreased the amount of weight gain, hepatic lipid, and sequentially improved dyslipidemia, inflammation, oxidative stress, and IR in HFD-fed mice. Molecular data revealed that CE inhibited hepatic inflammation by reducing NFκB/iNOS/COX-2/NLRP3/MAPK in the liver tissues and ameliorated oxidative stress by activating the Nrf2/HO-1 pathway. Modulation of inflammation and oxidative stress with CE may represent a promising target for the treatment of NAFLD and provide insight into the mechanism by which CE protects against obesity.
Collapse
Affiliation(s)
- Dilinare Abdurehman
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yindengzhi Guoruoluo
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Xueying Lu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rahima Abudulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Geyu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
13
|
Zheng J, Wang J, Li K, Qin X, Li S, Chang X, Sun Y. LncRNA AP000487.1 regulates PRKCB DNA methylation-mediated TLR4/MyD88/NF-κB pathway in Nano NiO-induced collagen formation in BEAS-2B cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2783-2796. [PMID: 37528634 DOI: 10.1002/tox.23918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Nickel oxide nanoparticles (Nano NiO) have been shown to cause pulmonary fibrosis; But, the underlying epigenetic mechanisms remain poorly understood. In this study, we aimed to investigate the role of lncRNA AP000487.1 in regulating PRKCB DNA methylation and the Toll-like receptor 4 (TLR4)/ Myeloid differentiation primary response 88 (MyD88)/ Nuclear factor kappa-B (NF-κB) pathway in Nano NiO-induced collagen formation. We found that lncRNA AP000487.1 was able to bind to the promoter region of the PRKCB gene by Chromosomal RNA pull-down experiments (Ch-RNA pull-down). Moreover, Nano NiO exposure led to down-regulation of lncRNA AP000487.1 expression and PRKCB DNA methylation, resulting in up-regulation of PRKCB expression, activation of the TLR4/MyD88/NF-κB pathway, and increased collagen formation in BEAS-2B cells. Conversely, overexpression of lncRNA AP000487.1 restored PRKCB expression, reduced its hypomethylation and attenuated TLR4/MyD88/NF-κB pathway activation and collagen formation. Furthermore, treatment with the DNA methylation inhibitor, decitabine, alleviated Nano NiO-induced PRKCB2 expression, TLR4/MyD88/NF-κB pathway activation, and collagen formation. Additionally, using PRKCB2 overexpression plasmid, PRKCB2 siRNA, and PRKCB2 protein inhibitor LY317615 influenced NF-κB pathway activity and collagen formation. Finally, TLR4 inhibitor (TAK-242) restrained Nano NiO-induced MyD88/NF-κB pathway activation and excessive collagen formation. In summary, we demonstrated that the down-regulated lncRNA AP000487.1 could cause PRKCB hypomethylation and increased expression, resulting in NF-κB pathway activation and collagen formation in Nano NiO-induced BEAS-2B cells. This is the first study to reveal the role of lncRNA AP000487.1 in regulating collagen formation in Nano NiO-exposed BEAS-2B cells. Our study identified that lncRNA AP000487.1/PRKCB hypomethylation/NF-κB pathway was a regulatory axis of BEAS-2B cells collagen excessive formation. Our findings indicate that lncRNA AP000487.1 and PRKCB DNA methylation may function as biomarkers or potential targets in response to Nano NiO exposure.
Collapse
Affiliation(s)
- Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinyu Wang
- Institute of Anthropotomy and Histoembryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xin Qin
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Tang H, Lv F, Zhang P, Liu J, Mao J. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1254459. [PMID: 37850091 PMCID: PMC10577417 DOI: 10.3389/fendo.2023.1254459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by episodic sleep state-dependent collapse of the upper airway, with consequent hypoxia, hypercapnia, and arousal from sleep. OSA contributes to multisystem damage; in severe cases, sudden cardiac death might occur. In addition to causing respiratory, cardiovascular and endocrine metabolic diseases, OSA is also closely associated with nonalcoholic fatty liver disease (NAFLD). As the prevalence of OSA and NAFLD increases rapidly, they significantly exert adverse effects on the health of human beings. The authors retrieved relevant documents on OSA and NAFLD from PubMed and Medline. This narrative review elaborates on the current knowledge of OSA and NAFLD, demonstrates the impact of OSA on NAFLD, and clarifies the underlying mechanisms of OSA in the progression of NAFLD. Although there is a lack of sufficient high-quality clinical studies to prove the causal or concomitant relationship between OSA and NAFLD, existing evidence has confirmed the effect of OSA on NAFLD. Elucidating the underlying mechanisms through which OSA impacts NAFLD would hold considerable importance in terms of both prevention and the identification of potential therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Haiying Tang
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Furong Lv
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Zhang
- Department of Medical Information Engineering, Zhongshan College of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Liu
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
15
|
Ma L, Song J, Chen X, Dai D, Chen J, Zhang L. Fecal microbiota transplantation regulates TFH/TFR cell imbalance via TLR/MyD88 pathway in experimental autoimmune hepatitis. Heliyon 2023; 9:e20591. [PMID: 37860535 PMCID: PMC10582310 DOI: 10.1016/j.heliyon.2023.e20591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/04/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Objective Autoimmune hepatitis (AIH) is a chronic immune-mediated inflammatory liver disease. Intestinal flora disturbance in AIH is closely related to TFH/TFR cell imbalances. As a new method of microbial therapy, the role of fecal microbiota transplantation (FMT) in AIH remains elusive. Here, we attempted to verify the functional role and molecular mechanism of FMT in AIH. Methods An experimental autoimmune hepatitis (EAH) mouse model was established to mimic the characteristics of AIH. H&E staining was used to detect histological features in mouse liver tissues. Serological tests were employed to identify several liver function biomarkers. Flow cytometry was utilized to examine the status of TFH/TFR cell subsets. Western blotting was used to evaluate TLR pathway-associated protein abundance. RT‒qPCR was applied to evaluate Treg cell markers and inflammation marker levels in mouse liver tissues. Results There was significant liver inflammation and dysregulated TFR/TFH cells with elevated levels of liver inflammation-associated biomarkers in EAH mice. Interestingly, transferring therapeutic FMT into EAH mice dramatically reduced liver injury and improved the imbalance between splenic TFR and TFH cells. FMT treatment also reduced elevated contents of serum alanine transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) in EAH mice. Furthermore, therapeutic FMT reversed the increased levels of IL-21 while promoting IL-10 and TGF-β cytokines. Mechanistically, FMT regulated TFH cell response in EAH mice in a TLR4/11/MyD88 pathway-dependent manner. Conclusion Our findings demonstrated that liver injury and dysregulation between TFR and TFH cells in EAH might be reversed by therapeutic FMT via the TLR4/11-MyD88 signaling pathway.
Collapse
Affiliation(s)
- Liang Ma
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Gastroenterology, The People's Hospital of Wuqia, Xin Jiang, China
| | - Jianguo Song
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Gastroenterology, The People's Hospital of Wuqia, Xin Jiang, China
- Department of Gastroenterology, The Fifth People's Hospital of Xinjiang Uygur Autonomous Region, Xin Jiang, China
| | - Xueping Chen
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Gastroenterology, The People's Hospital of Wuqia, Xin Jiang, China
| | - Duan Dai
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jianping Chen
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Liwen Zhang
- Department of Pediatrics, The Second People's Hospital of Changzhou, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
16
|
Barnes LA, Xu Y, Sanchez-Azofra A, Moya EA, Zhang MP, Crotty Alexander LE, Malhotra A, Mesarwi O. Duration of intermittent hypoxia impacts metabolic outcomes and severity of murine NAFLD. FRONTIERS IN SLEEP 2023; 2:1215944. [PMID: 38077744 PMCID: PMC10704994 DOI: 10.3389/frsle.2023.1215944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Rationale Obstructive sleep apnea (OSA) is associated with metabolic dysfunction, including progression of nonalcoholic fatty liver disease (NAFLD). Chronic intermittent hypoxia (IH) as a model of OSA worsens hepatic steatosis and fibrosis in rodents with diet induced obesity. However, IH also causes weight loss, thus complicating attempts to co-model OSA and NAFLD. We sought to determine the effect of various durations of IH exposure on metabolic and liver-related outcomes in a murine NAFLD model. We hypothesized that longer IH duration would worsen the NAFLD phenotype. Methods Male C57BL/6J mice (n = 32) were fed a high trans-fat diet for 24 weeks, to induce NAFLD with severe steatohepatitis. Mice were exposed to an IH profile modeling severe OSA, for variable durations (0, 6, 12, or 18 weeks). Intraperitoneal glucose tolerance test was measured at baseline and at six-week intervals. Liver triglycerides, collagen and other markers of NAFLD were measured at sacrifice. Results Mice exposed to IH for 12 weeks gained less weight (p = 0.023), and had lower liver weight (p = 0.008) relative to room air controls. These effects were not observed in the other IH groups. IH of longer duration transiently worsened glucose tolerance, but this effect was not seen in the groups exposed to shorter durations of IH. IH exposure for 12 or 18 weeks exacerbated liver fibrosis, with the largest increase in hepatic collagen observed in mice exposed to IH for 12 weeks. Discussion Duration of IH significantly impacts clinically relevant outcomes in a NAFLD model, including body weight, fasting glucose, glucose tolerance, and liver fibrosis.
Collapse
Affiliation(s)
- Laura A. Barnes
- Division of Pulmonary, Critical Care, and Sleep Medicine
and Physiology, School of Medicine, University of California, San Diego, San Diego,
CA, United States
| | - Yinuo Xu
- School of Biological Sciences, University of California,
San Diego, San Diego, CA, United States
| | - Ana Sanchez-Azofra
- Division of Pulmonary, Critical Care, and Sleep Medicine
and Physiology, School of Medicine, University of California, San Diego, San Diego,
CA, United States
- Division of Pulmonary and Sleep Medicine, Hospital
Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid,
Spain
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care, and Sleep Medicine
and Physiology, School of Medicine, University of California, San Diego, San Diego,
CA, United States
| | - Michelle P. Zhang
- Division of Pulmonary, Critical Care, and Sleep Medicine
and Physiology, School of Medicine, University of California, San Diego, San Diego,
CA, United States
| | - Laura E. Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine
and Physiology, School of Medicine, University of California, San Diego, San Diego,
CA, United States
- Section of Pulmonary and Critical Care, VA San Diego, La
Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine
and Physiology, School of Medicine, University of California, San Diego, San Diego,
CA, United States
| | - Omar Mesarwi
- Division of Pulmonary, Critical Care, and Sleep Medicine
and Physiology, School of Medicine, University of California, San Diego, San Diego,
CA, United States
| |
Collapse
|
17
|
Drummond SE, Burns DP, El Maghrani S, Ziegler O, Healy V, O'Halloran KD. Chronic Intermittent Hypoxia-Induced Diaphragm Muscle Weakness Is NADPH Oxidase-2 Dependent. Cells 2023; 12:1834. [PMID: 37508499 PMCID: PMC10377874 DOI: 10.3390/cells12141834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic intermittent hypoxia (CIH)-induced redox alterations underlie diaphragm muscle dysfunction. We sought to establish if NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS) underpin CIH-induced changes in diaphragm muscle, which manifest as impaired muscle performance. Adult male mice (C57BL/6J) were assigned to one of three groups: normoxic controls (sham); chronic intermittent hypoxia-exposed (CIH, 12 cycles/hour, 8 h/day for 14 days); and CIH + apocynin (NOX2 inhibitor, 2 mM) administered in the drinking water throughout exposure to CIH. In separate studies, we examined sham and CIH-exposed NOX2-null mice (B6.129S-CybbTM1Din/J). Apocynin co-treatment or NOX2 deletion proved efficacious in entirely preventing diaphragm muscle dysfunction following exposure to CIH. Exposure to CIH had no effect on NOX2 expression. However, NOX4 mRNA expression was increased following exposure to CIH in wild-type and NOX2 null mice. There was no evidence of overt CIH-induced oxidative stress. A NOX2-dependent increase in genes related to muscle regeneration, antioxidant capacity, and autophagy and atrophy was evident following exposure to CIH. We suggest that NOX-dependent CIH-induced diaphragm muscle weakness has the potential to affect ventilatory and non-ventilatory performance of the respiratory system. Therapeutic strategies employing NOX2 blockade may function as an adjunct therapy to improve diaphragm muscle performance and reduce disease burden in diseases characterised by exposure to CIH, such as obstructive sleep apnoea.
Collapse
Affiliation(s)
- Sarah E Drummond
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Sarah El Maghrani
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Oscar Ziegler
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Vincent Healy
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| |
Collapse
|
18
|
Wu F, Kong Y, Chen W, Liang D, Xiao Q, Hu L, Tan X, Wei J, Liu Y, Deng X, Liu Z, Chen T. Improvement of vaginal probiotics Lactobacillus crispatus on intrauterine adhesion in mice model and in clinical practice. BMC Microbiol 2023; 23:78. [PMID: 36949381 PMCID: PMC10032012 DOI: 10.1186/s12866-023-02823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a frequent acquired endometrial condition, for which there is no effective preventive or treatment. Previous studies have found that vaginal microbiota dysregulation is closely related to endometrial fibrosis and IUA. Therefore, we wondered whether restoration of vaginal microbiota by vaginal administration of L. crispatus could prevent endometrial fibrosis and ameliorate IUA. RESULTS First, we created a mechanically injured mouse model of IUA and restored the mice's vaginal microbiota by the addition of L. crispatus convolvulus. The observations suggested that intrauterine injections of L. crispatus significantly decreased the degree of uterine fibrosis, the levels of IL-1β and TNF-α in blood, and downregulated the TGF-β1/SMADs signaling pathway in IUA mice. A therapy with L. crispatus considerably raised the abundance of the helpful bacteria Lactobacillus and Oscillospira and restored the balance of the vaginal microbiota in IUA mice, according to high-throughput sequencing. Then we conducted a randomized controlled trial to compare the therapeutic effect of L. crispatus with estrogen after transcervical resection of adhesion (TCRA). And the results showed that vaginal probiotics had a better potential to prevent intrauterine adhesion than estrogen. CONCLUSIONS This study confirmed that L. crispatus could restore vaginal microbiota after intrauterine surgery, inhibit endometrial fibrosis, and finally play a preventive and therapeutic role in IUA. At the same time, it is a new exploration for the treatment of gynecological diseases with vaginal probiotics. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn/ , identifier (ChiCTR1900022522), registration time: 15/04/2019.
Collapse
Affiliation(s)
- Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Dingfa Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Qin Xiao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijuan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yujuan Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China.
| |
Collapse
|
19
|
Zhang J, Zao X, Zhang J, Guo Z, Jin Q, Chen G, Gan D, Du H, Ye Y. Is it possible to intervene early cirrhosis by targeting toll-like receptors to rebalance the intestinal microbiome? Int Immunopharmacol 2023; 115:109627. [PMID: 36577151 DOI: 10.1016/j.intimp.2022.109627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Cirrhosis is a progressive chronic liver disease caused by one or more causes and characterized by diffuse fibrosis, pseudolobules, and regenerated nodules. Once progression to hepatic decompensation, the function of the liver and other organs is impaired and almost impossible to reverse and recover, which often results in hospitalization, impaired quality of life, and high mortality. However, in the early stage of cirrhosis, there seems to be a possibility of cirrhosis reversal. The development of cirrhosis is related to the intestinal microbiota and activation of toll-like receptors (TLRs) pathways, which could regulate cell proliferation, apoptosis, expression of the hepatomitogen epiregulin, and liver inflammation. Targeting regulation of intestinal microbiota and TLRs pathways could affect the occurrence and development of cirrhosis and its complications. In this paper, we first reviewed the dynamic change of intestinal microbiota and TLRs during cirrhosis progression. And further discussed the interaction between them and potential therapeutic targets to reverse early staged cirrhosis.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Ziwei Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Da'nan Gan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
20
|
Kim BY, Lee SH, Kim IK, Park JY, Bae JH. Chronic intermittent hypoxia impacts the olfactory nervous system in an age-dependent manner: pilot study. Eur Arch Otorhinolaryngol 2023; 280:241-248. [PMID: 35780199 DOI: 10.1007/s00405-022-07529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse during sleep, which induces chronic intermittent hypoxia (CIH). CIH results in low-grade inflammation, sympathetic overactivity, and oxidative stress. Nevertheless, it remains unclear how exposure to CIH affects olfaction. The purpose of this study was, therefore, to investigate the cytotoxic effects of CIH exposure on mouse olfactory epithelium and the underlying pathophysiology involved. METHODS Mice were randomly divided into four groups: Youth mouse (You) + room air (RA), You + intermittent hypoxia (IH), Elderly mouse (Eld) + RA, and Eld + IH (n = 6 mice/group). Mice in the two hypoxia groups were exposed to CIH. The control condition involved exposure to room air (RA) for 4 weeks. Olfactory neuroepithelium was harvested for histologic examination, gene ontology analysis, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. RESULTS Based on qRT-PCR analysis, olfactory marker protein (OMP), Olfr1507, ADCY3, and GNAL mRNA levels were lower, whereas NGFR, CNPase, NGFRAP1, NeuN, and MAP-2 mRNA levels were higher in the You + IH group than in the You + RA group. Olfactory receptor-regulated genes, neurogenesis-related genes and immunohistochemical results were altered in nasal neuroepithelium under CIH exposure. CONCLUSIONS Based on genetic and cytologic analysis, CIH impacted the olfactory neuroepithelium in an age-dependent manner. Our findings suggest that CIH-induced damage to the olfactory neuroepithelium may induce more severe change in the youth than in the elderly.
Collapse
Affiliation(s)
- Boo-Young Kim
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Seoul Hospital, Ewha Womans University, Gangseo-gu, Gonghang-daero 260, Seoul, Korea.
| | - Sang Haak Lee
- Department of Clinical Laboratory, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Eunpyeong, Seoul, Korea
| | - In Kyoung Kim
- Department of Clinical Laboratory, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Eunpyeong, Seoul, Korea
| | - Ju Yeon Park
- Department of Clinical Laboratory, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo, Seoul, Korea
| | - Jung Ho Bae
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Seoul Hospital, Ewha Womans University, Gangseo-gu, Gonghang-daero 260, Seoul, Korea
| |
Collapse
|
21
|
Si MD, Wu M, Cheng XZ, Ma ZH, Zheng YG, Li J, Li S, Song YX, Ma D. Swertia mussotii prevents high-fat diet-induced non-alcoholic fatty liver disease in rats by inhibiting expression the TLR4/MyD88 and the phosphorylation of NF-κB. PHARMACEUTICAL BIOLOGY 2022; 60:1960-1968. [PMID: 36205548 PMCID: PMC9559049 DOI: 10.1080/13880209.2022.2127153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Swertia mussotii Franch. (Gentianaceae) is a source of the traditional Tibetan medicine, ZangYinChen, and is used to treat chronic hepatitis and many types of jaundice. OBJECTIVE This study explored the therapeutic effects and mechanism of S. mussotii on non-alcoholic fatty liver disease in diet-induced hypercholesterolaemia. MATERIALS AND METHODS After a week of adaptive feeding, 32 Sprague-Dawley rats were divided into four groups: (1) Control, (2) Control-S, (3) Model, and (4) Model-S. During the 12 experimental weeks, we established the Model using a high-fat diet. Control-S and Model-S were given 1.0 g/kg S. mussotii water extract via gavage starting in the fifth week until the end of experiment. RESULTS When compared with Model rats, the S. mussotii water extract led to a reduction in high-density lipoproteins (43.9%) and albumin (13.9%) and a decrease in total cholesterol (54.0%), triglyceride (45.6%), low-density lipoproteins (8.6%), aspartate aminotransferase (11.0%), alanine aminotransferase (15.5%), alkaline phosphatase (19.1%), total protein (6.4%), and glucose (20.8%) in serum. A reduction in three cytokines (IL-1β, IL-6, and TNFα) was detected. Histopathological examination showed that liver steatosis was significantly relieved in S. mussotii-treated high-fat diet rats. S. mussotii also caused a downregulation in the expression of TLR4 (43.2%), MyD88 (33.3%), and a decrease in phosphorylation of NF-κB. DISCUSSION AND CONCLUSIONS Our findings indicate that S. mussotii may act as a potential anti-inflammation drug via inhibition of the TLR4/MyD88/NF-κB pathway. Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.
Collapse
Affiliation(s)
- Ming Dong Si
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Meng Wu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xi Zhen Cheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhi Hong Ma
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Guang Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China
| | - Jing Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Si Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yong Xing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| |
Collapse
|
22
|
Inhibition of 11β-hydroxysteroid dehydrogenase 1 relieves fibrosis through depolarizing of hepatic stellate cell in NASH. Cell Death Dis 2022; 13:1011. [PMID: 36446766 PMCID: PMC9709168 DOI: 10.1038/s41419-022-05452-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022]
Abstract
11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) is a key enzyme that catalyzes the intracellular conversion of cortisone to physiologically active cortisol. Although 11βHSD1 has been implicated in numerous metabolic syndromes, such as obesity and diabetes, the functional roles of 11βHSD1 during progression of nonalcoholic steatohepatitis (NASH) and consequent fibrosis have not been fully elucidated. We found that pharmacological and genetic inhibition of 11βHSD1 resulted in reprogramming of hepatic stellate cell (HSC) activation via inhibition of p-SMAD3, α-SMA, Snail, and Col1A1 in a fibrotic environment and in multicellular hepatic spheroids (MCHSs). We also determined that 11βHSD1 contributes to the maintenance of NF-κB signaling through modulation of TNF, TLR7, ITGB3, and TWIST, as well as regulating PPARα signaling and extracellular matrix accumulation in activated HSCs during advanced fibrogenesis in MCHSs. Of great interest, the 11βHSD1 inhibitor J2H-1702 significantly attenuated hepatic lipid accumulation and ameliorated liver fibrosis in diet- and toxicity-induced NASH mouse models. Together, our data indicate that J2H-1702 is a promising new clinical candidate for the treatment of NASH.
Collapse
|
23
|
Hypoxia as a Double-Edged Sword to Combat Obesity and Comorbidities. Cells 2022; 11:cells11233735. [PMID: 36496995 PMCID: PMC9736735 DOI: 10.3390/cells11233735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The global epidemic of obesity is tightly associated with numerous comorbidities, such as type II diabetes, cardiovascular diseases and the metabolic syndrome. Among the key features of obesity, some studies have suggested the abnormal expansion of adipose-tissue-induced local endogenous hypoxic, while other studies indicated endogenous hyperoxia as the opposite trend. Endogenous hypoxic aggravates dysfunction in adipose tissue and stimulates secretion of inflammatory molecules, which contribute to obesity. In contrast, hypoxic exposure combined with training effectively generate exogenous hypoxic to reduce body weight and downregulate metabolic risks. The (patho)physiological effects in adipose tissue are distinct from those of endogenous hypoxic. We critically assess the latest advances on the molecular mediators of endogenous hypoxic that regulate the dysfunction in adipose tissue. Subsequently we propose potential therapeutic targets in adipose tissues and the small molecules that may reverse the detrimental effect of local endogenous hypoxic. More importantly, we discuss alterations of metabolic pathways in adipose tissue and the metabolic benefits brought by hypoxic exercise. In terms of therapeutic intervention, numerous approaches have been developed to treat obesity, nevertheless durability and safety remain the major concern. Thus, a combination of the therapies that suppress endogenous hypoxic with exercise plans that augment exogenous hypoxic may accelerate the development of more effective and durable medications to treat obesity and comorbidities.
Collapse
|
24
|
Chen LD, Huang JF, Lin XJ, Huang YP, Xu QZ, Chen GP, Lin QC. Expression profiling and functional analysis of circular RNAs in vitro model of intermittent hypoxia-induced liver injury. Front Physiol 2022; 13:972407. [PMID: 36187780 PMCID: PMC9515621 DOI: 10.3389/fphys.2022.972407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Intermittent hypoxia (IH) is a prominent feature of obstructive sleep apnea (OSA) which is increasingly recognized as a key risk factor for liver injury. Circular RNAs (circRNAs) has been suggested to act as a regulator of multiple biological processes. However, there is no study evaluating circRNAs alterations and potential role of circRNAs in OSA-related liver injury. The present study aimed to investigate circRNA expression profiles in vitro model of IH-induced liver injury, as well as potential functional characterization of the differentially expressed circRNAs (DE circRNAs). BRL-3A cells were exposed to IH or normoxia. Cell apoptosis and cell viability were evaluated using flow cytometry and cell counting kit-8, respectively. The expression profile of circRNAs was depicted by circRNA sequencing. The selected circRNAs were verified by quantitative real-time PCR (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses were employed to predict DE circRNAs functions. The circRNA-miRNA-mRNA regulatory network was constructed. IH treatment caused cell injury in BRL-3A cells. 98 circRNAs were identified as being dysregulated in IH-treated BRL-3A cells. Among them, 58 were up-regulated and 40 were down-regulated. Go and KEGG analyses suggested that the DE circRNAs were predominantly enriched in the biological process such as positive regulation of NF−kappaB transcription factor activity and pathways such as circadian entrainment, Wnt signaling pathway, MAPK signaling pathway, and protein export. 3 up-regulated circRNAs and 3 down-regulated circRNAs with high number of back-splicing sites were chosen for qRT-PCR validation and were consistent with the sequencing data. CircRNA1056 and circRNA805 were predicted to interact with microRNAs that might thereby regulate downstream genes. The study characterized a profile of dysregulated circRNAs in IH-induced BRL-3A cell injury. DE circRNAs may play vital roles in the pathophysiology of IH-induced liver injury. Our findings provide preliminary support for further research in mechanisms and a new theory for the pathogenesis of OSA-related liver injury.
Collapse
Affiliation(s)
- Li-Da Chen
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Jie-Feng Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China
- Laboratory of Respiratory Disease of the Fujian Medical University, Fuzhou, China
| | - Xue-Jun Lin
- Department of Laboratory Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Ya-Ping Huang
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Qiao-Zhen Xu
- Department of Respiratory and Critical Care Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Gong-Ping Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China
- Laboratory of Respiratory Disease of the Fujian Medical University, Fuzhou, China
- *Correspondence: Gong-Ping Chen, ; Qi-Chang Lin,
| | - Qi-Chang Lin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China
- Laboratory of Respiratory Disease of the Fujian Medical University, Fuzhou, China
- *Correspondence: Gong-Ping Chen, ; Qi-Chang Lin,
| |
Collapse
|
25
|
Zhao D, Xue C, Yang Y, Li J, Wang X, Chen Y, Zhang S, Chen Y, Duan Y, Yang X, Han J. Lack of Nogo-B expression ameliorates PPARγ deficiency-aggravated liver fibrosis by regulating TLR4-NF-κB-TNF-α axis and macrophage polarization. Biomed Pharmacother 2022; 153:113444. [DOI: 10.1016/j.biopha.2022.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022] Open
|
26
|
Loss of RAGE prevents chronic intermittent hypoxia-induced nonalcoholic fatty liver disease via blockade of NF-кB pathway. Gene Ther 2022; 30:278-287. [PMID: 35821256 DOI: 10.1038/s41434-022-00351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
In recent years, receptor for advanced glycation end-products (RAGE) has been documented to induce liver fibrosis and inflammatory reaction. Further, microarray data analysis of this study predicted high expression of RAGE in non-alcoholic fatty liver disease (NAFLD). However, its specific mechanisms remain to be elucidated. Hence, this study is aimed at investigating the mechanistic insights of RAGE in chronic intermittent hypoxia (CIH)-induced NAFLD. ApoE knockout (ApoE-/-) mice were exposed to CIH to induce NAFLD, and primary hepatocytes were also exposed to CIH to mimic in vitro setting. Accordingly, we found that RAGE and NF-κB were upregulated in the liver tissues of CIH-induced NAFLD mice and CIH-exposed hepatocytes. Depleted RAGE attenuated CIH-induced hepatocyte injury, lipid deposition, and inflammation. The relationship between RAGE and NF-κB was analyzed by in silico analysis and correlation analysis. It was demonstrated that knockdown of RAGE inhibited the NF-кB pathway, thus alleviating CIH-induced disorders in hepatocytes. Moreover, in vivo experiments also verified that depletion of RAGE alleviated CIH-induced NAFLD by inhibiting NF-кB pathway. Collectively, loss of RAGE blocked the NF-кB pathway to alleviate CIH-induced NAFLD, therefore, highlighting a potential hepatoprotective target for treating NAFLD.
Collapse
|
27
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
28
|
Kong Y, Liu Z, Xiao Q, Wu F, Hu L, Deng X, Chen T. Protective Effects of Engineered Lactobacillus crispatus on Intrauterine Adhesions in Mice via Delivering CXCL12. Front Immunol 2022; 13:905876. [PMID: 35734171 PMCID: PMC9207254 DOI: 10.3389/fimmu.2022.905876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial injury is the main cause of intrauterine adhesions (IUA), and there is currently no effective prevention and treatment. Immune cells play an important role in damage repair by sensing the change in the microenvironment. Exogenous CXCL12 can promote tissue regeneration and repair by recruiting immune cells, but its effect and possible mechanism on endometrial regeneration and repair have not been reported. In the present study, we constructed an engineered a Lactobacillus crispatus strain by transforming a pMG36e plasmid carrying a CXCL12 gene into the bacterium, and developed two animal models, the intrauterine adhesion mice with or without diabetes to evaluate the positive effects of this strain on the prevention of IUA after accepting intrauterine surgery in normal and diabetic mice. The results showed that vaginal application of L. crispatus-pMG36e-mCXCL12 strains significantly diminished the levels of pro-inflammatory factors interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) in serum and uterine tissues of IUA mice, and resulted in the inhibition of the inflammatory (toll-like receptor 4/nuclear factor-κb, TLR4/NF-κB) and fibrotic (transforming growth factor-β1/smads, TGF-β1/Smads) signalling pathways in the uterine tissues. The high-throughput sequencing results further indicated that treatment with L. crispatus-pMG36e-mCXCL12 strains greatly increased the abundance of Lactobacillus spp. and reduced that of the pathogenic Klebsiella spp. in IUA mice. Furthermore, among intrauterine adhesion mice with diabetes, we obtained similar results to non-diabetic mice, that is, L.crispatus-pMG36e-mCXCL12 significantly improved fibrosis and inflammation in the uterine cavity of diabetic mice, and restored the vaginal microbiota balance in diabetic mice. Therefore, we speculated that vaginal administration of L. crispatus-pMG36e-mCXCL12 strains can effectively alleviate intrauterine adhesions by restoring the microbial balance and reducing inflammation and fibrosis caused by surgery.
Collapse
Affiliation(s)
- Yao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Tingtao Chen, ; Zhaoxia Liu,
| | - Qin Xiao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijuan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- *Correspondence: Tingtao Chen, ; Zhaoxia Liu,
| |
Collapse
|
29
|
Han X, Zhang J, Zhou L, Wei J, Tu Y, Shi Q, Zhang Y, Ren J, Wang Y, Ying H, Liang G. Sclareol ameliorates hyperglycemia‐induced renal injury through inhibiting the
MAPK
/
NF‐κB
signaling pathway. Phytother Res 2022; 36:2511-2523. [DOI: 10.1002/ptr.7465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Xue Han
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research Hangzhou Medical College Hangzhou China
- School of Pharmaceutical Sciences Hangzhou Medical College Hangzhou China
| | - Jiajia Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research Hangzhou Medical College Hangzhou China
| | - Li Zhou
- College of Pharmaceutical Science Zhejiang Chinese Medical University Hangzhou China
| | - Jiajia Wei
- School of Pharmaceutical Sciences Hangzhou Medical College Hangzhou China
| | - Yu Tu
- School of Pharmaceutical Sciences Hangzhou Medical College Hangzhou China
| | - Qiaojuan Shi
- School of Pharmaceutical Sciences Hangzhou Medical College Hangzhou China
| | - Yi Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research Hangzhou Medical College Hangzhou China
| | - Juan Ren
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research Hangzhou Medical College Hangzhou China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research Hangzhou Medical College Hangzhou China
- College of Pharmaceutical Science Zhejiang Chinese Medical University Hangzhou China
| | - Guang Liang
- School of Pharmaceutical Sciences Hangzhou Medical College Hangzhou China
- Chemical Biology Research Center, School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
| |
Collapse
|
30
|
Ji Y, Liang Y, Mak JC, Ip MS. Obstructive sleep apnea, intermittent hypoxia and non-alcoholic fatty liver disease. Sleep Med 2022; 95:16-28. [DOI: 10.1016/j.sleep.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
|
31
|
Mo J, Zeng C, Li W, Song W, Xu P. Manuscript Title: A 4-miRNAs Serum Panel for Obstructive Sleep Apnea Syndrome Screening. Nat Sci Sleep 2022; 14:2055-2064. [PMID: 36394070 PMCID: PMC9656345 DOI: 10.2147/nss.s382765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea syndrome (OSAS) is a common chronic sleep disorder. OSAS is closely related to cardiovascular disease, metabolic disorders, cancer risk, and sudden death. This association has special significance in young people. Although it is known that OSAS has a great impact on physical health, it is estimated that 70-80% of patients with moderate-to-severe OSAS remain undiagnosed. Therefore, a new method for early diagnosis of the disease, the therapeutic effect of OSAS and prevention of complications to important. METHODS A total of 110 patients with moderate-to-severe OSAS diagnosed in the Sleep Disorders Diagnosis and Treatment Center of Peking University Shenzhen Hospital were selected. After excluding other diseases, 59 patients were finally selected as the OSAS group. In addition, 60 healthy people were selected as the control group. Serum RNA was then extracted. Eight RNA samples were randomly selected from the two groups for high-throughput miRNA sequencing. The 10 miRNAs with the greatest differences were selected as preselected markers from the results. Then, qRT-PCR was performed on the remaining RNA samples of the two groups to extract and verify the 10 miRNAs, and statistical analysis was performed between groups. RESULTS A diagnostic panel was constructed by a stepwise logistic regression model combined with the expression data of miRNAs in the validation phase. A four-miRNA panel was identified to better predict OSAS, and the model was calculated using the following formula: Logit (P)= 0.77-1.65 × miR-486-5p - 4.56 × miR-148a-3p + 1.79 × miR-744-5p + 1.13 × let-7d-3p. The AUC for the four-miRNA panel was 0.955 (95% CI: 0.899 to 0.985; sensitivity = 91.38%, specificity = 91.38%). Gene Ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis was included in bioinformatic analysis. CONCLUSION A 4-miRNAs panel as a diagnostic biomarker for OSAS screening is feasible.
Collapse
Affiliation(s)
- Jianming Mo
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, 518034, People's Republic of China
| | - Chao Zeng
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, 518034, People's Republic of China
| | - Wei Li
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, 518034, People's Republic of China
| | - Weidong Song
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, 518034, People's Republic of China
| | - Ping Xu
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, 518034, People's Republic of China
| |
Collapse
|
32
|
Bi C, Xiao G, Liu C, Yan J, Chen J, Si W, Zhang J, Liu Z. Molecular Immune Mechanism of Intestinal Microbiota and Their Metabolites in the Occurrence and Development of Liver Cancer. Front Cell Dev Biol 2021; 9:702414. [PMID: 34957088 PMCID: PMC8693382 DOI: 10.3389/fcell.2021.702414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal microorganisms are closely associated with immunity, metabolism, and inflammation, and play an important role in health and diseases such as inflammatory bowel disease, diabetes, cardiovascular disease, Parkinson’s disease, and cancer. Liver cancer is one of the most fatal cancers in humans. Most of liver cancers are slowly transformed from viral hepatitis, alcoholic liver disease, and non-alcoholic fatty liver disease. However, the relationship between intestinal microbiota and their metabolites, including short-chain fatty acids, bile acids, indoles, and ethanol, and liver cancer remains unclear. Here, we summarize the molecular immune mechanism of intestinal microbiota and their metabolites in the occurrence and development of liver cancer and reveal the important role of the microbiota-gut-liver axis in liver cancer. In addition, we describe how the intestinal flora can be balanced by antibiotics, probiotics, postbiotics, and fecal bacteria transplantation to improve the treatment of liver cancer. This review describes the immunomolecular mechanism of intestinal microbiota and their metabolites in the occurrence and development of hepatic cancer and provides theoretical evidence support for future clinical practice.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Geqiong Xiao
- Department of Oncology, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chunyan Liu
- Department of Clinical Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Junwei Yan
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Jiaqi Chen
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Wenzhang Si
- Department of General Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Jian Zhang
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Zheng Liu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| |
Collapse
|
33
|
Oliva ME, Ingaramo P, Vega Joubert MB, Ferreira MDR, D'Alessandro ME. Effects of Salvia hispanica L. (chia) seed on blood coagulation, endothelial dysfunction and liver fibrosis in an experimental model of Metabolic Syndrome. Food Funct 2021; 12:12407-12420. [PMID: 34797360 DOI: 10.1039/d1fo02274a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aim of this study was to analyze blood coagulation, endothelial dysfunction and liver fibrosis in an experimental model of Metabolic Syndrome (MS) induced by chronic administration of a sucrose-rich diet (SRD) and to evaluate the effects of chia seed as a therapeutic strategy. Male Wistar rats were fed with a reference diet (RD) - 6 months - or a SRD - 3 months. Then, the last group was randomly divided into two subgroups. One subgroup continued receiving the SRD for up to 6 months and the other was fed with a SRD where whole chia seed was incorporated as the source of dietary fat for the next 3 months (SRD + CHIA). Results showed that rats fed a SRD for a long period of time develop dyslipidemia, visceral adiposity, insulin resistance, and a hypercoagulable and hypofibrinolytic basal state. Hepatic VCAM-1 (main adhesion molecules involved in endothelial dysfunction) expression was significantly increased. In addition, the SRD group presented hepatic steatosis, a significant increase in interstitial collagen deposition and hydroxyproline content. Liver TGF-β1 (a key cytokine involved in fibrogenesis) levels increased and a negative correlation with PPARα protein mass levels was found. The administration of chia seed for 3 months reversed dyslipidemia, visceral adiposity and insulin resistance. Platelet count, coagulation parameters and plasma fibrinogen levels were normalized. In the liver tissue, VCAM-1 expression, steatosis, interstitial collagen deposition and the hydroxyproline content decreased. TGF-β1 expression was decreased and this was associated with an increase in the PPARα protein levels. The present study showed new aspects in the progression from liver steatosis to fibrosis in dyslipidemic insulin-resistant rats chronically fed a sucrose-rich diet. Chia seed supplementation could be used as a functional food and a potential dietary strategy to prevent or ameliorate disorders related to atherothrombotic cardiovascular events and NASH.
Collapse
Affiliation(s)
- María Eugenia Oliva
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, cc242 (3000) Santa Fe, Argentina.
| | - Paola Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Cs. Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Michelle Berenice Vega Joubert
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, cc242 (3000) Santa Fe, Argentina.
| | - María Del Rosario Ferreira
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, cc242 (3000) Santa Fe, Argentina.
| | - María Eugenia D'Alessandro
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, cc242 (3000) Santa Fe, Argentina.
| |
Collapse
|
34
|
Uchiyama T, Ota H, Ohbayashi C, Takasawa S. Effects of Intermittent Hypoxia on Cytokine Expression Involved in Insulin Resistance. Int J Mol Sci 2021; 22:12898. [PMID: 34884703 PMCID: PMC8657675 DOI: 10.3390/ijms222312898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Sleep apnea syndrome (SAS) is a prevalent disorder characterized by recurrent apnea or hypoxia episodes leading to intermittent hypoxia (IH) and arousals during sleep. Currently, the relationship between SAS and metabolic diseases is being actively analyzed, and SAS is considered to be an independent risk factor for the development and progression of insulin resistance/type 2 diabetes (T2DM). Accumulating evidence suggests that the short cycles of decreased oxygen saturation and rapid reoxygenation, a typical feature of SAS, contribute to the development of glucose intolerance and insulin resistance. In addition to IH, several pathological conditions may also contribute to insulin resistance, including sympathetic nervous system hyperactivity, oxidative stress, vascular endothelial dysfunction, and the activation of inflammatory cytokines. However, the detailed mechanism by which IH induces insulin resistance in SAS patients has not been fully revealed. We have previously reported that IH stress may exacerbate insulin resistance/T2DM, especially in hepatocytes, adipocytes, and skeletal muscle cells, by causing abnormal cytokine expression/secretion from each cell. Adipose tissues, skeletal muscle, and the liver are the main endocrine organs producing hepatokines, adipokines, and myokines, respectively. In this review, we focus on the effect of IH on hepatokine, adipokine, and myokine expression.
Collapse
Affiliation(s)
- Tomoko Uchiyama
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan;
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan;
| | - Hiroyo Ota
- Department of Respiratory Medicine, Nara Medical University, Kashihara 634-8522, Japan;
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan;
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan;
| |
Collapse
|
35
|
Zhang H, Zhou L, Zhou Y, Wang L, Jiang W, Liu L, Yue S, Zheng P, Liu H. Intermittent hypoxia aggravates non-alcoholic fatty liver disease via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway. Life Sci 2021; 285:119963. [PMID: 34536498 DOI: 10.1016/j.lfs.2021.119963] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023]
Abstract
AIMS Hepatocyte necroptosis is a critical event in the progression of non-alcoholic fatty liver disease (NAFLD). Obstructive sleep apnea hypopnea syndrome (OSAHS) and chronic intermittent hypoxia (CIH) may be linked with the pathogenesis and the severity of NAFLD. However, the potential role of necroptosis in OSAHS-associated NAFLD has not been evaluated. The present study investigated whether IH could affect NAFLD progression through promoting receptor-interacting protein kinase-3 (RIPK3)-dependent necroptosis, oxidative stress, and inflammatory response, and further elucidated the underlying molecular mechanisms. MAIN METHODS LO2 cells were treated with palmitic acid (PA) and subjected to IH, and necroptosis, oxidative stress, and inflammation were assessed. The high-fat choline-deficient (HFCD)-fed mouse model was also used to assess the effects of CIH in experimental NAFLD in vivo. KEY FINDINGS In this study, we found that RIPK3-mediated necroptosis was activated both in the PA plus IH-treated LO2 cells and liver of HFCD/CIH mice, and which could trigger oxidative stress and inflammatory response by decreasing Nrf2 and increasing p-P65. RIPK3 downregulation significantly reduced hepatocyte necroptosis, and ameliorated oxidative stress and inflammation through modulating Nrf2/NFκB pathway in vitro and vivo. Similarly, pretreatment with TBHQ, an activator of Nrf2, effectively blocked the generation of oxidative productions and inflammatory cytokines. In addition, RIPK3 inhibitor GSK-872 or TBHQ administration obviously alleviated hepatic injury, including histology, transaminase activities, and triglyceride contents in vivo. SIGNIFICANCE IH aggravates NAFLD via RIPK3-dependent necroptosis-modulated Nrf2/NFκB signaling pathway, and which should be considered as a potential therapeutic strategy for the treatment of NAFLD with OSASH.
Collapse
Affiliation(s)
- Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yuhao Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Weiling Jiang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Shuang Yue
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China.
| |
Collapse
|
36
|
Intestinal Intervention Strategy Targeting Myeloid Cells to Improve Hepatic Immunity during Hepatocarcinoma Development. Biomedicines 2021; 9:biomedicines9111633. [PMID: 34829862 PMCID: PMC8615385 DOI: 10.3390/biomedicines9111633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Innate immunity in the tumor microenvironment plays a pivotal role in hepatocarcinoma (HCC) progression. Plant seeds provide serine-type protease inhibitors (SETIs), which can have a significant influence on liver inflammation and macrophage function. To elucidate the influence of SETIs to counter pro-tumorigenic conditions, at the early stages of HCC development, it was used as an established model of diethylnitrosamine/thioacetamide-injured liver fed with a standard diet (STD) or high-fat diet (42%) (HFD). The administration of SETIs improved survival and ameliorated tumor burden via modulation of monocyte-derived macrophages as key effectors involved in diet-induced HCC development. RT-qPCR analyses of hepatic tissue evidenced a diet-independent downregulatory effect of SETIs on the transcripts of CD36, FASN, ALOX15, and SREBP1c; however, animals fed with an STD showed opposing effects for PPAR and NRLP3 levels. These effects were accompanied by a decreased production of IL-6 and IL-17 but increased that of TNF in animals receiving SETIs. Moreover, only animals fed an HFD displayed increased concentrations of the stem cell factor. Overall, SETIs administration decreased the hepatic contents of lysophosphatydilcholine, phosphatidylinositol, phosphatidylcholine, and phosphatidyl ethanolamine. Notably, animals that received SETIs exhibited increased hepatic proportions of CD68+CX3CR1+CD74+ cells and at a higher rate in those animals fed an HFD. Altogether, the data evidence that oral administration of SETIs modulates the tumor microenvironment, improving hepatic innate immune response(s) and favoring a better antitumoral environment. It represents a path forward in developing coadjutant strategies to pharmacological therapies, with either a preventive or therapeutic character, to counter physiopathological conditions at early stages of HCC development.
Collapse
|
37
|
Kotlyarov S, Bulgakov A. Lipid Metabolism Disorders in the Comorbid Course of Nonalcoholic Fatty Liver Disease and Chronic Obstructive Pulmonary Disease. Cells 2021; 10:2978. [PMID: 34831201 PMCID: PMC8616072 DOI: 10.3390/cells10112978] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently among the most common liver diseases. Unfavorable data on the epidemiology of metabolic syndrome and obesity have increased the attention of clinicians and researchers to the problem of NAFLD. The research results allow us to emphasize the systemicity and multifactoriality of the pathogenesis of liver parenchyma lesion. At the same time, many aspects of its classification, etiology, and pathogenesis remain controversial. Local and systemic metabolic disorders are also a part of the pathogenesis of chronic obstructive pulmonary disease and can influence its course. The present article analyzes the metabolic pathways mediating the links of impaired lipid metabolism in NAFLD and chronic obstructive pulmonary disease (COPD). Free fatty acids, cholesterol, and ceramides are involved in key metabolic and inflammatory pathways underlying the pathogenesis of both diseases. Moreover, inflammation and lipid metabolism demonstrate close links in the comorbid course of NAFLD and COPD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia;
| | | |
Collapse
|
38
|
Xiong Y, Wang Y, Xiong Y, Teng L. Protective effect of Salidroside on hypoxia-related liver oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways. Food Sci Nutr 2021; 9:5060-5069. [PMID: 34532015 PMCID: PMC8441355 DOI: 10.1002/fsn3.2459] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/17/2023] Open
Abstract
High-altitude hypoxia-induced oxidative stress and inflammation played an essential role in the incidence and development of liver injury. Salidroside (Sal), a phenylpropanoid glycoside extracted from the plant Rhodiola rosea, has recently demonstrated antioxidant, anti-inflammatory, and antihypoxia properties. Herein, we hypothesized that salidroside may alleviate hypoxia-induced liver injury via antioxidant and antiinflammatory-related pathways. A high-altitude hypoxia animal model was established using hypobaric chamber. Male SD rats were randomly divided into the control group, hypoxia group, control +Sal group, and hypoxia +Sal group. Salidroside treatment significantly inhibited hypoxia-induced increases of serum and hepatic pro-inflammatory cytokines release, hepatic ROS production and MDA contents; attenuated hypoxia-induced decrease of hepatic SOD, CAT, and GSH-Px activities. Furthermore, salidroside treatment also potentiated the activation of Nrf2-mediated anti-oxidant pathway, as indicated by upregulation of n-Nrf2 and its downstream HO-1 and NQO-1. In vitro study found that blocking the Nrf2 pathway using specific inhibitor ML385 significantly reversed the protective effect of salidroside on hypoxia-induced liver oxidative stress. In addition, salidroside treatment significantly inhibited hepatic pro-inflammatory cytokines release via JAK2/STAT3-mediated pathway. Taken together, our findings suggested that salidroside protected against hypoxia-induced hepatic oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Yanlei Xiong
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijingChina
- Department of PathophysiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS)School of Basic MedicinePeking Union Medical College (PUMC)BeijingChina
| | - Yueming Wang
- Department of anatomySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Yanlian Xiong
- Department of anatomySchool of Basic MedicineBinzhou Medical UniversityYantaiChina
| | - Lianghong Teng
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
39
|
lncRNA PAPPA-AS1 Induces the Development of Hypertrophic Scar by Upregulating TLR4 through Interacting with TAF15. Mediators Inflamm 2021; 2021:3170261. [PMID: 34285657 PMCID: PMC8275406 DOI: 10.1155/2021/3170261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Hypertrophic scar (HTS) is a complicated pathological process induced mainly by burns and wounds, with abnormal proliferation of fibroblasts and the transformation of fibroblasts to myofibroblasts. PAPPA-AS1, a differentially expressed long noncoding RNA (lncRNA) in the HTS tissues, attracted our interests in its potential role and mechanism in the development and process of HTS. In the present study, the regulatory effect of lncRNA PAPPA-AS1 on the Toll-like receptor 4 (TLR4) signal pathway, as well as the molecular mechanism, was investigated. Bioinformatics analysis was utilized to screen the differentially expressed lncRNAs in HTS tissues. PAPPA-AS1 was significantly upregulated in both HTS tissues and hypertrophic scar fibroblast (HTsFb) cells. The expression levels of TLR4, MyD88, TGF-β1, collagen I, collagen III, and α-SMA were greatly elevated in HTsFb cells. By knocking down PAPPA-AS1, the proliferation of HTsFb cells, TLR4, and TGF-β1 signal pathway and the expression of fibrosis markers both in HTsFb cells and HTS tissues were suppressed. It was accompanied by the alleviated pathological state in the HTS tissues, which were significantly reversed by cotransfecting with the pcDNA3.1-TLR4 vector. Positive correlation and interaction were observed between PAPPA-AS1 and TAF15 and between TAF15 and the promoter of TLR4, respectively. In conclusion, lncRNA PAPPA-AS1 might induce the development of HTS by upregulating TLR4 through interacting with TAF15.
Collapse
|
40
|
Novel proteins associated with chronic intermittent hypoxia and obstructive sleep apnea: From rat model to clinical evidence. PLoS One 2021; 16:e0253943. [PMID: 34185819 PMCID: PMC8241050 DOI: 10.1371/journal.pone.0253943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To screen for obstructive sleep apnea (OSA) biomarkers, isobaric tags for relative and absolute quantitation (iTRAQ)-labeled quantitative proteomics assay was used to identify differentially expressed proteins (DEPs) during chronic intermittent hypoxia (CIH). METHOD The iTRAQ technique was applied to compare DEPs in the serum of a CIH rat model and control group. Biological analysis of DEPs was performed using Gene Ontology and Kyoto Encyclopedia to explore related biological functions and signaling pathways. Enzyme-linked immunosorbent assay (ELISA) was performed to validate their expression in sera from patients with OSA and CIH rats. RESULTS Twenty-three DEPs (fold change ≥1.2 or ≤0.833, p<0.05) were identified, and two DEPs (unique peptides>3 and higher coverage) were further verified by ELISA in the CIH rat model and OSA subject: apolipoprotein A-IV (APOA4, p<0.05) and Tubulin alpha-1A chain (TUBA1A, p<0.05). Both groups showed significant differences in the expression levels of DEPs between the CIH and control groups and the severe OSA and non-OSA groups. APOA4 was found to be upregulated and TUBA1A downregulated in both the sera from OSA patients and CIH rats, on comparing proteomics results with clinical results. There were two pathways that involved three DEPs, the mitogen-activated protein kinase (MAPK) signaling pathway (p<0.05) and cytokine-cytokine receptor interaction (p<0.05). CONCLUSION APOA4 and TUBA1A may be potential novel biomarkers for CIH and OSA, and may play an important role in the development of OSA complications.
Collapse
|
41
|
Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA, Thangavelu L, Singh SK, Rama Raju Allam VS, Jha NK, Chellappan DK, Dua K, Gupta G. Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact 2021; 345:109568. [PMID: 34181887 DOI: 10.1016/j.cbi.2021.109568] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/28/2022]
Abstract
Nuclear factor-kappa B, involved in inflammation, host immune response, cell adhesion, growth signals, cell proliferation, cell differentiation, and apoptosis defense, is a dimeric transcription factor. Inflammation is a key component of many common respiratory disorders, including asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, and acute respiratory distress syndrome. Many basic transcription factors are found in NF-κB signaling, which is a member of the Rel protein family. Five members of this family c-REL, NF-κB2 (p100/p52), RelA (p65), NF-κB1 (p105/p50), RelB, and RelA (p65) produce 5 transcriptionally active molecules. Proinflammatory cytokines, T lymphocyte, and B lymphocyte cell mitogens, lipopolysaccharides, bacteria, viral proteins, viruses, double-stranded RNA, oxidative stress, physical exertion, various chemotherapeutics are the stimulus responsible for NF-κB activation. NF-κB act as a principal component for several common respiratory illnesses, such as asthma, lung cancer, pulmonary fibrosis, COPD as well as infectious diseases like pneumonia, tuberculosis, COVID-19. Inflammatory lung disease, especially COVID-19, can make NF-κB a key target for drug production.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | | | - Sk Batin Rahman
- Bengal School of Technology, Churchura, Hooghly, West Bengal, India
| | - Waleed Hassan Al-Malki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha University, Chennai, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India.
| |
Collapse
|
42
|
Guo H, Zhang Y, Han T, Cui X, Lu X. Chronic intermittent hypoxia aggravates skeletal muscle aging by down-regulating Klc1/grx1 expression via Wnt/β-catenin pathway. Arch Gerontol Geriatr 2021; 96:104460. [PMID: 34218156 DOI: 10.1016/j.archger.2021.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Sleep breathing disorder may affect skeletal muscle decline in the elderly, but the mechanism is not clear. Therefore, this study explores the mechanism of skeletal muscle aging in chronic intermittent hypoxia (CIH) rats. METHODS In vitro and in vivo CIH models were constructed in L6 cells and SD rats by treating chronic intermittent hypoxia. Pathological changes of skeletal muscle in vivo were measured by hematoxylin-eosin (HE) staining. Cell proliferation and apoptosis were detected by CCK-8 and Flow cytometer, respectively. The expression of KLC1/GRX1 and the proteins related to the Wnt/β-catenin pathway were measured by qRT-PCR and western blot. RESULTS CIH model was successfully established induced by chronic intermittent hypoxia with lower skeletal muscle index (SMI), increased inward migration of muscle fiber cell nucleus, and muscle cells' distance. The results showed that Wnt/β-catenin signalling was activatedin both L6 cells and CIH rats' model. KLC1 and GRX1 were significantly downregulated in the CIH model. Loss of function showed that downregulation of KLC1 promoted L6 cell and skeletal muscle aging in vitro and in vivo, respectively. CONCLUSION Our results demonstrated that CIH aggravated skeletal muscle aging by down-regulating KLC1/GRX1 expression via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hua Guo
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China; Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yunyun Zhang
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Tingting Han
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xiaochuan Cui
- Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China.
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
43
|
Fan Y, Li Y, Chu Y, Liu J, Cui L, Zhang D. Toll-Like Receptors Recognize Intestinal Microbes in Liver Cirrhosis. Front Immunol 2021; 12:608498. [PMID: 33708204 PMCID: PMC7940369 DOI: 10.3389/fimmu.2021.608498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Liver cirrhosis is one major cause of mortality in the clinic, and treatment of this disease is an arduous task. The scenario will be even getting worse with increasing alcohol consumption and obesity in the current lifestyle. To date, we have no medicines to cure cirrhosis. Although many etiologies are associated with cirrhosis, abnormal intestinal microbe flora (termed dysbiosis) is a common feature in cirrhosis regardless of the causes. Toll-like receptors (TLRs), one evolutional conserved family of pattern recognition receptors in the innate immune systems, play a central role in maintaining the homeostasis of intestinal microbiota and inducing immune responses by recognizing both commensal and pathogenic microbes. Remarkably, recent studies found that correction of intestinal flora imbalance could change the progress of liver cirrhosis. Therefore, correction of intestinal dysbiosis and targeting TLRs can provide novel and promising strategies in the treatment of liver cirrhosis. Here we summarize the recent advances in the related topics. Investigating the relationship among innate immunity TLRs, intestinal flora disorders, and liver cirrhosis and exploring the underlying regulatory mechanisms will assuredly have a bright future for both basic and clinical research.
Collapse
Affiliation(s)
- Yujing Fan
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunpeng Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjie Chu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Cui
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Texas A&M University, Houston, TX, United States
| |
Collapse
|
44
|
Zhang Y, Lu W, Chen X, Cao Y, Yang Z. A Bioinformatic Analysis of Correlations between Polymeric Immunoglobulin Receptor (PIGR) and Liver Fibrosis Progression. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5541780. [PMID: 33937393 PMCID: PMC8055406 DOI: 10.1155/2021/5541780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study is aimed at investigating the enriched functions of polymeric immunoglobulin receptor (PIGR) and its correlations with liver fibrosis stage. METHODS PIGR mRNA expression in normal liver, liver fibrosis, hepatic stellate cells (HSCs), and hepatitis virus infection samples was calculated in Gene Expression Omnibus (GEO) and Oncomine databases. Enrichment analysis of PIGR-related genes was conducted in Metascape and Gene Set Enrichment Analysis (GSEA). Logistic model and ROC curve were performed to evaluate the correlations between pIgR and liver fibrosis. RESULTS PIGR mRNA was upregulated in advanced liver fibrosis, cirrhosis compared to normal liver (all p < 0.05). PIGR mRNA was also overexpressed in activated HSCs compared to senescent HSCs, liver stem/progenitor cells, and reverted HSCs (all p < 0.05). Enrichment analysis revealed that PIGR-related genes involved in the defense response to virus and interferon (IFN) signaling. In GEO series, PIGR mRNA was also upregulated by hepatitis virus B, C, D, and E infection (all p < 0.05). After adjusting age and gender, multivariate logistic regression models revealed that high PIGR in the liver was a risk factor for liver fibrosis (OR = 82.2, p < 0.001). The area under curve (AUC), positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of PIGR for liver fibrosis stage >2 were 0.84, 0.86, 0.7, 0.61, and 0.90. CONCLUSION PIGR was correlated with liver fibrosis and might involve in hepatitis virus infection and HSC transdifferentiation.
Collapse
Affiliation(s)
- Yuan Zhang
- 1Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Wenjun Lu
- 2Department of Rheumatology and Immunology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Jiangsu 212300, China
| | - Xiaorong Chen
- 1Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yajuan Cao
- 3Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China
- 4Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zongguo Yang
- 1Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
45
|
Cui Z, Huang N, Liu L, Li X, Li G, Chen Y, Wu Q, Zhang J, Long S, Wang M, Sun F, Shi Y, Pan Q. Dynamic analysis of m6A methylation spectroscopy during progression and reversal of hepatic fibrosis. Epigenomics 2020; 12:1707-1723. [PMID: 33174480 DOI: 10.2217/epi-2019-0365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To dynamically analyze the differential m6A methylation during the progression and reversal of hepatic fibrosis. Materials & methods: We induced hepatic fibrosis in C57/BL6 mice by intraperitoneal injection of CCl4. The reversal model of hepatic fibrosis was established by stopping drug after continuous injection of CCl4. Dynamic m6A methylation was evaluated using MeRIP-Seq in the progression and reversal of hepatic fibrosis at different stages. Result: During the hepatic fibrosis, differential m6A methylation was mainly enriched in processes associated with oxidative stress and cytochrome metabolism, while differential m6A methylation was mainly enriched in processes associated with immune response and apoptosis in the hepatic fibrosis reversal. Conclusion: m6A methylation plays an important role in the progression and reversal of hepatic fibrosis.
Collapse
Affiliation(s)
- Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Nan Huang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Li Liu
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Xue Li
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Yan Chen
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Jie Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Shuping Long
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Minyi Wang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yi Shi
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200081, China
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
46
|
Zhang W, Lyu J, Xu J, Zhang P, Zhang S, Chen Y, Wang Y, Chen G. The related mechanism of complete Freund's adjuvant-induced chronic inflammation pain based on metabolomics analysis. Biomed Chromatogr 2020; 35:e5020. [PMID: 33159321 PMCID: PMC7988654 DOI: 10.1002/bmc.5020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/08/2022]
Abstract
Chronic inflammation pain is a debilitating disease, and its mechanism still remains poorly understood. This study attempted to illuminate the metabolic mechanism of chronic inflammation pain induced by complete Freund’s adjuvant (CFA) injection, especially at spinal level. The chronic inflammation pain model was established by CFA administration. Behavioral testing including mechanical allodynia and thermal hyperalgesia was performed. Meanwhile, a liquid chromatography–mass spectrometry‐based metabolomics approach was applied to analyze potential metabolic biomarkers. The orthogonal partial least squares discrimination analysis mode was employed for determining metabolic changes, and a western blot was performed to detect the protein expression change. The results showed that 27 metabolites showed obviously abnormal expression and seven metabolic pathways were significantly enriched, comprising aminoacyl‐tRNA biosynthesis, arginine and proline metabolism, histidine metabolism, purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glutathione metabolism, and phenylalanine metabolism. Meanwhile, the results showed that the expression of arginase I and nitric oxide levels were elevated in the CFA group compared with the control group, while the argininosuccinate synthetase and argininosuccinatelyase proteins were not significantly different between the groups. These findings demonstrate that metabolic changes of the spinal cord may be implicated in neurotransmitter release and pain conductivity following CFA administration.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jie Lyu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Juxiang Xu
- Department of Radiotherapy Nursing Unit, Sir Run Run Shaw Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yongjie Wang
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
47
|
Gao S, Chen T, Li L, Liu X, Liu Y, Zhao J, Lu Q, Zeng Z, Xu Q, Huang D, Tu K. Hypoxia-Inducible Ubiquitin Specific Peptidase 13 Contributes to Tumor Growth and Metastasis via Enhancing the Toll-Like Receptor 4/Myeloid Differentiation Primary Response Gene 88/Nuclear Factor-κB Pathway in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:587389. [PMID: 33195243 PMCID: PMC7604352 DOI: 10.3389/fcell.2020.587389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. The activation of the toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-κB (TLR4/MyD88/NF-κB) pathway contributes to the development and progression of HCC. The ubiquitin-proteasome system regulates TLR4 expression. However, whether ubiquitin specific peptidase 13 (USP13) stabilizes TLR4 and facilitates HCC progression remains unclear. Here, quantitative real-time PCR (qRT-PCR) and immunohistochemistry analysis revealed that USP13 expression in HCC tissues was higher than in non-tumor liver tissues. Moreover, the elevated expression of USP13 was detected in HCC cells (SK-HEP-1, HepG2, Huh7, and Hep3B) compared to LO2 cells. Interestingly, the positive staining of USP13 was closely correlated with tumor size ≥ 5 cm and advanced tumor stage and conferred to significantly lower survival of HCC patients. Next, USP13 knockdown prominently reduced the proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion of Hep3B and Huh7 cells, while USP13 overexpression enhanced these biological behaviors of HepG2 and LO2 cells. The silencing of USP13 significantly restrained the growth and lung metastasis of HCC cells in vivo. Mechanistically, the USP13 depletion markedly inhibited the TLR4/MyD88/NF-κB pathway in HCC cells. USP13 interacted with TLR4 and inhibited the ubiquitin-mediated degradation of TLR4. Significantly, TLR4 re-expression remarkably reversed the effects of USP13 knockdown on HCC cells. USP13 expression was markedly upregulated in HCC cells under hypoxia conditions. Notably, USP13 knockdown repressed hypoxia-induced activation of the TLR4/MyD88/NF-κB pathway in HCC cells. In conclusion, our study uncovered that hypoxia-induced USP13 facilitated HCC progression via enhancing TLR4 deubiquitination and subsequently activating the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Shan Gao
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lijie Li
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Xin Liu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Qiliang Lu
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Zhi Zeng
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
48
|
Gao Y, Xi B, Li J, Li Z, Xu J, Zhong M, Xu Q, Lian Y, Wei R, Wang L, Cao H, Jin L, Zhang K, Dong J. Scoparone alleviates hepatic fibrosis by inhibiting the TLR-4/NF-κB pathway. J Cell Physiol 2020; 236:3044-3058. [PMID: 33090488 DOI: 10.1002/jcp.30083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the role of scoparone (SCO) in hepatic fibrosis. For this, we conducted in vivo and in vitro experiments. In vivo rats that were divided into six groups, control, carbon tetrachloride, and colchicine, as well as SCO groups, SCO50, SCO100, and SCO200 treated with 50, 100, and 200 mg/kg SCO doses, respectively. Furthermore, SCO was shown to inhibit Toll-like receptor-4 (TLR-4)/nuclear factor kappa-B (NF-κB; TLR-4/NF-κB) signals by inhibiting TLR-4, which in turn downregulates the expression of MyD88, promotes NF-κB inhibitor-α, NF-κB inhibitor-β, and NF-κB inhibitor-ε activation, while inhibiting NF-κB inhibitor-ζ. Subsequently, the decrease of phosphorylation of nuclear factor-κB levels leads to the downregulation of the downstream inflammatory factors' tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 beta, thus weakening hepatic fibrosis. Notably, the SCO200 treated group presented the most significant improvement. Hence, we conclude that SCO alleviates hepatic fibrosis by inhibiting TLR-4/NF-κB signals.
Collapse
Affiliation(s)
- Ya Gao
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Boting Xi
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Jiani Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Zimeng Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Jie Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Mingli Zhong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Qiongmei Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Yuanyu Lian
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Riming Wei
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Liping Wang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Houkang Cao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Kefeng Zhang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jianghui Dong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
49
|
Kim SW, Kim IK, Yeo CD, Kang HH, Ban WH, Kwon HY, Lee SH. Effects of chronic intermittent hypoxia caused by obstructive sleep apnea on lipopolysaccharide-induced acute lung injury. Exp Lung Res 2020; 46:341-351. [PMID: 32791028 DOI: 10.1080/01902148.2020.1804646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM OF THE STUDY Obstructive sleep apnea (OSA) is a common disease associated with significant morbidity and mortality. Sleep quality is an important issue; some patients with acute lung injury (ALI) have underlying OSA. However, the potential influences of OSA on ALI have not been reported until now. In this study, we evaluated the impact of preceding intermittent hypoxia (IH), a typical characteristic of OSA, on lipopolysaccharide (LPS)-induced ALI in a mouse model. METHODS C57BL/6J mice were randomly divided into four groups: room air-control (RA-CTL), intermittent hypoxia-control (IH-CTL), room air-lipopolysaccharide (RA-LPS), and intermittent hypoxia-lipopolysaccharide (IH-LPS) groups. The mice were exposed to RA or IH (20 cycles/h, FiO2 nadir 7 ± 0.5%, 8 h/day) for 30 days. The LPS groups received intratracheal LPS on day 28. RESULTS The IH-LPS group tended to exhibit more severe inflammation, fibrosis, and oxidative stress compared to the other groups, including the RA-LPS group. Total cell, neutrophil, and eosinophil counts in bronchoalveolar lavage fluid increased significantly in the IH-LPS group compared to the RA-LPS group. Compared to the RA-LPS group, the hydroxyproline level increased significantly in the IH-LPS group. In addition, the IH-LPS group exhibited significantly more terminal deoxynucleotidyl transferase dUTP nick end labeled-positive cells compared to the RA-LPS group. CONCLUSIONS We found that prior IH may negatively impact LPS-induced ALI in a mouse model. This result suggests that ALI in patients with OSA may be more of a concern. Further research into the mechanisms underlying the effects of IH on ALI is needed.
Collapse
Affiliation(s)
- Sei Won Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Kyoung Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Hui Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Ho Ban
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Young Kwon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
50
|
Rey E, Del Pozo-Maroto E, Marañón P, Beeler B, García-García Y, Landete P, Isaza SC, Farré R, García-Monzón C, Almendros I, González-Rodríguez Á. Intrahepatic Expression of Fatty Acid Translocase CD36 Is Increased in Obstructive Sleep Apnea. Front Med (Lausanne) 2020; 7:450. [PMID: 32850919 PMCID: PMC7431763 DOI: 10.3389/fmed.2020.00450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Nocturnal intermittent hypoxia (IH) featuring obstructive sleep apnea (OSA) dysregulates hepatic lipid metabolism and might contribute to the development of non-alcoholic fatty liver disease (NAFLD) observed in OSA patients. However, further research is required to better understanding the molecular mechanisms underlying IH-induced hepatic lipid accumulation. Therefore, the aim of the present study was to determine the effects of OSA on hepatic CD36 expression and the impact of IH by using a mouse model of OSA. Histological analysis, lipid content and CD36 expression were assessed in livers from subjects who underwent liver biopsy and polygraphic study during sleep, and in livers from mice submitted to chronic IH mimicking OSA. Among those who presented OSA features, NAFLD were significantly more frequent than in control subjects with normal respiratory function (77.8 vs. 36.4%, respectively), and showed more severe liver disease. Interestingly, CD36 expression was significantly overexpressed within the liver of OSA patients with respect to controls, and a significant positive correlation was observed between hepatic levels of CD36 and the values of two well-known respiratory parameters that characterized OSA: apnea/hypopnea index (AHI) and oxygen desaturation index (ODI). Moreover, hepatic lipid accumulation as well as induction of hepatic lipogenic genes, and CD36 mRNA and protein expression were significantly higher in livers from mice exposed to IH conditions for 8 weeks than in their corresponding littermates. This study provides novel evidence that IH featuring OSA could contribute to NAFLD setup partly by upregulating hepatic CD36 expression.
Collapse
Affiliation(s)
- Esther Rey
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, CIBERehd, Madrid, Spain
| | - Elvira Del Pozo-Maroto
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, CIBERehd, Madrid, Spain
| | - Patricia Marañón
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, CIBERehd, Madrid, Spain
| | - Brittany Beeler
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, CIBERehd, Madrid, Spain
| | - Yaiza García-García
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, CIBERehd, Madrid, Spain
| | - Pedro Landete
- Respiratory Medicine Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa Hospital Universitario de La Princesa, Madrid, Spain
| | - Stephania C Isaza
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, CIBERehd, Madrid, Spain
| | - Ramón Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, CIBERES, IDIBAPS, Barcelona, Spain
| | - Carmelo García-Monzón
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, CIBERehd, Madrid, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, CIBERES, IDIBAPS, Barcelona, Spain
| | - Águeda González-Rodríguez
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, CIBERehd, Madrid, Spain
| |
Collapse
|