1
|
Viegas JSR, Araujo JS, Leite MN, Praça FG, Ciampo JOD, Espreáfico EM, Frade MAC, Bentley MVLB. Bcl-2 knockdown by multifunctional lipid nanoparticle and its influence in apoptosis pathway regarding cutaneous melanoma: in vitro and ex vivo studies. Drug Deliv Transl Res 2025; 15:753-768. [PMID: 39222192 DOI: 10.1007/s13346-024-01692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Multifunctional therapies have emerged as innovative strategies in cancer treatment. In this research article, we proposed a nanostructured lipid carrier (NLC) designed for the topical treatment of cutaneous melanoma, which simultaneously delivers 5-FU and Bcl-2 siRNA. The characterized nanoparticles exhibited a diameter of 259 ± 9 nm and a polydispersion index of 0.2, indicating a uniform size distribution. The NLCs were primarily localized in the epidermis, effectively minimizing the systemic release of 5-FU across skin layers. The ex vivo skin model revealed the formation of a protective lipid film, decreasing the desquamation process of the stratum corneum which can be associated to an effect of increasing permeation. In vitro assays demonstrated that A375 melanoma cells exhibited a higher sensitivity to the treatment compared to non-cancerous cells, reflecting the expected difference in their metabolic rates. The uptake of NLC by A375 cells reached approximately 90% within 4 h. The efficacy of Bcl-2 knockdown was thoroughly assessed using ELISA, Western blot, and qRT-PCR analyses, revealing a significant knockdown and synergistic action of the NLC formulation containing 5-FU and Bcl-2 siRNA (at low concentration --100 pM). Notably, the silencing of Bcl-2 mRNA also impacted other members of the Bcl-2 protein family, including Mcl-1, Bcl-xl, BAX, and BAK. The observed modulation of these proteins strongly indicated the activation of the apoptosis pathway, suggesting a successful inhibition of melanoma growth and prevention of its in vitro spread.
Collapse
Affiliation(s)
- Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jackeline Souza Araujo
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcel Nani Leite
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jose Orestes Del Ciampo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Enilza Maria Espreáfico
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marco Andrey Cipriani Frade
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
2
|
Zhao Y, Zhang J, Zhang G, Huang H, Tan WS, Cai H. Injectable Nanocomposite Hydrogel with Synergistic Biofilm Eradication and Enhanced Re-epithelialization for Accelerated Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69086-69102. [PMID: 39635909 DOI: 10.1021/acsami.4c17855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Diabetic wounds remain a critical clinical challenge due to their harsh microenvironment, which impairs cellular function, hinders re-epithelialization and tissue remodeling, and slows healing. Injectable nanocomposite hydrogel dressings offer a promising strategy for diabetic wound repair. In this study, we developed an injectable nanocomposite hydrogel dressing (HDL@W379) using LAP@W379 nanoparticles and an injectable hyaluronic acid-based hydrogel (HA-ADH-ODEX). This dressing provided a sustained, pH-responsive release of W379 antimicrobial peptides, effectively regulating the wound microenvironment to enhance healing. The HDL@W379 hydrogel featured multifunctional properties, including mechanical stability, injectability, self-healing, biocompatibility, and tissue adhesion. In vitro, the HDL@W379 hydrogel achieved synergistic biofilm elimination and subsequent activation of basal cell migration and endothelial cell tube formation. Pathway analysis indicated that the HDL@W379 hydrogel enhances basal cell migration through MEK/ERK pathway activation. In methicillin-resistant Staphylococcus aureus (MRSA)-infected diabetic wounds, the HDL@W379 hydrogel accelerated wound healing by inhibiting bacterial proliferation and promoting re-epithelialization, regenerating the granulation tissue, enhancing collagen deposition, and facilitating angiogenesis. Overall, this strategy of biofilm elimination and basal cell activation to continuously regulate the diabetic wound microenvironment offers an innovative approach to treating chronic wounds.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jingwei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Guofeng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Zhang Y, Chen Y, Shao P, Luo Y, Liu X, Xu T. Baicalin derivative dynamically cross-linked natural polysaccharide hydrogel for diabetic wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 497:154803. [DOI: 10.1016/j.cej.2024.154803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
de Oliveira IC, Zanco M, Lopes J, Sambo MP, de Andrade TAM, Dos Santos GMT, Felonato M, Santamaria-Jr M. Analysis of inflammation and bone remodeling of atmospheric plasma therapy in experimental periodontitis. J Periodontal Res 2024; 59:738-748. [PMID: 38566282 DOI: 10.1111/jre.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND OBJECTIVE The biological effects of atmospheric plasma (cold plasma) show its applicability for controlling the etiological factors that involve tissue repair. Thus, the study evaluated the effect of atmospheric plasma therapy in the control of tissue inflammation and bone remodeling in experimental periodontitis. METHODS Fifty-six rats were subjected to ligation in the cervical region of the first maxillary molars (8 weeks). The animals were divided into two groups (n = 28): periodontitis without treatment group (P group), and periodontitis with atmospheric plasma treatment group (P + AP group). Tissue samples were collected at 2 and 4 weeks after treatment to analyze the inflammation and bone remodeling by biochemical, histomorphometric, and immunohistochemical analyses. RESULTS Inflammatory infiltration in the gingival and periodontal ligament was lower in the P + AP group than in the P group (p < .05). The MPO and NAG levels were higher in the P + AP group compared to P group (p < .05). At 4 weeks, the TNF-α level was lower and the IL-10 level was higher in the P + AP group compared to P group (p < .05). In the P + AP group, the IL-1β level increased in the second week and decreased in the fourth week (p < .05), the number of blood vessels was high in the gingival and periodontal ligament in the second and fourth week (p < .05); and the number of fibroblasts in the gingival tissue was low in the fourth week, and higher in the periodontal tissue in both period (p < .05). Regarding bone remodeling, the RANK and RANKL levels decreased in the P + AP group (p < .05). The OPG level did not differ between the P and P + AP groups (p > .05), but decreased from the second to the fourth experimental week in P + AP group (p < .05). CONCLUSIONS The treatment of experimental periodontitis with atmospheric plasma for 4 weeks modulated the inflammatory response to favor the repair process and decreased the bone resorption biomarkers, indicating a better control of bone remodeling in periodontal disease.
Collapse
Affiliation(s)
- Ildamara Canoa de Oliveira
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, São Paulo, Brazil
| | - Mariana Zanco
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, São Paulo, Brazil
| | - Juliana Lopes
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, São Paulo, Brazil
| | - Milena Paloma Sambo
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, São Paulo, Brazil
| | - Thiago Antonio Moretti de Andrade
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, São Paulo, Brazil
- University of Victoria - Uvic, Victoria, British Columbia, Canada
| | | | - Maira Felonato
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, São Paulo, Brazil
| | - Milton Santamaria-Jr
- Graduate Program in Orthodontics and Biomedical Sciences, University Center of Hermínio Ometto Foundation - FHO, São Paulo, Brazil
- Department of Social and Pediatric Dentistry, Institute of Science and Technology, São Paulo State University - Unesp, São José dos Campos, Brazil
| |
Collapse
|
5
|
Munhoz LLDS, Guillens LC, Alves BC, do Nascimento MGOF, Meneguin AB, Carbinatto FM, Arruda G, Barud HDS, de Aro A, Casagrande LDR, Silveira PCL, Andrade TAM, dos Santos GMT, Caetano GF. Bacterial nanocellulose/calcium alginate hydrogel for the treatment of burns. Acta Cir Bras 2024; 39:e393324. [PMID: 39016358 PMCID: PMC11249442 DOI: 10.1590/acb393324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 07/18/2024] Open
Abstract
PURPOSE Bacterial cellulose (BC) has shown high capacity for the treatment of wounds and burns, providing a moisty environment. Calcium alginate can be associated with BC to create gels that aid in wound debridement and contribute to appropriate wound healing. This study is aimed at characterizing and evaluating the use of bacterial cellulose/alginate gel in skin burns in rats. METHODS Cellulose and cellulose/alginate gels were compared regarding the capacity of liquid absorption, moisture, viscosity, and potential cytotoxicity. The 2nd degree burns were produced using an aluminum metal plate (2.0cm) at 120ºC for 20s on the back of rats. The animals were divided into non-treated, CMC(Carboxymethylcellulose), Cellulose(CMC with bacterial cellulose), and Cellulose/alginate(CMC with bacterial cellulose and alginate). The animals received topical treatment 3 times/week. Biochemical (MPO, NAG and oxidative stress), histomorphometry and immunohistochemical assays (IL-1β IL-10 and VEGF) were conducted on the 14th, 21st, 28th, and 35th days. RESULTS Cellulose/Alginate gel showed higher absorption capacity and viscosity compared to Cellulose gel, with no cytotoxic effects. Cellulose/alginate presented lower MPO values, a higher percentage of IL-10, with greater and balanced oxidative stress profile. CONCLUSIONS The use of cellulose/alginate gel reduced neutrophils and macrophage activation and showed greater anti-inflammatory response, which can contribute to healing chronic wounds and burns.
Collapse
Affiliation(s)
| | - Luiz Carlos Guillens
- Centro Universitário Herminio Ometto de Araras – Graduate Program in Biomedical Sciences, Araras (SP), Brazil
| | - Beatriz Candido Alves
- Centro Universitário Herminio Ometto de Araras – Graduate Program in Biomedical Sciences, Araras (SP), Brazil
| | | | | | - Fernanda Mansano Carbinatto
- Universidade de Araraquara – BioPolymer and Biomaterial Laboratory, Araraquara (SP), Brazil
- Universidade de São Paulo – Institute of Physics, São Carlos (SP), Brasil
| | - Gabriela Arruda
- Universidade de Araraquara – BioPolymer and Biomaterial Laboratory, Araraquara (SP), Brazil
| | - Hernane da Silva Barud
- Universidade de Araraquara – BioPolymer and Biomaterial Laboratory, Araraquara (SP), Brazil
- Universidade de São Paulo – Institute of Physics, São Carlos (SP), Brasil
| | - Andrea de Aro
- Centro Universitário Herminio Ometto de Araras – Graduate Program in Biomedical Sciences, Araras (SP), Brazil
| | - Laura de Roch Casagrande
- Universidade do Extremo Sul Catarinense – Graduate Program in Science of Health – Criciúma (SC), Brazil
| | - Paulo Cesar Lock Silveira
- Universidade do Extremo Sul Catarinense – Graduate Program in Science of Health – Criciúma (SC), Brazil
| | | | | | - Guilherme Ferreira Caetano
- Centro Universitário Herminio Ometto de Araras – Graduate Program in Biomedical Sciences, Araras (SP), Brazil
- Centro Universitário Herminio Ometto de Araras – Graduate Program of Orthodontics, Araras (SP), Brazil
- Universidade de São Paulo – Ribeirão Preto Medical School, Ribeirão Preto (SP), Brazil
| |
Collapse
|
6
|
Sun L, Yin H, Li YT, Qiao YX, Wang J, He QY, Xiao ZW, Kuai L, Xiang YW. Shengjihuayu formula ameliorates the oxidative injury in human keratinocytes via blocking JNK/c-Jun/MMPs signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117938. [PMID: 38395178 DOI: 10.1016/j.jep.2024.117938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The reactive oxygen species (ROS) surge in the chronic wound tissue of diabetic ulcers (DUs) aggravates the inflammatory response. The oxidative stress state during inflammation will exacerbate inflammation and cause tissue damage, resulting in prolonged wound healing. Shengjihuayu Formula (SJHYF) is a renowned Chinese medicine prescription for treating chronic wounds in diabetic ulcers. Growing clinical evidence has demonstrated that SJHYF exhibits superior therapeutic efficacy and has a favorable safety profile. However, the underlying mechanisms by which SJHYF ameliorates oxidative damage under pathological conditions of DUs remain unclear. OBJECTIVE To investigate the cytoprotective properties of SJHYF on hydrogen peroxide (H2O2)-induced cell damage in human HaCaT keratinocytes and to explore its potential targets and molecular pathways in treating DUs using RNA-seq. METHODS HaCaT cells were incubated with H2O2 for 24 h to construct an oxidative stress cell model. Cell viability and proliferation were measured using the MTT and EdU assays, respectively. Cell migration was assessed using the scratch assay, and the fluorescence intensity of ROS was measured using the DCFH-DA probe. The chemical components of SJHYF were analyzed by UPLC-Q-TOF/MS, while the therapeutic effects of SJHYF on H2O2-induced HaCaT cells were analyzed using RNA-Seq. The potential target genes were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). At the same time, the pathway phenotype expression of SJHYF on the protection of H2O2-induced HaCaT cells was explored using Western Blot. RESULTS The application of SJHY at a concentration of 0.25 mg/mL promoted cell proliferation, cell migration, and reduced ROS production. In addition, SJHYF was detected to have a total of 93 active compounds, including key components such as Galloyl-beta-D-glucose, Danshensu, Procyanidin B2, Catechin, and Alkannin. The RNA-seq analysis identified several core targets namely KRT17, TGM1, JUNB, PRDX5, TXNIP, PRDX1, HSP90AA1, HSP90AB1, HSPA8, and TNF-α. Western blot revealed the presence of the JNK/c-Jun/MMPs pathway and its related transcription factors. CONCLUSION SJHYF displays significant protective effects on H2O2-induced oxidative cell damage in HaCaT cells via blocking the JNK/c-Jun/MMPs pathway.
Collapse
Affiliation(s)
- Lu Sun
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Yin
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Ting Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Xiao Qiao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing-Yi He
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Wei Xiao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Wei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China.
| |
Collapse
|
7
|
Ming GX, Liu JY, Wu YH, Li LY, Ma XY, Liu P, Pan YP, He XN, Li YH. Strictosamide promotes wound healing through activation of the PI3K/AKT pathway. Heliyon 2024; 10:e30169. [PMID: 38699022 PMCID: PMC11064450 DOI: 10.1016/j.heliyon.2024.e30169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Nauclea officinalis, as a Chinese medicine in Hainan province, had the effect of treating lower limb ulcers, burn infections. In this paper, we studied the effect of Strictosamide (STR), the main bioactive compound in Nauclea officinals, on wound healing and explored its internal mechanism. Firstly, the wound healing potential of STR was evaluated in a rat model, demonstrating its ability to expedite wound healing, mitigate inflammatory infiltration, and enhance collagen deposition. Additionally, immunofluorescence analysis revealed that STR up-regulated the expression of CD31 and PCNA. Subsequently, target prediction, protein-protein interaction (PPI), gene ontology (GO), and pathway enrichment analyses were used to obtain potential targets, specific biological processes, and molecular mechanisms of STR for the potential treatment of wound healing. Furthermore, molecular docking was conducted to predict the binding affinity between STR and its associated targets. Additionally, in vivo and in vitro experiments confirmed that STR could increase the expression of P-PI3K, P-AKT and P-mTOR by activating the PI3K/AKT signaling pathway. In summary, this study provided a new explanation for the mechanism by which STR promotes wound healing through network pharmacology, suggesting that STR may be a new candidate for treating wound.
Collapse
Affiliation(s)
- Gu-xu Ming
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Jun-yan Liu
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Yu-huang Wu
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Li-yan Li
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Xin-yue Ma
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Pei Liu
- The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yi-peng Pan
- The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiao-ning He
- The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yong-hui Li
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
- The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Lee SH, Kim SH, Kim KB, Kim HS, Lee YK. Factors Influencing Wound Healing in Diabetic Foot Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:723. [PMID: 38792906 PMCID: PMC11122953 DOI: 10.3390/medicina60050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Background and objectives: Diabetic foot stands out as one of the most consequential and devastating complications of diabetes. Many factors, including VIPS (Vascular management, Infection management, Pressure relief, and Source of healing), influence the prognosis and treatment of diabetic foot patients. There are many studies on VIPS, but relatively few studies on "sources of healing". Nutrients that affect wound healing are known, but objective data in diabetic foot patients are insufficient. We hypothesized that "sources of healing" would have many effects on wound healing. The purpose of this study is to know the affecting factors related to the source of healing for diabetic foot patients. Materials and Methods: A retrospective review identified 46 consecutive patients who were admitted for diabetic foot management from July 2019 to April 2021 at our department. Several laboratory tests were performed for influencing factor evaluation. We checked serum levels of total protein, albumin, vitamin B, iron, zinc, magnesium, copper, Hb, HbA1c, HDL cholesterol, and LDL cholesterol. These values of diabetic foot patients were compared with normal values. Patients were divided into two groups based on wound healing rate, age, length of hospital stay, and sex, and the test values between the groups were compared. Results: Levels of albumin (37%) and Hb (89%) were low in the diabetic foot patients. As for trace elements, levels of iron (97%) and zinc (95%) were low in the patients, but levels of magnesium and copper were usually normal or high. There were no differences in demographic characteristics based on wound healing rate. However, when compared to normal adult values, diabetic foot patients in our data exhibited significantly lower levels of hemoglobin, total protein, albumin, iron, zinc, copper, and HDL cholesterol. When compared based on age and length of hospital stay, hemoglobin levels were significantly lower in both the older age group and the group with longer hospital stays. Conclusions: Serum levels of albumin, Hb, iron, and zinc were very low in most diabetic foot patients. These low values may have a negative relationship with wound healing. Nutrient replacements are necessary for wound healing in diabetic foot patients.
Collapse
Affiliation(s)
- Sang Heon Lee
- Department of Orthopaedic Surgery, Soonchunhyang University Hospital Bucheon, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea; (S.H.L.); (S.H.K.); (H.S.K.)
| | - Sung Hwan Kim
- Department of Orthopaedic Surgery, Soonchunhyang University Hospital Bucheon, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea; (S.H.L.); (S.H.K.); (H.S.K.)
| | - Kyung Bum Kim
- Department of Orthopaedic Surgery, NEW Korea Hospital, 283, Gimpohangang 3-ro, Gimpo-si 10086, Gyeonggi-do, Republic of Korea;
| | - Ho Sung Kim
- Department of Orthopaedic Surgery, Soonchunhyang University Hospital Bucheon, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea; (S.H.L.); (S.H.K.); (H.S.K.)
| | - Young Koo Lee
- Department of Orthopaedic Surgery, Soonchunhyang University Hospital Bucheon, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea; (S.H.L.); (S.H.K.); (H.S.K.)
| |
Collapse
|
9
|
Nusantoro AP, Kuntaman K, Perdanakusuma DS. Management of wounds in diabetes by administering allicin and quercetin in emulsion form as wound medicine in diabetic rat models. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2023-0177. [PMID: 38308387 DOI: 10.1515/jcim-2023-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Wounds in diabetes is a complex problem that requires effective treatment at a high cost. Adjuvant therapy from natural bioactive elements can be an alternative to overcome problems in diabetic wound healing disorders. Allicin and quercetin are natural bioactive substances contained in several fruit or vegetable plants that have various pharmacological effects. The purpose of this study was to determine the effect of allicin and quercetin in emulsion form as wound medicine in helping the wound healing process. Diabetic wistar rats with wounds on their backs measuring 1 × 1 cm were divided into four treatment groups which were given wound medicine once a day for seven days according to their distribution. The wound healing process was evaluated on the third and seventh day. Data were observed and analyzed using appropriate statistical tools. Measurement of wound healing indicators was carried out by examining wound contraction and histopathological examination showing that the treatment group given the allicin and quercetin formula experienced an improvement compared to the treatment group without allicin and quercetin. Allicin and quercetin increase the percentage of wound contraction, increase the density of blood vessels and the epithelialization process in the wound so that the wound healing process becomes faster. In conclusion, allicin and quercetin can be effective adjuvant therapies in helping wound healing in diabetes. Wound medication in the form of an emulsion is an effective choice, because it can maintain the stability of the allicin and quercetin content and can make the wound environment moist.
Collapse
Affiliation(s)
- Agik Priyo Nusantoro
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Nursing, Faculty of Health Science, Universitas Kusuma Husada, Surakarta, Indonesia
| | - Kuntaman Kuntaman
- Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - David Sontani Perdanakusuma
- Department of Reconstructive and Aesthetic Plastic Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
10
|
Liu M, Wang X, Sun B, Wang H, Mo X, El-Newehy M, Abdulhameed MM, Yao H, Liang C, Wu J. Electrospun membranes chelated by metal magnesium ions enhance pro-angiogenic activity and promote diabetic wound healing. Int J Biol Macromol 2024; 259:129283. [PMID: 38199538 DOI: 10.1016/j.ijbiomac.2024.129283] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Diabetic wounds, resulting from skin atrophy due to localized ischemia and hypoxia in diabetic patients, lead to chronic pathological inflammation and delayed healing. Using electrospinning technology, we developed magnesium ion-chelated nanofiber membranes to explore their efficacy in antibacterial, anti-inflammatory, and angiogenic applications for wound healing. These membranes are flexible and elastic, resembling native skin tissue, and possess good hydrophilicity for comfortable wound bed contact. The mechanical properties of nanofiber membranes are enhanced by the chelation of magnesium ions (Mg2+), which also facilitates a long-term slow release of Mg2+. The cytocompatibility of the nanofibrous membranes is influenced by their Mg2+ content: lower levels encourage the proliferation of fibroblasts, endothelial cells, and macrophages, while higher levels are inhibitory. In a diabetic rat model, magnesium ion-chelated nanofibrous membranes effectively reduced early wound inflammation and notably accelerated wound healing. This study highlights the potential of magnesium ion-chelated nanofiber membranes in treating diabetic wounds.
Collapse
Affiliation(s)
- Mingyue Liu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiaoyi Wang
- Core Facility Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Hongsheng Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Haochen Yao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China.
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
11
|
Satora M, Żak K, Frankowska K, Misiek M, Tarkowski R, Bobiński M. Perioperative Factors Affecting the Healing of Rectovaginal Fistula. J Clin Med 2023; 12:6421. [PMID: 37835064 PMCID: PMC10573987 DOI: 10.3390/jcm12196421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Rectovaginal fistula is rare, but a severe complication in gynecology, which despite the effort of clinicians is still not treated successfully in many cases. According to statistics, the healing rates of surgery in patients with RVF range from 20 to 100%. The treatment effectiveness depends on the etiology of fistula, the age of the patients, the presence of comorbidities, the type of surgery and many other factors. Considering the low efficiency of treatment and the high risk of recurrence, the question of possible methods to improve the results occurs. In our review, we analyzed both modifiable and non-modifiable factors which may influence the treatment, healing rate and future fate of the patients. Taking into account all analyzed risk factors, including age, comorbidities, smoking status, microbiology, medications, stoma and stool features, we are aware that rectovaginal fistula's treatment must be individualized and holistic. In cases of poorly healing RVF, the drainage of feces, the use of antibiotic prophylaxis or the implementation of estrogen therapy may be useful. Moreover, microbiome research in women with RVF and towards estrogen therapy should be performed in order to create treatment algorithms in women with fistulae. Those interventions, in our opinion, may significantly improve the outcome of the patients.
Collapse
Affiliation(s)
- Małgorzata Satora
- I Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, 20-081 Lublin, Poland; (M.S.); (K.Ż.); (K.F.)
| | - Klaudia Żak
- I Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, 20-081 Lublin, Poland; (M.S.); (K.Ż.); (K.F.)
| | - Karolina Frankowska
- I Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, 20-081 Lublin, Poland; (M.S.); (K.Ż.); (K.F.)
| | - Marcin Misiek
- Department of Gynecology, Holy Cross Cancer Center, 25-734 Kielce, Poland;
| | - Rafał Tarkowski
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Marcin Bobiński
- I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
12
|
Sharda D, Choudhury D. Insulin-cobalt core-shell nanoparticles for receptor-targeted bioimaging and diabetic wound healing. RSC Adv 2023; 13:20321-20335. [PMID: 37425626 PMCID: PMC10323873 DOI: 10.1039/d3ra01473h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023] Open
Abstract
Diabetic wounds represent a major issue in medical care and need advanced therapeutic and tissue imaging systems for better management. The utilization of nano-formulations involving proteins like insulin and metal ions plays significant roles in controlling wound outcomes by decreasing inflammation or reducing microbial load. This work reports the easy one-pot synthesis of extremely stable, biocompatible, and highly fluorescent insulin-cobalt core-shell nanoparticles (ICoNPs) with enhanced quantum yield for their highly specific receptor-targeted bioimaging and normal and diabetic wound healing in vitro (HEKa cell line). The particles were characterized using physicochemical properties, biocompatibility, and wound healing applications. FTIR bands at 670.35 cm-1, 849.79, and 973.73 indicating the Co-O bending, CoO-OH bond, and Co-OH bending, respectively, confirm the protein-metal interactions, which is further supported by the Raman spectra. In silico studies indicate the presence of cobalt binding sites on the insulin chain B at 8 GLY, 9 SER, and 10 HIS positions. The particles exhibit a magnificent loading efficiency of 89.48 ± 0.049% and excellent release properties (86.54 ± 2.15% within 24 h). Further, based on fluorescent properties, the recovery process can be monitored under an appropriate setup, and the binding of ICoNPs to insulin receptors was confirmed by bioimaging. This work helps synthesize effective therapeutics with numerous wound-healing promoting and monitoring applications.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India +91-8196949843
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India +91-8196949843
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology Patiala Punjab-147004 India
| |
Collapse
|
13
|
Munhoz LLS, Alves MTO, Alves BC, Nascimento MGFS, Sábio RM, Manieri KF, Barud HS, Esquisatto MAM, Aro AA, de Roch Casagrande L, Silveira PCL, Santos GMT, Andrade TAM, Caetano GF. Bacterial cellulose membrane incorporated with silver nanoparticles for wound healing in animal model. Biochem Biophys Res Commun 2023; 654:47-54. [PMID: 36889034 DOI: 10.1016/j.bbrc.2023.02.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
The bacterial cellulose membrane (CM) is a promising biomaterial due to its easy applicability and moist environment. Moreover, nanoscale silver compounds (AgNO3) are synthesized and incorporated into CMs to provide these biomaterials with antimicrobial activity for wound healing. This study aimed to evaluate the cell viability of CM incorporated with nanoscale silver compounds, determine the minimum inhibitory concentration (MIC) for Escherichia coli and Staphylococcus aureus, and its use on in vivo skin lesions. Wistar rats were divided according to treatment: untreated, CM (cellulose membrane), and AgCM (CM incorporated with silver nanoparticles). The euthanasia was performed on the 2nd, 7th, 14th, and 21st days to assess inflammation (myeloperoxidase-neutrophils, N-acetylglucosaminidase-macrophage, IL-1β, IL-10), oxidative stress (NO-nitric oxide, DCF-H2O2), oxidative damage (carbonyl: membrane's damage; sulfhydryl: membrane's integrity), antioxidants (superoxide dismutase; glutathione), angiogenesis, tissue formation (collagen, TGF-β1, smooth muscle α-actin, small decorin, and biglycan proteoglycans). The use of AgCM did not show toxicity, but antibacterial effect in vitro. Moreover, in vivo, AgCM provided balanced oxidative action, modulated the inflammatory profile due to the reduction of IL-1β level and increase in IL-10 level, in addition to increased angiogenesis and collagen formation. The results suggest the use of silver nanoparticles (AgCM) enhanced the CM properties by providing antibacterial properties, modulation the inflammatory phase, and consequently promotes the healing of skin lesions, which can be used clinically to treat injuries.
Collapse
Affiliation(s)
- Lauriene Luiza S Munhoz
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Miriã Tonus O Alves
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Beatriz C Alves
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | | | - Rafael M Sábio
- BioPolymer and Biomaterial Laboratory (BioPolMat), University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil; School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Karyn F Manieri
- BioPolymer and Biomaterial Laboratory (BioPolMat), University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil; School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Hernane S Barud
- BioPolymer and Biomaterial Laboratory (BioPolMat), University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Marcelo Augusto M Esquisatto
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Andrea A Aro
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Glaucia Maria T Santos
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Thiago A M Andrade
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Guilherme F Caetano
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil.
| |
Collapse
|
14
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
15
|
Antioxidant, Wound Healing Potential and In Silico Assessment of Naringin, Eicosane and Octacosane. Molecules 2023; 28:molecules28031043. [PMID: 36770709 PMCID: PMC9919607 DOI: 10.3390/molecules28031043] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
1. Diabetic chronic wounds, mainly foot ulcers, constitute one of the most common complications of poorly managed diabetes mellitus. The most typical reasons are insufficient glycemic management, latent neuropathy, peripheral vascular disease, and neglected foot care. In addition, it is a common cause of foot osteomyelitis and amputation of the lower extremities. Patients are admitted in larger numbers attributable to chronic wounds compared to any other diabetic disease. In the United States, diabetes is currently the most common cause of non-traumatic amputations. Approximately five percent of diabetics develop foot ulcers, and one percent require amputation. Therefore, it is necessary to identify sources of lead with wound-healing properties. Redox imbalance due to excessive oxidative stress is one of the causes for the development of diabetic wounds. Antioxidants have been shown to decrease the progression of diabetic neuropathy by scavenging ROS, regenerating endogenous and exogenous antioxidants, and reversing redox imbalance. Matrix metalloproteinases (MMPs) play vital roles in numerous phases of the wound healing process. Antioxidant and fibroblast cell migration activity of Marantodes pumilum (MP) crude extract has previously been reported. Through their antioxidant, epithelialization, collagen synthesis, and fibroblast migration activities, the authors hypothesise that naringin, eicosane and octacosane identified in the MP extract may have wound-healing properties. 2. The present study aims to identify the bioactive components present in the dichloromethane (DCM) extract of M. pumilum and evaluate their antioxidant and wound healing activity. Bioactive components were identified using LCMS, HPTLC and GCMS. Excision wound on STZ-induced diabetic rat model, human dermal fibroblast (HDF) cell line and colorimetric antioxidant assays were used to evaluate wound healing and antioxidant activities, respectively. Molecular docking and pkCMS software would be utilised to predict binding energy and affinity, as well as ADME parameters. 3. Naringin (NAR), eicosane (EIC), and octacosane (OCT) present in MP displayed antioxidant action and wound excision closure. Histological examination HDF cell line demonstrates epithelialization, collagen production, fibroblast migration, polymorphonuclear leukocyte migration (PNML), and fibroblast movement. The results of molecular docking indicate a substantial attraction and contact between MMPs. pkCMS prediction indicates inadequate blood-brain barrier permeability, low toxicity, and absence of hepatotoxicity. 4. Wound healing properties of (NEO) naringin, eicosane and octacosane may be the result of their antioxidant properties and possible interactions with MMP.
Collapse
|
16
|
Xenogeneic mesenchymal stem cell biocurative improves skin wounds healing in diabetic mice by increasing mast cells and the regenerative profile. Regen Ther 2023; 22:79-89. [PMID: 36712958 PMCID: PMC9841355 DOI: 10.1016/j.reth.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Diabetes mellitus (DM) is a chronic disease and a major cause of mortality and morbidity worldwide. The hyperglycemia caused by DM induces micro and macrovascular complications that lead, among other consequences, to chronic wounds and amputations. Cell therapy and tissue engineering constitute recent therapeutic alternatives to improve wound healing in diabetic patients. The current study aimed to analyze the effectiveness of biocuratives containing human mesenchymal stem cells (MSCs) associated with a hydrogel matrix in the wound healing process and related inflammatory cell profile in diabetic mice. Methods Biocuratives containing MSCs were constructed by 3D bioprinting, and applied to skin wounds on the back of streptozotocin (STZ)-induced type 1 diabetic (T1D) mice. The healing process, after the application of biocuratives with or without MSCs was histologically analyzed. In parallel, genes related to growth factors, mast cells (MC), M1 and M2 macrophage profiles were evaluated by RT-PCR. Macrophages were characterized by flow cytometry, and MC by toluidine blue staining and flow cytometry. Results Mice with T1D exhibited fewer skin MC and delayed wound healing when compared to the non-diabetic group. Treatment with the biocuratives containing MSCs accelerated wound healing and improved skin collagen deposition in diabetic mice. Increased TGF-β gene expression and M2 macrophage-related markers were also detected in skin of diabetic mice that received MSCs-containing biocuratives. Finally, MSCs upregulated IL-33 gene expression and augmented the number of MC in the skin of diabetic mice. Conclusion These results reveal the therapeutic potential of biocuratives containing MSCs in the healing of skin wounds in diabetic mice, providing a scientific base for future treatments in diabetic patients.
Collapse
|
17
|
Meneghetti DH, Bagne L, de Andrade Pinto SA, de Carvalho Zavaglia CA, Amaral MEC, Esquisatto MAM, Dos Santos GMT, de Andrade TAM, Santamaria M, Caetano GF, de Aro AA, Mendonça FAS. Electrical stimulation therapy and rotary jet-spinning scaffold to treat bone defects. Anat Rec (Hoboken) 2023; 306:79-91. [PMID: 35535414 DOI: 10.1002/ar.24994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/29/2023]
Abstract
The combination of electrical stimulation (ES) and bone tissue engineering (BTE) has been successful in treatments of bone regeneration. This study evaluated the effects of ES combined with PCL + β-TCP 5% scaffolds obtained by rotary jet spinning (RJS) in the regeneration of bone defects in the calvaria of Wistar rats. We used 120 animals with induced bone defects divided into 4 groups (n = 30): (C) without treatment; (S) with PCL+ β-TCP 5% scaffold; (ES) treated with ES (10 μA/5 min); (ES + S) with PCL + β-TCP 5% scaffold. The ES occurred twice a week during the entire experimental period. Cell viability (in vitro: Days 3 and 7) and histomorphometric, histochemical, and immunohistochemical (in vivo; Days 30, 60, and 90) analysis were performed. In vitro, ES + S increased cell viability after Day 7 of incubation. In vivo, it was observed modulation of inflammatory cells in ES therapy, which also promoted blood vessels proliferation, and increase of collagen. Moreover, ES therapy played a role in osteogenesis by decreasing ligand kappa B nuclear factor-TNFSF11 (RANKL), increasing alkaline phosphatase (ALP), and decreasing the tartarate-resistant acid phosphatase. The combination of ES with RJS scaffolds may be a promising strategy for bone defects regeneration, since the therapy controlled inflammation, favored blood vessels proliferation, and osteogenesis, which are important processes in bone remodeling.
Collapse
Affiliation(s)
- Damaris Helena Meneghetti
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Leonardo Bagne
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | | | | | | | | | | | | | - Milton Santamaria
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil.,Faculty of Mechanical Engineering, University of Campinas, Campinas, Brazil.,Graduate Program in Orthodontics, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Guilherme Ferreira Caetano
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | - Andrea Aparecida de Aro
- Graduate Program in Biomedical Sciences, University Center of Hermínio Ometto Foundation, Araras, Brazil
| | | |
Collapse
|
18
|
Corrêa MEAB, Mendes C, Bittencourt JVS, Takejima A, de Souza IC, de Carvalho SCD, Orlandini IG, de Andrade TAM, Guarita-Souza LC, Silveira PCL. Effects of the Application of Decellularized Amniotic Membrane Solubilized with Hyaluronic Acid on Wound Healing. Ann Biomed Eng 2022; 50:1895-1910. [PMID: 35802205 DOI: 10.1007/s10439-022-03008-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/03/2022] [Indexed: 12/30/2022]
Abstract
A perfect graft for wound care must be readily available without affecting the immune response, covering and protecting the wound bed. Considering previous studies have already established the use of hyaluronic acid (HA) for the treatment of wounds but the data presented on the amniotic membrane (AM) and its promising effects on healing still requires further investigation, this study aimed to evaluate the effects of the application of a decellularized amniotic membrane solubilized with hyaluronic acid on the healing process of cutaneous wounds on the 7th and 14th day, to evaluate the evolution of the wound and the inflammatory phases in these two times. Cutaneous lesions were excised from the dorsal region and 96 Wistar rats were divided into four groups: I-Excisional wound (EW); II-EW + AM; III-EW + HA; IV-EW + AM + HA. The present study demonstrated that the proposed combined therapy favors the tissue repair process of the epithelial lesion. Results showed a reduction in pro-inflammatory cytokines, an increase in anti-inflammatory cytokines, an increase in TGF-β, and attenuation of oxidative stress, reducing the acute inflammatory response and promoting the beginning of tissue repair. We concluded that the proposed therapies accelerated the inflammatory process with anticipation of the repair phase.
Collapse
Affiliation(s)
- Maria Eduarda Anastácio Borges Corrêa
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina state, 88806-000, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina state, 88806-000, Brazil
| | - João Vitor Silvano Bittencourt
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina state, 88806-000, Brazil
| | - Aline Takejima
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil
| | - Isio Carvalho de Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil
| | | | | | | | - Luiz César Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, Curitiba, Paraná, 80215-901, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina state, 88806-000, Brazil. .,Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 Universitário - Block S, Room 16, Criciúma, SC, CEP: 88806-000, Brazil.
| |
Collapse
|
19
|
Mendes C, Thirupathi A, Zaccaron RP, Corrêa MEAB, Bittencourt JVS, Casagrande LDR, de Lima ACS, de Oliveira LL, de Andrade TAM, Gu Y, Feuser PE, Machado-de-Ávila RA, Silveira PCL. Microcurrent and Gold Nanoparticles Combined with Hyaluronic Acid Accelerates Wound Healing. Antioxidants (Basel) 2022; 11:2257. [PMID: 36421443 PMCID: PMC9686715 DOI: 10.3390/antiox11112257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 01/30/2024] Open
Abstract
This study aimed to investigate the effects of iontophoresis and hyaluronic acid (HA) combined with a gold nanoparticle (GNP) solution in an excisional wound model. Fifty Wistar rats (n = 10/group) were randomly assigned to the following groups: excisional wound (EW); EW + MC; EW + MC + HA; EW + MC + GNPs; and EW + MC + HA + GNPs. The animals were induced to a circular excision, and treatment started 24 h after injury with microcurrents (300 µA) containing gel with HA (0.9%) and/or GNPs (30 mg/L) in the electrodes (1 mL) for 7 days. The animals were euthanized 12 h after the last treatment application. The results demonstrate a reduction in the levels of pro-inflammatory cytokines (IFNϒ, IL-1β, TNFα, and IL-6) in the group in which the therapies were combined, and they show increased levels of anti-inflammatory cytokines (IL-4 and IL-10) and growth factors (FGF and TGF-β) in the EW + MC + HA and EW + MC + HA + GNPs groups. As for the levels of dichlorofluorescein (DCF) and nitrite, as well as oxidative damage (carbonyl and sulfhydryl), they decreased in the combined therapy group when compared to the control group. Regarding antioxidant defense, there was an increase in glutathione (GSH) and a decrease in superoxide dismutase (SOD) in the combined therapy group. A histological analysis showed reduced inflammatory infiltrate in the MC-treated groups and in the combination therapy group. There was an increase in the wound contraction rate in all treated groups when compared to the control group, proving that the proposed therapies are effective in the epithelial healing process. The results of this study demonstrate that the therapies in combination favor the tissue repair process more significantly than the therapies in isolation.
Collapse
Affiliation(s)
- Carolini Mendes
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Maria Eduarda Anastácio Borges Corrêa
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - João V. S. Bittencourt
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Anadhelly C. S. de Lima
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Lara L. de Oliveira
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Thiago A. M. de Andrade
- Graduate Program of Biomedical Science, Herminio Ometto Foundation, Araras 13607-339, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Paulo Emílio Feuser
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Ricardo A. Machado-de-Ávila
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| | - Paulo Cesar Lock Silveira
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Brazil
| |
Collapse
|
20
|
Mou X, Wu Q, Zhang Z, Liu Y, Zhang J, Zhang C, Chen X, Fan K, Liu H. Nanozymes for Regenerative Medicine. SMALL METHODS 2022; 6:e2200997. [PMID: 36202750 DOI: 10.1002/smtd.202200997] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes refer to nanomaterials that catalyze enzyme substrates into products under relevant physiological conditions following enzyme kinetics. Compared to natural enzymes, nanozymes possess the characteristics of higher stability, easier preparation, and lower cost. Importantly, nanozymes possess the magnetic, fluorescent, and electrical properties of nanomaterials, making them promising replacements for natural enzymes in industrial, biological, and medical fields. On account of the rapid development of nanozymes recently, their application potentials in regeneration medicine are gradually being explored. To highlight the achievements in the regeneration medicine field, this review summarizes the catalytic mechanism of four types of representative nanozymes. Then, the strategies to improve the biocompatibility of nanozymes are discussed. Importantly, this review covers the recent advances in nanozymes in tissue regeneration medicine including wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment. In addition, challenges and prospects of nanozyme researches in regeneration medicine are summarized.
Collapse
Affiliation(s)
- Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zheao Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yunhang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jungang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Chengwu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Xiaoyi Chen
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
21
|
Chakraborty R, Borah P, Dutta PP, Sen S. Evolving spectrum of diabetic wound: Mechanistic insights and therapeutic targets. World J Diabetes 2022; 13:696-716. [PMID: 36188143 PMCID: PMC9521443 DOI: 10.4239/wjd.v13.i9.696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/12/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder resulting in an increased blood glucose level and prolonged hyperglycemia, causes long term health conse-quences. Chronic wound is frequently occurring in diabetes patients due to compromised wound healing capability. Management of wounds in diabetic patients remains a clinical challenge despite many advancements in the field of science and technology. Increasing evidence indicates that alteration of the biochemical milieu resulting from alteration in inflammatory cytokines and matrix metalloproteinase, decrease in fibroblast and keratinocyte functioning, neuropathy, altered leukocyte functioning, infection, etc., plays a significant role in impaired wound healing in diabetic people. Apart from the current pharmacotherapy, different other approaches like the use of conventional drugs, antidiabetic medication, antibiotics, debridement, offloading, platelet-rich plasma, growth factor, oxygen therapy, negative pressure wound therapy, low-level laser, extracorporeal shock wave bioengineered substitute can be considered in the management of diabetic wounds. Drugs/therapeutic strategy that induce angiogenesis and collagen synthesis, inhibition of MMPs, reduction of oxidative stress, controlling hyperglycemia, increase growth factors, regulate inflammatory cytokines, cause NO induction, induce fibroblast and keratinocyte proliferation, control microbial infections are considered important in controlling diabetic wound. Further, medicinal plants and/or phytoconstituents also offer a viable alternative in the treatment of diabetic wound. The focus of the present review is to highlight the molecular and cellular mechanisms, and discuss the drug targets and treatment strategies involved in the diabetic wound.
Collapse
Affiliation(s)
- Raja Chakraborty
- Institute of Pharmacy, Assam Don Bosco University, Kamrup 782402, Assam, India
| | - Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati 781026, Assam, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati 781026, Assam, India
| |
Collapse
|
22
|
Astragaloside IV attenuates high glucose-induced human keratinocytes injury via TGF-β/Smad signaling pathway. J Tissue Viability 2022; 31:678-686. [PMID: 36028386 DOI: 10.1016/j.jtv.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES In this study, we have investigated the effect of Astragaloside IV on keratinocytes' proliferation, migration, oxidative stress, apoptosis, inflammation, and relevant signaling pathway, using human keratinocytes exposed to high glucose. BACKGROUND Astragaloside IV is one of the main active ingredients of Astragalus membranaceus (Fisch.) Bunge. Previous studies have found that Astragaloside IV exerts positive effects in various disease models and promotes wound healing. METHODS Cell proliferation and migration of keratinocytes, oxidative stress indicators, cell apoptosis rate, inflammatory factors, and key proteins in the TGF-β/Smad signaling pathway were evaluated by molecular biology/biochemical techniques, fluorescence microscope, and flow cytometry. RESULTS High glucose inhibited the cell proliferation and migration of keratinocytes, upregulated the levels of MDA, ROS, IL-6, IL-8, and Smad7, and decreased the levels of SOD, IL-10, TGF-β1, p-Smad2, and p-Smad3. Astragaloside IV attenuated the dysfunction of keratinocytes, oxidative stress, cell apoptosis, and inflammation, but activated TGF-β/Smad signaling pathway. Meanwhile, the addition of SB431542 (the inhibitor of TGF-β/Smad signaling pathway) eliminated the impact of Astragaloside IV on high glucose-induced keratinocytes. CONCLUSIONS These results strongly suggest that Astragaloside IV may be a potential drug candidate for accelerating diabetic wound healing, by protecting keratinocytes against damages induced by high glucose and TGF-β/Smad pathway is involved in this process at the cellular level.
Collapse
|
23
|
do Amparo Manoel C, de Sousa Mariano S, da Silva Ramos E, Paolillo FR, de Aro AA, Mendes C, Venturini LM, Silveira PCL, Bagnato VS, de Andrade TAM. Photobiomodulation and photodynamic therapy applied after electrocauterization for skin healing optimization in rats. JOURNAL OF BIOPHOTONICS 2022; 15:e202100239. [PMID: 35092174 DOI: 10.1002/jbio.202100239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Photobiomodulation-PBM and Photodynamic Therapy-PDT have been used to induce healing. However, the effects of these therapies on skin-lesions induced by electrocautery are unknown, aiming at more favorable clinical and esthetic results. Electrocauterization was done in 78-female Wistar-rats using a system that includes an electrocautery and red-LED. The groups were: No injury, Injury, Injury + ALA (topical 5-aminolevulinic acid application), Injury + LED and Injury + ALA + LED (topical ALA application followed by photoactivation with LED). After 2nd, 7th and 14th days post-injury, immuno-histomorphometric analyses (inflammatory infiltrate, blood vessels, fibroblasts, eschar/epidermal thickness, IL-10 and VEGF) and biochemical assays of MPO (neutrophil), NAG (macrophage), nitrite, DCF (H2 O2 ), carbonyl (membrane's damage), sulfhydryl (membrane's integrity), SOD, GSH, hydroxyproline and re-epithelialization area were performed. The Injury + LED and Injury + ALA + LED groups controlled inflammation and oxidative stress, favoring angiogenesis, fibroblasts proliferation and collagen formation. Therefore, the PBM or PDT was effective in tissue formation with thinner eschar and epidermis, resulting in less scarring after electrocauterization.
Collapse
Affiliation(s)
- Cecília do Amparo Manoel
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Araras, Sao Paulo, Brazil
| | - Samara de Sousa Mariano
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Araras, Sao Paulo, Brazil
| | - Ericsson da Silva Ramos
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Araras, Sao Paulo, Brazil
| | | | - Andrea Aparecida de Aro
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Araras, Sao Paulo, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense-UNESC, Criciuma, Santa Catarina, Brazil
| | - Ligia Milanez Venturini
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense-UNESC, Criciuma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense-UNESC, Criciuma, Santa Catarina, Brazil
| | | | | |
Collapse
|
24
|
Araujo S, Sganzella MF, Sagiorato RN, Leite MN, Caetano GF, Aparecida de Aro A, Esquisatto MAM, Frade MAC, de Andrade TAM, Santos GMT. Human adipose-derived stem cells in fibrin glue carrier modulate wound healing phases in rats. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Filho MCB, Dos Santos Haupenthal DP, Zaccaron RP, de Bem Silveira G, de Roch Casagrande L, Lupselo FS, Alves N, de Sousa Mariano S, do Bomfim FRC, de Andrade TAM, Machado-de-Ávila RA, Silveira PCL. Intra-articular treatment with hyaluronic acid associated with gold nanoparticles in a mechanical osteoarthritis model in Wistar rats. J Orthop Res 2021; 39:2546-2555. [PMID: 33580538 DOI: 10.1002/jor.25008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 11/26/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
This study aimed to evaluate the effects of intra-articular treatment with hyaluronic acid (HA) associated with GNPs in a mechanical model of osteoarthritis induced by median meniscectomy (MM). Fifty Wistar rats (2 months weighing between 250 and 300 g) were used, divided into five groups of 10 animals each: Sham, osteoarthritis (OA), OA + HA, OA + gold nanoparticles (GNPs), and OA + HA + GNPs. Intra-articular treatment was started 30 days after the model was induced, with a frequency of 2 weeks for 60 days. Fifteen days after the last application, the animals were euthanized with the removal of the joint tissue for biochemical and histological analysis. The model used was able to mimic osteoarthritis, characterized by the presence of high levels of proinflammatory cytokines, oxidative stress, and degeneration of joint surfaces (Grade III, according to SCORE OARSI). The isolated use of HA or GNPs provided beneficial results to the joint; however, only the group subjected to the association between HA and GNPs showed the attenuation of oxidative stress and reduced proinflammatory markers, with a simultaneous increase in levels of anti-inflammatory cytokines and growth factors. Upon histological analysis, only the OA + HA + GNPs group achieved the restoration of the thickness of the joint cartilage with reduced damage and return to the intact joint surface. The results found demonstrated that the association of GNPs with HA was able to reverse the deleterious effects caused by the model by inhibiting the progressive degeneration of joint surfaces, representing a promising treatment for osteoarthritis.
Collapse
Affiliation(s)
- Mario Cesar Búrigo Filho
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Daniela Pacheco Dos Santos Haupenthal
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Fernando Silva Lupselo
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Naiara Alves
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Samara de Sousa Mariano
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | | | | | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
26
|
Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I. Diabetic Wound-Healing Science. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1072. [PMID: 34684109 PMCID: PMC8539411 DOI: 10.3390/medicina57101072] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is an increasingly prevalent chronic metabolic disease characterized by prolonged hyperglycemia that leads to long-term health consequences. It is estimated that impaired healing of diabetic wounds affects approximately 25% of all patients with diabetes mellitus, often resulting in lower limb amputation, with subsequent high economic and psychosocial costs. The hyperglycemic environment promotes the formation of biofilms and makes diabetic wounds difficult to treat. In this review, we present updates regarding recent advances in our understanding of the pathophysiology of diabetic wounds focusing on impaired angiogenesis, neuropathy, sub-optimal chronic inflammatory response, barrier disruption, and subsequent polymicrobial infection, followed by current and future treatment strategies designed to tackle the various pathologies associated with diabetic wounds. Given the alarming increase in the prevalence of diabetes, and subsequently diabetic wounds, it is imperative that future treatment strategies target multiple causes of impaired healing in diabetic wounds.
Collapse
Affiliation(s)
| | | | | | - Robert S. Kirsner
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.B.); (W.A.W.); (B.A.A.)
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.L.B.); (W.A.W.); (B.A.A.)
| |
Collapse
|
27
|
Marchete R, Oliveira S, Bagne L, Silva JIDS, Valverde AP, Aro AAD, Figueira MM, Fronza M, Bressam TM, Goes VFFD, Gaspari de Gaspi FOD, Dos Santos GMT, Andrade TAM. Anti-inflammatory and antioxidant properties of Alternanthera brasiliana improve cutaneous wound healing in rats. Inflammopharmacology 2021; 29:1443-1458. [PMID: 34546478 DOI: 10.1007/s10787-021-00862-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/01/2021] [Indexed: 01/13/2023]
Abstract
Alternanthera brasiliana (L.) Kuntze is recognized for its healing properties; however, its therapeutic effects remain unclear. Therefore, our study aimed to elucidate the wound healing activities of A. brasiliana using in vitro and in vivo assays. In vitro assays were used to evaluate the antibacterial, anti-inflammatory, and antioxidant effects of A. brasiliana extract. For the in vivo study, two dorsal excisions were established in Wistar rats using a punch (1.5 cm in diameter), which were topically treated daily with 2% carbopol gel (Ctrl group) or 20% hydroalcoholic plant extract with 2% carbopol gel (A. brasiliana-Ab group). After the 2nd, 7th, 14th, and 21st days, inflammation, oxidative damage, antioxidants, angiogenesis, tissue formation, and re-epithelialization were evaluated. In vitro, Ab reduced nitric oxide, anion superoxide, and pro-inflammatory cytokine production. In vivo, Ab presented lower levels of inflammatory infiltrate, although increased levels of IL-1β and TGF-β1 were observed. The plant extract controlled oxidative damage by antioxidants, which favored angiogenesis, collagenesis, and wound re-epithelialization. Thus, the topical application of the hydroalcoholic extract of 20% A. brasiliana was distinguished by its important anti-inflammatory and antioxidant activities both in vivo and in vitro. The plant extract also stimulated angiogenesis and tissue formation, accelerating total re-epithelization, which is promising for wound healing.
Collapse
Affiliation(s)
- Rogério Marchete
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Sarah Oliveira
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Leonardo Bagne
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Jennyffer Ione de Souza Silva
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Ana Paula Valverde
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Andrea Aparecida de Aro
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Mariana Moreira Figueira
- Graduate Program of Pharmaceutical Sciences, Laboratory of Natural Products, University of Vila Velha-UVV, Comissario Jose Dantas de Melo Ave, 21. Boa Vista, Vila Velha, Espirito Santo, 29102‑920, Brazil
| | - Marcio Fronza
- Graduate Program of Pharmaceutical Sciences, Laboratory of Natural Products, University of Vila Velha-UVV, Comissario Jose Dantas de Melo Ave, 21. Boa Vista, Vila Velha, Espirito Santo, 29102‑920, Brazil
| | - Thainá Mikaela Bressam
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Vivian Fernandes Furletti de Goes
- Graduate Program in Odontology, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, SP, 13607-339, Brazil
| | - Fernanda Oliveira de Gaspari de Gaspi
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil.,Sao Leopoldo Mandic Faculty, Dona Renata Ave. Centro. 71, Araras, Sao Paulo, 13606-134, Brazil
| | - Gláucia Maria Tech Dos Santos
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Thiago Antônio Moretti Andrade
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil.
| |
Collapse
|
28
|
Leite MN, Frade MAC. Efficacy of 0.2% hyaluronic acid in the healing of skin abrasions in rats. Heliyon 2021; 7:e07572. [PMID: 34345742 PMCID: PMC8319016 DOI: 10.1016/j.heliyon.2021.e07572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/09/2021] [Accepted: 07/10/2021] [Indexed: 01/13/2023] Open
Abstract
Acute injuries, such as surgical and traumatic, heal normally in an organized and rapid manner. Studies point to the healing activity of hyaluronic acid in all phases of healing. The aim was to evaluate the effectiveness of hyaluronic acid in skin abrasions on the dorsum of rats to compare to usual products on the market. Seventy-two Wistar rats were subjected to excoriation of approximately 2.0 cm2 on the back by dermabrasion. According to the treatment, 3 groups were established: saline, chlorhexidine digluconate and 0.2% hyaluronic acid for 14 days. Animals were photographed on the 2nd, 7th, 10th and 14th postinjury days, and the index of healing of the abrasions was calculated. Biochemically, myeloperoxidase measurements of skin biopsies in addition to histological studies to assess the crust and epidermal layers were performed. The group treated with hyaluronic acid showed better re-epithelialization from the other groups (p < 0.05) on the 7th and 10th days. For the thickness of the crust, the hyaluronic acid group presented thinner crust than other groups on the 10th and 14th days (p < 0.05), but in the epidermis, no difference was observed between the groups studied. All groups showed an increase in myeloperoxidase enzyme on the 2nd day, but a decreasing on the 7th day. On the 10th day, there was a difference in the hyaluronic acid group compared to the other groups (p < 0.05). The application of 0.2% hyaluronic acid significantly accelerated the re-epithelialization of skin abrasions compared to saline and chlorhexidine digluconate.
Collapse
Affiliation(s)
- Marcel Nani Leite
- Division of Dermatology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marco Andrey Cipriani Frade
- Division of Dermatology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
29
|
Curtolo G, Araújo JDP, Lima JA, Brandt JV, Bittencourt JVS, Venturini LM, Silveira PCL, Rogers S, Franzini CM, de Goes VFF, Andrade TAM. Silver nanoparticles formulations for healing traumatic injuries in oral mucosa of rats. Arch Oral Biol 2021; 129:105202. [PMID: 34214784 DOI: 10.1016/j.archoralbio.2021.105202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To evaluate formulations of 1 % silver (Ag) nanoparticles for treating traumatic lesions induced in the oral mucosa of rats, because these lesions are commonly observed in the dental clinic, and their therapeutic forms are scarce. METHODS Wistar rats were punch-injured (two circular fragments, 4.0 mm in diameter) in the oral mucosa (one on each side), and were treated topically (twice per week) with the treatments/groups including: no injury, control, vehicle, diluted Ag, soluble Ag, and solid Ag. On the 2nd, 7th, and 14th days postinjury, biopsies were collected for immunohistochemistry and biochemical analysis. RESULTS The group diluted Ag revealed a higher level of inflammatory infiltrate on the 2nd day, whereas solid Ag presented lower levels. The Ag solid group presented higher IL-1β on the 2nd day and increased IL-10 and TGF-β1 throughout the follow-up. Moreover, all three Ag groups presented lower levels of oxidative stress markers and, on the 7th day, the diluted Ag and solid Ag groups revealed higher antioxidants. Diluted Ag and soluble Ag groups presented greater blood vessels proliferation, whereas soluble Ag and solid Ag groups revealed greater VEGF on the 2nd and 14th days. Furthermore, all three Ag groups were highlighted during fibroplasia, although collagenesis was similar to that observed in the control group. CONCLUSIONS Although diluted Ag was noticeable for its important angiogenesis and fibroplasia, solid Ag was the most suitable formulation in healing oral lesions as it efficiently controlled inflammation and oxidative stress, thus favoring angiogenesis and tissue formation.
Collapse
Affiliation(s)
- Gabriella Curtolo
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation - FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, 13607-339, Araras, Sao Paulo, Brazil
| | - Jaqueline de Paula Araújo
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation - FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, 13607-339, Araras, Sao Paulo, Brazil
| | - Joyce Alessandra Lima
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation - FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, 13607-339, Araras, Sao Paulo, Brazil
| | - João Victor Brandt
- Laboratory of Magnetic Materials and Colloids, Department of Physical Chemistry, Institute of Chemistry, Sao Paulo State University (UNESP), Prof. Francisco Degni Ave, 55. Jardim Quitandinha, 14800-900, Araraquara, SP, Brazil
| | - João Vitor Silvano Bittencourt
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense - UNESC, Universitaria Ave, 1105. Universitario, Bloco S - Room 017, 88806-000, Criciuma, Santa Catarina, Brazil
| | - Ligia Milanez Venturini
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense - UNESC, Universitaria Ave, 1105. Universitario, Bloco S - Room 017, 88806-000, Criciuma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense - UNESC, Universitaria Ave, 1105. Universitario, Bloco S - Room 017, 88806-000, Criciuma, Santa Catarina, Brazil
| | - Sylvia Rogers
- Graduate Program in Odontology, University Center of Herminio Ometto Foundation - FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, 13607-339, Araras, Sao Paulo, Brazil
| | - Cristina Maria Franzini
- Graduate Program in Odontology, University Center of Herminio Ometto Foundation - FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, 13607-339, Araras, Sao Paulo, Brazil
| | - Vivian Fernandes Furletti de Goes
- Graduate Program in Odontology, University Center of Herminio Ometto Foundation - FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, 13607-339, Araras, Sao Paulo, Brazil
| | - Thiago Antônio Moretti Andrade
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation - FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, 13607-339, Araras, Sao Paulo, Brazil.
| |
Collapse
|
30
|
Leite MN, Viegas JSR, Praça FSG, de Paula NA, Ramalho LNZ, Bentley MVLB, Frade MAC. Ex vivo model of human skin (hOSEC) for assessing the dermatokinetics of the anti-melanoma drug Dacarbazine. Eur J Pharm Sci 2021; 160:105769. [PMID: 33610737 DOI: 10.1016/j.ejps.2021.105769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Alternative models to replace animals in experimental studies remain a challenge in testing the effectiveness of dermatologic and cosmetic drugs. We proposed a model of human organotypic skin explant culture (hOSEC) to assess the profile of cutaneous drug skin distribution, adopting dacarbazine as a model, and respective new methodologies for dermatokinetic analysis. The viability tests were evaluated in primary keratinocytes and fibroblasts, and skin by MTT and TTC assays, respectively. Then, dacarbazine was applied to the culture medium, and the hOSEC method was applied to verify the dynamics of skin distribution of dacarbazine and determine its dermatokinetic profile. The results of cell and tissue viability showed that both were considered viable. The dermatokinetic results indicated that dacarbazine can be absorbed through the skin, reaching a concentration of 36.36 µg/mL (18,18%) of the initial dose (200 µg/mL) after 12 h in culture. Histological data showed that the skin maintained its structure throughout the tested time that the hOSEC method was applied. No apoptotic cells were observed in the epidermal and dermal layers. No visible changes in the dermo-epidermal junction and no inflammatory processes with the recruitment of defense cells were observed. Hence, these findings suggest that the hOSEC concept as an alternative ex vivo model for assessing the dynamics of skin distribution of drugs, such as dacarbazine, and determining their respective dermatokinetic profiles.
Collapse
Affiliation(s)
- Marcel Nani Leite
- Division of Dermatology - Wound Healing & Hansen's Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Fabíola Silva Garcia Praça
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Natália Aparecida de Paula
- Division of Dermatology - Wound Healing & Hansen's Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Leandra Náira Zambelli Ramalho
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | - Marco Andrey Cipriani Frade
- Division of Dermatology - Wound Healing & Hansen's Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
31
|
Deng L, Du C, Song P, Chen T, Rui S, Armstrong DG, Deng W. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8852759. [PMID: 33628388 PMCID: PMC7884160 DOI: 10.1155/2021/8852759] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
Foot ulcers are one of the most common and severe complication of diabetes mellitus with significant resultant morbidity and mortality. Multiple factors impair wound healing include skin injury, diabetic neuropathy, ischemia, infection, inadequate glycemic control, poor nutritional status, and severe morbidity. It is currently believed that oxidative stress plays a vital role in diabetic wound healing. An imbalance of free radicals and antioxidants in the body results in overproduction of reactive oxygen species which lead to cell, tissue damage, and delayed wound healing. Therefore, decreasing ROS levels through antioxidative systems may reduce oxidative stress-induced damage to improve healing. In this context, we provide an update on the role of oxidative stress and antioxidants in diabetic wound healing through following four perspectives. We then discuss several therapeutic strategies especially dietary bioactive compounds by targeting oxidative stress to improve wounds healing.
Collapse
Affiliation(s)
- Liling Deng
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Chenzhen Du
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Peiyang Song
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Tianyi Chen
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Shunli Rui
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of the University of Southern California, CA, USA
| | - Wuquan Deng
- Department of Endocrinology, Multidisciplinary Diabetic Foot Medical Center, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| |
Collapse
|
32
|
Pegorin GS, Leite MN, Antoniassi M, Chagas ALD, Santana LA, Garms BC, Marcelino MY, Herculano RD, Cipriani Frade MA. Physico-chemical characterization and tissue healing changes by Hancornia speciosa Gomes latex biomembrane. J Biomed Mater Res B Appl Biomater 2020; 109:938-948. [PMID: 33241610 DOI: 10.1002/jbm.b.34758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Skin wounds have been a public health concern of high frequency, in addition to requiring intensive and expensive care. The natural rubber latex (NRL) from Hancornia speciosa Gomes has been used to treat many problems in traditional medicine and also present healing properties, antifungal and anti-inflammatory activity and antinociceptive effects. The purpose of this study was to characterize the new biomembrane from the NRL of H. speciosa (HS) by Fourier transform infrared (FTIR) and mechanical strength test and to investigate its biological properties by the cytotoxicity assay and in vivo healing activity. The results showed that the HS biomembrane exhibited characteristic bands of the main component cis-1,4-polyisoprene. Besides, its Young modulus was close to human skin with adhesive-compatible mechanical characteristics. The cytotoxicity assays revealed that the HS biomembrane was not toxic to fibroblast cells neither using agar diffusion test nor MTT assay. Furthermore, the HS biomembrane stimulated the inflammatory cells and the angiogenesis, increased significantly the collagenesis and improved the quality of heal until the remodeling phase induced by implants in mice. Thus, this biomembrane has proven to be a safe and biocompatible biomaterial with healing potential, becoming an effective and low-cost alternative for the treatment of skin wounds.
Collapse
Affiliation(s)
- Giovana S Pegorin
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.,Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Marcel N Leite
- Division of Dermatolgoy of Department of Internal Medicine, Ribeirão Preto Medical School at São Paulo University (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Marcio Antoniassi
- Division of Dermatolgoy of Department of Internal Medicine, Ribeirão Preto Medical School at São Paulo University (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ana Laura D Chagas
- Department of Biochemistry and Chemical Technology, São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.,Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | - Bruna C Garms
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Mônica Y Marcelino
- Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Rondinelli D Herculano
- Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Marco Andrey Cipriani Frade
- Division of Dermatolgoy of Department of Internal Medicine, Ribeirão Preto Medical School at São Paulo University (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| |
Collapse
|
33
|
Argon Atmospheric Plasma Treatment Promotes Burn Healing by Stimulating Inflammation and Controlling the Redox State. Inflammation 2020; 43:2357-2371. [PMID: 32860165 DOI: 10.1007/s10753-020-01305-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Burns are a public health problem, with second-degree burns as one of the most common types. Although intense inflammation worsens burn healing, effective therapies are scarce. Thus, infections and hypertrophic scars may occur, which compromise patient quality of life and may delay healing. Argon atmospheric plasma (AP) has been shown to positively influence wound healing. In the context of identifying effective and alternative therapies for the treatment of second-degree burns, the present study evaluated AP in the treatment of second-degree burns in rats compared to that for sham treatment on the 2nd, 7th, 14th, and 21st days post-injury. Our results revealed proinflammatory effect for AP by recruiting predominantly neutrophils on the 7th day and macrophages on the 21st day compared to sham treatment, allowing a greater production of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-17, and also controlled the inflammation by IL-10 and transforming growth factor (TGF)-β1. AP also showed antioxidant activity important for controlling oxidative damage on the 2nd day. This favored the induction of angiogenesis from the 2nd day and induction fibroplasia and fibrillogenesis after the 14th day, which enhanced burn healing with the formation of a thinner burn eschar before the 21st day post-burn. Thus, AP effectively modulated the inflammatory phase of second-degree burn healing through the control of oxidative damage that favored the following phases. Therefore, AP is a relevant alternative in the treatment of second-degree burns.
Collapse
|
34
|
Leite MN, Leite SN, Caetano GF, Andrade TAMD, Fronza M, Frade MAC. Healing effects of natural latex serum 1% from Hevea brasiliensis in an experimental skin abrasion wound model. An Bras Dermatol 2020; 95:418-427. [PMID: 32473773 PMCID: PMC7335856 DOI: 10.1016/j.abd.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Dermabrasion is related with mechanical and surgical traumas on the skin; usually topical antiseptics and/or saline have been used for healing. Natural products for wound healing can also be used for abrasions, such as latex from Hevea brasiliensis. Objective This study aimed to evaluate the in vitro viability and migratory/proliferative effects of latex serum from H. brasiliensis and to compare with a commercially available standard antiseptic solution and saline in experimental dermabrasion on rats. Methods For in vitro evaluation, MTT and scratch assays were used. In vivo testing was performed in 72 rats submitted to dermabrasion, treated with saline, antiseptic, or latex serum. This study evaluated re-epithelialization, neutrophilic infiltration, and the quantification of crust and epidermis. Results Latex showed viability at 1% and 0.1% concentrations and migratory/proliferative activity at 0.01% concentrations. The re-epithelialization was highest in latex group on 7th day. The latex group displayed lower thickness of crusts and greater extent of epidermal layers. The latex and antiseptic groups showed increases of myeloperoxidase levels on the 2nd day and showed important reductions from the 7th day. Study limitations Acute superficial wound model in rats and non-use of gel-cream (medium) without latex. Conclusion In conclusion, non-toxic latex stimulated migration/proliferation of keratinocytes in vitro and significantly accelerated wound healing in animal excoriation models compared to chlorhexidine or saline.
Collapse
Affiliation(s)
- Marcel Nani Leite
- Department of Clinical Medicine, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Saulo Nani Leite
- Department of Physiotherapy, Fundação Educacional Guaxupé, Guaxupé, MG, Brazil
| | - Guilherme Ferreira Caetano
- Department of Clinical Medicine, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, Araras, SP, Brazil
| | - Thiago Antônio Moretti de Andrade
- Department of Clinical Medicine, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, Araras, SP, Brazil
| | - Márcio Fronza
- Universidade de Vila Velha, Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, Universidade de Vila Velha, Vila Velha, ES, Brazil
| | - Marco Andrey Cipriani Frade
- Department of Clinical Medicine, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
35
|
Baldini E, Testa E, Voellenkle C, De Domenico E, Cianfarani F, Martelli F, Ulisse S, Odorisio T. Dysregulation of microRNA expression in diabetic skin. J Dermatol Sci 2020; 98:186-194. [PMID: 32402513 DOI: 10.1016/j.jdermsci.2020.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical skin manifestations are common in diabetes; however, molecular mechanisms underlying such defects are largely unknown. Several findings indicate a role for microRNAs (miRNAs) in skin homeostasis. OBJECTIVE To investigate whether miRNA expression is altered in diabetic skin. METHODS Type 1 and 2 mouse models of diabetes were used. MiRNA profiling was performed on RNA extracted from the skin of type 1 diabetic mice and non-diabetic controls. Expression levels of pri-miRNAs and of miRNA-biogenesis genes were also analyzed. Biogenesis gene expression analysis was performed in human dermal fibroblasts cultured in hyperglycemic, hypoxic or oxidative stress conditions. RESULTS Several miRNAs were differentially expressed in diabetic skin with a general down-modulation as compared to controls. Bioinformatics analysis of signature-miRNA target genes showed the enrichment in pathways involved in skin homeostasis, such as TGF-β and Wnt. MiRNA alteration in diabetic skin associated with reduced expression levels of DROSHA, DGCR8, XPO5, DICER1, AGO2, both as mRNA and protein. Reduced biogenesis gene expression did not correlate with accumulation of pri-miRNAs, which displayed differences in expression levels similar to those found for their mature miRNAs. Experiments with cultured fibroblasts showed that hypoxia and oxidative stress induced the down-regulation of miRNA-biogenesis genes in this skin cell type. CONCLUSION A general down-regulation of differentially expressed miRNAs was found in diabetic skin. This alteration is part of and is dependent from a wider transcriptional defect also affecting the expression of pri-miRNAs and of genes responsible for miRNA biogenesis. Such an alteration is likely contributing to diabetic skin manifestations.
Collapse
Affiliation(s)
- Enke Baldini
- Dept. Surgical Sciences, Sapienza University of Rome, Italy
| | - Erika Testa
- Lab. Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta, Rome, Italy
| | - Christine Voellenkle
- Lab. Molecular Cardiology, IRCCS-Policlinico San Donato, San Donato Milanese, Italy
| | - Emanuela De Domenico
- Lab. Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta, Rome, Italy
| | - Francesca Cianfarani
- Lab. Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta, Rome, Italy
| | - Fabio Martelli
- Lab. Molecular Cardiology, IRCCS-Policlinico San Donato, San Donato Milanese, Italy
| | | | - Teresa Odorisio
- Lab. Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via dei Monti di Creta, Rome, Italy.
| |
Collapse
|
36
|
Wang W, Zhang F, Yan X, Tan Q. Wnt7a regulates high autophagic and inflammatory response of epidermis in high-glucose environment. Burns 2020; 46:121-127. [DOI: 10.1016/j.burns.2019.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/23/2019] [Accepted: 07/18/2019] [Indexed: 12/23/2022]
|
37
|
Orlandini R, Jacinto R, Teixeira LR, Silva GA, Gallo CB, Innocentini LMAR, Ribeiro-Silva A, Motta ACF. Evidence for a significant role of B-cells in the pathogenesis of oral lichen planus: Preliminary results of a cross-sectional study. J Cutan Pathol 2020; 47:310-313. [PMID: 31868240 DOI: 10.1111/cup.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Renata Orlandini
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafaela Jacinto
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lucas R Teixeira
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gilberto A Silva
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila B Gallo
- School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Lara M A R Innocentini
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ana Carolina F Motta
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
38
|
Breder JSC, Pires ALR, Azevedo FF, Apolinário PP, Cantaruti T, Jiwani SI, Moraes ÂM, Consonni SR, Araújo EP, Adams GG, Saad MJA, Lima MHM. Enhancement of cellular activity in hyperglycemic mice dermal wounds dressed with chitosan-alginate membranes. ACTA ACUST UNITED AC 2019; 53:e8621. [PMID: 31859909 PMCID: PMC6915877 DOI: 10.1590/1414-431x20198621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
The use of specially designed wound dressings could be an important alternative to facilitate the healing process of wounds in the hyperglycemic state. Biocompatible dressings combining chitosan and alginate can speed up wound healing by modulating the inflammatory phase, stimulating fibroblast proliferation, and aiding in remodeling phases. However, this biomaterial has not yet been explored in chronic and acute lesions of diabetic patients. The aim of this study was to evaluate the effect of topical treatment with a chitosan-alginate membrane on acute skin wounds of hyperglycemic mice. Diabetes mellitus was induced by streptozotocin (60 mg · kg-1 · day-1 for 5 days, intraperitoneally) and the cutaneous wound was performed by removing the epidermis using a surgical punch. The results showed that after 10 days of treatment the chitosan and alginate membrane (CAM) group exhibited better organization of collagen fibers. High concentrations of interleukin (IL)-1α, IL-1β, granulocyte colony-stimulating factor (G-CSF), and tumor necrosis factor-alpha (TNF-α) were detected in the first and second days of treatment. G-CSF and TNF-α level decreased after 5 days, as well as the concentrations of TNF-α and IL-10 compared with the control group (CG). In this study, the inflammatory phase of cutaneous lesions of hyperglycemic mice was modulated by the use of CAM, mostly regarding the cytokines IL-1α, IL-1β, TNF-α, G-CSF, and IL-10, resulting in better collagen III deposition. However, further studies are needed to better understand the healing stages associated with CAM use.
Collapse
Affiliation(s)
- J S C Breder
- Faculdade de Enfermagem, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - A L R Pires
- Departamento de Engenharia de Materiais e Bioprocessos, Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - F F Azevedo
- Faculdade de Enfermagem, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - P P Apolinário
- Faculdade de Enfermagem, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - T Cantaruti
- Faculdade de Enfermagem, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - S I Jiwani
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Â M Moraes
- Departamento de Engenharia de Materiais e Bioprocessos, Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - S R Consonni
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - E P Araújo
- Faculdade de Enfermagem, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - G G Adams
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - M J A Saad
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - M H M Lima
- Faculdade de Enfermagem, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
39
|
Fei J, Ling YM, Zeng MJ, Zhang KW. Shixiang Plaster, a Traditional Chinese Medicine, Promotes Healing in a Rat Model of Diabetic Ulcer Through the receptor for Advanced Glycation End Products (RAGE)/Nuclear Factor kappa B (NF-κB) and Vascular Endothelial Growth Factor (VEGF)/Vascular Cell Adhesion Molecule-1 (VCAM-1)/Endothelial Nitric Oxide Synthase (eNOS) Signaling Pathways. Med Sci Monit 2019; 25:9446-9457. [PMID: 31825949 PMCID: PMC6925528 DOI: 10.12659/msm.918268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Shixiang plaster is a traditional Chinese medicine has been used to treat chronic ulcers, including diabetic ulcers. Aminoguanidine is a hydrazine derivative that inhibits the formation of advanced glycosylation end products (AGEs). This study aimed to investigate the effects of shixiang plaster and aminoguanidine on wound healing in the streptozotocin-induced rat model of diabetes and the molecular mechanisms involved. Material/Methods Sprague-Dawley rats treated with intraperitoneal streptozotocin and given surgical wounds were divided into the untreated chronic ulcer group (n=10), the aminoguanidine group (n=10), the shixiang plaster group (n=10), and the control group with sham surgery (n=10). Granulation tissue samples underwent light microscopy to evaluate angiogenesis and immunohistochemistry to identify AGE, vascular endothelial growth factor (VEGF), and CD34 expression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot measured mRNA and protein expression of receptor for advanced glycation end products (RAGE), vascular cell adhesion molecule-1 (VCAM-1), nuclear factor kappa B (NF-κB) and endothelial nitric oxide synthase (eNOS). Results The shixiang plaster group showed a significant increase in angiogenesis in ulcer granulation tissue, significantly reduced expression of AGEs and increased expression of VEGF and CD34 expression in granulation tissue compared with the untreated chronic ulcer group (p<0.05). The shixiang plaster group showed significantly down-regulated expression of RAGE and VCAM-1 compared with the untreated chronic ulcer group (p<0.05). Shixiang plaster promoted angiogenesis by activating the NF-κB p65 associated pathway and eNOS activation. Conclusions Shixiang plaster promoted healing in a rat model of diabetic ulcer through the RAGE/NF-κB and VEGF/VCAM-1/eNOS signaling pathways.
Collapse
Affiliation(s)
- Ji Fei
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| | - Yi-Ming Ling
- Department of Orthopedics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China (mainland)
| | - Man-Jie Zeng
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| | - Kai-Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| |
Collapse
|
40
|
Azevedo FF, Moreira GV, Teixeira CJ, Pessoa AFM, Alves MJ, Liberti EA, Carvalho CRO, Araújo EP, Saad MJA, Lima MHM. Topical Insulin Modulates Inflammatory and Proliferative Phases of Burn-Wound Healing in Diabetes-Induced Rats. Biol Res Nurs 2019; 21:473-484. [PMID: 31337227 DOI: 10.1177/1099800419864443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The healing time of burn wounds depends on surface area and depth of the burn and associated comorbidities. Diabetes mellitus (DM) causes delays in the healing process by extending the inflammatory phase. Treatment with topical insulin can improve the inflammatory phase, restore metabolic dysregulation, and modulate impaired cellular signaling in burn wounds. The objective of this study was to evaluate markers of the inflammatory and proliferative phases of second-degree burns after topical insulin treatment in diabetic rats. Type I DM was induced with streptozotocin in male Wistar rats. The animals' backs were shaved and subjected to thermal burning. Rats were randomized into two groups: control diabetic (DC) and insulin diabetic (DI). At Days 7 and 14 postburn, rats were euthanized, and wound-tissue sections were evaluated by hematoxylin and eosin, Weigert, and Verhöeff staining, immunohistochemistry-paraffin, and enzyme-linked immunosorbent assay. A significant increase in reepithelialization was seen on Days 7 and 14 in DI versus DC rats. On Day 7, interleukin (IL)-1β, IL-6, monocyte chemotactic protein (MCP)-1, and F4/80 expression were increased in DI versus DC rats. On Day 14, MCP-1 expression was decreased and F4/80 increased in DI versus DC rats. On Days 7 and 14, Ki-67, transforming growth factor-β1, vascular endothelial growth factor expression, and formation of elastic fibers were increased in DI versus DC rats. Topical insulin modulates burn-wound healing in diabetic animals by balancing inflammation and promoting angiogenesis and formation of elastic fibers.
Collapse
Affiliation(s)
| | - Gabriela Virgínia Moreira
- 2 Department of Physiology and Biophysiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caio Jordão Teixeira
- 3 Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Ana Flávia Marçal Pessoa
- 4 Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Michele Joana Alves
- 4 Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Edson Aparecido Liberti
- 5 Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Mário José Abdala Saad
- 6 Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, Sao Paulo, Brazil
| | | |
Collapse
|
41
|
Leguina-Ruzzi A, Ortiz R, Velarde V. The streptozotocin-high fat diet induced diabetic mouse model exhibits severe skin damage and alterations in local lipid mediators. Biomed J 2018; 41:328-332. [PMID: 30580797 PMCID: PMC6306302 DOI: 10.1016/j.bj.2018.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/27/2018] [Accepted: 08/06/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) can go undiagnosed for years, leading to a stage where produces complications such as delayed skin wound healing. Animal models have been developed in the last decades to study the pathological progression in this disease. Streptozotocin (STZ), that has a selective pharmacological toxicity toward pancreatic β cells, in addition to high fat diet has been widely used to induce diabetes however no evidence has shown its effects on the skin integrity. METHODS Eighteen C57BL/6J male mice, were divided in 3 groups; the first was fed with chow diet and the second was kept on a high fat diet and the third injected with STZ intraperitoneal for 5 days consecutively before starting the diet protocol with high fat. Mice were maintained 5 weeks in total. RESULTS We show that animals treated with STZ-high fat diet exhibit skin injuries without significant alterations on basal insulin and triglycerides, compared to the control. The skin from these animals presents higher levels of oxidative stress, lower levels of adhesion proteins and alterations in lipid mediators, effects that are not produced by the high fat diet itself. CONCLUSION Our results suggest that this in vivo model represents a relevant approach for studying skin damage induced by diabetes.
Collapse
Affiliation(s)
| | - Rina Ortiz
- Biotechnology Center, Federico Santa Maria Technical University and Faculty of Health, Department of Chemical and Biological Sciences, Bernardo O'Higgins University, Santiago, Chile
| | - Victoria Velarde
- Faculty of Biological Sciences, Department of Physiology, Pontifical Catholic University of Chile, Santiago, Chile
| |
Collapse
|