1
|
Merret PE, Sparfel L, Lavau C, Lagadic-Gossmann D, Martin-Chouly C. Extracellular vesicles as a potential source of biomarkers for endocrine disruptors in MASLD: A short review on the case of DEHP. Biochimie 2024:S0300-9084(24)00219-0. [PMID: 39307409 DOI: 10.1016/j.biochi.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is a chronic disease with increasing prevalence and for which non-invasive biomarkers are needed. Environmental endocrine disruptors (EDs) are known to be involved in the onset and progression of MASLD and assays to monitor their impact on the liver are being developed. Extracellular vesicles (EVs) mediate cell communication and their content reflects the pathophysiological state of the cells from which they are released. They can thus serve as biomarkers of the pathological state of the liver and of exposure to EDs. In this review, we present the relationships between DEHP (Di(2-ethylhexyl) phthalate) and MASLD and highlight the potential of EVs as biomarkers of DEHP exposure and the resulting progression of MASLD.
Collapse
Affiliation(s)
- Pierre-Etienne Merret
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Catherine Lavau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
2
|
Singh S, Kumar A, Gupta S, Agrawal R. Curative role of natural PPARγ agonist in non-alcoholic fatty liver disease (NAFLD). Tissue Barriers 2024; 12:2289830. [PMID: 38050958 PMCID: PMC11262216 DOI: 10.1080/21688370.2023.2289830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
NAFLD is a condition that develops when the liver accumulates excess fat without alcohol consumption. This chronic liver ailment progresses along with insulin resistant and is typically not diagnosed until the patients have cirrhosis. Nuclear hormone receptor superfamily PPARs are essential for metabolism of fatty acids and glucose. In liver, lipid metabolism is regulated by nuclear receptors and PPARα, and PPARβ/δ encourages fatty acid β-oxidation. PPAR-γ, an energy-balanced receptor is a crucial regulator in NAFLD. The partial activation of PPAR-γ could lead to increased level of adiponectin and insulin sensitivity, thus improved NAFLD. Because of less side effects, natural compounds are emerged as potential therapeutic agents for NAFLD by PPARγ agonists. Although the results from preclinical studies are promising, further research is needed to determine the potential dosing and efficacy of mentioned compounds in human subjects. In this review, we summarize the effect of natural PPARγ agonist in the NAFLD.
Collapse
Affiliation(s)
- Swati Singh
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Anit Kumar
- Department of Pharmacology, Divine College of Pharmacy, Bihar, India
| | - Suruchi Gupta
- School of Pharmacy, YBN University, Ranchi, Jharkhand, India
| | - Rohini Agrawal
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Bukke VN, Moola A, Serviddio G, Vendemiale G, Bellanti F. Nuclear factor erythroid 2-related factor 2-mediated signaling and metabolic associated fatty liver disease. World J Gastroenterol 2022; 28:6909-6921. [PMID: 36632321 PMCID: PMC9827579 DOI: 10.3748/wjg.v28.i48.6909] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is a key driver in the development and progression of several diseases, including metabolic associated fatty liver disease (MAFLD). This condition includes a wide spectrum of pathological injuries, extending from simple steatosis to inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Excessive buildup of lipids in the liver is strictly related to oxidative stress in MAFLD, progressing to liver fibrosis and cirrhosis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of redox homeostasis. NRF2 plays an important role for cellular protection by inducing the expression of genes related to antioxidant, anti-inflammatory, and cytoprotective response. Consistent evidence demonstrates that NRF2 is involved in every step of MAFLD deve-lopment, from simple steatosis to inflammation, advanced fibrosis, and ini-tiation/progression of hepatocellular carcinoma. NRF2 activators regulate lipid metabolism and oxidative stress alleviating the fatty liver disease by inducing the expression of cytoprotective genes. Thus, modulating NRF2 activation is crucial not only in understanding specific mechanisms underlying MAFLD progression but also to characterize effective therapeutic strategies. This review outlined the current knowledge on the effects of NRF2 pathway, modulators, and mechanisms involved in the therapeutic implications of liver steatosis, inflammation, and fibrosis in MAFLD.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Archana Moola
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| |
Collapse
|
4
|
The Most Promising Biomarkers of Allogeneic Kidney Transplant Rejection. J Immunol Res 2022; 2022:6572338. [PMID: 35669103 PMCID: PMC9167141 DOI: 10.1155/2022/6572338] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical transplantology is a constantly evolving field of medicine. Kidney transplantation has become standard clinical practice, and it has a significant impact on reducing mortality and improving the quality of life of patients. Allogenic transplantation induces an immune response, which may lead to the rejection of the transplanted organ. The gold standard for evaluating rejection of the transplanted kidney by the recipient's organism is a biopsy of this organ. However, due to the high invasiveness of this procedure, alternative diagnostic methods are being sought. Therefore, the biomarkers may play an essential predictive role in transplant rejection. A review of the most promising biomarkers for early diagnosis and prognosis prediction of allogenic kidney transplant rejection summarizes novel data on neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), C-X-C motif chemokine 10 (CXCL-10), cystatin C (CysC), osteopontin (OPN), and clusterin (CLU) and analyses the dynamics of changes of the biomarkers mentioned above in kidney diseases and the mechanism of rejection of the transplanted kidney.
Collapse
|
5
|
Xiong P, Zhu YF. Soy diet for nonalcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e25817. [PMID: 34087824 PMCID: PMC8183754 DOI: 10.1097/md.0000000000025817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/13/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The efficacy of soy diet for nonalcoholic fatty liver disease remains controversial. We conduct a systematic review and meta-analysis to explore the influence of soy diet vs placebo on the treatment of non-alcoholic fatty liver disease. METHODS We search PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through October 2020 for randomized controlled trials assessing the efficacy of soy diet vs placebo for nonalcoholic fatty liver disease. This meta-analysis is performed using the random-effect model. RESULTS Five randomized controlled trials are included in the meta-analysis. Overall, compared with control group for nonalcoholic fatty liver disease, soy diet is associated with significantly reduced HOMA-IR (standard mean difference [SMD] = -0.42; 95% confidence interval [CI] = -0.76 to -0.08; P = .01), increased insulin (SMD = -0.64; 95% CI = -0.98 to -0.30; P = .0002) and decreased malondialdehyde (SMD = -0.43; 95% CI = -0.74 to -0.13; P = .005), but demonstrated no substantial impact on body mass index (SMD = 0.17; 95% CI = -0.20 to 0.53; P = .37), alanine aminotransferase (SMD = -0.01; 95% CI = -0.61 to 0.60; P = .98), aspartate-aminotransferase (SMD = 0.01; 95% CI = -0.47 to 0.49; P = .97), total cholesterol (SMD = 0.05; 95% CI = -0.25 to 0.35; P = .73) or low density lipoprotein (SMD = 0; 95% CI = -0.30 to 0.30; P = .99). CONCLUSIONS Soy diet may benefit to alleviate insulin resistance for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Pian Xiong
- Department of Infectious Disease, The Fourth Affiliated Hospital Zhejiang University, School of Medicine, Yiwu
| | - Yong-Fen Zhu
- Department of Hepatology and infection, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Mostofinejad Z, Akheruzzaman M, Abu Bakkar Siddik M, Patkar P, Dhurandhar NV, Hegde V. Antidiabetic E4orf1 protein prevents hepatic steatosis and reduces markers of aging-related cellular damage in high fat fed older mice. BMJ Open Diabetes Res Care 2021; 9:9/1/e002096. [PMID: 33941552 PMCID: PMC8098932 DOI: 10.1136/bmjdrc-2020-002096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Older age is associated with greater prevalence of hyperinsulinemia, type 2 diabetes, and fatty liver disease. These metabolic conditions and aging are bidirectionally linked to mitochondrial dysfunction and telomere attrition. Although effectively addressing these conditions is important for influencing the health and the lifespan, it is particularly challenging in older age. We reported that E4orf1, a protein derived from human adenovirus Ad36, reduces hyperinsulinemia, improves glucose clearance, and protects against hepatic steatosis in younger mice exposed to high fat diet (HFD). Here, we tested if E4orf1 will improve glycemic control, liver fat accumulation, mitochondrial integrity, and reduce telomere attrition in older mice. RESEARCH DESIGN AND METHODS We used 9-month-old mice that inducibly expressed E4orf1 in adipose tissue and non-E4orf1 expressing control mice. Mice were maintained on a 60% (kcal) HFD for 20 weeks and glycemic control was determined by intraperitoneal glucose tolerance test at week 20. Following 20 weeks of HF-feeding, mice were sacrificed and liver tissues collected to determine the expression of aging genes using qRT-PCR based RT2 Profiler PCR array. RESULTS Compared with the control mice, E4orf1 significantly improved glycemic control and reduced hepatic steatosis and fibrosis. Additionally, E4orf1 maintained markers of mitochondrial integrity and telomere attrition. CONCLUSION E4orf1 has the potential to improve glycemic control in older mice, and the improvement persists even after longer term exposure. E4orf1 expression also maintains mitochondrial integrity and telomere attrition, thus delaying age-associated diseases. This provides strong evidence for therapeutic utility of E4orf1 in improving age-associated metabolic and cellular changes that occur with aging in humans.
Collapse
Affiliation(s)
- Zahra Mostofinejad
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
- Department of Nutrition and Environmental Toxicology, University of California, Davis, California, USA
| | - Md Akheruzzaman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | | | - Presheet Patkar
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nikhil V Dhurandhar
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Vijay Hegde
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
7
|
Zhang MH, Li J, Zhu XY, Zhang YQ, Ye ST, Leng YR, Yang T, Zhang H, Kong LY. Physalin B ameliorates nonalcoholic steatohepatitis by stimulating autophagy and NRF2 activation mediated improvement in oxidative stress. Free Radic Biol Med 2021; 164:1-12. [PMID: 33388433 DOI: 10.1016/j.freeradbiomed.2020.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is the progressive stage of non-alcoholic fatty liver disease that may ultimately lead to cirrhosis and liver cancer, and there are few therapeutic options for its treatment. Physalin B (PB), a withanolide isolated from Physalis species (Solanaceae), exhibits a broad spectrum of biological activities, however, the potential role of PB in NASH has not been evaluated. The present study investigated the protective effects of PB against NASH and further elucidated the mechanisms of PB in hepatic autophagy and oxidative stress in vitro and in vivo. We conducted a series of experiments using methionine-choline deficient (MCD) diet induced NASH mice and cultured L02 cells. Serum markers of liver injury, morphology, and the histology of liver tissues were investigated. Western blot assays and quantitative real-time PCR were used to investigate the hepatoprotective effect of PB. PB significantly ameliorated hepatic injury, including hepatic index, transaminase activities, histology, and inflammation in MCD-induced mice. Moreover, PB markedly increased the expression of P62 and the ratio of LC3Ⅱ/Ⅰ in vitro and in vivo. Furthermore, PB promoted the interaction between endogenous KEAP1 and P62, reduced the interaction between KEAP1 and NRF2, activated the nuclear translocation of NRF2 and NRF2 target gene expression, and ultimately attenuated oxidative stress. In addition, knockdown of P62 blocked PB-mediated activation of NRF2 in L02 cells. These results clearly indicated that PB ameliorated NASH by stimulating autophagy and P62-KEAP1-NRF2 antioxidative signaling, suggesting that PB is expected to become a novel therapeutic drug for NASH.
Collapse
Affiliation(s)
- Mei-Hui Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jie Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Yun Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan-Qiu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng-Tao Ye
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying-Rong Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
He Y, Jiang J, He B, Shi Z. Chemical Activators of the Nrf2 Signaling Pathway in Nonalcoholic Fatty Liver Disease. Nat Prod Commun 2021. [DOI: 10.1177/1934578x20987095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is paralleling the insulin resistance and obesity epidemic and is regarded as liver metabolic syndrome, and its prevalence rate is increasing rapidly. The best explanation for the occurrence and development of NAFLD is the “multiple hit” hypothesis instead of the “two-hit” hypothesis. At present, NAFLD therapies are limited. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is a key pathway in oxidative stress. Its downstream proteins/enzymes are regulated. Metabolic enzymes and antioxidant proteins/enzymes play a vital role in cell defense protection and have attracted attention in the field of antioxidant research in recent years. This paper summarizes the regulatory mechanism of the Nrf2 signaling pathway and the research progress of Nrf2 activators in NAFLD to provide guidance for NAFLD therapy in the future.
Collapse
Affiliation(s)
- Yinghua He
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Jianping Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Beihui He
- Laboratory of Digestive Disease, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Zheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, P. R. China
- Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Hangzhou, P. R. China
- Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, P. R. China
| |
Collapse
|
9
|
Honokiol Alleviates Methionine-Choline Deficient Diet-Induced Hepatic Steatosis and Oxidative Stress in C57BL/6 Mice by Regulating CFLAR-JNK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2313641. [PMID: 33354276 PMCID: PMC7735862 DOI: 10.1155/2020/2313641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
Background Honokiol (HNK) has been reported to possess various beneficial effects in the context of metabolic disorders, including fatty liver, insulin resistance, and oxidative stress which are closely related to nonalcoholic steatohepatitis (NASH), however with no particular reference to CFLAR or JNK. Methods C57BL/6 mice were fed methionine-choline-deficient (MCD) diet and administered simultaneously with HNK (10 and 20 mg/kg once a day, ig) for 6 weeks, and NCTC1469 cells were pretreated, respectively, by oleic acid (OA, 0.5 mmol/L) plus palmitic acid (PA, 0.25 mmol/L) for 24 h, and adenovirus-down Cflar for 24 h, then exposed to HNK (10 and 20 μmol/L) for 24 h. Commercial kits, H&E, MT, ORO staining, RT-qPCR, and Western blotting were used to detect the biomarkers, hepatic histological changes, and the expression of key genes involved in NASH. Results The in vivo results showed that HNK suppressed the phosphorylation of JNK (pJNK) by activating CFLAR; enhanced the mRNA expression of lipid metabolism-related genes Acox, Cpt1α, Fabp5, Gpat, Mttp, Pparα, and Scd-1; and decreased the levels of hepatic TG, TC, and MDA, as well as the levels of serum ALT and AST. Additionally, HNK enhanced the protein expression of oxidative stress-related key regulatory gene NRF2 and the activities of antioxidases HO-1, CAT, and GSH-Px and decreased the protein levels of prooxidases CYP4A and CYP2E1. The in vivo effects of HNK on the expression of CLFAR, pJNK, and NRF2 were proved by the in vitro experiments. Moreover, HNK promoted the phosphorylation of IRS1 (pIRS1) in both tested cells and increased the uptake of fluorescent glucose 2-NBDG in OA- and PA-pretreated cells. Conclusions HNK ameliorated NASH mainly by activating the CFLAR-JNK pathway, which not only alleviated fat deposition by promoting the efflux and β-oxidation of fatty acids in the liver but also attenuated hepatic oxidative damage and insulin resistance by upregulating the expression of NRF2 and pIRS1.
Collapse
|
10
|
Udomsinprasert W, Poovorawan Y, Chongsrisawat V, Vejchapipat P, Honsawek S. Decreased circulating clusterin reflects severe liver complications after hepatoportoenterostomy of biliary atresia. Sci Rep 2020; 10:19736. [PMID: 33184463 PMCID: PMC7665004 DOI: 10.1038/s41598-020-76875-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to determine whether circulating levels of clusterin (CLU), an extracellular chaperone implicated in cholestatic and fibrotic processes, are associated with clinical parameters of post-operative BA patients and could serve as a BA biomarker. Ninety-six BA patients and 56 healthy controls were recruited. Circulating CLU levels were measured using enzyme-linked immunosorbent assay. Circulating CLU levels were significantly reduced in BA patients – especially those with worse outcomes including jaundice, severe liver fibrosis, and late-stage of hepatic dysfunction. Multivariate linear regression analysis revealed that circulating CLU levels were negatively associated with outcome parameters indicating jaundice status, degree of fibrosis, and liver dysfunction, but positively correlated with serum albumin and platelet number of BA patients. Lower circulating CLU levels were considerably associated with poor survival of post-operative BA patients. Receiver-operating characteristic curve analysis demonstrated a diagnostic value of circulating CLU as a non-invasive indicator for poor outcomes of BA patients (AUC = 0.85), with a sensitivity of 81.5% and a specificity of 73.5%. All findings indicate that reduced circulating CLU might reflect poor outcomes of BA patients and have potential as a novel biomarker for the disease severity following Kasai-operation.
Collapse
Affiliation(s)
- Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudthaya Road, Rajathevi, Bangkok, 10400, Thailand.
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Voranush Chongsrisawat
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Paisarn Vejchapipat
- Department of Surgery, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sittisak Honsawek
- Osteoarthritis and Musculoskeleton Research Unit, Department of Biochemistry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Clusterin overexpression protects against western diet-induced obesity and NAFLD. Sci Rep 2020; 10:17484. [PMID: 33060605 PMCID: PMC7562726 DOI: 10.1038/s41598-020-73927-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is a significant risk factor for various metabolic diseases and is closely related to non-alcoholic fatty liver disease (NAFLD) characterized by inflammation and oxidative stress. Clusterin is a multi-functional protein that is up-regulated in the pathogenesis of various metabolic diseases, including obesity and NAFLD. Our previous studies indicated that hepatocyte-specific overexpression of clusterin alleviates methionine choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) by activating nuclear factor erythroid 2-related factor 2 (Nrf2). Here we generated transgenic mice with whole-body clusterin overexpression (wCLU-tg) and investigated the role of clusterin in Western diet-induced obesity and NAFLD. We confirmed that obesity parameters and the spectrum of NAFLD of wCLU-tg mice were improved compared to wild type mice. Contrarily, clusterin deficiency deteriorated metabolic disruptions. We also found that clusterin activates target molecules for obesity and NAFLD, namely Nrf2 and AMPK, suggesting that clusterin protects against Western diet-induced obesity and NAFLD by activating Nrf2 and AMPK.
Collapse
|
12
|
Fu N, Du H, Li D, Lu Y, Li W, Wang Y, Kong L, Du J, Zhao S, Ren W, Han F, Wang R, Zhang Y, Nan Y. Clusterin contributes to hepatitis C virus-related hepatocellular carcinoma by regulating autophagy. Life Sci 2020; 256:117911. [DOI: 10.1016/j.lfs.2020.117911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
|
13
|
Seo JA, Kang MC, Yang WM, Hwang WM, Kim SS, Hong SH, Heo JI, Vijyakumar A, Pereira de Moura L, Uner A, Huang H, Lee SH, Lima IS, Park KS, Kim MS, Dagon Y, Willnow TE, Aroda V, Ciaraldi TP, Henry RR, Kim YB. Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity. Nat Commun 2020; 11:2024. [PMID: 32332780 PMCID: PMC7181874 DOI: 10.1038/s41467-020-15963-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Crosstalk between liver and skeletal muscle is vital for glucose homeostasis. Hepatokines, liver-derived proteins that play an important role in regulating muscle metabolism, are important to this communication. Here we identify apolipoprotein J (ApoJ) as a novel hepatokine targeting muscle glucose metabolism and insulin sensitivity through a low-density lipoprotein receptor-related protein-2 (LRP2)-dependent mechanism, coupled with the insulin receptor (IR) signaling cascade. In muscle, LRP2 is necessary for insulin-dependent IR internalization, an initial trigger for insulin signaling, that is crucial in regulating downstream signaling and glucose uptake. Of physiologic significance, deletion of hepatic ApoJ or muscle LRP2 causes insulin resistance and glucose intolerance. In patients with polycystic ovary syndrome and insulin resistance, pioglitazone-induced improvement of insulin action is associated with an increase in muscle ApoJ and LRP2 expression. Thus, the ApoJ-LRP2 axis is a novel endocrine circuit that is central to the maintenance of normal glucose homeostasis and insulin sensitivity. Hepatokines are proteins secreted by the liver that can regulate whole body metabolism. Here the authors identify apolipoprotein J as a hepatokine that regulates muscle glucose metabolism and insulin resistance through a low-density lipoprotein receptor-related protein−2 mediated mechanism in mice.
Collapse
Affiliation(s)
- Ji A Seo
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Won-Mo Yang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Won Min Hwang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Division of Nephrology, Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, Korea
| | - Sang Soo Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Soo Hyun Hong
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Columbia University, New York, NY, USA
| | - Jee-In Heo
- Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Achana Vijyakumar
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Leandro Pereira de Moura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,School of Applied Science, University of Campinas, Limeira, Brazil
| | - Aykut Uner
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hu Huang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,East Carolina University, East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Seung Hwan Lee
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Inês S Lima
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Universidade Nova de Lisboa, Lisboa, Portugal
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Min Seon Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Yossi Dagon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Thomas E Willnow
- Molecular Cardiovascular Research, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Vanita Aroda
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Robert R Henry
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Clusterin Attenuates Hepatic Fibrosis by Inhibiting Hepatic Stellate Cell Activation and Downregulating the Smad3 Signaling Pathway. Cells 2019; 8:cells8111442. [PMID: 31739636 PMCID: PMC6912488 DOI: 10.3390/cells8111442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023] Open
Abstract
Clusterin is a glycoprotein that is expressed in most human tissues and found in body fluids. In our previous studies we demonstrated that clusterin has a protective effect against hepatic lipid accumulation and renal fibrosis; however, the role of clusterin in hepatic fibrosis is unknown. Here, we examined whether clusterin had protective effects against hepatic fibrosis using in vitro and in vivo models. Clusterin was upregulated in the livers of human cirrhotic patients and in thioacetamide (TAA)-induced and bile duct ligation mouse models of liver fibrosis. Loss and overexpression of clusterin promoted and attenuated hepatic fibrosis after TAA injection, respectively. In addition, we found that clusterin attenuates hepatic fibrosis by inhibiting the activation of hepatic stellate cells and Smad3 signaling pathways. Thus, clusterin plays an important role in hepatic fibrosis.
Collapse
|
15
|
Liu Y, Xu W, Zhai T, You J, Chen Y. Silibinin ameliorates hepatic lipid accumulation and oxidative stress in mice with non-alcoholic steatohepatitis by regulating CFLAR-JNK pathway. Acta Pharm Sin B 2019; 9:745-757. [PMID: 31384535 PMCID: PMC6664044 DOI: 10.1016/j.apsb.2019.02.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic metabolic syndrome and the CFLAR-JNK pathway can reverse the process of NASH. Although silibinin is used for the treatment of NASH in clinical, its effect on CFLAR-JNK pathway in NASH remains unclear. This study aimed to investigate the effect of silibinin on CFLAR-JNK pathway in NASH models both in vivo and in vitro. The in vivo study was performed using male C57BL/6 mice fed with methionine- choline-deficient diet and simultaneously treated with silibinin for 6 weeks. The in vitro study was performed by using mouse NCTC-1469 cells which were respectively pretreated with oleic acid plus palmitic acid, and adenovirus-down Cflar for 24 h, then treated with silibinin for 24 h. After the drug treatment, the key indicators involved in CFLAR-JNK pathway including hepatic injury, lipid metabolism and oxidative stress were determined. Silibinin significantly activated CFLAR and inhibited the phosphorylation of JNK, up-regulated the mRNA expression of Pparα, Fabp5, Cpt1α, Acox, Scd-1, Gpat and Mttp, reduced the activities of serum ALT and AST and the contents of hepatic TG, TC and MDA, increased the expression of NRF2 and the activities of CAT, GSH-Px and HO-1, and decreased the activities and expression of CYP2E1 and CYP4A in vivo. These effects were confirmed by the in vitro experiments. Silibinin prevented NASH by regulating CFLAR-JNK pathway, and thereby on one hand promoting the β-oxidation and efflux of fatty acids in liver to relieve lipid accumulation, and on the other hand inducing antioxidase activity (CAT, GSH-Px and HO-1) and inhibiting pro-oxidase activity (CYP2E1 and CYP4A) to relieve oxidative stress.
Collapse
Key Words
- 2-NBDG, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Acox, acyl-coenzyme A oxidase X
- Akt, serine–threonine protein kinase
- CAT, catalase
- CFLAR
- CFLAR, caspase 8 and Fas-associated protein with death domain-like apoptosis regulator
- CYP2E1, cytochrome P450 2E1
- CYP4A, cytochrome P450 4A
- Cpt1α, carnitine palmitoyl transferase 1α
- Fabp5, fatty acid-binding proteins 5
- GSH-Px, glutathione peroxidase
- Gpat, glycerol-3-phosphate acyltransferase
- HE, hematoxylin–eosin
- HO-1, heme oxygenase 1
- IR, insulin resistance
- IRS1, insulin receptor substrate 1
- JNK, c-Jun N-terminal kinase
- Lipid accumulation
- MAPK, mitogen-activated protein kinase
- MCD, methionine- and choline-deficient
- MCS, methionine- and choline-sufficient
- MDA, malondialdehyde
- MT, Masson–Trichrome
- Mttp, microsomal triglyceride transfer protein
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor κB
- NRF2, nuclear factor erythroid 2-related factor 2
- OA, oleic acid
- ORO, oil red O
- Oxidation stress
- PA, palmitic acid
- PI3K, phosphatidylinositol 3-hydroxy kinase
- Pnpla3, phospholipase domain containing 3
- Pparα, peroxisome proliferator activated receptor α
- SD, Sprague–Dawley
- Scd-1, stearoyl-coenzyme A desaturase-1
- Silibinin
- Srebp-1c, sterol regulatory element binding protein-1C
- TC, total cholesterol
- TG, triglyceride
- pIRS1, phosphorylation of insulin receptor substrate 1
- pJNK, phosphorylation of c-Jun N-terminal kinase
Collapse
Affiliation(s)
| | | | | | | | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan 430062, China
| |
Collapse
|
16
|
Kurgan N, Noaman N, Pergande MR, Cologna SM, Coorssen JR, Klentrou P. Changes to the Human Serum Proteome in Response to High Intensity Interval Exercise: A Sequential Top-Down Proteomic Analysis. Front Physiol 2019; 10:362. [PMID: 31001142 PMCID: PMC6454028 DOI: 10.3389/fphys.2019.00362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
Exercise has been shown to improve health status and prevent chronic diseases. In contrast, overtraining can lead to maladaptation and detrimental health outcomes. These outcomes appear to be mediated in part by released peptides and, potentially, alterations in protein abundances and their modified forms, termed proteoforms. Proteoform biomarkers that either predict the beneficial effects of exercise or indicate (mal)adaptation are yet to be elucidated. Thus, we assessed the influence of high-intensity interval exercise (HIIE) on the human serum proteome to identify novel exercise-regulated proteoforms. To this end, a top-down proteomics approach was used, whereby two-dimensional gel electrophoresis was used to resolve and differentially profile intact proteoforms, followed by protein identification via liquid chromatography-tandem mass spectrometry. Blood was collected from six young-adult healthy males, pre-exercise and 5 min and 1 h post-exercise. Exercise consisted of a maximal cycle ergometer test followed by 8 min × 1 min high-intensity intervals at 90% W max, with 1 min non-active recovery between intervals. Twenty resolved serum proteoforms changed significantly in abundance at 5 min and/or 1 h post-HIIE, including apolipoproteins, serpins (protease inhibitors), and immune system proteins, known to have broad anti-inflammatory and antioxidant effects, involvement in lipid clearance, and cardio-/neuro-protective effects. This initial screening for potential biomarkers indicates that a top-down analytical proteomic approach may prove useful in further characterizing the response to exercise and in understanding the molecular mechanisms that lead to health benefits, as well as identifying novel biomarkers for exercise (mal)adaptation.
Collapse
Affiliation(s)
- Nigel Kurgan
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Nour Noaman
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
- Molecular Medicine Research Group, Department of Molecular Physiology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Melissa R. Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Stephanie M. Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Jens R. Coorssen
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
17
|
Effect of silibinin on CFLAR-JNK pathway in oleic acid-treated HepG2 cells. Biomed Pharmacother 2018; 108:716-723. [PMID: 30248539 DOI: 10.1016/j.biopha.2018.09.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/15/2018] [Accepted: 09/16/2018] [Indexed: 02/08/2023] Open
Abstract
AIMS Silibinin is a flavonolignan from milk thistle with many pharmacological activities including lipid-lowering and antioxidant. Caspase 8 and Fas-associated protein with death domain-like apoptosis regulator (CFLAR) is an important target gene in regulating non-alcoholic steatohepatitis (NASH). At present, the effect of silibinin on CFLAR-JNK pathway related to NASH was unknown. Here the effect of silibinin on CFLAR-JNK pathway and its downstream target genes involved in lipid metabolism, glucose uptake, oxidative stress and inflammatory response were studied in oleic acid (OA)-treated HepG2 cells. MAIN METHODS OA-treated HepG2 cells were employed as a in vitro model of steatosis, insulin resistance and oxidative stress. The model cells were then treated by silibinin (5, 20, 50, and 100 μM) for 24 h and detected for the related indicators as follows: (1) cellular triglycerides (TG), nitric oxide (NO) and glucose uptake; (2) the mRNA levels of the sterol regulatory element binding protein-1C (SREBP-1C), patatin-like phospholipase domain containing 3 (PNPLA3) and peroxisome proliferator activated receptor-α (PPARα); (3) the protein levels of PPARα, SREBP-1C, PNPLA3, CFLAR, phosphorylated c-Jun N-terminal kinase (pJNK), phosphatidylinositol 3-kinase (PI3K), phosphorylated serine-threonine protein kinase (pAKT), nuclear factor E2-related factor 2 (NRF2), cytochrome P450 2E1 (CYP2E1) and 4A (CYP4A). KEY FINDINGS Compared to the control, OA-treatment led to a result as follows: (1) increased the intracellular levels of TG and NO; (2) up-regulated the protein expression of SREBP-1C, PNPLA3, pJNK, CYP 2E1 and CYP 4A; (3) decreased the uptake of 2-NBDG; (4) down-regulated the protein expression of CFLAR, PPARα, PI3K, pAKT and NRF2. Compared to OA-treated HepG2 cells, silibinin treatment could improve the indicators as follows: (1) decreased the intracellular levels of TG and NO; (2) down-regulated the protein expression of SREBP-1C, PNPLA3, pJNK, CYP 2E1 and CYP 4A; (3) increased the uptake of 2-NBDG; (4) up-regulated the protein expression of CFLAR, PPARα, PI3K, pAKT and NRF2. SIGNIFICANCE Silibinin can ameliorate some metabolic alterations and induce some molecular changes by activating the CFLAR-JNK pathway and thereby regulating its downstream target genes involved in lipid metabolism (PPARα, SREBP-1C and PNPLA3), glucose uptake (PI3K-AKT), oxidative stress (NRF2, CYP2E1, CYP4A) and inflammatory response(NO) in OA-treated HepG2 cells demonstrating its possible use in ameliorating various symptoms of NASH.
Collapse
|