1
|
Mwaheb MA, Reda NM, El-Wetidy MS, Sheded AH, Al-Otibi F, Al-Hamoud GA, Said MA, Aidy EA. Versatile properties of Opuntia ficus-indica (L.) Mill. flowers: In vitro exploration of antioxidant, antimicrobial, and anticancer activities, network pharmacology analysis, and In-silico molecular docking simulation. PLoS One 2024; 19:e0313064. [PMID: 39495776 PMCID: PMC11534206 DOI: 10.1371/journal.pone.0313064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Opuntia ficus-indica (L.) Mill. has been used in folk medicine against several diseases. The objectives of the present study were to investigate the chemical composition of the methanolic extract of O. ficus-indica (L.) Mill. flowers and their antioxidant, antimicrobial, and anticancer properties. Besides, network pharmacology and molecular docking were used to explore the potential antitumor effect of active metabolites of O. ficus-indica (L.) Mill. against breast and liver cancer. The results revealed many bioactive components known for their antimicrobial and anticancer properties. Furthermore, scavenging activity was obtained, which indicated strong antioxidant properties. The plant extract exhibited antimicrobial activities against Aspergillus brasiliensis (MIC of 0.625 mg/mL), Candida albicans, Saccharomyces cerevisiae, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa at MICs of 1.25 mg/mL. The results revealed proapoptotic activities of the O. ficus-indica (L.) Mill. extract against MCF7, MDA-MB-231, and HepG2 cell lines, where it induced significant early apoptosis and cell cycle arrest at sub-G1 phases, besides increasing the expression levels of p53, cyclin D1, and caspase 3 (p <0.005). The network pharmacology and molecular docking analysis revealed that the anticancer components of O. ficus-indica (L.) Mill. flower extract targets the PI3K-Akt pathway. More investigations might be required to test the mechanistic pathways by which O. ficus-indica (L.) Mill. might exhibit its biological activities in vivo.
Collapse
Affiliation(s)
- Mai Ali Mwaheb
- Botany Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Nashwa Mohamed Reda
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Asmaa H. Sheded
- Organic Chemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah A. Al-Hamoud
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Esraa A. Aidy
- Cancer Biology Department, Medical Biochemistry and Molecular Biology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Valivand N, Aravand S, Lotfi H, Esfahani AJ, Ahmadpour-Yazdi H, Gheibi N. Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways. Mol Biol Rep 2024; 51:931. [PMID: 39177837 DOI: 10.1007/s11033-024-09807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
Propolis is a natural product used in cancer treatment, which is produced by bees via different sources. The chemical composition of Propolis is determined based on the climatic and geographical conditions, as well as harvesting time and method. This compound has been the subject of numerous investigational endeavors due to its expansive therapeutic capacity which includes antibacterial, anti-fungal, anti-inflammatory, anti-oxidant, anti-viral, and anti-cancer effects. The growing incidence rate of different cancers necessitates the need for developing novel preventive and therapeutic strategies. Chemotherapy, radiotherapy, and stem cell therapy have proved effective in cancer treatment, regardless of the adverse events associated with these modalities. Clinical application of natural compounds such as Propolis may confer promise as an adjuvant therapeutic intervention, particularly in certain subpopulations of patients that develop adverse events associated with anticancer regimens. The diverse biologically active compounds of propolis are believed to confer anti-cancer potential by modulation of critical signaling cascades such as caffeic acid phenethyl ester, Galangin, Artepillin C, Chrysin, Quercetin, Caffeic acid, Nymphaeols A and C, Frondoside A, Genistein, p-coumaric acid, and Propolin C. This review article aims to deliver a mechanistic account of anti-cancer effects of propolis and its components. Propolis can prevent angiogenesis by downregulating pathways involving Jun-N terminal kinase, ERK1/2, Akt and NF-ƘB, while counteracting metastatic progression of cancer by inhibiting Wtn2 and FAK, and MAPK and PI3K/AKT signaling pathways. Moreover, propolis or its main components show regulatory effects on cyclin D, CDK2/4/6, and their inhibitors. Additionally, propolis-induced up-regulation of p21 and p27 may result in cell cycle arrest at G2/M or G0/G1. The broad anti-apoptotic effects of propolis are mediated through upregulation of TRAIL, Bax, p53, and downregulation of the ERK1/2 signaling pathway. Considering the growing body of evidence regarding different anti-cancers effects of propolis and its active components, this natural compound could be considered an effective adjuvant therapy aimed at reducing related side effects associated with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nassim Valivand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Aravand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Azam Janati Esfahani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Ahmadpour-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
3
|
Lesmana R, Tandean S, Christoper A, Suwantika AA, Wathoni N, Abdulah R, Fearnley J, Bankova V, Zulhendri F. Propolis as an autophagy modulator in relation to its roles in redox balance and inflammation regulation. Biomed Pharmacother 2024; 175:116745. [PMID: 38761422 DOI: 10.1016/j.biopha.2024.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Autophagy is a degradation process that is evolutionarily conserved and is essential in maintaining cellular and physiological homeostasis through lysosomal removal and elimination of damaged peptides, proteins and cellular organelles. The dysregulation of autophagy is implicated in various diseases and disorders, including cancers, infection-related, and metabolic syndrome-related diseases. Propolis has been demonstrated in various studies including many human clinical trials to have antimicrobial, antioxidant, anti-inflammatory, immune-modulator, neuro-protective, and anti-cancer. Nevertheless, the autophagy modulation properties of propolis have not been extensively studied and explored. The role of propolis and its bioactive compounds in modulating cellular autophagy is possibly due to their dual role in redox balance and inflammation. The present review attempts to discuss the activities of propolis as an autophagy modulator in biological models in relation to various diseases/disorders which has implications in the development of propolis-based nutraceuticals, functional foods, and complementary therapies.
Collapse
Affiliation(s)
- R Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Indonesia; Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Indonesia.
| | - S Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara 20222, Indonesia.
| | - A Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - A A Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - N Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; Research Center of Biopolymers for Drug and Cosmetic Delivery, Bandung 45363, Indonesia.
| | - R Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - J Fearnley
- Apiceutical Research Centre, Unit 3b Enterprise Way, Whitby, North Yorkshire YO18 7NA, UK.
| | - V Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria.
| | - F Zulhendri
- Kebun Efi, Kabanjahe, North Sumatra 22171, Indonesia; Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia.
| |
Collapse
|
4
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Bulotta RM, Biondi V, Passantino A, Britti D, Statti G, Palma E. Hive Products: Composition, Pharmacological Properties, and Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:646. [PMID: 38794216 PMCID: PMC11124102 DOI: 10.3390/ph17050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Beekeeping provides products with nutraceutical and pharmaceutical characteristics. These products are characterized by abundance of bioactive compounds. For different reasons, honey, royal jelly, propolis, venom, and pollen are beneficial to humans and animals and could be used as therapeutics. The pharmacological action of these products is related to many of their constituents. The main bioactive components of honey include oligosaccharides, methylglyoxal, royal jelly proteins (MRJPs), and phenolics compounds. Royal jelly contains jelleins, royalisin peptides, MRJPs, and derivatives of hydroxy-decenoic acid, particularly 10-hydroxy-2-decenoic acid (10-HDA), which possess antibacterial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome-preventing, and anti-aging properties. Propolis has a plethora of activities that are referable to compounds such as caffeic acid phenethyl ester. Peptides found in bee venom include phospholipase A2, apamin, and melittin. In addition to being vitamin-rich, bee pollen also includes unsaturated fatty acids, sterols, and phenolics compounds that express antiatherosclerotic, antidiabetic, and anti-inflammatory properties. Therefore, the constituents of hive products are particular and different. All of these constituents have been investigated for their properties in numerous research studies. This review aims to provide a thorough screening of the bioactive chemicals found in honeybee products and their beneficial biological effects. The manuscript may provide impetus to the branch of unconventional medicine that goes by the name of apitherapy.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy;
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Nagaoka Y, Oshiro K, Yoshino Y, Matsunaga T, Endo S, Ikari A. Activation of the TGF-β1/EMT signaling pathway by claudin-1 overexpression reduces doxorubicin sensitivity in small cell lung cancer SBC-3 cells. Arch Biochem Biophys 2024; 751:109824. [PMID: 37984759 DOI: 10.1016/j.abb.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Small-cell lung cancer (SCLC), which accounts for about 15 % of all lung cancers, progresses more rapidly than other histologic types and is rarely detected at an operable early stage. Therefore, chemotherapy, radiation therapy, or their combination are the primary treatments for this type of lung cancer. However, the tendency to acquire resistance to anticancer drugs is a severe problem. Recently, we found that an intercellular adhesion molecule, claudin (CLDN) 1, known to be involved in the migration and invasion of lung cancer cells, is involved in the acquisition of anticancer drug resistance. In the present study, we investigated the effect of CLDN1 on the anticancer-drug sensitivity of SCLC SBC-3 cells. Since epithelial-mesenchymal transition (EMT), which is involved in cancer cell migration and invasion, is well known for its involvement in anticancer-drug sensitivity via inhibition of apoptosis, we also examined EMT involvement in decreased anticancer-drug sensitivity by CLDN1. Sensitivity to doxorubicin (DOX) in SBC-3 cells was significantly decreased by CLDN1 overexpression. CLDN1 overexpression resulted in increased TGF-β1 levels, enhanced EMT induction, and increased migratory potency of SBC-3 cells. The decreased sensitivity of SBC-3 cells to anticancer drugs upon TGF-β1 treatment suggested that activation of the TGF-β1/EMT signaling pathway by CLDN1 causes the decreased sensitivity to anticancer drugs and increased migratory potency. Furthermore, treatments with antiallergic agents tranilast and zoledronic acid, known EMT inhibitors, significantly mitigated the decreased sensitivity of CLDN1-overexpressing SBC-3 cells to DOX. These results suggest that EMT inhibitors might effectively overcome reduced sensitivity to anticancer drugs in CLDN1-overexpressing SCLC cells.
Collapse
Affiliation(s)
- Yuri Nagaoka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Kotone Oshiro
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
6
|
Mia MAR, Dey D, Sakib MR, Biswas MY, Prottay AAS, Paul N, Rimti FH, Abdullah Y, Biswas P, Iftehimul M, Paul P, Sarkar C, El-Nashar HAS, El-Shazly M, Islam MT. The efficacy of natural bioactive compounds against prostate cancer: Molecular targets and synergistic activities. Phytother Res 2023; 37:5724-5754. [PMID: 37786304 DOI: 10.1002/ptr.8017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Globally, prostate cancer (PCa) is regarded as a challenging health issue, and the number of PCa patients continues to rise despite the availability of effective treatments in recent decades. The current therapy with chemotherapeutic drugs has been largely ineffective due to multidrug resistance and the conventional treatment has restricted drug accessibility to malignant tissues, necessitating a higher dosage resulting in increased cytotoxicity. Plant-derived bioactive compounds have recently attracted a great deal of attention in the field of PCa treatment due to their potent effects on several molecular targets and synergistic effects with anti-PCa drugs. This review emphasizes the molecular mechanism of phytochemicals on PCa cells, the synergistic effects of compound-drug interactions, and stem cell targeting for PCa treatment. Some potential compounds, such as curcumin, phenethyl-isothiocyanate, fisetin, baicalein, berberine, lutein, and many others, exert an anti-PCa effect via inhibiting proliferation, metastasis, cell cycle progression, and normal apoptosis pathways. In addition, multiple studies have demonstrated that the isolated natural compounds: d-limonene, paeonol, lanreotide, artesunate, and bicalutamide have potential synergistic effects. Further, a significant number of natural compounds effectively target PCa stem cells. However, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals against PCa.
Collapse
Affiliation(s)
- Md Abdur Rashid Mia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Musfiqur Rahman Sakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Md Yeaman Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Niloy Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Fahmida Hoque Rimti
- Bachelor of Medicine and Surgery, Chittagong Medical College, Chawkbazar, Bangladesh
| | - Yusuf Abdullah
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Md Iftehimul
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| |
Collapse
|
7
|
Pazin WM, Miranda RR, Toledo KA, Kjeldsen F, Constantino CJL, Brewer JR. pH-Dependence Cytotoxicity Evaluation of Artepillin C against Tumor Cells. Life (Basel) 2023; 13:2186. [PMID: 38004326 PMCID: PMC10672498 DOI: 10.3390/life13112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Brazilian green propolis is a well-known product that is consumed globally. Its major component, Artepillin C, showed potential as an antitumor product. This study explored the impact of Artepillin C on fibroblast and glioblastoma cell lines, used as healthy and very aggressive tumor cell lines, respectively. The focus of the study was to evaluate the pH-dependence of Artepillin C cytotoxicity, since tumor cells are known to have a more acidic extracellular microenvironment compared to healthy cells, and Artepillin C was shown to become more lipophilic at lower pH values. Investigations into the pH-dependency of Artepillin C (6.0-7.4), through viability assays and live cell imaging, revealed compelling insights. At pH 6.0, MTT assays showed the pronounced cytotoxic effects of Artepillin C, yielding a notable reduction in cell viability to less than 12% among glioblastoma cells following a 24 h exposure to 100 µM of Artepillin C. Concurrently, LDH assays indicated significant membrane damage, affecting approximately 50% of the total cells under the same conditions. Our Laurdan GP analysis suggests that Artepillin C induces autophagy, and notably, provokes a lipid membrane packing effect, contributing to cell death. These combined results affirm the selective cytotoxicity of Artepillin C within the acidic tumor microenvironment, emphasizing its potential as an effective antitumor agent. Furthermore, our findings suggest that Artepillin C holds promise for potential applications in the realm of anticancer therapies given its pH-dependence cytotoxicity.
Collapse
Affiliation(s)
- Wallance M. Pazin
- Department of Physics and Meteorology, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil;
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Renata R. Miranda
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Karina A. Toledo
- Department of Biological Sciences, School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis 19806-900, Brazil;
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| | - Carlos J. L. Constantino
- Department of Physics, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Jonathan R. Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (R.R.M.); (F.K.)
| |
Collapse
|
8
|
Berretta AA, De Lima JA, Falcão SI, Calhelha R, Amorim NA, Gonçalves IS, Zamarrenho LG, Barud HDS, Bastos JK, De Jong D, Vilas-Boas M. Development and Characterization of High-Absorption Microencapsulated Organic Propolis EPP-AF ® Extract (i-CAPs). Molecules 2023; 28:7128. [PMID: 37894606 PMCID: PMC10609166 DOI: 10.3390/molecules28207128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The demand for organic and functional food continues to increase yearly. Among the available functional foods, propolis is a bee product that has various beneficial properties, including antimicrobial, antioxidant, and anti-inflammatory activities. However, it generally is only available in ethanol solution, which has poor bioavailability, as it is relatively insoluble in water. The use of such ethanol extracts is often objectionable because of the alcohol content and because they have a strong and striking taste. Development of alternatives that can efficiently and safely increase solubility in water, and that meet organic production specifications, has been a challenge. To address these concerns, microcapsules were developed using spray-dryer technology from an emulsion based on EPP-AF® propolis and gum arabic (i-CAPS). These propolis-loaded microcapsules were characterized using FT-IR, SEM, TGA, HPLC, and spectrophotometric techniques, along with determination of antimicrobial, antioxidant, antitumor, anti-inflammatory, and antihypercholesterolemic activities, as well as permeability in in vitro models. The production system resulted in microcapsules with a spherical shape and an encapsulation efficiency of 93.7 ± 0.7%. They had IC50s of 2.654 ± 0.062 and 7.342 ± 0.058 µg/mL by FRAP and DPPH antioxidant methods, respectively. The EPP-AF® i-CAPS also had superior antimicrobial activity against Gram-positive bacteria. Antitumor activity was calculated based on the concentration that inhibited 50% of growth of AGS, Caco-2, and MCF-7 cell strains, giving results of 154.0 ± 1.0, 117 ± 1.0, and 271.0 ± 25 µg/mL, respectively. The microcapsule presentation reduced the permeation of cholesterol by 53.7%, demonstrating antihypercholesterolemic activity, and it improved the permeability of p-coumaric acid and artepillin C. The IC50 for NO production in RAW 264.7 cells was 59.0 ± 0.1 µg/mL. These findings demonstrate the potential of this new propolis product as a food and pharmaceutical ingredient, though additional studies are recommended to validate the safety of proposed dosages.
Collapse
Affiliation(s)
- Andresa A Berretta
- Department of Research, Development & Innovation, Apis Flora Indl. Coml. Ltd.a., Ribeirão Preto 14020-670, Brazil
| | - Jéssica A De Lima
- Department of Research, Development & Innovation, Apis Flora Indl. Coml. Ltd.a., Ribeirão Preto 14020-670, Brazil
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Soraia I Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Nathaly Alcazar Amorim
- Department of Research, Development & Innovation, Apis Flora Indl. Coml. Ltd.a., Ribeirão Preto 14020-670, Brazil
| | | | - Luana Gonçalves Zamarrenho
- Department of Research, Development & Innovation, Apis Flora Indl. Coml. Ltd.a., Ribeirão Preto 14020-670, Brazil
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto 14049-900, Brazil
| | - Hernane da Silva Barud
- Biopolymers and Biomaterials Group, University of Araraquara, UNIARA, Araraquara 14801-320, Brazil
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | - David De Jong
- Genetics Department, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto 14049-900, Brazil
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
9
|
de Almeida-Junior S, Ferraz MVF, de Oliveira AR, Maniglia FP, Bastos JK, Furtado RA. Advances in the phytochemical screening and biological potential of propolis. Fundam Clin Pharmacol 2023; 37:886-899. [PMID: 37038052 DOI: 10.1111/fcp.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Propolis is a natural resinous product collected from different parts of plants by bees and mixed with their salivary secretions. The occurrence of more than 180 different chemotypes has flavonoids, phenolic acids, esters, and phenolic aldehydes, as well as balsamic resins, beeswax, pollen, and essential and aromatic oils, among others. Its biological potential documented throughout the world justifies the need, from time to time, to organize reviews on the subject, with the intention of gathering and informing about the update on propolis. In this review (CRD42020212971), phytochemical advances, in vitro, in vivo, and clinical biological assays of pharmacological interest are showcased. The focus of this work is to present propolis clinical safety assays, antitumor, analgesic, antioxidant, anti-inflammatory, and antimicrobial activities. This literature review highlights propolis' promising biological activity, as it also suggests that studies associating propolis with nanotechnology should be further explored for enhanced bioprocessing applications.
Collapse
Affiliation(s)
- Silvio de Almeida-Junior
- Biosciences and Health Laboratory, State University of Minas Gerais, Belo Horizonte, Brazil
- Postgraduate Program in Health Promotion, University of Franca, Franca, Brazil
| | - Matheus Vitor Ferreira Ferraz
- Department of Fundamental Chemistry, Federal University of Pernambuco, UFPE, Recife, Brazil
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alex Roberto de Oliveira
- Postgraduate Program in Animal Science, Animal Science Laboratory, University of Franca, Franca, Brazil
| | | | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Andrade Furtado
- Postgraduate Program in Health Promotion, University of Franca, Franca, Brazil
- Postgraduate Program in Animal Science, Animal Science Laboratory, University of Franca, Franca, Brazil
| |
Collapse
|
10
|
Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms. Pharmaceuticals (Basel) 2023; 16:ph16030450. [PMID: 36986549 PMCID: PMC10059947 DOI: 10.3390/ph16030450] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Cancer is the second most life-threatening disease and has become a global health and economic problem worldwide. Due to the multifactorial nature of cancer, its pathophysiology is not completely understood so far, which makes it hard to treat. The current therapeutic strategies for cancer lack the efficacy due to the emergence of drug resistance and the toxic side effects associated with the treatment. Therefore, the search for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Propolis is a mixture of resinous compounds containing beeswax and partially digested exudates from plants leaves and buds. Its chemical composition varies widely depending on the bee species, geographic location, plant species, and weather conditions. Since ancient times, propolis has been used in many conditions and aliments for its healing properties. Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties. In recent years, extensive in vitro and in vivo studies have suggested that propolis possesses properties against several types of cancers. The present review highlights the recent progress made on the molecular targets and signaling pathways involved in the anticancer activities of propolis. Propolis exerts anticancer effects primarily by inhibiting cancer cell proliferation, inducing apoptosis through regulating various signaling pathways and arresting the tumor cell cycle, inducing autophagy, epigenetic modulations, and further inhibiting the invasion and metastasis of tumors. Propolis targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, β-catenin, ERK1/2, MAPK, and NF-κB. Possible synergistic actions of a combination therapy of propolis with existing chemotherapies are also discussed in this review. Overall, propolis, by acting on diverse mechanisms simultaneously, can be considered to be a promising, multi-targeting, multi-pathways anticancer agent for the treatment of various types of cancers.
Collapse
|
11
|
Ota A, Kawai M, Kudo Y, Segawa J, Hoshi M, Kawano S, Yoshino Y, Ichihara K, Shiota M, Fujimoto N, Matsunaga T, Endo S, Ikari A. Artepillin C overcomes apalutamide resistance through blocking androgen signaling in prostate cancer cells. Arch Biochem Biophys 2023; 735:109519. [PMID: 36642262 DOI: 10.1016/j.abb.2023.109519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Prostate cancer has a relatively good prognosis, but most cases develop resistance to hormone therapy, leading to castration-resistant prostate cancer (CRPC). Androgen receptor (AR) antagonists and a cytochrome P450 17A1 inhibitor have been used to treat CRPC, but cancer cells readily develop resistance to these drugs. In this study, to improve the therapy of CRPC, we searched for natural compounds which block androgen signaling. Among cinnamic acid derivatives contained in Brazilian green propolis, artepillin C (ArtC) suppressed expressions of androgen-induced prostate-specific antigen and transmembrane protease serine 2 in a dose-dependent manner. Reporter assays revealed that ArtC displayed AR antagonist activity, albeit weaker than an AR antagonist flutamide. In general, aberrant activation of the androgen signaling is involved in the resistance of prostate cancer cells to hormone therapy. Recently, apalutamide, a novel AR antagonist, has been in clinical use, but its drug-resistant cases have been already reported. To search for compounds which overcome the resistance to apalutamide, we established apalutamide-resistant prostate cancer 22Rv1 cells (22Rv1/APA). The 22Rv1/APA cells showed higher AR expression and androgen sensitivity than parental 22Rv1 cells. ArtC inhibited androgen-induced proliferation of 22Rv1/APA cells by suppressing the enhanced androgen signaling through blocking the nuclear translocation of AR. In addition, ArtC potently sensitized the resistant cells to apalutamide by inducing apoptotic cell death due to mitochondrial dysfunction. These results suggest that the intake of Brazilian green propolis containing ArtC improves prostate cancer therapy.
Collapse
Affiliation(s)
- Atsumi Ota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Yudai Kudo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Jin Segawa
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Manami Hoshi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Shinya Kawano
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Kenji Ichihara
- Nagaragawa Research Center, API Co., Ltd., Gifu, 502-0071, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan.
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| |
Collapse
|
12
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
13
|
Miao WG, Nguyen T, Iqbal J, Pierens GK, Ma L, Richardson DR, Wood SA, Mellick GD, Quinn RJ, Feng Y. Meeting the Challenge 2: Identification of Potential Chemical Probes for Parkinson's Disease from Ligusticum chuanxiong Hort Using Cytological Profiling. ACS Chem Neurosci 2022; 13:2565-2578. [PMID: 36018577 DOI: 10.1021/acschemneuro.1c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traditional Chinese medicine (TCM) has been around for thousands of years and is increasingly gaining popularity in the Western world to treat various complex disorders including the incurable neurodegenerative condition, Parkinson's Disease (PD). One of the many directions in recent studies of PD is utilizing the phenotypic assay, or cytological profiling, to evaluate the phenotypic changes of PD-implicated cellular components in patient-derived olfactory neuroepithelial (hONS) cells, upon treating the cells with extracts or pure compounds. To obtain small molecules for studies utilizing PD phenotyping assays, Ligusticum chuanxiong Hort was selected for analysis as it is a popular Chinese herbal medicine used for treating PD-like symptoms. Fifty-three secondary metabolites, including six new compounds, were isolated from the ethanolic extract of L. chuanxiong; their structures were elucidated based on several spectroscopic techniques such as NMR, MS, Fourier transform infrared (FTIR), UV, and theoretical density functional theory (DFT) calculations. Cytological profiling of the afforded natural products against PD hONS cells revealed 34 compounds strongly perturbated the staining of several cellular organelles. In fact, greaterthan 1.5-fold change was observed compared to the control (dimethyl sulfoxide; DMSO), with early endosome, lysosome, and autophagosome (LC3b) being particularly affected. Given these biological compartments are closely related to PD pathogenesis, the results helped rationalize the traditional medicinal use of L. chuanxiong in PD treatment. Further, the hit compounds can serve as chemical probes to map the molecular pathways underlying PD, potentially leading to new therapeutic targets for PD.
Collapse
Affiliation(s)
- William Gang Miao
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Thanh Nguyen
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Jamila Iqbal
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Gregory K Pierens
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Des R Richardson
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia.,School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
14
|
Necroptosis and Prostate Cancer: Molecular Mechanisms and Therapeutic Potential. Cells 2022; 11:cells11071221. [PMID: 35406784 PMCID: PMC8997385 DOI: 10.3390/cells11071221] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022] Open
Abstract
Necroptosis is a programmed form of necrosis characterized by mitochondrial alterations and plasma membrane permeabilization resulting in the release of cytoplasmic content into extracellular space, and leading to inflammatory reactions. Besides its critical role in viral defense mechanisms and inflammatory diseases, necroptosis plays pivotal functions in the drug response of tumors, including prostate cancer. Necroptosis is mainly governed by kinase enzymes, including RIP1, RIP3, and MLKL, and conversely to apoptosis, is a caspase-independent mechanism of cell death. Numerous compounds induce necroptosis in prostate cancer models, including (i) compounds of natural origin, (ii) synthetic and semisynthetic small molecules, and (iii) selenium and selenium-based nanoparticles. Here, we overview the molecular mechanisms underlying necroptosis and discuss the possible implications of drugs inducing necroptosis for prostate cancer therapy.
Collapse
|
15
|
Kudo Y, Endo S, Fujita M, Ota A, Kamatari YO, Tanaka Y, Ishikawa T, Ikeda H, Okada T, Toyooka N, Fujimoto N, Matsunaga T, Ikari A. Discovery and Structure-Based Optimization of Novel Atg4B Inhibitors for the Treatment of Castration-Resistant Prostate Cancer. J Med Chem 2022; 65:4878-4892. [PMID: 35244402 DOI: 10.1021/acs.jmedchem.1c02113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autophagy inhibition is an attractive target for cancer therapy. In this study, we discovered inhibitors of Atg4B essential for autophagosome formation and evaluated their potential as therapeutics for prostate cancer. Seventeen compounds were identified as candidates after in silico screening and a thermal shift assay. Among them, compound 17 showed the most potent Atg4B inhibitory activity, inhibited autophagy induced by anti-castration-resistant prostate cancer (CRPC) drugs, and significantly enhanced apoptosis. Although 17 has been known as a phospholipase A2 (PLA2) inhibitor, other PLA2 inhibitors had no effect on Atg4B and autophagy. We then performed structural optimization based on molecular modeling and succeeded in developing 21f (by shortening the alkyl chain of 17), which was a potent competitive inhibitor for Atg4B (Ki = 3.1 μM) with declining PLA2 inhibitory potency. Compound 21f enhanced the anticancer activity of anti-CRPC drugs via autophagy inhibition. These findings suggest that 21f can be used as an adjuvant drug for therapy with anti-CRPC drugs.
Collapse
Affiliation(s)
- Yudai Kudo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mei Fujita
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Atsumi Ota
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuji O Kamatari
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Takeshi Ishikawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Hayato Ikeda
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
16
|
Bai Z, Peng Y, Ye X, Liu Z, Li Y, Ma L. Autophagy and cancer treatment: four functional forms of autophagy and their therapeutic applications. J Zhejiang Univ Sci B 2022; 23:89-101. [PMID: 35187884 DOI: 10.1631/jzus.b2100804] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancer is the leading cause of death worldwide. Drugs play a pivotal role in cancer treatment, but the complex biological processes of cancer cells seriously limit the efficacy of various anticancer drugs. Autophagy, a self-degradative system that maintains cellular homeostasis, universally operates under normal and stress conditions in cancer cells. The roles of autophagy in cancer treatment are still controversial because both stimulation and inhibition of autophagy have been reported to enhance the effects of anticancer drugs. Thus, the important question arises as to whether we should try to strengthen or suppress autophagy during cancer therapy. Currently, autophagy can be divided into four main forms according to its different functions during cancer treatment: cytoprotective (cell survival), cytotoxic (cell death), cytostatic (growth arrest), and nonprotective (no contribution to cell death or survival). In addition, various cell death modes, such as apoptosis, necrosis, ferroptosis, senescence, and mitotic catastrophe, all contribute to the anticancer effects of drugs. The interaction between autophagy and these cell death modes is complex and can lead to anticancer drugs having different or even completely opposite effects on treatment. Therefore, it is important to understand the underlying contexts in which autophagy inhibition or activation will be beneficial or detrimental. That is, appropriate therapeutic strategies should be adopted in light of the different functions of autophagy. This review provides an overview of recent insights into the evolving relationship between autophagy and cancer treatment.
Collapse
Affiliation(s)
- Zhaoshi Bai
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Yaling Peng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xinyue Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Zhixian Liu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yupeng Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
17
|
Al-Bari MAA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. Int J Mol Sci 2021; 22:9807. [PMID: 34575981 PMCID: PMC8467030 DOI: 10.3390/ijms22189807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Macro-autophagy (autophagy) is a highly conserved eukaryotic intracellular process of self-digestion caused by lysosomes on demand, which is upregulated as a survival strategy upon exposure to various stressors, such as metabolic insults, cytotoxic drugs, and alcohol abuse. Paradoxically, autophagy dysfunction also contributes to cancer and aging. It is well known that regulating autophagy by targeting specific regulatory molecules in its machinery can modulate multiple disease processes. Therefore, autophagy represents a significant pharmacological target for drug development and therapeutic interventions in various diseases, including cancers. According to the framework of autophagy, the suppression or induction of autophagy can exert therapeutic properties through the promotion of cell death or cell survival, which are the two main events targeted by cancer therapies. Remarkably, natural products have attracted attention in the anticancer drug discovery field, because they are biologically friendly and have potential therapeutic effects. In this review, we summarize the up-to-date knowledge regarding natural products that can modulate autophagy in various cancers. These findings will provide a new position to exploit more natural compounds as potential novel anticancer drugs and will lead to a better understanding of molecular pathways by targeting the various autophagy stages of upcoming cancer therapeutics.
Collapse
Affiliation(s)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2–7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Samrein Ahmed
- Department of Biosciences and Chemistry, College of Health and Wellbeing and Life Sciences, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK;
| | - Nada Radwan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Hend S. Ahmed
- Department of Hematology and Blood Transfusion, Faculty of Medical Laboratory Science, Omdurman Ahlia University, Khartoum 786, Sudan;
| | - Nabil Eid
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| |
Collapse
|
18
|
Anticancer Activity of Propolis and Its Compounds. Nutrients 2021; 13:nu13082594. [PMID: 34444754 PMCID: PMC8399583 DOI: 10.3390/nu13082594] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Propolis is a natural material that honey bees (Apis mellifera) produce from various botanical sources. The therapeutic activity of propolis, including antibacterial, antifungal, and anti-inflammatory effects, have been known since antiquity. Cancer is one of the major burdens of disease worldwide, therefore, numerous studies are being conducted to develop new chemotherapeutic agents and treatments for cancer. Propolis is a rich source of biologically active compounds, which affect numerous signaling pathways regulating crucial cellular processes. The results of the latest research show that propolis can inhibit proliferation, angiogenesis, and metastasis of cancer cells and stimulate apoptosis. Moreover, it may influence the tumor microenvironment and multidrug resistance of cancers. This review briefly summarizes the molecular mechanisms of anticancer activity of propolis and its compounds and highlights the potential benefits of propolis to reduce the side effects of chemotherapy and radiotherapy.
Collapse
|
19
|
Beserra FP, Gushiken LFS, Hussni MF, Ribeiro VP, Bonamin F, Jackson CJ, Pellizzon CH, Bastos JK. Artepillin C as an outstanding phenolic compound of Brazilian green propolis for disease treatment: A review on pharmacological aspects. Phytother Res 2021; 35:2274-2286. [PMID: 32935428 DOI: 10.1002/ptr.6875] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Propolis is a viscous resin consisting of plant material (shoots, flowers, and plant exudates), salivary secretions and waxes produced by Apis mellifera bees. Its popular use aroused the interests of scientific research, which proved to be a potential source of various bioactive substances. The chemical composition of propolis depends on several factors, such as the different types of plant sources collected by bees, geographic origin, and the time of year in which they are produced, but it is known that phenolic represent the main bioactive constituents of propolis. Baccharis dracunculifolia DC (Asteraceae) is the most important botanical source of propolis and a native to southeastern Brazil. It is widely known as the green propolis because of its deep green color. One of its major phenolic acids is artepillin C (Art-C), a diprenyl-p-hydroxycinnamic acid derivative. This review aims to provide a comprehensive summary of the pharmacological effects of Art-C. The limited number of publications on this topic over the past two decades have been collected from databases and summarized. Numerous biological activities have been described for the Art-C, such as gastroprotective, anti-inflammatory, antimicrobial, antioxidant, antitumor. This article describes aspects of occurrence, synthesis, biological activities and pharmacokinetic approaches.
Collapse
Affiliation(s)
- Fernando Pereira Beserra
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Maria Fernanda Hussni
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Victor Pena Ribeiro
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Christopher John Jackson
- Kolling Institute of Medical Research, The University of Sydney (USYD) at Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Cláudia Helena Pellizzon
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
20
|
Galeotti F, Capitani F, Maccari F, Mantovani V, Volpi N. Capillary Electrophoresis Separation of Artepillin C: Determination in Brazilian Green Propolis. J Chromatogr Sci 2021; 59:994-1003. [PMID: 33604611 DOI: 10.1093/chromsci/bmab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/12/2022]
Abstract
Propolis is important in complementary and alternative medicine having well-known therapeutic applications. Artepillin C, a main component of Brazilian (green) propolis, has attracted great attention for its anticancer action. Consequently, the synthesis of artepillin C has been reported but, due to the limited yield and elevated costs, this biomolecule is largely produced from Brazilian propolis. We report the capillary electrophoresis (CE) separation of artepillin C in Brazilian propolis also comparing the results with those of HPLC-UV-MS. Optimal separation was obtained with a simple buffer constituted of sodium tetraborate 30 mM pH 9.2 and detection at 210 nm. Artepillin C and the polyphenols of propolis were fully separated with a voltage gradient of 30 to 8 kV and a current of 300 μA for a total run of 50 min. The sensitivity of CE-UV was 22 times greater than HPLC-UV and 100 times more than HPLC-MS with also a stronger reduction in the run time and a greater robustness and reproducibility. The development of CE as an effective and reliable method for the analysis of artepillin C is desired as the standardized quality controls are essential before propolis or its biomolecules can be adopted routinely in nutraceuticals, food ingredients and therapeutic applications.
Collapse
Affiliation(s)
- Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Federica Capitani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Francesca Maccari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Veronica Mantovani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| |
Collapse
|
21
|
Shahinozzaman M, Basak B, Emran R, Rozario P, Obanda DN. Artepillin C: A comprehensive review of its chemistry, bioavailability, and pharmacological properties. Fitoterapia 2020; 147:104775. [PMID: 33152464 DOI: 10.1016/j.fitote.2020.104775] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Artepillin C (ARC), a prenylated derivative of p-coumaric acid, is one of the major phenolic compounds found in Brazilian green propolis (BGP) and its botanical source Baccharis dracunculifolia. Numerous studies on ARC show that its beneficial health effects correlate with the health effects of both BGP and B. dracunculifolia. Its wide range of pharmacological benefits include antioxidant, antimicrobial, anti-inflammatory, anti-diabetic, neuroprotective, gastroprotective, immunomodulatory, and anti-cancer effects. Most studies have focused on anti-oxidation, inflammation, diabetic, and cancers using both in vitro and in vivo approaches. Mechanisms underlying anti-cancer properties of ARC are apoptosis induction, cell cycle arrest, and the inhibition of p21-activated kinase 1 (PAK1), a protein characterized in many human diseases/disorders including COVID-19 infection. Therefore, further pre-clinical and clinical studies with ARC are necessary to explore its potential as intervention for a wide variety of diseases including the recent pandemic coronaviral infection. This review summarizes the comprehensive data on the pharmacological effects of ARC and could be a guideline for its future study and therapeutic usage.
Collapse
Affiliation(s)
- Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| | - Bristy Basak
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Rashiduzzaman Emran
- Department of Biochemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; Department of Agricultural Extension (DAE), Khamarbari, Farmgate, Dhaka 1215, Bangladesh
| | - Patricia Rozario
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Diana N Obanda
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Benvenuto M, Albonici L, Focaccetti C, Ciuffa S, Fazi S, Cifaldi L, Miele MT, De Maio F, Tresoldi I, Manzari V, Modesti A, Masuelli L, Bei R. Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E6635. [PMID: 32927836 PMCID: PMC7555128 DOI: 10.3390/ijms21186635] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
One of the hallmarks of cellular transformation is the altered mechanism of cell death. There are three main types of cell death, characterized by different morphological and biochemical features, namely apoptosis (type I), autophagic cell death (type II) and necrosis (type III). Autophagy, or self-eating, is a tightly regulated process involved in stress responses, and it is a lysosomal degradation process. The role of autophagy in cancer is controversial and has been associated with both the induction and the inhibition of tumor growth. Autophagy can exert tumor suppression through the degradation of oncogenic proteins, suppression of inflammation, chronic tissue damage and ultimately by preventing mutations and genetic instability. On the other hand, tumor cells activate autophagy for survival in cellular stress conditions. Thus, autophagy modulation could represent a promising therapeutic strategy for cancer. Several studies have shown that polyphenols, natural compounds found in foods and beverages of plant origin, can efficiently modulate autophagy in several types of cancer. In this review, we summarize the current knowledge on the effects of polyphenols on autophagy, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of polyphenols for envisioning future therapies employing polyphenols as chemoadjuvants.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| |
Collapse
|
23
|
Ruwizhi N, Aderibigbe BA. Cinnamic Acid Derivatives and Their Biological Efficacy. Int J Mol Sci 2020; 21:ijms21165712. [PMID: 32784935 PMCID: PMC7460980 DOI: 10.3390/ijms21165712] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
The role played by cinnamic acid derivatives in treating cancer, bacterial infections, diabetes and neurological disorders, among many, has been reported. Cinnamic acid is obtained from cinnamon bark. Its structure is composed of a benzene ring, an alkene double bond and an acrylic acid functional group making it possible to modify the aforementioned functionalities with a variety of compounds resulting in bioactive agents with enhanced efficacy. The nature of the substituents incorporated into cinnamic acid has been found to play a huge role in either enhancing or decreasing the biological efficacy of the synthesized cinnamic acid derivatives. Some of the derivatives have been reported to be more effective when compared to the standard drugs used to treat chronic or infectious diseases in vitro, thus making them very promising therapeutic agents. Compound 20 displayed potent anti-TB activity, compound 27 exhibited significant antibacterial activity on S. aureus strain of bacteria and compounds with potent antimalarial activity are 35a, 35g, 35i, 36i, and 36b. Furthermore, compounds 43d, 44o, 55g–55p, 59e, 59g displayed potent anticancer activity and compounds 86f–h were active against both hAChE and hBuChE. This review will expound on the recent advances on cinnamic acid derivatives and their biological efficacy.
Collapse
|
24
|
Gheraibia S, Belattar N, Abdel-Wahhab MA. HPLC analysis, antioxidant and cytotoxic activity of different extracts of Costus speciosus against HePG-2 cell lines. SOUTH AFRICAN JOURNAL OF BOTANY 2020; 131:222-228. [DOI: 10.1016/j.sajb.2020.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
25
|
Can TH, Tufekci EF, Altunoglu YC, Baloglu MC, Llorent-Martínez EJ, Stefanucci A, Mollica A, Cichelli A, Zengin G. Chemical characterization, computational analysis and biological views on Daphne gnidioides Jaub. & Spach extracts: Can a new raw material be provided for biopharmaceutical applications? Comput Biol Chem 2020; 87:107273. [PMID: 32516631 DOI: 10.1016/j.compbiolchem.2020.107273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
The scientific world tends to turn to natural products such as medicinal and aromatic plants because of the inadequacy of commercially available synthetic drugs as antibiotics or anticancer, and their adverse effects on healthy tissues. One of these plants is Daphne gnidioides Jaub. & Spach, which belongs to the Thymelaeaceae family, and there is no data in the literature on its biological activity. This study is aimed to elucidate the chemical profiles and in vitro anticancer, antibacterial and DNA protection and enzyme inhibitory properties of methanol extracts of root, stem, and leaf of D. gnidioides Jaub. & Spach. Polyphenolic components of the extracts were characterized by HPLC-MS/MS. The highest phenolic content was detected in the leaf extract (TIPC = 43.5 ± 0.5 mg/g DE), followed by stem (TIPC = 27.3 ± 0.7 mg/g DE) and root (TIPC = 18.3 ± 0.2 mg/g DE) extracts. Vicenin-2 and 3-O-p-coumaroyl-5-O-caffeoylquinic acid were the main identified compounds in leaf and both root and stem extracts, respectively. The extracts did not show any protective effect on DNA against experimental Fenton's reagent. The minimum inhibitory concentration and the minimum bactericidal concentration values for the root and leaf extracts against tested bacterial strains ranged from 31.25 to 500 μg/mL. After 48 h interaction of the cancer cell lines with the extracts, only the stem extract had significant cytotoxicity on HeLa cells (IC50 = 86.16 μg/mL). No remarkable activity of the extracts, which was tested against MDA-MB-231, was detected (IC50 > 1000 μg/mL). These data showed that D. gnidioides Jaub. & Spach stem extract inhibited the survival of HeLa cells in a time-dependent manner. After the treatment of IC50 concentration of stem extract with HeLa cells, an increase in LC3-II autophagic gene expression was detected. Also, the extracts exhibited significant tyrosinase inhibitory effects which were confirmed by molecular docking. To sum up, the tested extracts could be used as a starting point for the development of new multifunctional drugs.
Collapse
Affiliation(s)
- Tevfik Hasan Can
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, 37150, Turkey.
| | - Enis Fuat Tufekci
- Department of Medical Microbiology, Faculty of Medicine, Kastamonu University, Kastamonu, 37200, Turkey.
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, 37150, Turkey.
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, 37150, Turkey; Agronomy Department, University of Florida - IFAS, Gainesville, USA.
| | - Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, E-23071 Jaén, Spain.
| | - Azzurra Stefanucci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti Italy.
| | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti Italy.
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti Italy.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey.
| |
Collapse
|
26
|
Eguchi H, Matsunaga T, Endo S, Ichihara K, Ikari A. Kaempferide Enhances Chemosensitivity of Human Lung Adenocarcinoma A549 Cells Mediated by the Decrease in Phosphorylation of Akt and Claudin-2 Expression. Nutrients 2020; 12:nu12041190. [PMID: 32340376 PMCID: PMC7230790 DOI: 10.3390/nu12041190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Claudins (CLDNs) play crucial roles in the formation of tight junctions. We have reported that abnormal expression of CLDN2 confers chemoresistance in the spheroids of human lung adenocarcinoma A549 cells. A food composition, which can reduce CLDN2 expression, may function to prevent the malignant progression. Here, we found that ethanol extract of Brazilian green propolis (EBGP) and kaempferide, a major component of EBGP, decrease CLDN2 expression. In the two-dimensional culture model, EBGP decreased the tight junctional localization of CLDN2 without affecting that of zonula occludens-1, an adaptor protein, and enhanced paracellular permeability to doxorubicin, a cytotoxic anticancer drug. EBGP reduced hypoxic stress, and enhanced the accumulation and sensitivity of doxorubicin in the spheroid of A549 cells. Kaempferide dose-dependently decreased CLDN2 expression, although dihydrokaempferide and pinocembrin did not. The phosphorylation of Akt, a regulatory factor of CLDN2 expression, was inhibited by kaempferide but not by dihydrokaempferide. The 2,3-double bond in the C ring may be important to inhibit Akt. Kaempferide decreased the mRNA level and promoter activity of CLDN2, indicating that it inhibits the transcription of CLDN2. In accordance with EBGP, kaempferide decreased the tight junctional localization of CLDN2 and increased a paracellular permeability to doxorubicin, suggesting that it diminished the paracellular barrier to small molecules. In addition, kaempferide reduced hypoxic stress, and enhanced the accumulation and sensitivity of doxorubicin in the spheroids. In contrast, dihydrokaempferide did not improve the sensitivity to doxorubicin. Further study is needed using an animal model, but we suggest that natural foods abundantly containing kaempferide are candidates for the prevention of the chemoresistance of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (S.E.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (S.E.)
| | - Kenji Ichihara
- Nagaragawa Research Center, API Co., Ltd., Gifu 502-0071, Japan;
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.E.); (S.E.)
- Correspondence: ; Tel.: +81-58-230-8124
| |
Collapse
|
27
|
Deng H, Huang X, Jin C, Jin CM, Quan ZS. Synthesis, in vitro and in vivo biological evaluation of dihydroartemisinin derivatives with potential anti-Toxoplasma gondii agents. Bioorg Chem 2019; 94:103467. [PMID: 31791681 DOI: 10.1016/j.bioorg.2019.103467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/09/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022]
Abstract
In this study, four series of dihydroartemisinin derivatives were designed, synthesized, and evaluated for anti-toxoplasma gondii activity, and calculated the selectivity index (SI). It was the higher the SI, the better the effect of this compound against Toxoplasma gondii. Our goal was to filter out compounds that were bigger SI than the lead compound. The compound with the highest SI was selected for the anti-toxoplasmosis test in mice in vivo. Among the synthesized compounds, the (3R,5aS,6R,8aS,9R,12R,12aR)-3,6,9-trimethyl-decahydro-12H-3,12-epoxy[1,2]di-oxepino[4,3 -i]isochromen-10-yl-(te-rt-butoxycarbonyl)-l-alaninate (A2) exhibited the most potent anti-T. gondii activity and low cytotoxicity (SI: 6.44), yielding better results than the lead compound DHA (SI: 1.00) and the clinically used positive-control drug spiramycin (SI: 0.72) in vitro. Furthermore, compound A2 had better growth inhibitory effects on T. gondii in vivo than spiramycin did and significantly reduced the number of tachyzoites in the peritoneal cavity of mice (P < 0.01). The evaluation of the data generated in the T. gondii mouse infection model indicates that compound A2 treatment was a good inhibitor of T. gondii in vivo and that it was effective in relieving the liver damage induced by T. gondii. In addition, the results of a docking study revealed that A2 could become a better T. gondii calcium-dependent protein kinase1 (TgCDPK1) inhibitor. For this reason, compound A2 has potential as an anti-parasitic drug. Further studies are required to elucidate the mechanism of the action of compound A2, as well as to develop drug delivery systems for patients.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xing Huang
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Chunmei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Chun-Mei Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China.
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China.
| |
Collapse
|
28
|
Munakata R, Takemura T, Tatsumi K, Moriyoshi E, Yanagihara K, Sugiyama A, Suzuki H, Seki H, Muranaka T, Kawano N, Yoshimatsu K, Kawahara N, Yamaura T, Grosjean J, Bourgaud F, Hehn A, Yazaki K. Isolation of Artemisia capillaris membrane-bound di-prenyltransferase for phenylpropanoids and redesign of artepillin C in yeast. Commun Biol 2019; 2:384. [PMID: 31646187 PMCID: PMC6802118 DOI: 10.1038/s42003-019-0630-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/24/2019] [Indexed: 11/08/2022] Open
Abstract
Plants produce various prenylated phenolic metabolites, including flavonoids, phloroglucinols, and coumarins, many of which have multiple prenyl moieties and display various biological activities. Prenylated phenylpropanes, such as artepillin C (3,5-diprenyl-p-coumaric acid), exhibit a broad range of pharmaceutical effects. To date, however, no prenyltransferases (PTs) involved in the biosynthesis of phenylpropanes and no plant enzymes that introduce multiple prenyl residues to native substrates with different regio-specificities have been identified. This study describes the isolation from Artemisia capillaris of a phenylpropane-specific PT gene, AcPT1, belonging to UbiA superfamily. This gene encodes a membrane-bound enzyme, which accepts p-coumaric acid as its specific substrate and transfers two prenyl residues stepwise to yield artepillin C. These findings provide novel insights into the molecular evolution of this gene family, contributing to the chemical diversification of plant specialized metabolites. These results also enabled the design of a yeast platform for the synthetic biology of artepillin C.
Collapse
Affiliation(s)
- Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
- Université de Lorraine, INRA, LAE, F54000 Nancy, France
| | - Tomoya Takemura
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Kanade Tatsumi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Eiko Moriyoshi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Koki Yanagihara
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Hideyuki Suzuki
- Department of Research & Development, Kazusa DNA Research Institute, Kisarazu, 292-0818 Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
| | - Noriaki Kawano
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Kayo Yoshimatsu
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Nobuo Kawahara
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Takao Yamaura
- The Yamashina Botanical Research Institute, Nippon Shinyaku Co. Ltd., 39 Sakanotsuji-cho, Ohyake, Yamashina-ku Kyoto, 607-8182 Japan
| | | | - Frédéric Bourgaud
- Plant Advanced Technologies – PAT, 19 Avenue de la forêt de Haye, 54500 Vandoeuvre, France
| | - Alain Hehn
- Université de Lorraine, INRA, LAE, F54000 Nancy, France
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| |
Collapse
|
29
|
Noh S, Choi E, Hwang CH, Jung JH, Kim SH, Kim B. Dietary Compounds for Targeting Prostate Cancer. Nutrients 2019; 11:nu11102401. [PMID: 31597327 PMCID: PMC6835786 DOI: 10.3390/nu11102401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the third most common cancer worldwide, and the burden of the disease is increased. Although several chemotherapies have been used, concerns about the side effects have been raised, and development of alternative therapy is inevitable. The purpose of this study is to prove the efficacy of dietary substances as a source of anti-tumor drugs by identifying their carcinostatic activities in specific pathological mechanisms. According to numerous studies, dietary substances were effective through following five mechanisms; apoptosis, anti-angiogenesis, anti-metastasis, microRNA (miRNA) regulation, and anti-multi-drug-resistance (MDR). About seventy dietary substances showed the anti-prostate cancer activities. Most of the substances induced the apoptosis, especially acting on the mechanism of caspase and poly adenosine diphosphate ribose polymerase (PARP) cleavage. These findings support that dietary compounds have potential to be used as anticancer agents as both food supplements and direct clinical drugs.
Collapse
Affiliation(s)
- Seungjin Noh
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
| | - Eunseok Choi
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
| | - Cho-Hyun Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
| | - Ji Hoon Jung
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| | - Sung-Hoon Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea.
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea.
| |
Collapse
|
30
|
Matsunaga T, Kawabata S, Yanagihara Y, Kezuka C, Kato M, Morikawa Y, Endo S, Chen H, Iguchi K, Ikari A. Pathophysiological roles of autophagy and aldo-keto reductases in development of doxorubicin resistance in gastrointestinal cancer cells. Chem Biol Interact 2019; 314:108839. [PMID: 31563593 DOI: 10.1016/j.cbi.2019.108839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Here, we show that incubation of three human gastrointestinal cancer cell lines (HCT15, LoVo and MKN45) with doxorubicin (DOX) provokes autophagy through facilitating production of reactive oxygen species (ROS). HCT15 cell treatment with DOX resulted in up-regulation of Beclin1, down-regulation of Bcl2, activation of AMPK and JNK, and Akt inactivation, all of which were restored by pretreating with an antioxidant N-acetyl-l-cysteine. These data suggest that all the autophagy-related alterations evoked by DOX result from the ROS production. In the DOX-resistant cancer cells, degree of autophagy elicited by DOX was milder than the parental cells, and DOX treatment hardly activated the ROS-dependent apoptotic signals [formation of 4-hydroxy-2-nonenal (HNE), cytochrome-c release into cytosol, and activation of JNK and caspase-3], inferring an inverse correlation between cellular antioxidant capacity and autophagy induction by DOX. Monitoring of expression levels of aldo-keto reductases (AKRs) in the parental and DOX-resistant cells revealed an up-regulation of AKR1B10 and/or AKR1C3 with acquiring the DOX resistance. Knockdown and inhibition of AKR1B10 or AKR1C3 in these cells enhanced DOX-elicited autophagy. Measurement of DOX-reductase activity and HNE-sensitivity assay also suggested that both AKR1B10 (via high HNE-reductase activity) and AKR1C3 (via low HNE-reductase and DOX-reductase activities) are involved in the development of DOX resistance. Combination of inhibitors of autophagy and the two AKRs overcame DOX resistance and cross-resistance of gastrointestinal cancer cells with resistance development to DOX or cis-diamminedichloroplatinum. Therefore, concomitant treatment with the inhibitors may be effective as an adjuvant therapy for elevating DOX sensitivity of gastrointestinal cancer cells.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan.
| | - Saori Kawabata
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuji Yanagihara
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Chihiro Kezuka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Misaki Kato
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Huayue Chen
- Department of Anatomy School of Medicine, University of Occupational and Environmental Health, Fukuoka, 807-8555, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| |
Collapse
|
31
|
Mora DPP, Santiago KB, Conti BJ, de Oliveira Cardoso E, Conte FL, Oliveira LPG, de Assis Golim M, Uribe JFC, Gutiérrez RM, Buitrago MR, Popova M, Trusheva B, Bankova V, García OT, Sforcin JM. The chemical composition and events related to the cytotoxic effects of propolis on osteosarcoma cells: A comparative assessment of Colombian samples. Phytother Res 2018; 33:591-601. [DOI: 10.1002/ptr.6246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Karina Basso Santiago
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | - Bruno José Conti
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | | | - Fernanda Lopes Conte
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| | | | | | | | | | | | - Milena Popova
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | - Boryana Trusheva
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | - Vassya Bankova
- Bulgarian Academy of Sciences; Institute of Organic Chemistry with Centre of Phytochemistry; Sofia Bulgaria
| | | | - José Maurício Sforcin
- Institute of Biosciences; São Paulo State University (UNESP), Campus Botucatu; Brazil
| |
Collapse
|
32
|
Wu J, Gao F, Xu T, Deng X, Wang C, Yang X, Hu Z, Long Y, He X, Liang G, Ren D, Dai T. miR-503 suppresses the proliferation and metastasis of esophageal squamous cell carcinoma by triggering autophagy via PKA/mTOR signaling. Int J Oncol 2018; 52:1427-1442. [PMID: 29568867 PMCID: PMC5873897 DOI: 10.3892/ijo.2018.4320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/14/2018] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miR)-503 is involved in the regulation of the malignant phenotype in multiple tumor types, and has been proven to be a novel diagnostic and therapeutic target; however, its function and mechanisms of action have not yet been fully elucidated in esophageal squamous cell carcinoma (ESCC). In the current study, we detected miR‑503 expression by RT‑qPCR and found that miR‑503 expression was increased in ESCC, but negatively correlated with lymph node metastasis, TNM stage and tumor differentiation. Functionally, we confirmed that miR‑503 inhibited the proliferation and metastasis of ESCC cells by triggering cellular autophagy. Mechanistically, we confirmed that miR‑503 exerted its biological effects by targeting protein kinase CAMP‑activated catalytic subunit alpha (PRKACA) in ESCC by dual luciferase reporter assay. Moreover, miR‑503 was found to trigger autophagy in ESCC cells through the protein kinase A (PKA)/mammalian target of rapamycin (mTOR) pathway. Taken together, our results demonstrate that miR‑503 suppresses the proliferation and metastasis of ESCC via the activation of autophagy, mediated by the PKA/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jian Wu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fengxia Gao
- Department of Immunology, College of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xin Deng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chao Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoyan Yang
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhi Hu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yang Long
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xuemei He
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Guannan Liang
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Delian Ren
- Department of Immunology, College of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tianyang Dai
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|