1
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
2
|
Yousef EH, El-Mesery ME, Habeeb MR, Eissa LA. Diosgenin potentiates the anticancer effect of doxorubicin and volasertib via regulating polo-like kinase 1 and triggering apoptosis in hepatocellular carcinoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4883-4894. [PMID: 38165424 DOI: 10.1007/s00210-023-02894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
A common approach to cancer therapy is the combination of a natural product with chemotherapy to overcome sustained cell proliferation and chemotherapy resistance obstacles. Diosgenin (DG) is a phytosteroidal saponin that is naturally present in a vast number of plants and has been shown to exert anti-cancer activities against several tumor cells. Herein, we assessed the chemo-modulatory effects of DG on volasertib (Vola) as a polo-like kinase 1 (PLK1) inhibitor and doxorubicin (DOX) in hepatocellular carcinoma (HCC) cell lines. DOX and Vola were applied to two human HCC cell lines (HepG2 and Huh-7) alone or in combination with DG. The cell viability was determined, and gene expressions of PLK1, PCNA, P53, caspase-3, and PARP1 were evaluated by RT-qPCR. Moreover, apoptosis induction was determined by measuring active caspase-3 level using ELISA method. DG enhanced the anticancer effects of Vola and DOX. Moreover, DG enhanced Vola- and DOX-induced cell death by downregulating the expressions of PLK1 and PCNA, elevating the expressions of P53 and active caspase-3. DG showed promising chemo-modulatory effects to Vola and DOX against HCC that may be attributed partly to the downregulation of PLK1 and PCNA, upregulation of tumor suppressor protein P53, and apoptosis induction. Thus, DG combination with chemotherapy may be a promising treatment approach for HCC.
Collapse
Affiliation(s)
- Eman H Yousef
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Horus University-Egypt, Damietta, 34511, Egypt.
| | - Mohamed E El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Maha R Habeeb
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Ren QL, Wang Q, Zhang XQ, Wang M, Hu H, Tang JJ, Yang XT, Ran YH, Liu HH, Song ZX, Liu JG, Li XL. Anticancer Activity of Diosgenin and Its Molecular Mechanism. Chin J Integr Med 2023:10.1007/s11655-023-3693-1. [PMID: 36940072 PMCID: PMC10026233 DOI: 10.1007/s11655-023-3693-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 03/21/2023]
Abstract
Diosgenin, a steroidal sapogenin, obtained from Trigonella foenum-graecum, Dioscorea, and Rhizoma polgonati, has shown high potential and interest in the treatment of various cancers such as oral squamous cell carcinoma, laryngeal cancer, esophageal cancer, liver cancer, gastric cancer, lung cancer, cervical cancer, prostate cancer, glioma, and leukemia. This article aims to provide an overview of the in vivo, in vitro, and clinical studies reporting the diosgenin's anticancer effects. Preclinical studies have shown promising effects of diosgenin on inhibiting tumor cell proliferation and growth, promoting apoptosis, inducing differentiation and autophagy, inhibiting tumor cell metastasis and invasion, blocking cell cycle, regulating immunity and improving gut microbiome. Clinical investigations have revealed clinical dosage and safety property of diosgenin. Furthermore, in order to improve the biological activity and bioavailability of diosgenin, this review focuses on the development of diosgenin nano drug carriers, combined drugs and the diosgenin derivatives. However, further designed trials are needed to unravel the diosgenin's deficiencies in clinical application.
Collapse
Affiliation(s)
- Qun-Li Ren
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Qian Wang
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xin-Qun Zhang
- Zheng'an County people's Hospital, Zunyi, Guizhou Province, 563000, China
| | - Miao Wang
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan Hu
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jun-Jie Tang
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiong-Tong Yang
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Ying-Hui Ran
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan-Huan Liu
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Zhi-Xing Song
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jian-Guo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiao-Lan Li
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China.
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
4
|
Liu P, Xu L, Guo JH, Chang JH, Liu XG, Xue HF, Wang RX, Li ZS, Miao GX, Liu CZ, Zhou JY. Pharmacokinetic Analysis of Diosgenin in Rat Plasma by a UPLC-MS/MS Approach. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5607347. [PMID: 36248054 PMCID: PMC9553667 DOI: 10.1155/2022/5607347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/13/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Diosgenin, a steroidal sapogenin, has attracted attention worldwide owing to its pharmacological properties, including antitumor, cardiovascular protective, hypolipidemic, and anti-inflammatory effects. The current diosgenin analysis methods have the disadvantages of long analysis time and low sensitivity. The aim of the present study was to establish an efficient, sensitive ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach for pharmacokinetic analysis of diosgenin amorphous solid dispersion (ASD) using tanshinone IIA as an internal standard (IS). Male Sprague-Dawley rats were orally administered diosgenin ASD, and orbital blood samples were collected for analysis. Protein precipitation was performed with methanol-acetonitrile (50 : 50, v/v), and the analytes were separated under isocratic elution by applying acetonitrile and 0.03% formic acid aqueous solution at a ratio of 80 : 20 as the mobile phase. MS with positive electron spray ionization in multiple reaction monitoring modes was applied to determine diosgenin and IS with m/z 415.2⟶271.2 and m/z 295.2⟶277.1, respectively. This approach showed a low limit of quantification of 0.5 ng/ml for diosgenin and could detect this molecule at a concentration range of 0.5 to 1,500 ng/ml (r = 0.99725). The approach was found to have intra- and inter-day precision values ranging from 1.42% to 6.91% and from 1.25% to 3.68%, respectively. Additionally, the method showed an accuracy of -6.54 to 4.71%. The recoveries of diosgenin and tanshinone IIA were 85.81-100.27% and 98.29%, respectively, with negligible matrix effects. Diosgenin and IS were stable under multiple storage conditions. Pharmacokinetic analysis showed that the C max and AUC0⟶t of diosgenin ASD were significantly higher than those of the bulk drug. A sensitive, simple, UPLC-MS/MS analysis approach was established and used for the pharmacokinetic analysis of diosgenin ASD in rats after oral administration.
Collapse
Affiliation(s)
- Pei Liu
- Hebei Province Key Laboratory of Nerve Injury and Repair, Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, China
| | - Lin Xu
- Hebei Province Key Laboratory of Nerve Injury and Repair, Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, China
| | - Jing-han Guo
- Beijing North Institute of Biotechnology, No. 20 Panjiamiao Rd, Fengtai District, Beijing 100071, China
| | - Jin-hua Chang
- Hebei Province Key Laboratory of Nerve Injury and Repair, Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, China
| | - Xi-gang Liu
- Hebei Province Key Laboratory of Nerve Injury and Repair, Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, China
| | - He-fei Xue
- Hebei Province Key Laboratory of Nerve Injury and Repair, Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, China
| | - Ru-xing Wang
- Hebei Province Key Laboratory of Nerve Injury and Repair, Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, China
| | - Zhong-si Li
- Hebei Province Key Laboratory of Nerve Injury and Repair, Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, China
| | - Guang-xin Miao
- Hebei Province Key Laboratory of Nerve Injury and Repair, Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, China
| | - Cui-zhe Liu
- Hebei Province Key Laboratory of Nerve Injury and Repair, Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, China
| | - Jian-yu Zhou
- Hebei Province Key Laboratory of Nerve Injury and Repair, Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, China
| |
Collapse
|
5
|
Zhang SZ, Liang PP, Feng YN, Yin GL, Sun FC, Ma CQ, Zhang FX. Therapeutic potential and research progress of diosgenin for lipid metabolism diseases. Drug Dev Res 2022; 83:1725-1738. [PMID: 36126194 DOI: 10.1002/ddr.21991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/07/2022]
Abstract
Diosgenin, a steroidal saponin, is a natural product found in many plants. Diosgenin has a wide range of pharmacological activities, and has been used to treat cancer, nervous system diseases, inflammation, and infections. Numerous studies have shown that diosgenin has potential therapeutic value for lipid metabolism diseases via various pathways and mechanisms, such as controlling lipid synthesis, absorption, and inhibition of oxidative stress. These mechanisms and pathways have provided ideas for researchers to develop related drugs. In this review, we focus on data from animal and clinical studies, summarizing the toxicity of diosgenin, its pharmacological mechanism, recent research advances, and the related mechanisms of diosgenin as a drug for the treatment of lipid metabolism, especially in obesity, hyperlipidemia, nonalcoholic fatty liver disease, atherosclerosis, and diabetes. This systematic review will briefly describe the advantages of diosgenin as a potential therapeutic drug and seek to enhance our understanding of the pharmacological mechanism, recipe-construction, and the development of novel therapeutics against lipid metabolism diseases.
Collapse
Affiliation(s)
- Shi-Zhao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng-Peng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ya-Nan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guo-Liang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Feng-Cui Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chao-Qun Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Feng-Xia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Mranda GM, Xiang ZP, Liu JJ, Wei T, Ding Y. Advances in prognostic and therapeutic targets for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The hippo signaling pathway. Front Oncol 2022; 12:937957. [PMID: 36033517 PMCID: PMC9411807 DOI: 10.3389/fonc.2022.937957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death. The majority of the primary liver cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Worldwide, there is an increasing incidence of primary liver cancer cases due to multiple risk factors ranging from parasites and viruses to metabolic diseases and lifestyles. Often, patients are diagnosed at advanced stages, depriving them of surgical curability benefits. Moreover, the efficacy of the available chemotherapeutics is limited in advanced stages. Furthermore, tumor metastases and recurrence make primary liver cancer management exceptionally challenging. Thus, exploring the molecular mechanisms for the development and progression of primary liver cancer is critical in improving diagnostic, treatment, prognostication, and surveillance modalities. These mechanisms facilitate the discovery of specific targets that are critical for novel and more efficient treatments. Consequently, the Hippo signaling pathway executing a pivotal role in organogenesis, hemostasis, and regeneration of tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion molecules and cellular metabolic status are some of the biological activators of the pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is critical to the development of novel targeted therapies. This study reviews the advances in identifying therapeutic targets and prognostic markers of the Hippo pathway for primary liver cancer in the past six years.
Collapse
|
7
|
Camlica M, Yaldiz G. Gum yield, optimization of gum isolation, diosgenin and crude protein contents of fenugreek genotypes and cultivars grown under irrigated and dryland conditions. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
da Silva MF, de Lima LVA, Zanetti TA, Felicidade I, Favaron PO, Lepri SR, Lirio Rondina DB, Mantovani MS. Diosgenin increases BBC3 expression in HepG2/C3A cells and alters cell communication in a 3D spheroid model. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 879-880:503512. [PMID: 35914860 DOI: 10.1016/j.mrgentox.2022.503512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Preclinical studies have shown that diosgenin, a steroidal sapogenin, is a promising phytochemical for treating different pathological conditions, such as cancer, diabetes, and cardiovascular diseases. However, the toxicological safety of this molecule for therapeutic use in humans needs to be better understood. Thus, this study aimed to evaluate the mechanisms of action of diosgenin in HepG2/C3A human hepatocellular carcinoma cells. Cytotoxicity, genotoxicity, alterations in the cell cycle, and cell death (apoptosis) were investigated and associated with the gene expression profile of pathways involved in these processes. The effects of diosgenin on the growth of spheroids were also tested. Diosgenin induced a dose-dependent reduction in cell viability and cell cycle arrest in S and G2/M phases and apoptosis in response to DNA damage. Apoptosis was associated with an increase in the expression of BBC3, a participant in the intrinsic apoptosis pathway. Diosgenin also promoted an increase in volume and greater cellular breakdown in spheroids. These results allowed a better understanding of the toxicity of diosgenin in human cells and contributed to the development of treatments based on this phytochemical.
Collapse
Affiliation(s)
- Matheus Felipe da Silva
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380 Londrina, PR, Brazil
| | - Luan Vitor Alves de Lima
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380 Londrina, PR, Brazil
| | - Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380 Londrina, PR, Brazil
| | - Ingrid Felicidade
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380 Londrina, PR, Brazil
| | - Phelipe Oliveira Favaron
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380 Londrina, PR, Brazil
| | - Sandra Regina Lepri
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380 Londrina, PR, Brazil
| | - Débora Berbel Lirio Rondina
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380 Londrina, PR, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University, UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380 Londrina, PR, Brazil.
| |
Collapse
|
9
|
Study on the Mechanism of Diosgenin Targeting STAT3 to Inhibit Colon Cancer Proliferation and Migration. DISEASE MARKERS 2022; 2022:7494887. [PMID: 35698571 PMCID: PMC9188474 DOI: 10.1155/2022/7494887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
To elucidate regulatory effects and molecular mechanisms of diosgenin on colon cancer, this study administered diosgenin at concentrations of 10 (low), 50 (medium), and 100 μmol/L (high concentration group) at the cell level, respectively. EdU, colony formation, and Transwell assays were implemented to determine SW480 cellular proliferation and migration. Assays of flow cytometry and TUNEL were employed to estimate cell apoptosis. Additionally, nude mouse tumorigenesis assay was used to further verify the regulatory function of diosgenin on colon cancer. The target protein of diosgenin was predicted via molecular docking. The results showed that all three concentrations of diosgenin could reduce colon cancer cellular proliferation and migration, and after diosgenin treatment, colon cancer cellular apoptosis was markedly increased, and the 100 μmol/L diosgenin group produced the most satisfactory inhibition on colon cancer cell proliferation. Ki67 expression was markedly reduced whereas those of Bax and caspase3 were greatly increased after diosgenin treatment. The nude mouse tumorigenesis assay indicated that the parameters of tumorous volume and mass of diosgenin treatment group were greatly decreased as compared to control, and as the concentration of diosgenin increased, the inhibitory effect was more significant. Molecular docking indicated that STAT3 served as a target protein of diosgenin. Moreover, after diosgenin treatment on colon cancer cells, the STAT3 expression was markedly reduced. The STAT3 overexpression would counteract the inhibitory effect of 50 μmol/L diosgenin in both suppressing colon cancer cellular proliferation and migration and promoting apoptosis. Taken together, all our outcomes demonstrated the diosgenin effects in not only inhibiting colon cancer cellular proliferation and migration but also promoting cancerous cellular apoptosis. Diosgenin is a regulatory player in targeting and regulating STAT3.
Collapse
|
10
|
Dharani S, Kalaiarasi G, Ravi M, Sathan Raj N, Lynch VM, Prabhakaran R. Diosgenin derivatives developed from Pd(II) catalysed dehydrogenative coupling exert an effect on breast cancer cells by abrogating their growth and facilitating apoptosis via regulating the AKT1 pathway. Dalton Trans 2022; 51:6766-6777. [PMID: 35420095 DOI: 10.1039/d2dt00514j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Palladium metallates containing 4-oxo-4H-chromene-3-carbaldehyde derived ONS donor Schiff bases were synthesized and their efficacy was tested in the direct amination of diosgenin - a phyto steroid. Based on the pharmacological importance of diosgenin, the obtained derivatives were exposed to study their effect on breast cancer cells where they significantly reduced the growth of cancer cells and left non-malignant breast epithelial cells unaffected. Among the derivatives, D3, D4 and D6 showed a better anti-proliferative effect and further analysis revealed that the D3, D4 and D6 derivatives markedly promoted cell cycle arrest and apoptosis by attenuation of the AKT1 signalling pathway.
Collapse
Affiliation(s)
- S Dharani
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| | - G Kalaiarasi
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| | - M Ravi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| | - N Sathan Raj
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| | - Vincent M Lynch
- Department of Chemistry, University of Texas, Austin, TX 78712-1224, USA
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
11
|
Wang W, Li C, Chen Z, Zhang J, Ma L, Tian Y, Ma Y, Guo L, Wang X, Ye J, Wang X. Novel diosgenin-amino acid-benzoic acid mustard trihybrids exert antitumor effects via cell cycle arrest and apoptosis. J Steroid Biochem Mol Biol 2022; 216:106038. [PMID: 34861390 DOI: 10.1016/j.jsbmb.2021.106038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
In discovering new powerful antitumor agents, two series of novel diosgenin-amino acid-benzoic acid mustard trihybrids (7a-7 g and 12a-12 g) were designed and synthesized. The antiproliferative activities were tested against five human tumor cell lines and one normal cell line using CCK-8 assays. Among the trihybrids, 12e was the most promising compound, which inhibited T24 cells with IC50 value of 6.96 μM, and was stronger than its parent compound diosgenin (IC50 = 32.33 μM). In addition, 12e had weak cytotoxicity on the normal GES-1 cell line (IC50 = 213.74 μM). Moreover, 12e could cause G2/M cell cycle arrest, increase the percentage of apoptosis, induce mitochondrial depolarization, and promote reactive oxygen species generation in T24 cells. Further studies on antitumor mechanism demonstrated that 12e triggered the intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic pathways. More importantly, 12e could inhibit T24 cell proliferation in an in vivo zebrafish xenograft model. Therefore, 12e, as a novel trihybrid with potent cytotoxicity, might be applied as a promising skeleton for antitumor agents, which deserved further optimization.
Collapse
Affiliation(s)
- Wenbao Wang
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China; Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, PR China.
| | - Chuan Li
- General Hospital of Northern Theater Command, Shenyang, 110016, PR China
| | - Zhe Chen
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Jinling Zhang
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Liwei Ma
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Yanzhao Tian
- Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, PR China
| | - Yukun Ma
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Lina Guo
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Xiaoli Wang
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Jin Ye
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Xiaobo Wang
- Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, PR China.
| |
Collapse
|
12
|
Semwal P, Painuli S, Abu-Izneid T, Rauf A, Sharma A, Daştan SD, Kumar M, Alshehri MM, Taheri Y, Das R, Mitra S, Emran TB, Sharifi-Rad J, Calina D, Cho WC. Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1035441. [PMID: 35677108 PMCID: PMC9168095 DOI: 10.1155/2022/1035441] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Plants including Rhizoma polgonati, Smilax china, and Trigonella foenum-graecum contain a lot of diosgenin, a steroidal sapogenin. This bioactive phytochemical has shown high potential and interest in the treatment of various disorders such as cancer, diabetes, arthritis, asthma, and cardiovascular disease, in addition to being an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry. This review aims to provide an overview of the in vitro, in vivo, and clinical studies reporting the diosgenin's pharmacological effects and to discuss the safety issues. Preclinical studies have shown promising effects on cancer, neuroprotection, atherosclerosis, asthma, bone health, and other pathologies. Clinical investigations have demonstrated diosgenin's nontoxic nature and promising benefits on cognitive function and menopause. However, further well-designed clinical trials are needed to address the other effects seen in preclinical studies, as well as a better knowledge of the diosgenin's safety profile.
Collapse
Affiliation(s)
- Prabhakar Semwal
- 1Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Sakshi Painuli
- 1Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Tareq Abu-Izneid
- 2Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain 64141, UAE
| | - Abdur Rauf
- 3Department of Chemistry, University of Swabi, Swabi, Anbar-23561, K.P .K, Pakistan
| | - Anshu Sharma
- 4Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, 173230, India
| | - Sevgi Durna Daştan
- 5Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- 6Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Manoj Kumar
- 7Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohammed M. Alshehri
- 8Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Yasaman Taheri
- 9Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajib Das
- 10Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- 10Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- 11Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- 12Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Javad Sharifi-Rad
- 9Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- 13Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Daniela Calina
- 14Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- 15Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
13
|
HUANG N, YU D, WU J, DU X. Diosgenin: an important natural pharmaceutical active ingredient. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.94521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nannan HUANG
- Heilongjiang University of Chinese Medicine, China
| | - Dan YU
- Heilongjiang University of Chinese Medicine, China
| | - Junkai WU
- Heilongjiang University of Chinese Medicine, China
| | - Xiaowei DU
- Heilongjiang University of Chinese Medicine, China
| |
Collapse
|
14
|
Zhou Y, Farooqi AA, Xu B. Comprehensive review on signaling pathways of dietary saponins in cancer cells suppression. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34751072 DOI: 10.1080/10408398.2021.2000933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nutrigenomics utilizes high-throughput genomic technologies to reveal changes in gene and protein levels. Excitingly, ever-growing body of scientific findings has provided sufficient evidence about the interplay between diet and genes. Cutting-edge research and advancements in genomics, epigenetics and metabolomics have deepened our understanding on the role of dietary factors in the inhibition of carcinogenesis and metastasis. Dietary saponins, a type of triterpene glycosides, are generally found in Platycodon grandifloras, Dioscorea oppositifolia, asparagus, legumes, and sea cucumber. Wealth of information has started to shed light on pleiotropic mechanistic roles of dietary saponins in cancer prevention and inhibition. In this review, we have attempted to summarize the in vitro research of dietary saponins in the last two decades by searching common databases such as Google Scholar, PubMed, Scopus, and Web of Science. The results showed that dietary saponins exerted anti-cancer activities via regulation of apoptosis, autophagy, arrest cell cycle, anti-proliferation, anti-metastasis, and anti-angiogenesis, by regulation of several critical signaling pathways, including MAPK, PI3K/Akt/mTOR, NF-κB, and VEGF/VEGFR. However, there is no data about the dosage of dietary saponins for practical anti-cancer effects in human bodies. Extensive clinical studies are needed to confirm the effectiveness of dietary saponins for further commercial and medical applications.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China.,Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | | | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
15
|
Li G, Li Q, Sun H, Li W. Novel diosgenin-1,4-quinone hybrids: Synthesis, antitumor evaluation, and mechanism studies. J Steroid Biochem Mol Biol 2021; 214:105993. [PMID: 34478831 DOI: 10.1016/j.jsbmb.2021.105993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/21/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022]
Abstract
In this research, a series of novel diosgenin-1,4-quinone hybrids were synthesized and evaluated in antiproliferative assays against three human cancer cell lines (MCF-7, HepG2, and HeLa). Structure-activity relationship analysis revealed that the activities depended on the type of 1,4-quinone moiety. Among them, hybrid 11a exhibited significant cytotoxicity against the HepG2 cell line with a IC50 of 1.76 μM, which was 35-fold more potent than diosgenin (IC50 = 43.96 μM). Western blot analysis showed that hybrid 11a upregulated Bax, Cl-caspase-3/9, and Cl-PARP levels, and downregulated Bcl-2 level of HepG2 cell line. Meanwhile, hybrid 11a could increase the generation of intracellular reactive oxygen species. The molecular docking study revealed an interaction between hybrid 11a and NQO1 enzyme. Our present studies suggested that hybrid 11a as a potential substrate for NQO1 enzyme could be a promising anticancer agent for further investigation.
Collapse
Affiliation(s)
- Guolong Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Qi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
16
|
Wang W, Chen Z, Chen X, Ni S, Jia Y, Fan L, Ma L. DG-8d, a novel diosgenin derivative, decreases the proliferation and induces the apoptosis of A549 cells by inhibiting the PI3k/Akt signaling pathway. Steroids 2021; 174:108898. [PMID: 34339756 DOI: 10.1016/j.steroids.2021.108898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022]
Abstract
Lung neoplasm has a relatively poor prognosis, and the clinical efficacy of targeted medicine remains unsatisfactory. Therefore, the development of novel efficient anti-lung cancer drugs is urgently needed. In our previous study, we showed that a novel diosgenin derivative 8d (DG-8d), which contained 5-(3-pyridyl)-1,3,4-thiadiazole moiety, had significant cytotoxic activity on human tumor cells, especially the A549 cells. However, the underlying mechanism of DG-8d was unknown. In this study, the pharmacological effect of DG-8d on the A549 cells was inspected. METHOD Cell viability and apoptosis were detected by CCK-8 assays, morphological changes and quantitative analysis of flow cytometry. Levels of gene and protein expression of apoptosis-related and PI3k/Akt pathway were evaluated by qRT-PCR, immunostaining and Western blot analysis. RESULT The findings proved that DG-8d could inhibit cell growth and induce apoptosis. The effect of DG-8d on the proliferation and apoptosis in the A549 cells were improved with LY294002 (PI3K inhibitor). Moreover, the effect of DG-8d on apoptosis was further confirmed by AO-EB dye, mitochondrial depolarization and accrued intracellular ROS. Gene and protein detection showed that DG-8d or DG-8d combined with LY294002 could down-regulate signaling molecules of Bcl-2, PI3k, p-Akt, p-FoxO3a and up-regulate signaling molecules of Bax snd Bim. In addition, nuclear translocation of FoxO3a was observed significantly in the cells. CONCLUSION DG-8d could inhibit the proliferation and induce the apoptosis of the A549 cells, which maybe mainly because of the suppression of the PI3k/Akt pathways. Finally, we believe that DG-8d can be developed as a possible agent for carcinoma therapy.
Collapse
Affiliation(s)
- Wenbao Wang
- Qiqihaer Medical University, Heilongjiang Qiqihaer 161006, China
| | - Zhe Chen
- Qiqihaer Medical University, Heilongjiang Qiqihaer 161006, China
| | - Xiaoting Chen
- Qiqihaer Medical University, Heilongjiang Qiqihaer 161006, China
| | - Shiyu Ni
- The Fifth Affiliated Hospital of Qiqihaer Medical University, Heilongjiang Daqing 163001, China
| | - Yongming Jia
- Qiqihaer Medical University, Heilongjiang Qiqihaer 161006, China
| | - Li Fan
- Qiqihaer Medical University, Heilongjiang Qiqihaer 161006, China
| | - Liwei Ma
- Qiqihaer Medical University, Heilongjiang Qiqihaer 161006, China.
| |
Collapse
|
17
|
Meng X, Pan Y, Liu T, Luo C, Man S, Zhang Y, Zhang Y. Synthesis of novel diosgenyl saponin analogs and evaluation effects of rhamnose moeity on their cytotoxic activity. Carbohydr Res 2021; 506:108359. [PMID: 34102543 DOI: 10.1016/j.carres.2021.108359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Diosgenyl saponins, as a type of natural products derived from plants, are the main active component of traditional chinese medicine. Inspiringly, a large number of natural diosgensyl saponins have been shown to exert excellent toxicity to hepatocellular cancer (HCC) cells. In order to better understand the relationship between the structures and their biological effects, a group of diosgenyl saponins (1-4 as natural products and 5 and 6 as their analogs) were efficiently synthesized. The cytotoxic activity of these compounds was evaluated on human hepatocellular carcinoma (HepG2) cells. Structure-activity relationship studies showed that the pentasaccharide or hexasaccharide saponin analogs were relatively less active than their corresponding disaccharide analogue or dioscin. The extension of 4-branched rhamnose moiety on these saponin does not exhibit significant effect on their cytotoxic activity, which disclosed that a certain number and the linkage mode of rhamnose moieties could influence the cytotoxicity of steroid saponins on HepG2 cells.
Collapse
Affiliation(s)
- Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Yiwu Pan
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Tao Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Chen Luo
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Yongmin Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China; Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, 75005, Paris, France
| | - Yan Zhang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, PR China.
| |
Collapse
|
18
|
Zhao H, Zhang X, Zhang B, Qu X. Gastroprotective effects of diosgenin against HCl/ethanol-induced gastric mucosal injury through suppression of NF-κβ and myeloperoxidase activities. Open Life Sci 2021; 16:719-727. [PMID: 34316512 PMCID: PMC8285990 DOI: 10.1515/biol-2021-0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023] Open
Abstract
Gastric mucosal injury is caused by an imbalance between the mucosal defense and gastro-irritants, leading to gastroenteritis. Diosgenin is a steroidal sapogenin found in the wild Yam plant that has been reported with several pharmacological properties. The aim of this study is to explore the gastroprotective role of diosgenin on gastric mucosal damage caused by HCl/ethanol in rats. Male Sprague-Dawley rats were intragastrically administered with diosgenin (20 mg/kg) before HCl/ethanol (0.15 M HCl in 98 % ethanol) administration. Omeprazole was used as a positive control. Diosgenin-attenuated oxidative stress by enhancing (p < 0.05) antioxidant enzymes, reducing lipid peroxidation (MDA), and modulating nitric oxide (NO) levels. Anti-inflammatory effects of diosgenin were observed by a reduction in pro-inflammatory cytokines (p < 0.05), decreased myeloperoxidase (MPO) activities (p < 0.05), and histopathological observation of gastric mucosal damage. Western blot analysis provided evidence on the downregulation of NF-κβ by diosgenin. The findings showed that diosgenin has a significant protective role on gastric injury caused by HCl/ethanol, through its antioxidant, anti-inflammatory role, and suppression of NF-κβ and MPO activities.
Collapse
Affiliation(s)
- Hengfang Zhao
- Department of Gastroenterology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| | - Xiaoyan Zhang
- Department of Gastroenterology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| | - Bojing Zhang
- Department of Gastroenterology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| | - Xiaoyuan Qu
- Department of Critical Care Medicine, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, 710003, China
| |
Collapse
|
19
|
Li X, Liu S, Qu L, Chen Y, Yuan C, Qin A, Liang J, Huang Q, Jiang M, Zou W. Dioscin and diosgenin: Insights into their potential protective effects in cardiac diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114018. [PMID: 33716083 DOI: 10.1016/j.jep.2021.114018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/07/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND ETHNOPHARMACOLOGICAL RELEVANCE Dioscin and diosgenin derived from plants of the genus Dioscoreaceae such as D. nipponica and D. panthaica Prain et Burk. Were utilized as the main active ingredients of traditional herbal medicinal products for coronary heart disease in the former Soviet Union and China since 1960s. A growing number of research showed that dioscin and diosgenin have a wide range of pharmacological activities in heart diseases. AIM OF THE STUDY To summarize the evidence of the effectiveness of dioscin and diosgenin in cardiac diseases, and to provide a basis and reference for future research into their clinical applications and drug development in the field of cardiac disease. METHODS Literatures in this review were searched in PubMed, ScienceDirect, Google Scholar, China National Knowledge Infrastructure (CNKI) and Web of Science. All eligible studies are analyzed and summarized in this review. RESULTS The pharmacological activities and therapeutic potentials of dioscin and diosgenin in cardiac diseases are similar, can effectively improve hypertrophic cardiomyopathy, arrhythmia, myocardial I/R injury and cardiotoxicity caused by doxorubicin. But the bioavailability of dioscin and diosgenin may be too low as a result of poor absorption and slow metabolism, which hinders their development and utilization. CONCLUSION Dioscin and diosgenin need further in-depth experimental research, clinical transformation and structural modification or research of new preparations before they can be expected to be developed into new therapeutic drugs in the field of cardiac disease.
Collapse
Affiliation(s)
- Xiaofen Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sili Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liping Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yang Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuqiao Yuan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Anquan Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jiyi Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qianqian Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Miao Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Bai C, Wu S, Ren S, Zhu M, Luo G, Xiang H. Synthesis and evaluation of novel thiosemicarbazone and semicarbazone analogs with both anti-proliferative and anti-metastatic activities against triple negative breast cancer. Bioorg Med Chem 2021; 37:116107. [PMID: 33735799 DOI: 10.1016/j.bmc.2021.116107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive cancer with high mortality and recurrence rates. Hecogenin, a steroidal sapogenin, is reported as a potential anti-tumor agent against breast cancer. However, the moderate activity limits its further application in clinical. With the aim to identify novel analogues that are especially efficacious in therapy of TNBC, a series of novel hecogenin thiosemicarbazone and semicarbazone derivatives were designed, synthesized and biologically evaluated. Screening of cytotoxicity revealed that 4c could potently inhibit the proliferation of breast cancer cells (MCF-7 and MDA-MB-231 cells), lung cancer cells (A549) and colon cancer cells (HT-29) at low μM level. Importantly, further mechanism studies indicated the ability of 4c in inducing apoptosis of MDA-MB-231 cells by arresting the cell cycle. Moreover, 4c notably suppressed the migration and invasion of MDA-MB-231 cells compared to its parent hecogenin at the equal concentration.
Collapse
Affiliation(s)
- Chengfeng Bai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuangjie Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shengnan Ren
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiqi Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
Tian H, Chen X, Zhang Y, Wang Y, Fu X, Gu W, Wen Y. Dioscin inhibits SCC15 cell proliferation via the RASSF1A/MST2/YAP axis. Mol Med Rep 2021; 23:414. [PMID: 33786612 PMCID: PMC8025490 DOI: 10.3892/mmr.2021.12053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Dioscin, an extract from traditional Chinese herbal plants, displays various biological and pharmacological effects on tumors, including inhibition of cell proliferation and induction of DNA damage. However, the effects of dioscin on oral squamous cell carcinoma (OSCC) cells are not completely understood. The present study aimed to evaluate the impact of dioscin on OSCC cell proliferation. Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine incorporation assays were performed to assess cell proliferation. Flow cytometry was conducted to detect alterations in the cell cycle and cell apoptosis. Western blotting and coimmunoprecipitation were performed to determine protein expression levels. In SCC15 cells, dioscin treatment significantly induced cell cycle arrest, increased apoptosis and inhibited proliferation compared with the control group. Mechanistically, the tumor suppressor protein Ras association domain-containing protein 1A (RASSF1A) was activated and oncoprotein yes-associated protein (YAP) was phosphorylated by dioscin. Furthermore, YAP overexpression and knockdown reduced and enhanced the inhibitory effects of dioscin on SCC15 cells, respectively. In summary, the results demonstrated that, compared with the control group, dioscin upregulated RASSF1A expression in OSCC cells, which resulted in YAP phosphorylation, thus weakening its transcriptional coactivation function, enhancing cell cycle arrest and apoptosis, and inhibiting cell proliferation. The present study indicated that dioscin may serve as a therapeutic agent for OSCC.
Collapse
Affiliation(s)
- Hui Tian
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiyan Chen
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yafei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ying Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xucheng Fu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Weiting Gu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yong Wen
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
22
|
Design and synthesis of diosgenin derivatives as apoptosis inducers through mitochondria-related pathways. Eur J Med Chem 2021; 217:113361. [PMID: 33740546 DOI: 10.1016/j.ejmech.2021.113361] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022]
Abstract
Diosgenin (DSG) has attracted attention recently as a potential anticancer therapeutic agent due to its profound antitumor activity. To better utilize DSG as an antitumor compound, two series of DSG-amino acid ester derivatives (3a-3g and 7a-7g) were designed and synthesized, and their cytotoxic activities against six human cancer cell lines (K562, T24, MNK45, HepG2, A549, and MCF-7) were evaluated. The results obtained showed that a majority of derivatives exhibited cytotoxic activities against these six human tumor cells. Structure-activity relationship analysis revealed that the introduction of l-tryptophan to the C-3 position of DSG and the C-26 position of derivative 5 was the preferred option for these compounds to display significant cytotoxic activities. Among them, compound 7g exhibited significant cytotoxicity against the K562 cell line (IC50 = 4.41 μM) and was 6.8-fold more potent than diosgenin (IC50 = 30.04 μM). Further cellular mechanism studies in K562 cells elucidated that compound 7g triggered mitochondrial-related apoptosis by increasing the generation of intracellular reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), which was associated with upregulation of the gene and protein expression levels of Bax, downregulation of the gene and protein expression levels of Bcl-2 and activation of the caspase cascade. The above results suggested that compound 7g might be considered a promising scaffold for further modification of more potent anticancer agents.
Collapse
|
23
|
Xia X, Chen Y, Wang L, Yang ZG, Ma XD, Zhao ZG, Yang HJ. Synthesis of diosgenyl quaternary ammonium derivatives and their antitumor activity. Steroids 2021; 166:108774. [PMID: 33285175 DOI: 10.1016/j.steroids.2020.108774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023]
Abstract
Giosgenin is a naturally steroidal saponin exhibiting a variety of biological activities including antitumor ones. A series of novel diosgenyl quaternary ammonium derivatives were designed and synthesized to develop potential anti-tumor agents in our research. All novel derivatives were characterized by 1H NMR, 13C NMR and HR-MS, and evaluated for their in vitro anti-proliferative activities using MTT assay. The human cancer cell lines were A549 (Human lung cancer cell), H1975 (Human lung adenocarcinoma cell), A431 (Human skin squamous cell carcinoma), HCT-116 (Human colorectal adenocarcinoma cell), Aspc-1 (Human metastatic pancreatic cancer cell), Ramos (Human B lymphoma cell), HBE (Human bronchial epithelioid cell) and LO2 (Human normal hepatocyte).
Collapse
Affiliation(s)
- Xi Xia
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Yu Chen
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Lin Wang
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Zhi-Gang Yang
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Xiao-Dong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Zhi-Gang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Hong-Jun Yang
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
24
|
Cong S, Tong Q, Peng Q, Shen T, Zhu X, Xu Y, Qi S. In vitro anti‑bacterial activity of diosgenin on Porphyromonas gingivalis and Prevotella intermedia. Mol Med Rep 2020; 22:5392-5398. [PMID: 33174005 PMCID: PMC7647021 DOI: 10.3892/mmr.2020.11620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022] Open
Abstract
Diosgenin (Dios), a natural steroidal sapogenin, is a bioactive compound extracted from dietary fenugreek seeds. It has a wide range of applications, exhibiting anti-oxidant, anti-inflammatory and anti-cancer activities. However, whether the extracts have beneficial effects on periodontal pathogens has so far remained elusive. The aim of the present study was to investigate the anti-bacterial effects of Dios on Porphyromonas gingivalis (P. gingivalis) and Prevotella intermedia (P. intermedia) in vitro. The anti-microbial effect of Dios on P. gingivalis and P. intermedia was assessed by a direct contact test (DCT) and the Cell Counting Kit (CCK)-8 assay at 60, 90 and 120 min. In addition, counting of colony-forming units (CFU) and live/dead cell staining were used to evaluate the anti-bacterial effects. The results of the DCT and CCK-8 assays indicated that Dios had beneficial dose-dependent inhibitory effects on P. gingivalis and P. intermedia. The CFU counting results also indicated that Dios had dose-dependent anti-bacterial effects on P. gingivalis and P. intermedia. Of note, Dios had significant anti-bacterial effects on the biofilms of P. gingivalis and P. intermedia in vitro as visualized by the live/dead cell staining method. In conclusion, the present results demonstrated that Dios had a marked anti-bacterial activity against P. gingivalis and P. intermedia in vitro, both in suspension and on biofilms. The present study highlighted the potential applications of Dios as a novel natural agent to prevent and treat periodontitis through its anti-bacterial effects.
Collapse
Affiliation(s)
- Shaohua Cong
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Qingchun Tong
- Department of Stomatology, Jiading Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Qian Peng
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Tao Shen
- School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xueqin Zhu
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Shengcai Qi
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
25
|
Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, Thakur KK, Dutta U, Arya A, Mao X, Ahn KS, Kunnumakkara AB. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260:118182. [PMID: 32781063 DOI: 10.1016/j.lfs.2020.118182] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Monikongkona Boruah
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Kumari Yachna
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
26
|
Zhang X, Wang X, Khurm M, Zhan G, Zhang H, Ito Y, Guo Z. Alterations of Brain Quantitative Proteomics Profiling Revealed the Molecular Mechanisms of Diosgenin against Cerebral Ischemia Reperfusion Effects. J Proteome Res 2020; 19:1154-1168. [DOI: 10.1021/acs.jproteome.9b00667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xinxin Zhang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
| | - Xingbin Wang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Muhammad Khurm
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Guanqun Zhan
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hui Zhang
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yoichiro Ito
- Laboratory of Bio-separation Technologies, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda 20814, Maryland, United States
| | - Zengjun Guo
- College of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
27
|
Meng X, Dong H, Pan Y, Ma L, Liu C, Man S, Gao W. Diosgenyl Saponin Inducing Endoplasmic Reticulum Stress and Mitochondria-Mediated Apoptotic Pathways in Liver Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11428-11435. [PMID: 31589037 DOI: 10.1021/acs.jafc.9b05131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Diosgenin and diosgenyl saponins as the major bioactive compounds isolated from dietary fenugreek seeds, yam roots, etc. possessed strong antitumor effects. To understand their detailed antitumor mechanisms, a fluorophore-appended derivative of diosgenin [Glc/CNHphth-diosgenin (GND)] was synthesized, starting from diosgenin and glucosamine hydrochloride in overall yields of 7-12% over 7-10 steps. Co-localization of GND with organelle-specific stains, transmission electron microscopy, and relative protein analyses demonstrated that GND crossed the plasma membrane through organic anion-transporting polypeptide 1B1 and distributed in the endoplasmic reticulum (ER), lysosome, and mitochondria. In this process, GND induced ER swelling, mitochondrial damage, and autophagosome and upregulating IRE-1α to induce autophagy and apoptosis. Furthermore, autophagy inhibitor chloroquine delayed the appearance of cleaved poly(ADP-ribose) polymerase and inhibited cleaved caspase 8, which indicated that GND induced autophagy to activate caspase-8-dependent apoptosis. These observations suggested that diosgenyl saponin was a potent anticancer agent that elicited ER stress and mitochondria-mediated apoptotic pathways in liver cancer.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
| | - Honghong Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
| | - Yiwu Pan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
| | - Changxiao Liu
- State Key Laboratories of Pharmacodynamics and Pharmacokinetics , Tianjin Institute of Pharmaceutical Research , Tianjin 300193 , People's Republic of China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology , Tianjin University of Science & Technology , Tianjin 300457 , People's Republic of China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| |
Collapse
|
28
|
Li R, Liu Y, Shi J, Yu Y, Lu H, Yu L, Liu Y, Zhang F. Diosgenin regulates cholesterol metabolism in hypercholesterolemic rats by inhibiting NPC1L1 and enhancing ABCG5 and ABCG8. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1124-1133. [PMID: 31054325 DOI: 10.1016/j.bbalip.2019.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
Hypercholesterolemia is a preventable risk factor for atherosclerosis and cardiovascular disease. However, the mechanisms of diosgenin (DG) that promote cholesterol homeostasis and alleviate hypercholesterolemia remain elusive. To investigate the effects and molecular mechanisms of the promotion of cholesterol metabolism by DG, a rat model of hypercholesterolemia was induced by providing a high-fat diet for 4 weeks. After 4 weeks, the rats were intragastrically administered high-dose DG (0.3 g/kg/d), low-dose DG (0.15 g/kg/d) or simvastatin (4 mg/kg/d) once a day for 8 weeks. The serum and hepatic cholesterol were tested, the mRNA and protein expression levels of Niemann-Pick C1-Like 1 (NPC1L1), liver X receptor-α (LXR-α) and the ATP-binding cassette G5/G8 (ABCG5/G8) transporters were measured. The results indicate that DG could reduce body weight, decrease the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, liver total cholesterol and free cholesterol levels compared to those in the controls. Simultaneously, liver tissue pathological morphology analyses revealed that DG could attenuate hepatic steatosis compared to that in the high-fat diet group. Further investigation demonstrated that DG significantly decreased the expression of NPC1L1 and LXR-α in the intestine and markedly increased the expression of ABCG5/G8 in the liver and intestine. Compared to the high-fat diet group, the rats in the DG-treated groups ameliorated hypercholesterolemia in a dose- and time-dependent manner. These data suggest that DG may not only inhibit intestinal cholesterol absorption by downregulating NPC1L1 but also enhance cholesterol excretion by increasing the expression of ABCG5/G8. DG could be a new candidate for the prevention of hypercholesterolemia.
Collapse
Affiliation(s)
- Ruoqi Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yi Liu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jingjing Shi
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yantong Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Haifei Lu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Lu Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yanqiang Liu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| |
Collapse
|
29
|
Long C, Chen J, Zhou H, Jiang T, Fang X, Hou D, Liu P, Duan H. Diosgenin exerts its tumor suppressive function via inhibition of Cdc20 in osteosarcoma cells. Cell Cycle 2019; 18:346-358. [PMID: 30640578 DOI: 10.1080/15384101.2019.1568748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is one of the aggressive malignancies for young adults. Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in OS, suggesting that inhibition of Cdc20 could be a novel strategy for the treatment of OS. Since Cdc20 inhibitors have side effects, it is important to discover the new CDC20 inhibitors with non-toxic nature. In the present study, we determine whether natural agent diosgenin is an inhibitor of Cdc20 in OS cells. We performed MTT, FACS, Wound healing assay, Transwell, Western blotting, transfection assays in our study. We found diosgenin inhibited cell growth and induced apoptosis. Moreover, diosgenin exposure led to inhibition of cell migration and invasion. Notably, diosgenin inhibited the expression of Cdc20 in OS cells. Overexpression of Cdc20 abrogated the inhibition of cell growth and invasion induced by diosgenin. Our data reveal that inhibition of Cdc20 by diosgenin could be helpful for the treatment of patients with OS.
Collapse
Affiliation(s)
- Cheng Long
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Juan Chen
- b Department of Ultrasound, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Hua Zhou
- c Department of Orthopedics, Peking University Third Hospital , Beijing , China
| | - Tao Jiang
- d Department of Orthopedics, Sichuan Modern Hospital , Chengdu, Sichuan Province , China
| | - Xiang Fang
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Dong Hou
- e West China Medical College, Sichuan University, Chengdu , Sichuan Province , China
| | - Ping Liu
- e West China Medical College, Sichuan University, Chengdu , Sichuan Province , China
| | - Hong Duan
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| |
Collapse
|
30
|
Xu L, Xu D, Li Z, Gao Y, Chen H. Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1933-1942. [PMID: 31598460 PMCID: PMC6774070 DOI: 10.3762/bjnano.10.189] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/28/2019] [Indexed: 05/16/2023]
Abstract
Diosgenin (Di), a steroidal sapogenin derived from plants, has been shown to exert anticancer effects in preclinical studies. Using Di as a starting material, various Di derivatives were designed and synthesized, aiming to discover new steroid-based antitumor agents. In this work, we synthesized several Di derivatives and screened FZU-0021-194-P2 (P2), which showed more potent cytotoxic activities against human non-small-cell lung cancer A549 and PC9 cells. Considering that Di has a unique sterol structure similarly to cholesterol, P2 phytosomes (P2Ps) were prepared to further improve the water solubility of P2. The P2Ps exhibited a particle size of 53.6 ± 0.3 nm with oval shape and a zeta potential of -4.0 ± 0.7 mV. P2Ps could inhibit the proliferation of lung cancer cells more efficiently than Di phytosomes after 72 h of incubation time by inducing cell cycle arrest and apoptosis. The results indicated that P2Ps could be a promising anticancer formulation for non-small-cell lung cancer.
Collapse
Affiliation(s)
- Liang Xu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Dekang Xu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Haijun Chen
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|