1
|
Lian W, Zhang L, Wang C, Wu S, He S, Lei J, Zhang Y, You L, Zheng L, Luo X, Ye Z, Hu Z, Wang G, Zhu Y, Li C, Liu J. Systematic identification and functional analysis of root meristem growth factors (RGFs) reveals role of PgRGF1 in modulation of root development and ginsenoside production in Panax ginseng. Int J Biol Macromol 2024; 274:133446. [PMID: 38945337 DOI: 10.1016/j.ijbiomac.2024.133446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Panax ginseng C.A. Mey., known for its medicinal and dietary supplement properties, primarily contains pharmacologically active ginsenosides. However, the regulatory mechanisms linking ginseng root development with ginsenoside biosynthesis are still unclear. Root meristem growth factors (RGFs) are crucial for regulating plant root growth. In our study, we identified five ginseng RGF peptide sequences from the ginseng genome and transcriptome libraries. We treated Arabidopsis and ginseng adventitious roots with exogenous Panax ginseng RGFs (PgRGFs) to assess their activities. Our results demonstrate that PgRGF1 influences gravitropic responses and reduces lateral root formation in Arabidopsis. PgRGF1 has been found to restrict the number and length of ginseng adventitious root branches in ginseng. Given the medicinal properties of ginseng, We determined the ginsenoside content and performed transcriptomic analysis of PgRGF1-treated ginseng adventitious roots. Specifically, the total ginsenoside content in ginseng adventitious roots decreased by 19.98 % and 63.71 % following treatments with 1 μM and 10 μM PgRGF1, respectively, compared to the control. The results revealed that PgRGF1 affects the accumulation of ginsenosides by regulating the expression of genes associated with auxin transportation and ginsenoside biosynthesis. These findings suggest that PgRGF1, as a peptide hormone regulator in ginseng, can modulate adventitious root growth and ginsenoside accumulation.
Collapse
Affiliation(s)
- Weipeng Lian
- School of Pharmacy, Shihezi University, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Xinjiang, Shihezi 832000, China
| | - Linfan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenglin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shiqi Wu
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Shan He
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Jinlin Lei
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Lei You
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xiangyin Luo
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Zhengxiu Ye
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Ziyao Hu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guodong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yun Zhu
- School of Pharmacy, Shihezi University, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Xinjiang, Shihezi 832000, China.
| | - Chen Li
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China.
| | - Juan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Liu H, Wu Y, Cai J, Chen Y, Zhou C, Qiao C, Wang Y, Wang S. Effect of Auxin on Cadmium Toxicity-Induced Growth Inhibition in Solanum lycopersicum. TOXICS 2024; 12:374. [PMID: 38787153 PMCID: PMC11125773 DOI: 10.3390/toxics12050374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Auxins play crucial regulatory roles in plants coping with cadmium (Cd) stress. However, the regulatory mechanism by which auxins alleviate Cd toxicity in tomato seedlings remains unclear. Here, we demonstrate that exposure to Cd stress leads to dynamic changes in the auxin response in tomato roots, characterized by an initial increase followed by a subsequent weakening. Under Cd stress, tomato seedlings show primary root- and hypocotyl-growth inhibition, accompanied by the accumulation of Cd and reactive oxygen species (ROS) in the roots. The exogenous application of 1-naphthylacetic acid (NAA) does not mitigate the inhibitory effect of Cd toxicity on primary root growth, but it does significantly enhance lateral root development under Cd stress. Auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenoic acid (TIBA), aggravate the growth inhibition of primary roots caused by Cd stress. Additionally, lateral root development was inhibited by NPA. However, applying auxin synthesis inhibitors L-kynurenine (kyn) and yucasin alleviated the tomato root growth inhibition caused by Cd stress; between them, the effect of yucasin was more pronounced. Yucasin mitigates Cd toxicity in tomato seedlings by reducing Cd2+ absorption and auxin accumulation, strengthening ROS scavenging, and reducing cell death in roots. These observations suggest that yucasin potentially mitigates Cd toxicity and improves the tolerance of tomato seedlings to Cd stress.
Collapse
Affiliation(s)
- Huabin Liu
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (H.L.); (Y.W.); (J.C.); (C.Z.); (C.Q.)
| | - Yue Wu
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (H.L.); (Y.W.); (J.C.); (C.Z.); (C.Q.)
| | - Jiahui Cai
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (H.L.); (Y.W.); (J.C.); (C.Z.); (C.Q.)
| | - Yuting Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cheng Zhou
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (H.L.); (Y.W.); (J.C.); (C.Z.); (C.Q.)
| | - Cece Qiao
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (H.L.); (Y.W.); (J.C.); (C.Z.); (C.Q.)
| | - Yuliang Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (H.L.); (Y.W.); (J.C.); (C.Z.); (C.Q.)
| | - Song Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China; (H.L.); (Y.W.); (J.C.); (C.Z.); (C.Q.)
| |
Collapse
|
3
|
Tan C, Li S, Song J, Zheng X, Zheng H, Xu W, Wan C, Zhang T, Bian Q, Men S. 3,4-Dichlorophenylacetic acid acts as an auxin analog and induces beneficial effects in various crops. Commun Biol 2024; 7:161. [PMID: 38332111 PMCID: PMC10853179 DOI: 10.1038/s42003-024-05848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Auxins and their analogs are widely used to promote root growth, flower and fruit development, and yield in crops. The action characteristics and application scope of various auxins are different. To overcome the limitations of existing auxins, expand the scope of applications, and reduce side effects, it is necessary to screen new auxin analogs. Here, we identified 3,4-dichlorophenylacetic acid (Dcaa) as having auxin-like activity and acting through the auxin signaling pathway in plants. At the physiological level, Dcaa promotes the elongation of oat coleoptile segments, the generation of adventitious roots, and the growth of crop roots. At the molecular level, Dcaa induces the expression of auxin-responsive genes and acts through auxin receptors. Molecular docking results showed that Dcaa can bind to auxin receptors, among which TIR1 has the highest binding activity. Application of Dcaa at the root tip of the DR5:GUS auxin-responsive reporter induces GUS expression in the root hair zone, which requires the PIN2 auxin efflux carrier. Dcaa also inhibits the endocytosis of PIN proteins like other auxins. These results provide a basis for the application of Dcaa in agricultural practices.
Collapse
Affiliation(s)
- Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Suxin Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jia Song
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Xianfu Zheng
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Hao Zheng
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Weichang Xu
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Cui Wan
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
4
|
Tan C, Liang M, Luo Q, Zhang T, Wang W, Li S, Men S. AUX1, PIN3, and TAA1 collectively maintain fertility in Arabidopsis. PLANTA 2023; 258:68. [PMID: 37598130 DOI: 10.1007/s00425-023-04219-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023]
Abstract
MAIN CONCLUSION We found that auxin synthesis gene TAA1 and auxin polar transport genes AUX1 and PIN3 collectively maintain fertility and seed size in Arabidopsis. Auxin plays a vital role in plant gametophyte development and embryogenesis. The auxin synthesis gene TAA1 and the auxin polar transport genes AUX1 and PIN3 are expressed during Arabidopsis gametophyte and seed development. However, aux1, pin3, and taa1 single mutants only exhibit mild reproductive defects. We, therefore, generated aux1-T pin3 taa1-k2 and aux1-T pin3-2 taa1-k1 triple mutants by crossing or CRISPR/Cas9 technique. These triple mutants displayed severe reproductive defects with approximately 70% and 77%, respectively, of the siliques failing to elongate after anthesis. Reciprocal crosses and microscopy analyses showed that the development of pollen and ovules in the aux1 pin3 taa1 mutants was normal, whereas the filaments were remarkably short, which might be the cause of the silique sterility. Further analyses indicated that the development and morphology of aux1 pin3 taa1 seeds were normal, but their size was smaller compared with that of the wild type. These results indicate that AUX1, PIN3, and TAA1 act in concert to maintain fertility and seed size in Arabidopsis.
Collapse
Affiliation(s)
- Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengxiao Liang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiong Luo
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenhui Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Suxin Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Wang J, Li C, Mao X, Wang J, Li L, Li J, Fan Z, Zhu Z, He L, Jing R. The wheat basic helix-loop-helix gene TabHLH123 positively modulates the formation of crown roots and is associated with plant height and 1000-grain weight under various conditions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2542-2555. [PMID: 36749713 DOI: 10.1093/jxb/erad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
Crown roots are the main components of the fibrous root system in cereal crops and play critical roles in plant adaptation; however, the molecular mechanisms underlying their formation in wheat (Triticum aestivum) have not been fully elucidated. In this study, we identified a wheat basic helix-loop-helix (bHLH) protein, TabHLH123, that interacts with the essential regulator of crown root initiation, MORE ROOT in wheat (TaMOR). TabHLH123 is expressed highly in shoot bases and roots. Ectopic expression of TabHLH123 in rice resulted in more roots compared with the wild type. TabHLH123 regulates the expression of genes controlling crown-root development and auxin metabolism, responses, and transport. In addition, we analysed the nucleotide sequence polymorphisms of TabHLH123s in the wheat genome and identified a superior haplotype, TabHLH123-6B, that is associated with high root dry weight and 1000-grain weight, and short plant height. Our study reveals the role of TabHLH123 in controlling the formation of crown roots and provides beneficial insights for molecular marker-assisted breeding in wheat.
Collapse
Affiliation(s)
- Jinping Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Shanxi Agricultural University, Taigu 030031, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zipei Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhi Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liheng He
- College of Agronomy, Shanxi Agricultural University, Taigu 030031, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Thomas M, Soriano A, O'Connor C, Crabos A, Nacry P, Thompson M, Hrabak E, Divol F, Péret B. pin2 mutant agravitropic root phenotype is conditional and nutrient-sensitive. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111606. [PMID: 36706868 DOI: 10.1016/j.plantsci.2023.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Plants have the capacity to sense and adapt to environmental factors using the phytohormone auxin as a major regulator of tropism and development. Among these responses, gravitropism is essential for plant roots to grow downward in the search for nutrients and water. We discovered a new mutant allele of the auxin efflux transporter PIN2 that revealed that pin2 agravitropic root mutants are conditional and nutrient-sensitive. We describe that nutrient composition of the medium, rather than osmolarity, can revert the agravitropic root phenotype of pin2. Indeed, on phosphorus- and nitrogen-deprived media, the agravitropic root defect was restored independently of primary root growth levels. Slow and fast auxin responses were evaluated using DR5 and R2D2 probes, respectively, and revealed a strong modulation by nutrient composition of the culture medium. We evaluated the role of PIN and AUX auxin transporters and demonstrated that neither PIN3 nor AUX1 are involved in this process. However, we observed the ectopic expression of PIN1 in the epidermis in the pin2 mutant background associated with permissive, but not restrictive, conditions. This ectopic expression was associated with a restoration of the asymmetric accumulation of auxin necessary for the reorientation of the root according to gravity. These observations suggest a strong regulation of auxin distribution by nutrients availability, directly impacting root's ability to drive their gravitropic response.
Collapse
Affiliation(s)
- Marion Thomas
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alexandre Soriano
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Claire O'Connor
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Amandine Crabos
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Philippe Nacry
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | | | - Fanchon Divol
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Benjamin Péret
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
7
|
Liu H, Luo Q, Tan C, Song J, Zhang T, Men S. Biosynthesis- and transport-mediated dynamic auxin distribution during seed development controls seed size in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1259-1277. [PMID: 36648165 DOI: 10.1111/tpj.16109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Auxin is indispensable to the fertilization-induced coordinated development of the embryo, endosperm, and seed coat. However, little attention has been given to the distribution pattern, maintenance mechanism, and function of auxin throughout the process of seed development. In the present study, we found that auxin response signals display a dynamic distribution pattern during Arabidopsis seed development. Shortly after fertilization, strong auxin response signals were observed at the funiculus, chalaza, and micropylar integument where the embryo attaches. Later, additional signals appeared at the middle layer of the inner integument (ii1') above the chalaza and the whole inner layer of the outer integument (oi1). These signals peaked when the seed was mature, then declined upon desiccation and disappeared in the dried seed. Auxin biosynthesis genes, including ASB1, TAA1, YUC1, YUC4, YUC8, and YUC9, contributed to the accumulation of auxin in the funiculus and seed coat. Auxin efflux carrier PIN3 and influx carrier AUX1 also contributed to the polar auxin distribution in the seed coat. PIN3 was expressed in the ii1 (innermost layer of the inner integument) and oi1 layers of the integument and showed polar localization. AUX1 was expressed in both layers of the outer integument and the endosperm and displayed a uniform localization. Further research demonstrated that the accumulation of auxin in the seed coat regulates seed size. Transgenic plants that specifically express the YUC8 gene in the oi2 or ii1 seed coat produced larger seeds. These results provide useful tools for cultivating high-yielding crops.
Collapse
Affiliation(s)
- Huabin Liu
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiong Luo
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jia Song
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Yang Y, Liu F, Liu L, Zhu M, Yuan J, Mai YX, Zou JJ, Le J, Wang Y, Palme K, Li X, Wang Y, Wang L. The unconventional prefoldin RPB5 interactor mediates the gravitropic response by modulating cytoskeleton organization and auxin transport in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1916-1934. [PMID: 35943836 DOI: 10.1111/jipb.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Gravity-induced root curvature involves the asymmetric distribution of the phytohormone auxin. This response depends on the concerted activities of the auxin transporters such as PIN-FORMED (PIN) proteins for auxin efflux and AUXIN RESISTANT 1 (AUX1) for auxin influx. However, how the auxin gradient is established remains elusive. Here we identified a new mutant with a short root, strong auxin distribution in the lateral root cap and an impaired gravitropic response. The causal gene encoded an Arabidopsis homolog of the human unconventional prefoldin RPB5 interactor (URI). AtURI interacted with prefoldin 2 (PFD2) and PFD6, two β-type PFD members that modulate actin and tubulin patterning in roots. The auxin reporter DR5rev :GFP showed that asymmetric auxin redistribution after gravistimulation is disordered in aturi-1 root tips. Treatment with the endomembrane protein trafficking inhibitor brefeldin A indicated that recycling of the auxin transporter PIN2 is disrupted in aturi-1 roots as well as in pfd mutants. We propose that AtURI cooperates with PFDs to recycle PIN2 and modulate auxin distribution.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Fang Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Le Liu
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Mingyue Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Jinfeng Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Jun-Jie Zou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Klaus Palme
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| |
Collapse
|
9
|
Qin T, Kazim A, Wang Y, Richard D, Yao P, Bi Z, Liu Y, Sun C, Bai J. Root-Related Genes in Crops and Their Application under Drought Stress Resistance—A Review. Int J Mol Sci 2022; 23:ijms231911477. [PMID: 36232779 PMCID: PMC9569943 DOI: 10.3390/ijms231911477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Crop growth and development are frequently affected by biotic and abiotic stresses. The adaptation of crops to stress is mostly achieved by regulating specific genes. The root system is the primary organ for nutrient and water uptake, and has an important role in drought stress response. The improvement of stress tolerance to increase crop yield potential and yield stability is a traditional goal of breeders in cultivar development using integrated breeding methods. An improved understanding of genes that control root development will enable the formulation of strategies to incorporate stress-tolerant genes into breeding for complex agronomic traits and provide opportunities for developing stress-tolerant germplasm. We screened the genes associated with root growth and development from diverse plants including Arabidopsis, rice, maize, pepper and tomato. This paper provides a theoretical basis for the application of root-related genes in molecular breeding to achieve crop drought tolerance by the improvement of root architecture.
Collapse
Affiliation(s)
- Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ali Kazim
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Dormatey Richard
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (C.S.); (J.B.); Tel.: +86-189-9319-8496 (C.S.); +86-181-0942-4020 (J.B.)
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (C.S.); (J.B.); Tel.: +86-189-9319-8496 (C.S.); +86-181-0942-4020 (J.B.)
| |
Collapse
|
10
|
Marconi M, Gallemi M, Benkova E, Wabnik K. A coupled mechano-biochemical model for cell polarity guided anisotropic root growth. eLife 2021; 10:72132. [PMID: 34723798 PMCID: PMC8716106 DOI: 10.7554/elife.72132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Plants develop new organs to adjust their bodies to dynamic changes in the environment. How independent organs achieve anisotropic shapes and polarities is poorly understood. To address this question, we constructed a mechano-biochemical model for Arabidopsis root meristem growth that integrates biologically plausible principles. Computer model simulations demonstrate how differential growth of neighboring tissues results in the initial symmetry-breaking leading to anisotropic root growth. Furthermore, the root growth feeds back on a polar transport network of the growth regulator auxin. Model, predictions are in close agreement with in vivo patterns of anisotropic growth, auxin distribution, and cell polarity, as well as several root phenotypes caused by chemical, mechanical, or genetic perturbations. Our study demonstrates that the combination of tissue mechanics and polar auxin transport organizes anisotropic root growth and cell polarities during organ outgrowth. Therefore, a mobile auxin signal transported through immobile cells drives polarity and growth mechanics to coordinate complex organ development.
Collapse
Affiliation(s)
- Marco Marconi
- CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Pozuelo de Alarcón, Spain
| | - Marcal Gallemi
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Krzysztof Wabnik
- CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Pozuelo de Alarcón, Spain
| |
Collapse
|
11
|
Qiu D, Jian Y, Zhang Y, Xie G. Plant Gravitropism and Signal Conversion under a Stress Environment of Altered Gravity. Int J Mol Sci 2021; 22:ijms222111723. [PMID: 34769154 PMCID: PMC8583895 DOI: 10.3390/ijms222111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Humans have been committed to space exploration and to find the next planet suitable for human survival. The construction of an ecosystem that adapts to the long-term survival of human beings in space stations or other planets would be the first step. The space plant cultivation system is the key component of an ecosystem, which will produce food, fiber, edible oil and oxygen for future space inhabitants. Many plant experiments have been carried out under a stimulated or real environment of altered gravity, including at microgravity (0 g), Moon gravity (0.17 g) and Mars gravity (0.38 g). How plants sense gravity and change under stress environment of altered gravity were summarized in this review. However, many challenges remain regarding human missions to the Moon or Mars. Our group conducted the first plant experiment under real Moon gravity (0.17 g) in 2019. One of the cotton seeds successfully germinated and produced a green seedling, which represents the first green leaf produced by mankind on the Moon.
Collapse
Affiliation(s)
- Dan Qiu
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Correspondence: (D.Q.); (G.X.)
| | - Yongfei Jian
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuanxun Zhang
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
| | - Gengxin Xie
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
- Correspondence: (D.Q.); (G.X.)
| |
Collapse
|
12
|
Deepika D, Singh A. Plant phospholipase D: novel structure, regulatory mechanism, and multifaceted functions with biotechnological application. Crit Rev Biotechnol 2021; 42:106-124. [PMID: 34167393 DOI: 10.1080/07388551.2021.1924113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phospholipases D (PLDs) are important membrane lipid-modifying enzymes in eukaryotes. Phosphatidic acid, the product of PLD activity, is a vital signaling molecule. PLD-mediated lipid signaling has been the subject of extensive research leading to discovery of its crystal structure. PLDs are involved in the pathophysiology of several human diseases, therefore, viewed as promising targets for drug design. The availability of a eukaryotic PLD crystal structure will encourage PLD targeted drug designing. PLDs have been implicated in plants response to biotic and abiotic stresses. However, the molecular mechanism of response is not clear. Recently, several novel findings have shown that PLD mediated modulation of structural and developmental processes, such as: stomata movement, root growth and microtubule organization are crucial for plants adaptation to environmental stresses. Involvement of PLDs in regulating membrane remodeling, auxin mediated alteration of root system architecture and nutrient uptake to combat nitrogen and phosphorus deficiencies and magnesium toxicity is established. PLDs via vesicle trafficking modulate cytoskeleton and exocytosis to regulate self-incompatibility (SI) signaling in flowering plants, thereby contributes to plants hybrid vigor and diversity. In addition, the important role of PLDs has been recognized in biotechnologically important functions, including oil/TAG synthesis and maintenance of seed quality. In this review, we describe the crystal structure of a plant PLD and discuss the molecular mechanism of catalysis and activity regulation. Further, the role of PLDs in regulating plant development under biotic and abiotic stresses, nitrogen and phosphorus deficiency, magnesium ion toxicity, SI signaling and pollen tube growth and in important biotechnological applications has been discussed.
Collapse
Affiliation(s)
- Deepika Deepika
- National Institute of Plant Genome Research, New Delhi, India
| | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
13
|
Arif M, Li Z, Luo Q, Li L, Shen Y, Men S. The BAG2 and BAG6 Genes Are Involved in Multiple Abiotic Stress Tolerances in Arabidopsis Thaliana. Int J Mol Sci 2021; 22:ijms22115856. [PMID: 34072612 PMCID: PMC8198428 DOI: 10.3390/ijms22115856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023] Open
Abstract
The BAG proteins are a family of multi-functional co-chaperones. In plants, BAG proteins were found to play roles both in abiotic and biotic stress tolerance. However, the function of Arabidopsis BAG2 remains largely unknown, whereas BAG6 is required for plants’ defense to pathogens, although it remains unknown whether BAG6 is involved in plants’ tolerance to abiotic stresses. Here, we show that both BAG2 and BAG6 are expressed in various tissues and are upregulated by salt, mannitol, and heat treatments and by stress-related hormones including ABA, ethylene, and SA. Germination of bag2, bag6 and bag2 bag6 seeds is less sensitive to ABA compared to the wild type (WT), whereas BAG2 and BAG6 overexpression lines are hypersensitive to ABA. bag2, bag6, and bag2 bag6 plants show higher survival rates than WT in drought treatment but display lower survival rates in heat-stress treatment. Consistently, these mutants showed differential expression of several stress- and ABA-related genes such as RD29A, RD29B, NCED3 and ABI4 compared to the WT. Furthermore, these mutants exhibit lower levels of ROS after drought and ABA treatment but higher ROS accumulation after heat treatment than the WT. These results suggest that BAG2 and BAG6 are negatively involved in drought stress but play a positive role in heat stress in Arabidopsis.
Collapse
Affiliation(s)
- Muhammad Arif
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.A.); (Z.L.); (Q.L.); (L.L.)
| | - Zitong Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.A.); (Z.L.); (Q.L.); (L.L.)
| | - Qiong Luo
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.A.); (Z.L.); (Q.L.); (L.L.)
| | - Luhua Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.A.); (Z.L.); (Q.L.); (L.L.)
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China;
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.A.); (Z.L.); (Q.L.); (L.L.)
- Correspondence:
| |
Collapse
|
14
|
Wang M, Li P, Ma Y, Nie X, Grebe M, Men S. Membrane Sterol Composition in Arabidopsis thaliana Affects Root Elongation via Auxin Biosynthesis. Int J Mol Sci 2021; 22:ijms22010437. [PMID: 33406774 PMCID: PMC7794993 DOI: 10.3390/ijms22010437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (β-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation.
Collapse
Affiliation(s)
- Meng Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Panpan Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Yao Ma
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Xiang Nie
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
| | - Markus Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany;
| | - Shuzhen Men
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China; (M.W.); (P.L.); (Y.M.); (X.N.)
- Correspondence:
| |
Collapse
|
15
|
Xie Q, Essemine J, Pang X, Chen H, Jin J, Cai W. Abscisic Acid Regulates the Root Growth Trajectory by Reducing Auxin Transporter PIN2 Protein Levels in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:632676. [PMID: 33763094 PMCID: PMC7982918 DOI: 10.3389/fpls.2021.632676] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 05/03/2023]
Abstract
The root is in direct contact with soil. Modulation of root growth in response to alterations in soil conditions is pivotal for plant adaptation. Extensive research has been conducted concerning the adjustment of root elongation and architecture in response to environmental factors. However, little is known about the modulation of the root growth trajectory, as well as its hormonal mechanism. Here we report that abscisic acid (ABA) participated in controlling root growth trajectory. The roots upon ABA treatment or from ABA-accumulation double mutant cyp707a1,3 exhibit agravitropism-like growth pattern (wavy growth trajectory). The agravitropism-like phenotype is mainly ascribed to the compromised shootward transportation of auxin since we detected a reduced fluorescence intensity of auxin reporter DR5:VENUS in the root epidermis upon exogenous ABA application or in the endogenous ABA-accumulation double mutant cyp707a1,3. We then tried to decipher the mechanism by which ABA suppressed shootward auxin transport. The membrane abundance of PIN2, a facilitator of shootward auxin transport, was significantly reduced following ABA treatment and in cyp707a1,3. Finally, we revealed that ABA reduced the membrane PIN2 intensity through suppressing the PIN2 expression rather than accelerating PIN2 degradation. Ultimately, our results suggest a pivotal role for ABA in the root growth trajectory and the hormonal interactions orchestrating this process.
Collapse
Affiliation(s)
- Qijun Xie
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- Qijun Xie,
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaochen Pang
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haiying Chen
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Jin
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Weiming Cai, ;
| |
Collapse
|
16
|
Lin D, Yao H, Jia L, Tan J, Xu Z, Zheng W, Xue H. Phospholipase D-derived phosphatidic acid promotes root hair development under phosphorus deficiency by suppressing vacuolar degradation of PIN-FORMED2. THE NEW PHYTOLOGIST 2020; 226:142-155. [PMID: 31745997 PMCID: PMC7065129 DOI: 10.1111/nph.16330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/10/2019] [Indexed: 05/03/2023]
Abstract
Root hair development is crucial for phosphate absorption, but how phosphorus deficiency affects root hair initiation and elongation remains unclear. We demonstrated the roles of auxin efflux carrier PIN-FORMED2 (PIN2) and phospholipase D (PLD)-derived phosphatidic acid (PA), a key signaling molecule, in promoting root hair development in Arabidopsis thaliana under a low phosphate (LP) condition. Root hair elongation under LP conditions was greatly suppressed in pin2 mutant or under treatment with a PLDζ2-specific inhibitor, revealing that PIN2 and polar auxin transport and PLDζ2-PA are crucial in LP responses. PIN2 was accumulated and degraded in the vacuole under a normal phosphate (NP) condition, whereas its vacuolar accumulation was suppressed under the LP or NP plus PA conditions. Vacuolar accumulation of PIN2 was increased in pldζ2 mutants under LP conditions. Increased or decreased PIN2 vacuolar accumulation is not observed in sorting nexin1 (snx1) mutant, indicating that vacuolar accumulation of PIN2 is mediated by SNX1 and the relevant trafficking process. PA binds to SNX1 and promotes its accumulation at the plasma membrane, especially under LP conditions, and hence promotes root hair development by suppressing the vacuolar degradation of PIN2. We uncovered a link between PLD-derived PA and SNX1-dependent vacuolar degradation of PIN2 in regulating root hair development under phosphorus deficiency.
Collapse
Affiliation(s)
- De‐Li Lin
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Hong‐Yan Yao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
| | - Li‐Hua Jia
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Jin‐Fang Tan
- College of Resource and EnvironmentHenan Agricultural University450002ZhengzhouChina
| | - Zhi‐Hong Xu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
| | - Wen‐Ming Zheng
- Collaborative Innovation Center of Henan Grain Crops/State Key Laboratory of Wheat and Maize Crop ScienceCollege of Life SciencesHenan Agricultural University450002ZhengzhouChina
| | - Hong‐Wei Xue
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese academy of Sciences200032ShanghaiChina
- Joint Center for Single Cell BiologySchool of Agriculture and BiologyShanghai Jiao Tong University200240ShanghaiChina
| |
Collapse
|
17
|
Swarup R, Bhosale R. Developmental Roles of AUX1/LAX Auxin Influx Carriers in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1306. [PMID: 31719828 PMCID: PMC6827439 DOI: 10.3389/fpls.2019.01306] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/19/2019] [Indexed: 05/06/2023]
Abstract
Plant hormone auxin regulates several aspects of plant growth and development. Auxin is predominantly synthesized in the shoot apex and developing leaf primordia and from there it is transported to the target tissues e.g. roots. Auxin transport is polar in nature and is carrier-mediated. AUXIN1/LIKE-AUX1 (AUX1/LAX) family members are the major auxin influx carriers whereas PIN-FORMED (PIN) family and some members of the P-GLYCOPROTEIN/ATP-BINDING CASSETTE B4 (PGP/ABCB) family are major auxin efflux carriers. AUX1/LAX auxin influx carriers are multi-membrane spanning transmembrane proteins sharing similarity to amino acid permeases. Mutations in AUX1/LAX genes result in auxin related developmental defects and have been implicated in regulating key plant processes including root and lateral root development, root gravitropism, root hair development, vascular patterning, seed germination, apical hook formation, leaf morphogenesis, phyllotactic patterning, female gametophyte development and embryo development. Recently AUX1 has also been implicated in regulating plant responses to abiotic stresses. This review summarizes our current understanding of the developmental roles of AUX1/LAX gene family and will also briefly discuss the modelling approaches that are providing new insight into the role of auxin transport in plant development.
Collapse
Affiliation(s)
- Ranjan Swarup
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Center for Plant Integrative Biology (CPIB), University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Ranjan Swarup,
| | - Rahul Bhosale
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Center for Plant Integrative Biology (CPIB), University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|