1
|
Zhang WY, Wang MH, Xie C. Potential of traditional Chinese medicine in the treatment of nonalcoholic fatty liver disease: A promising future. World J Gastroenterol 2024; 30:4597-4601. [DOI: 10.3748/wjg.v30.i43.4597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 10/31/2024] Open
Abstract
In this editorial, we provide insights into the publication by Niu et al featured in the latest edition of the World Journal of Gastroenterology. Specifically, our focus was on exploring the potential of traditional Chinese medicine (TCM) in treating nonalcoholic fatty liver disease (NAFLD) induced by a high-fat diet through various mechanisms. NAFLD is a common liver condition, affecting approximately 25% of the world's population. It is closely linked to metabolic syndrome, insulin resistance, excessive body weight, and irregular lipid processing, leading to fat accumulation in the liver, as well as oxidative stress and inflammation. While maintaining a healthy diet and active lifestyle are essential for managing NAFLD, treatment options are limited due to undefined pathogenesis and a lack of specific medications. TCM, rooted in traditional Chinese practices, presents a promising alternative through its "syndrome differentiation and treatment" principles, enhancing liver lipid metabolism, reducing inflammation, and addressing fibrosis. Certain herbs, such as Poria cocos, Puaria lobata, and Salvia miltiorrhiza, have shown significant efficacy in reducing fat deposition and improving liver function. Due to systematic research and analysis of mechanisms, TCM is anticipated to yield new approaches to prevent and treat NAFLD, increasing its clinical application.
Collapse
Affiliation(s)
- Wen-Yige Zhang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Queen Mary College of Nanchang University, Jiangxi Medical College, Nanchang 330006, Jiangxi Province, China
| | - Meng-Hui Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
2
|
Li B, Xiao Q, Zhao H, Zhang J, Yang C, Zou Y, Zhang B, Liu J, Sun H, Liu H. Schisanhenol ameliorates non-alcoholic fatty liver disease via inhibiting miR-802 activation of AMPK-mediated modulation of hepatic lipid metabolism. Acta Pharm Sin B 2024; 14:3949-3963. [PMID: 39309511 PMCID: PMC11413670 DOI: 10.1016/j.apsb.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 09/25/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is a common metabolic liver disease worldwide. Currently, satisfactory drugs for NAFLD treatment remain lacking. Obesity and diabetes are the leading causes of NAFLD, and compounds with anti-obesity and anti-diabetic activities are considered suitable candidates for treating NAFLD. In this study, biochemical and histological assays revealed that a natural lignan schisanhenol (SAL) effectively decreased lipid accumulation and improved hepatic steatosis in free fatty acid (FFA)-treated HepG2 cells and high-fat diet (HFD)-induced NAFLD mice. Further, molecular analyses, microRNA (miRNA)-seq, and bioinformatics analyses revealed that SAL may improve NAFLD by targeting the miR-802/adenosine monophosphate-activated protein kinase (AMPK) pathway. Liver-specific overexpression of miR-802 in NAFLD mice significantly impaired SAL-mediated liver protection and decreased the protein levels of phosphorylated (p)-AMPK and PRKAB1. Dual-luciferase assay analysis further confirmed that miR-802 inhibits hepatic AMPK expression by binding to the 3' untranslated region of mouse Prkab1 or human PRKAA1. Additionally, genetic silencing of PRKAA1 blocked SAL-induced AMPK pathway activation in FFA-treated HepG2 cells. The results demonstrate that SAL is an effective drug candidate for treating NAFLD through regulating miR-802/AMPK-mediated lipid metabolism.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Qi Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Hongmei Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Jianuo Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chunyan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yucen Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Bengang Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiushi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haitao Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haitao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
3
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
4
|
Miranda VC, Pereira YLG, da Paz APS, de Souza KR, da Silva MCF, Muto NA, Monteiro PR, Santos AV, Hamoy M, de Medeiros MDGF, do Carmo IS, Silva MEM, de Sousa Lima Neto J, de Mello VJ. Hypoglycemic and hypolipidemic effects of Lippia origanoides Kunth in diabetic rats. Food Sci Nutr 2024; 12:5131-5146. [PMID: 39055210 PMCID: PMC11266940 DOI: 10.1002/fsn3.4162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder commonly associated with atherosclerosis. Plants with therapeutic potential, such as Lippia origanoides Kunth, emerge as effective alternatives for treating these diseases. Therefore, this work aims to analyze the antihyperglycemic and antidyslipidemic potential of the hydroalcoholic extract of Lippia origanoides Kunth (ELo) in alloxan-diabetic rats. Animals were treated orally: normal control, hyperglycemic control, positive control glibenclamide (5 mg/kg), and groups treated with ELo (75, 150, and 250 mg/kg). Preclinical evaluation of ELo showed hypoglycemic, hypolipidemic, hepatic, and renal protective effects. At all doses, ELo significantly reduced hyperglycemia, triglycerides, total cholesterol, low-density lipoprotein, atherogenic index, atherogenic coefficient, and cardiovascular risk index (p < .05). Elo at different doses promoted an increase in insulin release compared to untreated animals (p < .05) and showed α-glucosidase inhibitory activity (p < .05). Also, ELo (250 mg/kg group) showed maximum reduction of hyperglycemia, alanine transaminase, aspartate aminotransferase, malonaldehyde, and urea compared to the hyperglycemic and glibenclamide groups, and creatinine only compared to the hyperglycemic groups (p < .05). The promising action of ELo in the context of diabetes may be related to the synergistic action of flavonoid compounds identified in liquid chromatography, whose pharmacological capabilities have already been documented in previous studies. The mechanisms may be the stimulation of insulin release; the inhibitory activity of α-glucosidase; improving general clinical conditions; and the antioxidant effects of the extract. These findings pave the way for the future development of an herbal presentation of L. origanoides Kunth as a hypoglycemic and cardiovascular protector with a lipid-lowering effect.
Collapse
Affiliation(s)
- Vinicius Carvalho Miranda
- Research, Teaching and Extension Laboratory in Clinical Analysis, Institute of Biological SciencesFederal University of ParáBelémBrazil
| | - Yago Luis Gonçalves Pereira
- Research, Teaching and Extension Laboratory in Clinical Analysis, Institute of Biological SciencesFederal University of ParáBelémBrazil
| | - Allane Patricia Santos da Paz
- Research, Teaching and Extension Laboratory in Clinical Analysis, Institute of Biological SciencesFederal University of ParáBelémBrazil
| | - Keyla Rodrigues de Souza
- Research, Teaching and Extension Laboratory in Clinical Analysis, Institute of Biological SciencesFederal University of ParáBelémBrazil
| | | | - Nilton Akio Muto
- Center for the Valorization of Bioactive Compounds from the AmazonFederal University of ParáBelémBrazil
| | - Patrick Romano Monteiro
- Laboratory of Biotechnology of Enzymes and BiotransformationFederal University of ParáBelémBrazil
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and BiotransformationFederal University of ParáBelémBrazil
| | - Moises Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological SciencesFederal University of ParáBelémBrazil
| | | | | | | | - José de Sousa Lima Neto
- Department of Biology, Center for Biological and Health SciencesFederal University of MaranhãoSão LuísBrazil
| | - Vanessa Jóia de Mello
- Research, Teaching and Extension Laboratory in Clinical Analysis, Institute of Biological SciencesFederal University of ParáBelémBrazil
| |
Collapse
|
5
|
Zhang L, Gong J, Xi L, Yang B, Hao Y, Zhang H, Feng Z, Li Q. Positive effects of rutin on egg quality, lipid peroxidation and metabolism in post-peak laying hens. Front Vet Sci 2024; 11:1426377. [PMID: 38872794 PMCID: PMC11169854 DOI: 10.3389/fvets.2024.1426377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Excessive fat deposition due to impaired fat metabolism in chickens is a major problem in the poultry industry. Nutritional interventions are effective solutions, but current options are limited. A safe phytochemical, rutin, has shown positive effects in animals, but its effect on lipid metabolism in poultry remains unknown. Hence, this study is to investigate the effects of rutin on egg quality, serum biochemistry, fat deposition, lipid peroxidation and hepatic lipid metabolism in post-peak laying hens. A total of 360 Taihang laying hens (49-week-old) were randomly divided into five groups and fed a basal diet (control group, 0%) and a basal diet supplemented with 300 (0.03%), 600 (0.06%), 900 (0.09%), and 1,200 (0.12%) mg rutin/kg feed, respectively. The results showed that eggshell strength was significantly (p < 0.05) higher in the dietary rutin groups, whereas yolk percentage (p < 0.05), total cholesterol (TC) (p < 0.01) and yolk fat ratio (p < 0.01) decreased linearly (p < 0.05) in the dietary rutin groups. Importantly, dietary rutin reduced serum triglyceride (TG) and TC levels, decreased abdominal lipid deposition and liver index (p < 0.05), and which concomitantly decreased hepatic lipid (TG, TC, and free fatty acid) accumulation (p < 0.05). An increase (p < 0.05) in total antioxidant capacity and superoxide dismutase activity and a decrease (p < 0.05) in malondialdehyde levels were also found. At the same time, the activities of hepatic lipase, acetyl-CoA carboxylase and malic enzyme in the liver were decreased (p < 0.05). Dietary rutin also increased (p < 0.05) the expression of fatty acid oxidation-related genes (carnitine palmitoyl transferase 1, peroxisome proliferator-activated receptor α, farnesoid X receptor). Additionally, it decreased fatty acid synthesis genes (sterol regulatory element binding protein-1c, acetyl-CoA carboxylase α, stearoyl-CoA desaturase 1) (p < 0.05). In conclusion, the addition of rutin (0.06-0.12%) to the diet improved the fat metabolism and increased liver antioxidant capacity in post-peak laying hens, and these positive changes improved egg quality to some extent.
Collapse
Affiliation(s)
- Leizheng Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Lin Xi
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Bowen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanshuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Haihua Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Zhihua Feng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qian Li
- Hebei Institute of Animal Husbandry and Veterinary Medicine, Baoding, China
| |
Collapse
|
6
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Zakaria Z, Othman ZA, Nna VU, Mohamed M. The promising roles of medicinal plants and bioactive compounds on hepatic lipid metabolism in the treatment of non-alcoholic fatty liver disease in animal models: molecular targets. Arch Physiol Biochem 2023; 129:1262-1278. [PMID: 34153200 DOI: 10.1080/13813455.2021.1939387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Imbalance in hepatic lipid metabolism can lead to an abnormal triglycerides deposition in the hepatocytes which can cause non-alcoholic fatty liver disease (NAFLD). Four main mechanisms responsible for regulating hepatic lipid metabolism are fatty acid uptake, de novo lipogenesis, lipolysis and fatty acid oxidation. Controlling the expression of transcription factors at molecular level plays a crucial role in NAFLD management. This paper reviews various medicinal plants and their bioactive compounds emphasising mechanisms involved in hepatic lipid metabolism, other important NAFLD pathological features, and their promising roles in managing NAFLD through regulating key transcription factors. Although there are many medicinal plants popularly investigated for NAFLD treatment, there is still little information and scientific evidence available and there has been no research on clinical trials scrutinised on this matter. This review also aims to provide molecular information of medicinal plants in NALFD treatment that might have potentials for future scientifically controlled studies.
Collapse
Affiliation(s)
- Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
8
|
Kousar M, Kim YR, Kim JY, Park J. Enhancement of Growth and Secondary Metabolites by the Combined Treatment of Trace Elements and Hydrogen Water in Wheat Sprouts. Int J Mol Sci 2023; 24:16742. [PMID: 38069065 PMCID: PMC10706805 DOI: 10.3390/ijms242316742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to evaluate the response of Triticum aestivum to hydrogen water (HW) and trace elements treated with HW. A pot experiment was conducted to assess the growth indices, secondary metabolites, and antioxidant levels. The response surface methodology (RSM) approach was used to ascertain the concentrations and significant interaction between treatments. The outcomes demonstrated that the combined treatment of Se acid and Mo oxide exhibited a notable positive effect on the growth and secondary metabolites, when treated with HW as compared to distilled water (DW). Notably, the interaction between these two treatments is significant, and the higher response was observed at the optimal concentration of 0.000005% for Se acid and 0.06% for Mo oxide. Additionally, an in vitro experiment revealed that the mixture treatment inhibits the accumulation of lipids in HepG2 hepatocytes cells. Moreover, metabolic analysis revealed that upregulated metabolites are linked to the inhibition of lipid accumulation. In addition, the analysis emphasizes that the continued benefits of higher plants as a renewable supply for chemicals compounds, especially therapeutic agents, are being expanded and amplified by these state-of-the-art technologies.
Collapse
Affiliation(s)
- Muniba Kousar
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Yu Rim Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
- Center for Functional Biomaterials, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
9
|
Wang L, Yan Y, Wu L, Peng J. Natural products in non-alcoholic fatty liver disease (NAFLD): Novel lead discovery for drug development. Pharmacol Res 2023; 196:106925. [PMID: 37714392 DOI: 10.1016/j.phrs.2023.106925] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
With changing lifestyles, non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide. A substantial increase in the incidence, mortality, and associated burden of NAFLD-related advanced liver disease is expected. Currently, the initial diagnosis of NAFLD is still based on ultrasound and there is no approved treatment method. Lipid-lowering drugs, vitamin supplementation, and lifestyle improvement treatments are commonly used in clinical practice. However, most lipid-lowering drugs can produce poor patient compliance and specific adverse effects. Therefore, the exploration of bio-diagnostic markers and active lead compounds for the development of innovative drugs is urgently needed. More and more studies have reported the anti-NAFLD effects and mechanisms of natural products (NPs), which have become an important source for new drug development to treat NAFLD due to their high activity and low side effects. At present, berberine and silymarin have been approved by the US FDA to enter clinical phase IV studies, demonstrating the potential of NPs against NAFLD. Studies have found that the regulation of lipid metabolism, insulin resistance, oxidative stress, and inflammation-related pathways may play important roles in the process. With the continuous updating of technical means and scientific theories, in-depth research on the targets and mechanisms of NPs against NAFLD can provide new possibilities to find bio-diagnostic markers and innovative drugs. As we know, FXR agonists, PPARα agonists, and dual CCR2/5 inhibitors are gradually coming on stage for the treatment of NAFLD. Whether NPs can exert anti-NAFLD effects by regulating these targets or some unknown targets remains to be further studied. Therefore, the study reviewed the potential anti-NAFLD NPs and their targets. Some works on the discovery of new targets and the docking of active lead compounds were also discussed. It is hoped that this review can provide some reference values for the development of non-invasive diagnostic markers and new drugs against NAFLD in the clinic.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yonghuan Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Linfang Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
10
|
Yang S, Yang H, Zhang Y. Yao-Shan of traditional Chinese medicine: an old story for metabolic health. Front Pharmacol 2023; 14:1194026. [PMID: 37663255 PMCID: PMC10468577 DOI: 10.3389/fphar.2023.1194026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
Type 2 diabetes mellitus, nonalcoholic fatty liver disease (NAFLD), cardio-cerebrovascular diseases (CCVDs), hyperuricemia and gout, and metabolic-related sexual dysfunction are metabolic diseases that affect human health in modern society. Scientists have made great efforts to investigate metabolic diseases using cell models in vitro or animal models in the past. However, the findings from cells or animals are difficult to translate into clinical applications due to factors such as the in vitro and in vivo differences; the differences in anatomy, physiology, and genetics between humans and animals; and the differences in microbiome-host interaction. The Chinese have extensively used the medicated diet of traditional Chinese medicine (TCM) (also named as Yao-Shan of TCM, Chinese Yao-Shan et al.) to maintain or improve cardiometabolic health for more than 2,200 years. These ancient classic diets of TCM are essential summaries of long-term life and clinical practices. Over the past 5 years, our group has made every effort to collect and sort out the classic Yao-Shan of TCM from the ancient TCM literature since Spring and Autumn and Warring States Period, especially these are involved in the prevention and treatment of metabolic diseases, such as diabetes, NAFLD, CCVDs, hyperuricemia and gout, and sexual dysfunction. Here, we summarized and discussed the classic Yao-Shan of TCM for metabolic diseases according to the time recorded in the ancient literature, and revised the Latin names of the raw materials in these Yao-Shan of TCM. Moreover, the modern medicine evidences of some Yao-Shan of TCM on metabolic diseases have also been summarized and emphasized in here. However, the exact composition (in terms of ratios), preparation process, and dosage of many Yao-Shan are not standardized, and their main active ingredients are vague. Uncovering the mystery of Yao-Shan of TCM through modern biological and chemical strategies will help us open a door, which is ancient but now looks new, to modulate metabolic homeostasis and diseases.
Collapse
Affiliation(s)
- Shuangling Yang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou, Guangdong, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Park SY, Kim JE, Kang HM, Song HJ, Kang NJ, Hwang DY, Choi YW. Adiposity Reduction by Cucumis melo var. gaettongchamoe Extract in High-Fat Diet-Induced Obese Mice. Nutrients 2023; 15:3292. [PMID: 37571229 PMCID: PMC10421112 DOI: 10.3390/nu15153292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This study investigated the anti-obesity effects of Cucumis melo var. gaettongchamoe (CG) in mice fed a high-fat diet (HFD). The mice received CG water extract (CGWE) treatment for 8 weeks, and changes in body weight and serum lipid levels were analyzed. The HFD + vehicle group showed a significant increase in body weight compared to the control group, while the HFD + CGWE and HFD + positive (orlistat) groups exhibited reduced body weight. Lipid profile analysis revealed lower levels of total cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein cholesterol in the HFD + CGWE group compared to the HFD + vehicle group. The HFD + vehicle group had increased abdominal fat weight and fat content, whereas both HFD + CGWE groups showed significant reductions in abdominal fat content and adipocyte size. Additionally, CGWE administration downregulated mRNA expression of key proteins involved in neutral lipid metabolism. CGWE also promoted hepatic lipolysis, reducing lipid droplet accumulation in hepatic tissue and altering neutral lipid metabolism protein expression. Furthermore, CGWE treatment reduced inflammatory mediators and suppressed the activation of the mitogen-activated protein kinase pathway in hepatic tissue. In conclusion, CGWE shows promise as a therapeutic intervention for obesity and associated metabolic dysregulation, including alterations in body weight, serum lipid profiles, adipose tissue accumulation, hepatic lipolysis, and the inflammatory response. CGWE may serve as a potential natural anti-obesity agent.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea;
| | - Ji Eun Kim
- Department of Biomaterials Science, Pusan National University, Miryang 50463, Republic of Korea; (J.E.K.); (H.J.S.); (D.Y.H.)
| | - He Mi Kang
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
| | - Hee Jin Song
- Department of Biomaterials Science, Pusan National University, Miryang 50463, Republic of Korea; (J.E.K.); (H.J.S.); (D.Y.H.)
| | - Nam Jun Kang
- Department of Horticulture, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Dae Youn Hwang
- Department of Biomaterials Science, Pusan National University, Miryang 50463, Republic of Korea; (J.E.K.); (H.J.S.); (D.Y.H.)
| | - Young-Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
| |
Collapse
|
12
|
Chen H, Zhao H, Qi X, Sun Y, Ma Y, Li Q. Lactobacillus plantarum HF02 alleviates lipid accumulation and intestinal microbiota dysbiosis in high-fat diet-induced obese mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4625-4637. [PMID: 36866521 DOI: 10.1002/jsfa.12538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Obesity is closely associated with lipid accumulation and intestinal microbiota dysbiosis. It has been proved that probiotics supplement contributes to alleviate obesity. The objective of this study was to investigate the mechanism by which Lactobacillus plantarum HF02 (LP-HF02) alleviated lipid accumulation and intestinal microbiota dysbiosis in high-fat diet-induced obese mice. RESULTS Our results showed that LP-HF02 ameliorated body weight, dyslipidemia, liver lipid accumulation, and liver injury in obese mice. As expected, LP-HF02 inhibited pancreatic lipase activity in small intestinal contents and increased fecal triglyceride levels, thereby reducing dietary fat hydrolysis and absorption. Moreover, LP-HF02 ameliorated the intestinal microbiota composition, as evidenced by the enhanced ratio of Bacteroides to Firmicutes, the decreased abundance of pathogenic bacteria (including Bacteroides, Alistipes, Blautia, and Colidextribacter) and the increased abundance of beneficial bacteria (including Muribaculaceae, Akkermansia, Faecalibaculum, and Rikenellaceae_RC9_gut_group). LP-HF02 also increased fecal short-chain fatty acids (SCFAs) levels and colonic mucosal thickness, and subsequently decreased serum lipopolysaccharide (LPS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels in obese mice. Additionally, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot results demonstrated that LP-HF02 ameliorated hepatic lipid accumulation via activating the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway. CONCLUSION Therefore, our results indicated that LP-HF02 could be considered as a probiotic preparation for preventing obesity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haoran Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Haiding Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Qiming Li
- New Hope Dairy Co. Ltd, Chengdu, China
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
13
|
Yu C, Wan X, Li D, Guo X. Reduction of obesity and hepatic adiposity in high-fat diet-induced rats by besunyen slimming tea. Heliyon 2023; 9:e17383. [PMID: 37416691 PMCID: PMC10320021 DOI: 10.1016/j.heliyon.2023.e17383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
Objective Obesity is a significant risk factor for metabolic syndrome, type 2 diabetes mellitus, hypertension, nonalcoholic fatty liver disease, and cardiovascular disorders. As a well-known Chinese tea product, Besunyen Slimming Tea (BST) is believed to effectively reduce body weight (BW) and lipid profile. In this study, we aimed to elucidate the mechanisms and effects of BST on treating obesity and hepatic steatosis using a rat model fed with a high-fat diet (HFD). Methods Sprague-Dawley rats were subjected to random separation into three categories: Animals were fed (1) a normal diet food (ND); (2) HFD, and (3) HFD + BST (n = 12/category). After successfully establishing the obesity model at week 8, the HFD + BST received BST (0.6 g/0.6 kg) orally, and the ND and HFD received the same amount (2 ml) of distilled water orally. Results HFD + BST reduced waist circumference (7.84%, P = 0.015), food intake (14.66%, P = 0.011), final BW (12.73%, P = 0.010), BW gain (964.16%, P < 0.001), and body mass index (8.97%, P = 0.044) compared with the HFD. BST supplementation also decreased hyperlipidemia, inflammation, and insulin resistance in rats with HFD. Furthermore, BST suppressed hepatic lipidosis by decreasing de novo lipogenesis and increasing fatty acid oxidation. Conclusions The results of this study offer evidence supporting the potential health benefits of BST in the management of metabolic disorders and obesity.
Collapse
|
14
|
Li Y, Liu Y, Chen Z, Tang K, Yang L, Jiang Y, Wang J, Huang P, Wang J, Zheng P, Song H. Protopanaxadiol ameliorates NAFLD by regulating hepatocyte lipid metabolism through AMPK/SIRT1 signaling pathway. Biomed Pharmacother 2023; 160:114319. [PMID: 36724639 DOI: 10.1016/j.biopha.2023.114319] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the main chronic liver diseases worldwide. Protopanaxadiol (PPD), an active compound derived from Gynostemma pentaphyllum, has been found able to improve free fatty acid-induced lipid accumulation in hepatocytes. However, the efficacy of PPD on NAFLD and the underlying mechanism remains unknown. In this study, the mice were fed with a high-fat diet for 22 weeks to induce the NAFLD model, and then were treated with PPD by gavage for 8 weeks. Moreover, AML12 and HepG2 cells induced by free fatty acids for 24 h, were treated with different doses of PPD and/or AMPK or SIRT1 inhibitor to explore the pharmacological mechanism of PPD. The results showed that mice with PPD treatment had significantly reduced liver weight and serum aminotransferase levels, less severe hepatosteatosis, and inflammatory cell infiltration in liver tissues when compared with the model mice. PPD also reversed the down-regulated activation of AMPK and SIRT1 expression as well as the change of lipid metabolism-related molecules in the mice liver tissues. Consistently, the in vitro experiments showed the effect of PPD in ameliorating lipid accumulation in hepatocytes. The inhibitor of AMPK or SIRT1 suppressed the AMPK and SIRT1 signaling and markedly diminished the anti-steatosis effect of PPD. In conclusion, our results prove the ameliorating impact of PPD on NAFLD and also reveal the involvement of regulation of AMPK/SIRT1 signaling pathway-mediated lipid metabolism in the underlying mechanism, suggesting PPD as a potential natural compound for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yiping Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yang Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhiwei Chen
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Kaiyue Tang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuwei Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jue Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ping Huang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jianyi Wang
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
15
|
Xiao L, Xiong H, Deng Z, Peng X, Cheng K, Zhang H, Jiang L, Sun Y. Tetrastigma hemsleyanum leaf extracts ameliorate NAFLD in mice with low-grade colitis via the gut-liver axis. Food Funct 2023; 14:500-515. [PMID: 36519687 DOI: 10.1039/d2fo03028d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex metabolic disorder, manifested as oxidative stress, lipid accumulation, and inflammation of the liver. Tetrastigma hemsleyanum leaves (THL), which are rich in flavonoids and phenolic acids, have good anti-inflammatory, antioxidant, and hepatoprotective effects. However, it is unknown whether THL extracts can improve NAFLD and the underlying mechanisms are unknown. Hence, this study was designed to investigate the effects of THL extracts on NAFLD and perform a preliminary inquiry into the underlying mechanism based on the gut-liver axis. The results showed that THL extracts could reverse NAFLD-related oxidative stress, lipid accumulation, and inflammation. Additionally, the protective effect of THL extracts on the gut includes the maintenance of the intestinal barrier and the regulation of gut microbiota, which may be one of the mechanisms by which THL improves NAFLD. To be specific, in our study, THL extracts alleviated hepatic lipid accumulation and oxidative stress by regulating the expression of lipid synthesis/catabolism and the oxidative stress genes (SREBP-1c/ACC-1/PPAR-α/PPAR-γ/Keap1/Nrf2). In addition, THL extracts reduced damage to the intestinal barrier (ZO-1/Mucin2/occludin) and increased the relative abundance of Lactobacillales, Ruminococcaceae, and Bifidobacteriales in NAFLD mice. In short, THL extracts alleviated NAFLD-related oxidative stress, lipid accumulation, and inflammation in NAFLD mice which may be via the gut-liver axis (gut barrier integrity and gut microbiota).
Collapse
Affiliation(s)
- Lihua Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, 315010, China
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, China
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
16
|
Yao Y, Yang Y, Wang H, Jiang Z, Ma H. Dehydroepiandrosterone alleviates oleic acid-induced lipid metabolism disorders through activation of AMPK-mTOR signal pathway in primary chicken hepatocytes. Poult Sci 2022; 102:102385. [PMID: 36565630 PMCID: PMC9800306 DOI: 10.1016/j.psj.2022.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/05/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The incident of lipid metabolism disorders has obviously increased under the undue pursuit of efficiency, which had seriously threatened to the health development of poultry industry. As an important cholesterol-derived intermediate, though dehydroepiandrosterone (DHEA) has the fat-reduction effect in animals and humans, but the underlying mechanism still poorly understood. Herein, the present study aimed to investigate the regulatory effects and its molecular mechanism of DHEA on disturbance of lipid metabolism induced by oleic acid (OA) in primary chicken hepatocytes. The hepatocytes were treated with 0, 0.1, 1, 10 μM DHEA for 4 h, and then supplemented with 0 or 0.5 mM OA stimulation for another 24 h. Our findings demonstrated that DHEA treatment effectively reduced TG content and alleviated lipid droplet deposition in OA-induced hepatocytes. DHEA inhibited the lipogenesis related factors (ACC, FAS, SREBP-1c, and ACLY) mRNA level and increased the lipolysis key factors (CPT-1 and PPARα) mRNA levels. In addition, DHEA obviously elevated the protein levels of CPT-1A, p-ACC, and ECHS1; whereas decreased the protein levels of FAS and SREBP-1 in hepatocytes stimulated by OA. Furthermore, DHEA promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR). Mechanistically, the hepatocytes were pre-treated with AMPK inhibitor compound C or AMPK activator AICAR before addition of DHEA treatment, and the results certified that DHEA activated cAMP/AMPK pathway and which subsequently led the inhibition of mTOR signal, which finally reduced the fat excessive accumulation in OA-stimulated hepatocytes. Collectively, our study unveiled that DHEA protects against the lipid metabolism disorders triggered by OA stimulation through activation of AMPK-mTOR signaling pathway, which prompts the value of DHEA as a potential nutritional supplement in regulating the lipid metabolism and its related disease in poultry.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China,Corresponding author:
| |
Collapse
|
17
|
Effects of Resveratrol Against Induced Metabolic Syndrome in Rats: Role of Oxidative Stress, Inflammation, and Insulin Resistance. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3362005. [PMID: 35990819 PMCID: PMC9388238 DOI: 10.1155/2022/3362005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Metabolic syndrome (MS) is a serious health problem associated with an increase in risk factors for hepatic steatosis, which is the most common liver disease today. The goal of this study was to investigate the protective effects of resveratrol against metabolic alterations associated with a high-fat high-fructose diet (HFFD). Thirty-two male rats were randomly divided into four equal groups: control (cont.), metabolic syndrome (MS), resveratrol (Res), and metabolic syndrome treated with resveratrol (MS + Res). Resveratrol was administrated orally at a dose of 30 mg/kg·bw, daily. After 10 weeks, body weight, serum biochemical parameters, hepatic oxidative stress, inflammatory markers, as well as mRNA levels of hepatic genes related to lipid metabolism and insulin signaling were measured. In addition, the liver was examined histopathologically to detect lipid deposition. Increased body weight, hepatic dysfunction, dyslipidemia, hepatic insulin resistance, hepatic oxidative and inflammatory stress conditions, upregulation of mRNA expression level of sterol regulatory element binding protein 1-c (SREBP1-c), and downregulation of mRNA expression levels of peroxisome proliferated activated receptor alpha (PPARα) and insulin receptor substrate-2 (IR-S2) were all observed in the MS rats. Hepatic steatosis was confirmed by hematoxylin and eosin and Oil Red O staining. Administration of resveratrol reduced liver steatosis, oxidative stress, and inflammatory state. Also, it improved lipid profile as well as insulin sensitivity and reverted alterations in hepatic mRNA expression levels of the tested genes. Based on these findings, resveratrol could be proposed as a therapeutic approach for MS prevention.
Collapse
|
18
|
Qin Y, Zhao B, Deng H, Zhang M, Qiao Y, Liu Q, Shi C, Li Y. Isolation and Quantification of the Hepatoprotective Flavonoids From Scleromitron diffusum (Willd.) R. J. Wang With Bio-Enzymatic Method Against NAFLD by UPLC-MS/MS. Front Pharmacol 2022; 13:890148. [PMID: 35770080 PMCID: PMC9234865 DOI: 10.3389/fphar.2022.890148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Flavonoids were the major phytochemicals against hepatic peroxidative injury in Scleromitron diffusum (Willd.) R. J. Wang with an inventive bio-enzymatic method by our group (LU500041). Firstly, the total flavonoids from Scleromitron diffusum (Willd.) R. J. Wang were extracted by reflux, ultrasonic, ultrasound-assisted enzymatic methods (TFH), and the bio-enzymatic method (Ey-TFH). Then 24 flavonoid compounds were isolated and quantified in the extracts by UPLC-MS/MS. Next, six representative differential compounds in Ey-TFH were further screened out by multivariate statistical analysis compared with those in TFH. In a further step, Ey-TFH presented a higher protective rate (59.30 ± 0.81%) against H2O2-damaged HL-02 hepatocytes than TFH. And six representative differential compounds at 8 and 16 μmol/L all exerted significant hepatoprotective effects (p < 0.05 or p < 0.01). Finally, the therapeutic action of Ey-TFH for nonalcoholic fatty liver disease (NAFLD) was processed by a rat's model induced with a high-fat diet. Ey-TFH (90, 120 mg/kg) significantly ameliorated the lipid accumulation in the rat model (p < 0.05). Meanwhile, Ey-TFH relieved liver damage. The levels of ALT, ALP, AST, LDH, and γ-GT in rats' serum were also significantly reduced (p < 0.05 or p < 0.01). In addition to this, the body's antioxidant capacity was improved with elevated SOD and GSH levels (p < 0.05) and down-regulated MDA content (p < 0.01) after Ey-TFH administration. Histopathological observations of staining confirmed the hepatic-protective effect of Ey-TFH.
Collapse
Affiliation(s)
- Yuxi Qin
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Baojin Zhao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Huifang Deng
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Mengjiao Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Yanan Qiao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Qiling Liu
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
| | - Chuandao Shi
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
| | - Yunlan Li
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
19
|
Xu Y, Li X, Wang H. Protective Roles of Apigenin Against Cardiometabolic Diseases: A Systematic Review. Front Nutr 2022; 9:875826. [PMID: 35495935 PMCID: PMC9051485 DOI: 10.3389/fnut.2022.875826] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Apigenin is a flavonoid with antioxidant, anti-inflammatory, and anti-apoptotic activity. In this study, the potential effects of apigenin on cardiometabolic diseases were investigated in vivo and in vitro. Potential signaling networks in different cell types induced by apigenin were identified, suggesting that the molecular mechanisms of apigenin in cardiometabolic diseases vary with cell types. Additionally, the mechanisms of apigenin-induced biological response in different cardiometabolic diseases were analyzed, including obesity, diabetes, hypertension and cardiovascular diseases. This review provides novel insights into the potential role of apigenin in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yajie Xu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xue Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xue Li,
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hui Wang,
| |
Collapse
|
20
|
Acute Effects of Kawakawa ( Piper excelsum) Intake on Postprandial Glycemic and Insulinaemic Response in a Healthy Population. Nutrients 2022; 14:nu14081638. [PMID: 35458200 PMCID: PMC9032225 DOI: 10.3390/nu14081638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Piper excelsum (kawakawa) is an endemic shrub of Aotearoa, New Zealand, of cultural and medicinal importance to Māori. Its fruits and leaves are often consumed. These tissues contain several compounds that have been shown to be biologically active and which may underpin its putative health-promoting effects. The current study investigates whether kawakawa tea can modulate postprandial glucose metabolism. Methods: We report a pilot three-arm randomized crossover study to assess the bioavailability of kawakawa tea (BOKA-T) in six male participants with each arm having an acute intervention of kawakawa tea (4 g/250 mL water; 1 g/250 mL water; water) and a follow-up two-arm randomized crossover study to assess the impact of acute kawakawa tea ingestion on postprandial glucose metabolism in healthy human volunteers (TOAST) (4 g/250 mL water; and water; n = 30 (15 male and 15 female)). Participants consumed 250 mL of kawakawa tea or water control within each study prior to consuming a high-glycemic breakfast. Pre- and postprandial plasma glucose and insulin concentrations were measured, and the Matsuda index was calculated to measure insulin sensitivity. Results: In the BOKA-T study, lower plasma glucose (p < 0.01) and insulin (p < 0.01) concentrations at 60 min were observed after consumption of a high-dose kawakawa tea in comparison to low-dose or water. In the TOAST study, only plasma insulin (p = 0.01) was lower at 60 min in the high-dose kawakawa group compared to the control group. Both studies showed a trend towards higher insulin sensitivity in the high-dose kawakawa group compared to water only. Conclusions: Consuming kawakawa tea may modulate postprandial glucose metabolism. Further investigations with a longer-term intervention study are warranted.
Collapse
|
21
|
A Novel Sprague-Dawley Rat Model Presents Improved NASH/NAFLD Symptoms with PEG Coated Vitexin Liposomes. Int J Mol Sci 2022; 23:ijms23063131. [PMID: 35328564 PMCID: PMC8948922 DOI: 10.3390/ijms23063131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease (CLD) is a global threat to the human population, with manifestations resulting from alcohol-related liver disease (ALD) and non-alcohol fatty liver disease (NAFLD). NAFLD, if not treated, may progress to non-alcoholic steatohepatitis (NASH). Furthermore, inflammation leads to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Vitexin, a natural flavonoid, has been recently reported for inhibiting NAFLD. It is a lipogenesis inhibitor and activates lipolysis and fatty acid oxidation. In addition, owing to its antioxidant properties, it appeared as a hepatoprotective candidate. However, it exhibits low bioavailability and low efficacy due to its hydrophobic nature. A novel rat model for liver cirrhosis was developed by CCL4/Urethane co-administration. Vitexin encapsulated liposomes were synthesized by the ‘thin-film hydration’ method. Polyethylene glycol (PEG) was coated on liposomes to enhance stability and stealth effect. The diseased rats were then treated with vitexin and PEGylated vitexin liposomes, administered intravenously and orally. Results ascertained the liposomal encapsulation of vitexin and subsequent PEG coating to be a substantial strategy for treating liver cirrhosis through oral drug delivery.
Collapse
|
22
|
Cominguez DC, Park YJ, Kang YM, Nugroho A, Kim S, An HJ. Clitorin ameliorates western diet-induced hepatic steatosis by regulating lipogenesis and fatty acid oxidation in vivo and in vitro. Sci Rep 2022; 12:4154. [PMID: 35264693 PMCID: PMC8907210 DOI: 10.1038/s41598-022-07937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is usually correlated with metabolic diseases, such as obesity, insulin resistance, and hyperglycemia. Herein, we investigated the inhibitory effects and underlying governing mechanism of clitorin in a western diet (WD)-induced hepatic steatosis mouse model, and in oleic acid-stimulated HepG2 cells. Male C57BL/6 mice were fed a normal diet, WD, WD + 10 or 20 mg/kg orlistat, and WD + 10 or 20 mg/kg clitorin. HepG2 cells were treated with 1 mM oleic acid to induce lipid accumulation with or without clitorin. Clitorin significantly alleviated body weight gain and hepatic steatosis features (NAFLD activity score, micro-, and macro-vesicular steatosis) in WD-induced hepatic steatosis mice. Additionally, clitorin significantly decreased protein expressions of sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT/enhancer binding protein α (C/EBPα) in WD-induced hepatic steatosis mice. Moreover, clitorin significantly diminished the mRNA levels of SREBP1, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and enhanced the mRNA levels of peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyltranserase-1 (CTP-1), as well as adenosine monophosphate-activated protein kinase (AMPK) in the liver of WD-induced hepatic steatosis mice and oleic acid-stimulated HepG2 cells. Overall, our findings demonstrated that clitorin can be a potentially efficacious candidate for NAFLD management.
Collapse
Affiliation(s)
- Divina C Cominguez
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
| | - Yea-Jin Park
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
| | - Yun-Mi Kang
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea
| | - Agung Nugroho
- Department of Agro-Industrial Technology, Lambung Mangkurat University, Banjarbaru, Indonesia
| | - Suhyun Kim
- Department of Obstetrics & Gynecology College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
23
|
Potential Roles and Key Mechanisms of Hawthorn Extract against Various Liver Diseases. Nutrients 2022; 14:nu14040867. [PMID: 35215517 PMCID: PMC8879000 DOI: 10.3390/nu14040867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Crataegus (hawthorn), a flowering shrub or tree, is a member of the Rosaceae family and consists of approximately 280 species that have been primarily cultivated in East Asia, North America, and Europe. Consumption of hawthorn preparations has been chiefly associated with pharmacological benefits for cardiovascular diseases, including congestive heart failure and angina pectoris. Treatment with hawthorn extracts can be related to improvements in the complex pathogenesis of various hepatic and cardiovascular disorders. In this regard, the present review described that the presence of hawthorn extracts ameliorated hepatic injury, lipid accumulation, inflammation, fibrosis, and cancer in an abundance of experimental models. Hawthorn extracts might have these promising activities, largely by enhancing the hepatic antioxidant system. In addition, several mechanisms, including AMP-activated protein kinase (AMPK) signaling and apoptosis, are responsible for the role of hawthorn extracts in repairing the dysfunction of injured hepatocytes. Specifically, hawthorn possesses a wide range of biological actions relevant to the treatment of toxic hepatitis, alcoholic liver disease, non-alcoholic fatty liver disease, and hepatocellular carcinoma. Accordingly, hawthorn extracts can be developed as a major source of therapeutic agents for liver diseases.
Collapse
|
24
|
Zhang L, Chen D, Tu Y, Sang T, Pan T, Lin H, Cai C, Jin X, Wu F, Xu L, Chen Y. Vitexin attenuates autoimmune hepatitis in mouse induced by syngeneic liver cytosolic proteins via activation of AMPK/AKT/GSK-3β/Nrf2 pathway. Eur J Pharmacol 2022; 917:174720. [PMID: 34953801 DOI: 10.1016/j.ejphar.2021.174720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
Abstract
Autoimmune hepatitis (AIH) is a chronic progressive liver disease that currently does not have a successful therapeutic option. Vitexin, a bioflavonoid isolated from various medicinal plants, possesses a variety of activities; however, whether vitexin protects against AIH remains unclear. Therefore, the current study aims to investigate the hepatoprotective effects and mechanism of action of vitexin in both an experimental autoimmune hepatitis (EAH) mouse model and in D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced hepatocyte injury. Syngeneic liver antigen S100 was used to establish EAH. Vitexin treatment significantly decreased the infiltration of inflammatory and CD4+ T cells in the liver, reduced ALT and AST levels in the serum and attenuated hepatic injury due to oxidative stress. Moreover, vitexin mitigated the upregulation of Bax and cleaved caspase-3 and the downregulation of Bcl-2 in the livers of AIH mice. These regulations were accompanied by not only increased phosphorylation of AMPK, AKT and GSK-3β but also activation of Nrf2. Furthermore, vitexin inhibited apoptosis and the overexpression of inflammatory cytokines in D-GalN/LPS-treated AML12 cells. In addition, vitexin enhanced the phosphorylation of AMPK, AKT and GSK-3β. When AML12 cells were treated with an inhibitor of AMPK/AKT or specific siRNA targeting Nrf2, vitexin did not further induce the activation of Nrf2/HO-1. A molecular docking study confirmed that vitexin could interact with AMPK through hydrogen bonding interactions. In conclusion, vitexin ameliorated hepatic injury in EAH mice through activation of the AMPK/AKT/GSK-3β pathway and upregulation of the Nrf2 gene.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325006, China
| | - Dazhi Chen
- Department of Gastroenterology, The First Hospital of Peking University, BeiJing, 100032, China
| | - Yulu Tu
- Department of Gastroenterology, Ningbo Hangzhou Bay Hospital, Ningbo, 315336, Zhejiang, China
| | - Tiantian Sang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325006, China
| | - Tongtong Pan
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325006, China
| | - Hongwei Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325006, China
| | - Chao Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325006, China
| | - Xiaozhi Jin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325006, China
| | - Faling Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325006, China
| | - Lanman Xu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Center Lihuili Hospital, Affiliated Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| | - Yongping Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325006, China.
| |
Collapse
|
25
|
Jiang Y, Gong Q, Gong Y, Zhuo C, Huang J, Tang Q. Vitexin attenuates non-alcoholic fatty liver disease (NAFLD) lipid accumulation in high fat-diet fed mice by activating autophagy and reducing endoplasmic reticulum (ER) stress in liver. Biol Pharm Bull 2022; 45:260-267. [PMID: 35034930 DOI: 10.1248/bpb.b21-00716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become prevalent worldwide, but sufficient pharmaceutical treatments for this condition are lacking. Previous literature suggests that vitexin offers beneficial effects in the treatment of NAFLD, but the underlying mechanisms are not well understood. In this study, the in vivo effects of vitexin were investigated in high-fat-diet (HFD)-induced NAFLD mice. Liver pathology, biochemical parameters, lipid levels, hepatocyte ultrastructure, and related regulatory proteins were measured at the end of treatment. Treatment consisted of four weeks of daily administration of vitexin at a dose of 6 mg/kg of body weight. This treatment markedly improved hepatic architecture, attenuated lipid accumulation, and regulated lipid abnormalities. In addition, the treatment reduced endoplasmic reticulum (ER) stress, restored mitochondrial biological proteins, and increased autophagy. Furthermore, the treatment increased PPAR-r protein, which was inhibited by HFD. Thus, it was speculated that vitexin degraded lipids in HFD-induced NAFLD mice liver by inducing autophagy and restoring both ER and mitochondrial biological proteins.
Collapse
Affiliation(s)
- Yan Jiang
- Medical College, Guangxi University.,Guixi Key Laboratory for High Incidence Diseases, Youjiang Medical University for Nationalities
| | - Qiming Gong
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities
| | - Yuanxun Gong
- Guixi Key Laboratory for High Incidence Diseases, Youjiang Medical University for Nationalities
| | - Chenyi Zhuo
- Department of Hepatobiliary surgery, Affiliated hospital of Youjiang Medical University for Nationalities
| | - Jinmei Huang
- Graduate School, Guangxi University of Chinese Medicine
| | - Qianli Tang
- Medical College, Guangxi University.,Guixi Key Laboratory for High Incidence Diseases, Youjiang Medical University for Nationalities
| |
Collapse
|
26
|
Shi Y, Wei Q, Liu Y, Yuan J. The alleviating effect of sphingosine kinases 2 inhibitor K145 on nonalcoholic fatty liver. Biochem Biophys Res Commun 2021; 580:1-6. [PMID: 34607257 DOI: 10.1016/j.bbrc.2021.09.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
Sphingosine kinase 2 (SphK2) inhibitors are developed for tumor therapy as considering its anti-tumor effect. Many studies also explored SphK2 modulated glucose and lipid homeostasis, which extended its potential function for metabolic diseases therapy. In this study, we discovered a significant reduction of hepatic lipid accumulation as well as recovery of liver function in ob/ob mice with intraperitoneal injection of K145. Also, db/db mice received K145 showed improvement of both NALFD and hyperglycemia. We furtherly analyzed the genes associated with lipid metabolism and found a remarkable decreased expression of lipogenic genes including FAS, ACC1 and SREBP1c whereas elevated mitochondrial fatty acid β-oxidation (FAO) related genes expression including CPT1A, MCAD, LCAD, PPAR-α, UCP2. Consistent to in vivo study, in vitro study also confirmed the role of K145 in decreasing lipid accumulation in human HL7702 cells, while inhibiting FAS, ACC1 and SREBP1c mRNA expression. It indicated a possible mechanism of K145 induced improvement of hepatic lipid accumulation partly via inhibition of lipigenesis. Our study suggested a promising role of K145 in drug development for NAFLD and diabetes therapy.
Collapse
Affiliation(s)
- Yanan Shi
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China
| | - Qing Wei
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Yajin Liu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China
| | - Jihong Yuan
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China.
| |
Collapse
|
27
|
Pereira RM, da Cruz Rodrigues KC, Sant'Ana MR, Peruca GF, Anaruma CP, de Campos TDP, Dos Santos Canciglieri R, de Melo DG, Simabuco FM, da Silva ASR, Cintra DE, Ropelle ER, Pauli JR, de Moura LP. Short-term combined training reduces hepatic steatosis and improves hepatic insulin signaling. Life Sci 2021; 287:120124. [PMID: 34748760 DOI: 10.1016/j.lfs.2021.120124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 01/12/2023]
Abstract
Hepatic steatosis is directly associated with hepatic inflammation and insulin resistance, which is correlated with hyperglycemia and type 2 diabetes mellitus (T2DM). Aerobic and strength training have been pointed out as efficient strategies against hepatic steatosis. However, little is known about the effects of the combination of those two protocols on hepatic steatosis. Therefore, this study aimed to evaluate the impact of short-term combined training (STCT) on glucose homeostasis and in the synthesis and oxidation of fat in the liver of obesity-induced mice with hepatic steatosis. Swiss mice were distributed into three groups: control lean (CTL), sedentary obese (OB), and combined training obese (CTO). The CTO group performed the STCT protocol, which consisted of strength and aerobic exercises in the same session. The protocol lasted seven days. The CTO group reduced the glucose levels and fatty liver when compared to the OB group. Interestingly, these results were observed even without reductions in body adiposity. CTO group also showed increased hepatic insulin sensitivity, with lower hepatic glucose production (HGP). STCT reduced the expression of the lipogenic genes Fasn and Scd1 and hepatic inflammation, as well as increased the ACC phosphorylation and the oxidative genes Cpt1a and Ppara, reverting the complications caused by obesity. Since this protocol increased lipid oxidation and reduced hepatic lipogenesis, regardless of body fat mass decrease, it can be considered an effective non-pharmacological strategy for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Rodrigo Martins Pereira
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Kellen Cristina da Cruz Rodrigues
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Marcella Ramos Sant'Ana
- Laboratory of Nutritional Genomics, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Guilherme Francisco Peruca
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Chadi Pellegrini Anaruma
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Motricity Sciences, Institute of Biosciences, São Paulo State University Julio de Mesquita Filho, Rio Claro, SP, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Thaís Dantis Pereira de Campos
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Raphael Dos Santos Canciglieri
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Diego Gomes de Melo
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Leandro Pereira de Moura
- Exercise Cell Biology Lab, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil; Laboratory of Molecular Biology of Exercise, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil.
| |
Collapse
|
28
|
Gire D, Acharya J, Malik S, Inamdar S, Ghaskadbi S. Molecular mechanism of anti-adipogenic effect of vitexin in differentiating hMSCs. Phytother Res 2021; 35:6462-6471. [PMID: 34612537 DOI: 10.1002/ptr.7300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/28/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022]
Abstract
In this study, we evaluated a detailed molecular mechanism of anti-adipogenic activity of vitexin, apigenin flavone glucoside, present in germinated fenugreek seeds, in differentiating human mesenchymal stem cells (hMSCs). The lipid content of differentiated adipocytes was estimated by ORO staining. Effect on mitotic clonal expansion was checked by cell cycle analysis. Expression of early and terminal adipocyte differentiation markers, anti- and pro-adipogenic transcription factors and signalling intermediates regulating them was evaluated at RNA and protein level. We found vitexin to be non-cytotoxic up to 20 μM at which intracellular lipid accumulation was significantly decreased. Cell cycle analysis suggested that vitexin does not affect mitotic clonal expansion. Expression of early and late differentiation markers, such as CEBPα, CEBPβ, PPARγ, FABP4, perilipin, adiponectin and Glut4 was significantly reduced in the presence of vitexin. Expression of KLF4 and KLF15, positive regulators of PPARγ, was decreased, whereas that of negative regulators, namely KLF2, GATA2, miR20a, miR27a, miR27b, miR128, miR130a, miR130b, miR182 and miR548 increased with vitexin treatment. This effect was mediated by the activation of the AMP-activated protein kinase (AMPK) pathway via the activation of LepR and additionally by inhibiting ROS. Thus, our results showed that vitexin regulates the expression of PPARγ and inhibits adipogenesis of hMSCs at an early stage of differentiation.
Collapse
Affiliation(s)
- Dhananjay Gire
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Jhankar Acharya
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Sajad Malik
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Shrirang Inamdar
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Saroj Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
29
|
Liu D, Gu Y, Pang Q, Yu H, Zhang J. Dietary betaine regulates the synthesis of fatty acids through mTOR signaling in the muscle of zebrafish. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
30
|
Dai X, Feng J, Chen Y, Huang S, Shi X, Liu X, Sun Y. Traditional Chinese Medicine in nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Chin Med 2021; 16:68. [PMID: 34344394 PMCID: PMC8330116 DOI: 10.1186/s13020-021-00469-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the world's largest chronic liver disease, while there is still no specific drug to treat NAFLD. Traditional Chinese Medicine (TCM) have been widely used in hepatic diseases for centuries in Asia, and TCM's holistic concept and differentiation treatment of NAFLD show their advantages in the treatment of this complex metabolic disease. However, the multi-compounds and multi-targets are big obstacle for the study of TCM. Here, we summarize the pharmacological actions of active ingredients from frequently used single herbs in TCM compounds. The combined mechanism of herbs in TCM compounds are further discussed to explore their comprehensive effects on NAFLD. This article aims to summarize multiple functions and find the common ground for TCM treatment on NAFLD, thus providing enrichment to the scientific connotation of TCM theories and promotes the exploration of TCM therapies on NAFLD.
Collapse
Affiliation(s)
- Xianmin Dai
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Yi Chen
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Si Huang
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xiaofei Shi
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| | - Yang Sun
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| |
Collapse
|
31
|
Kashiwada M, Nakaishi S, Usuda A, Miyahara Y, Katsumoto K, Katsura K, Terakado I, Jindo M, Nakajima S, Ogawa S, Sugiyama K, Ochiai W. Analysis of anti-obesity and anti-diabetic effects of acacia bark-derived proanthocyanidins in type 2 diabetes model KKAy mice. J Nat Med 2021; 75:893-906. [PMID: 34120298 DOI: 10.1007/s11418-021-01537-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The acacia bark extract derived from Acacia mearnsii De Wild is rich in proanthocyanidins, whose constituent units are robinetinidol, fisetinidol, catechin, and gallocatechin. In this study, we examined the effect of proanthocyanidins on obesity and diabetes using KKAy mice, a type 2 diabetes model. KKAy mice were fed either a low-fat diet, a high-fat diet, or a high-fat diet mixed with an acacia bark extract, a proanthocyanidins fraction, and other fraction for 7 weeks. Monitoring the changes in the body weight revealed that acacia bark extract and proanthocyanidins fraction could prevent excessive weight gain resulting from a high-fat diet. In addition, increases in the fasting blood glucose level due to high-fat diet intake were found to be suppressed by acacia bark extract and proanthocyanidins fraction. Furthermore, proanthocyanidins derived from acacia bark were found to increase the expression of adiponectin in white adipose tissue, which enhances the action of insulin. In addition, acacia bark-derived proanthocyanidins suppressed gluconeogenesis and fatty acid synthesis in the liver, as well as suppressing the decrease in energy production under pathological conditions in skeletal muscle. In addition, acacia bark-derived proanthocyanidins showed AMPK activation and DPP-4 inhibitory action. Therefore, it was suggested that acacia bark-derived proanthocyanidins lowered fasting blood glucose levels through the above mechanism. These results suggest that proanthocyanidins derived from acacia bark are the active ingredients of the anti-obesity and anti-diabetic effects of acacia bark extract.
Collapse
Affiliation(s)
- Mayumi Kashiwada
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Saho Nakaishi
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Ayumi Usuda
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yumi Miyahara
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kenta Katsumoto
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kyoko Katsura
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Izumi Terakado
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Makiko Jindo
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Shihori Nakajima
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Sosuke Ogawa
- Acacia-No-Ki Co., Ltd., 4291-1, Miyauchi, Hatsukaichi-shi, Hiroshima, 738-0034, Japan
| | - Kiyoshi Sugiyama
- Department of Functional Molecule Kinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Wataru Ochiai
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
32
|
Binahong ( Anredera cordifolia (Tenore) Steen.) Leaf Extract Modulates Fatty Acids and Amino Acids to Lower Blood Glucose in High-Fat Diet-Induced Diabetes Mellitus Rats. Adv Pharmacol Pharm Sci 2021; 2021:8869571. [PMID: 34007967 PMCID: PMC8100415 DOI: 10.1155/2021/8869571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/14/2021] [Accepted: 04/24/2021] [Indexed: 12/02/2022] Open
Abstract
Patients with diabetes are 1.6 times more likely to use complementary alternative medicine than nondiabetic patients. Previous studies have shown that Anredera cordifolia (Tenore) Steen. (A. cordifolia) leaf extract has the capacity to lower blood glucose, but the actual mechanisms are unclear. Therefore, in this study, we explored the effect of A. cordifolia leaf extract on the metabolism of fatty acids and amino acids. Six-week-old male Wistar rats were randomly divided into six experimental groups (n = 5 per group). Two groups were fed with a regular diet or a high-fat diet (HFD) for six weeks. The regular diet and HFD groups were administered with 0.5% carboxymethylcellulose as a vehicle, and HFD rats were also fed with a suspension of glibenclamide (0.51 mg/kg body weight (BW)) or A. cordifolia leaf extract (25, 50, and 100 mg/kg BW). During the whole treatment, BW and food intake were recorded weekly. The rats were euthanized seven weeks after treatment. Blood glucose was evaluated by spectrophotometry, while fatty acids and amino acids were evaluated using a gas chromatography/flame ionization detector (GC/FID). All doses of A. cordifolia administration reduced blood glucose significantly, and 50 mg/kg BW was most effective in lowering blood glucose, similar to the effects of glibenclamide. A. cordifolia leaf extract affected the levels of medium-chain fatty acids, especially at 50 mg/kg BW. In contrast, glibenclamide affected long-chain fatty acids (LCFAs) to lower blood glucose. Based on the analysis conducted, we conclude that administration of A. cordifolia leaf extract can decrease blood glucose levels by regulating fatty acid metabolism and that a dose of 50 mg/kg BW in rats was the optimal dose.
Collapse
|
33
|
Abdulai IL, Kwofie SK, Gbewonyo WS, Boison D, Puplampu JB, Adinortey MB. Multitargeted Effects of Vitexin and Isovitexin on Diabetes Mellitus and Its Complications. ScientificWorldJournal 2021; 2021:6641128. [PMID: 33935599 PMCID: PMC8055414 DOI: 10.1155/2021/6641128] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Till date, there is no known antidote to cure diabetes mellitus despite the discovery and development of diverse pharmacotherapeutic agents many years ago. Technological advancement in natural product chemistry has led to the isolation of analogs of vitexin and isovitexin found in diverse bioresources. These compounds have been extensively studied to explore their pharmacological relevance in diabetes mellitus. Aim of the Study. The present review was to compile results from in vitro and in vivo studies performed with vitexin and isovitexin derivatives relating to diabetes mellitus and its complications. A systematic online literature query was executed to collect all relevant articles published up to March 2020. RESULTS In this piece, we have collected data and presented it in a one-stop document to support the multitargeted mechanistic actions of vitexin and isovitexin in controlling diabetes mellitus and its complications. CONCLUSION Data collected hint that vitexin and isovitexin work by targeting diverse pathophysiological and metabolic pathways and molecular drug points involved in the clinical manifestations of diabetes mellitus. This is expected to provide a deeper understanding of its actions and also serve as a catapult for clinical trials and application research.
Collapse
Affiliation(s)
- Ibrahim Luru Abdulai
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 54, Legon, Accra, Ghana
| | - Samuel Kojo Kwofie
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 54, Legon, Accra, Ghana
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG77, Legon, Accra, Ghana
| | - Winfred Seth Gbewonyo
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel Boison
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Joshua Buer Puplampu
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Michael Buenor Adinortey
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
34
|
Role of Flavonoids in The Interactions among Obesity, Inflammation, and Autophagy. Pharmaceuticals (Basel) 2020; 13:ph13110342. [PMID: 33114725 PMCID: PMC7692407 DOI: 10.3390/ph13110342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Nowadays, obesity is considered as one of the main concerns for public health worldwide, since it encompasses up to 39% of overweight and 13% obese (WHO) adults. It develops because of the imbalance in the energy intake/expenditure ratio, which leads to excess nutrients and results in dysfunction of adipose tissue. The hypertrophy of adipocytes and the nutrients excess trigger the induction of inflammatory signaling through various pathways, among others, an increase in the expression of pro-inflammatory adipocytokines, and stress of the endoplasmic reticulum (ER). A better understanding of obesity and preventing its complications are beneficial for obese patients on two facets: treating obesity, and treating and preventing the pathologies associated with it. Hitherto, therapeutic itineraries in most cases are based on lifestyle modifications, bariatric surgery, and pharmacotherapy despite none of them have achieved optimal results. Therefore, diet can play an important role in the prevention of adiposity, as well as the associated disorders. Recent results have shown that flavonoids intake have an essential role in protecting against oxidative damage phenomena, and presents biochemical and pharmacological functions beneficial to human health. This review summarizes the current knowledge of the anti-inflammatory actions and autophagic flux of natural flavonoids, and their molecular mechanisms for preventing and/or treating obesity.
Collapse
|
35
|
Zhao S, Guan X, Hou R, Zhang X, Guo F, Zhang Z, Hua C. Vitexin attenuates epithelial ovarian cancer cell viability and motility in vitro and carcinogenesis in vivo via p38 and ERK1/2 pathways related VEGFA. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1139. [PMID: 33240988 PMCID: PMC7576048 DOI: 10.21037/atm-20-5586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Epithelial ovarian cancer (EOC) is the most common type of ovarian tumor, however, effective treatment does not currently exist for this condition. This study evaluated the role of vitexin in mitigating EOC both in vitro and in vivo. Method SKOV-3 cells were used for in vitro experimentation. Xenotransplantation mouse models were set up by subcutaneously injecting mice with SKOV-3 cells. CCK8 was used to screen the optimal dose in vitro. Cell proliferation, invasion, number of microtubule nodules and apoptosis were respectively detected by colony formation assay, transwell assay, microtubule formation assay and flow cytometry. TUNEL and immunohistochemistry were used to detect tissues apoptosis and VEGF content. Western blot assay was used to detect the expression of Ki67, caspase-3, VEGFA, VEGFR2, ERK1/2 and p38. Results In vitro experiment, compared with the control group, 10 µL of vitexin significantly reduced Ki67 levels and enhanced tumor cell apoptosis rate. Additionally, the colony forming rate, invasive cells per field, and number of nodes/HPF in vitexin treated group decreased dramatically. The result of western blot showed that levels of p-p38/p38 and p-ERK1/2/ERK1/2 also noticeably decreased. In vivo experiment, 40 mg/kg of vitexin significantly inhibited tumor growth. In addition, vitexin significantly enhanced the percentage of tissues apoptosis, which was accompanied by a decrease in the percentage of VEGF-positive cells. Conclusions Vitexin decreased the proliferation and invasion of SKOV-3 cells and noticeably reduced tumor growth. These findings suggest that vitexin could be a promising therapy for EOC.
Collapse
Affiliation(s)
- Shuzhen Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xinlei Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ruijie Hou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xueying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Fang Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhifang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Caihong Hua
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
36
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
37
|
Mittal S, Inamdar S, Acharya J, Pekhale K, Kalamkar S, Boppana R, Ghaskadbi S. miR-3666 inhibits development of hepatic steatosis by negatively regulating PPARγ. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158777. [PMID: 32755726 DOI: 10.1016/j.bbalip.2020.158777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 01/07/2023]
Abstract
AIMS PPARγ is a crucial transcription factor involved in development of hepatic steatosis, an early stage of NAFLD. PPARγ is tightly regulated through various positive and negative regulators including miRNAs. In this study, we report for the first time miR-3666 as a negative regulator of PPARγ and its involvement in development of hepatic steatosis. METHODS Binding of miR-3666 to regulate PPARγ was checked by luciferase assay and was confirmed by mutating PPARγ 3'UTR. Regulation of PPARγ was determined by overexpression of miR-3666 in HepG2 cells. Hepatic steatotic state in HepG2 cells was developed by exposure to excess palmitic acid and expression of PPARγ, miR-3666 and some PPARγ target and non-target genes was checked. Involvement of mir-3666 by regulating PPARγ in hepatic steatosis was also examined in liver of HFD fed mice. RESULTS On overexpression of miR-3666, PPARγ expression decreased significantly in a dose-dependent manner in HepG2 cells. Binding of miR-3666 to PPARγ was confirmed as the luciferase activity using pMIR-REPORT with PPARγ 3'UTR decreased in PA treated HepG2 cells overexpressing miR-3666 and remained unchanged when PPARγ 3'UTR was mutated. In PA treated HepG2 cells during development of hepatic steatosis PPARγ was significantly up-regulated concomitant with down-regulation of miR-3666. Overexpression of miR-3666 in these cells decreased the extent of hepatic steatosis. Significant up-regulation of PPARγ and down-regulation of miR-3666 was also observed in liver of HFD fed mice indicating that miR-3666 regulates PPARγ in vivo. CONCLUSIONS miR-3666 negatively regulates PPARγ by binding to its 3'UTR during development of hepatic steatosis.
Collapse
Affiliation(s)
- Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Shrirang Inamdar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Jhankar Acharya
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Saurabh Kalamkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | | | - Saroj Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
38
|
Zhang H, Yang L, Wang Y, Huang W, Li Y, Chen S, Song G, Ren L. Oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in non-alcoholic fatty liver disease. Life Sci 2020; 257:118090. [PMID: 32679144 DOI: 10.1016/j.lfs.2020.118090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
AIMS This study aimed to investigate oxymatrine via regulating miR-182 improved the hepatic lipid accumulation in non-alcoholic fatty liver disease (NAFLD) model. MATERIALS AND METHODS Wistar rats were fed high-fat and high-fructose diet (HFDHFr group) for 4 weeks and HepG2 cells were treated with palmitic acid (PA group), and then were given oxymatrine intervention. The expression profiles of miRNAs were accessed by RNA sequencing (RNA-Seq). Hematoxylin-eosin (HE) staining and Oil Red O staining were used to observe the inflammation and lipid accumulation in liver. The levels of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty-acid synthase (FAS) and carnitine palmitoyltransferase 1A (CPT-1A) were detected by RT-qPCR and Western blotting, respectively. Cell viability was detected by Cell Counting Kit-8 (CCK-8). KEY FINDINGS miR-182 was down-regulated in the HFDHFr group and PA group. Oxymatrine reduced body weight, and improved glucose tolerance and insulin resistance in the HFDHFr + OMT group compared with HFDHFr group. In addition, oxymatrine reduced the ratio (liver weight/body weight), the content of triglycerides (TG), hepatic lipid accumulation and steatosis. The levels of SREBP-1c, ACC, and FAS were significantly decreased, while the CPT-1A level was obviously elevated after oxymatrine intervention (P < 0.05). In vivo, miR-182 knockdown increased the levels of SREBP-1c, ACC and FAS, while reduced the CPT-1A level. Additionally, oxymatrine attenuated the effects of miR-182 inhibitor on lipid accumulation. SIGNIFICANCE We presented a possible mechanism that oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in NAFLD model.
Collapse
Affiliation(s)
- He Zhang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Liying Yang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Yichao Wang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Wenli Huang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Yang Li
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Guangyao Song
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China; Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|
39
|
Wang J, He W, Tsai PJ, Chen PH, Ye M, Guo J, Su Z. Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease. Lipids Health Dis 2020; 19:72. [PMID: 32284046 PMCID: PMC7155254 DOI: 10.1186/s12944-020-01210-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic syndrome. Imbalances between liver lipid output and input are the direct causes of NAFLD, and hepatic steatosis is the pathological premise and basis for NAFLD progression. Mutual interaction between endoplasmic reticulum stress (ERS) and oxidative stress play important roles in NAFLD pathogenesis. Notably, mitochondria-associated membranes (MAMs) act as a structural bridges for functional clustering of molecules, particularly for Ca2+, lipids, and reactive oxygen species (ROS) exchange. Previous studies have examined the crucial roles of ERS and ROS in NAFLD and have shown that MAM structural and functional integrity determines normal ER- mitochondria communication. Upon disruption of MAM integrity, miscommunication directly or indirectly causes imbalances in Ca2+ homeostasis and increases ERS and oxidative stress. Here, we emphasize the involvement of MAMs in glucose and lipid metabolism, chronic inflammation and insulin resistance in NAFLD and summarize MAM-targeting drugs and compounds, most of which achieve their therapeutic or ameliorative effects on NAFLD by improving MAM integrity. Therefore, targeting MAMs may be a viable strategy for NAFLD treatment. This review provides new ideas and key points for basic NAFLD research and drug development centred on mitochondria and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Jin Wang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wanping He
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ping-Ju Tsai
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Pei-Hsuan Chen
- King-Prebiotics Biotechnology (TW) Co., LTD, 2F.-1, No. 250, Zhongshan Rd., Linkou Dist, New Taipei City, 24446, Taiwan
| | - Manxiang Ye
- New Francisco (Yunfu City) Biotechnology Co, Ltd Swan-kan-chiau Ind. Dist., Kaofong Village, Yunfu City, Guangdong, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
40
|
Yang M, Sun F, Zhou Y, He M, Yao P, Peng Y, Luo F, Liu F. Preventive effect of lemon seed flavonoids on carbon tetrachloride-induced liver injury in mice. RSC Adv 2020; 10:12800-12809. [PMID: 35492116 PMCID: PMC9051252 DOI: 10.1039/d0ra01415j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to determine the preventive effect of lemon seed flavonoids (LSF) on carbon tetrachloride-induced liver injury in mice. Liver injury was induced by injection with 2 mL kg-1 of carbon tetrachloride after administration of LSF by gavage. Liver index, serological parameters, and expression intensities of related mRNA and protein in the liver tissue were observed. The results indicated that LSF reduced liver weight and liver index, downregulated serum levels of AST, ALT, ALP, TG, TC, BUN, NO, and MDA, and upregulated levels of ALB, SOD, CAT, and GSH-Px in the mice with liver injury. It also downregulated serum cytokines, such as IL-6, IL-12, TNF-α, and IFN-γ in these mice. qPCR and western blot confirmed that LSF upregulated mRNA and protein expression of Mn-SOD, Cu/Zn-SOD, CAT, GSH-Px, and IκB-α, and downregulated expression of NF-κB-p65, iNOS, COX-2, TNF-α, IL-1β, and IL-6 in the liver tissue of mice with liver injury. The preventive effect on carbon tetrachloride-induced liver injury was attributed to (-)-epigallocatechin, caffeic acid, (-)-epicatechin, vitexin, quercetin, and hesperidin, which were active substances that were detected in LSF by HPLC. Moreover, the effect of LSF is similar to that of silymarin, but the synergistic effect of the five active substances working in concert acted to produce a more robust liver-protecting effect.
Collapse
Affiliation(s)
- Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Yue Zhou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fei Luo
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| |
Collapse
|