1
|
Stejskal S, Rájecká V, Covelo-Molares H, Sinigaglia K, Brožinová K, Kašiarová L, Dohnálková M, Reyes-Gutierrez PE, Cahová H, Keegan LP, O'Connell MA, Vaňáčová Š. Global analysis by LC-MS/MS of N6-methyladenosine and inosine in mRNA reveal complex incidence. RNA (NEW YORK, N.Y.) 2025; 31:514-528. [PMID: 39746750 PMCID: PMC11912911 DOI: 10.1261/rna.080324.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
The precise and unambiguous detection and quantification of internal RNA modifications represents a critical step for understanding their physiological functions. The methods of direct RNA sequencing are quickly developing allowing for the precise location of internal RNA marks. This detection is, however, not quantitative and still presents detection limits. One of the biggest remaining challenges in the field is still the detection and quantification of m6A, m6Am, inosine, and m1A modifications of adenosine. The second intriguing and timely question remaining to be addressed is the extent to which individual marks are coregulated or potentially can affect each other. Here, we present a methodological approach to detect and quantify several key mRNA modifications in human total RNA and in mRNA, which is difficult to purify away from contaminating tRNA. We show that the adenosine demethylase FTO primarily targets m6Am marks in noncoding RNAs in HEK293T cells. Surprisingly, we observe little effect of FTO or ALKBH5 depletion on the m6A mRNA levels. Interestingly, the upregulation of ALKBH5 is accompanied by an increase in inosine level in overall mRNA.
Collapse
Affiliation(s)
- Stanislav Stejskal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Veronika Rájecká
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Helena Covelo-Molares
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Ketty Sinigaglia
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Květoslava Brožinová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Linda Kašiarová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Michaela Dohnálková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | | | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Liam P Keegan
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Mary A O'Connell
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
2
|
Mao Z, Li M, Wang S. Targeting m 6A RNA Modification in Tumor Therapeutics. Curr Oncol 2025; 32:159. [PMID: 40136363 PMCID: PMC11941731 DOI: 10.3390/curroncol32030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The prevalent eukaryotic RNA modification N6-methyladenosine (m6A), which is distributed in more than 50% of cases, has demonstrated significant implications in both normal development and disease progression, particularly in the context of cancer. This review aims to discuss the potential efficacy of targeting tumor cells through modulation of m6A RNA levels. Specifically, we discuss how the upregulation or downregulation of integral or specific targets is effective in treating different tumor types and patients. Additionally, we will cover the factors influencing the efficacy of m6A RNA targeting in tumor treatment. Our review will focus on the impact of targeting m6A mRNA on genes and cells and assess its potential as a therapeutic strategy for tumors. Despite the challenges involved, further research on m6A RNA in tumors and its integration with existing tumor therapy approaches is warranted.
Collapse
Affiliation(s)
- Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang 212002, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
| | - Min Li
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang 212002, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
| | - Shengjun Wang
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212002, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
3
|
Xu X, Zhao W, Peng D, Sun Y, Tantai J, Zhao G. Identification of IGF2BPs-related mRNA signature for predicting the overall survival of lung adenocarcinoma. Sci Rep 2025; 15:5681. [PMID: 39956818 PMCID: PMC11830784 DOI: 10.1038/s41598-025-87874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) are m⁶A readers that stabilize target mRNAs by recognizing the GG(m⁶A)C sequence. While previous studies have explored the biological mechanisms of IGF2BPs in lung cancer, their prognostic value remains unclear. This study investigated the expression, molecular mechanisms, and prognostic significance of IGF2BPs in lung adenocarcinoma (LUAD) using TCGA and GEO datasets. IGF2BP1/2/3 were found to be highly expressed in LUAD, with high mRNA stability scores (RS) associated with shorter overall survival (OS) and linked to hypoxia, EMT, IL2-STAT5 signaling, immune suppression, and decreased gefitinib sensitivity. In cell-based experiments, siRNA knockdown of IGF2BPs in LUAD cell lines reduced TGF-β signaling pathway-related genes and inhibited cell proliferation. Our findings suggest that the IGF2BPs gene signature is a prognostic biomarker in LUAD, contributing to tumor progression, immune escape, and poor prognosis by activating specific pathways.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo No. 2 Hospital), No.41 Xibei Road, Ningbo, China
| | - Weidi Zhao
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo No. 2 Hospital), No.41 Xibei Road, Ningbo, China
| | - Di Peng
- Department of Data Science, Burning Rock Biotech, Guangzhou, China
| | - Ying Sun
- Department of Data Science, Burning Rock Biotech, Guangzhou, China
| | - Jicheng Tantai
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, No.241 West Huaihai Road, Xuhui District, Shanghai, China.
| | - Guofang Zhao
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo No. 2 Hospital), No.41 Xibei Road, Ningbo, China.
| |
Collapse
|
4
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Liu H, Liang J, Wang X, Xiong W, Zhang L, Dai X, Wang X, Wang X, Xu Y, Liu Y. ALKBH5 promotes autophagy and progression by mediating m6A methylation of lncRNA UBOX5-AS1 in endometriosis. Am J Physiol Cell Physiol 2025; 328:C639-C656. [PMID: 39761976 DOI: 10.1152/ajpcell.00790.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025]
Abstract
Long noncoding RNA (lncRNA) and N6-methyladenosine (m6A) methylation modification have recently been suggested as potential functional modulators in ovarian endometriosis, however, the function and mechanism of m6A-modified lncRNA in ovarian endometriosis remain poorly understood. In this study, we demonstrated that lncRNA UBOX5-AS1 expression was significantly elevated in ovarian endometriosis tissue and primary ectopic endometrial stromal cells. The expression of lncRNA UBOX5-AS1, which has m6A modifications, was highly positively correlated with demethylase Alk B homologous protein 5 (ALKBH5) expression and autophagy. Functional studies revealed that increased ALKBH5 and lncRNA UBOX5-AS1 expression promoted cell autophagy, proliferation, and invasion in endometriosis in vitro. LncRNA UBOX5-AS1 mediates ALKBH5-regulated autophagy, proliferation, and invasion. ALKBH5-mediated autophagy facilitates cell proliferation, migration, and invasion. In vivo, the knockdown of ALKBH5 inhibited endometriotic lesion growth. Mechanistically, we observed that ALKBH5 mediated the m6A demethylation of lncRNA UBOX5-AS1 and promoted its expression. Thus, our findings highlight that ALKBH5/lncRNA UBOX5-AS1 might serve as potential targets for ovarian endometriosis therapy in the future.NEW & NOTEWORTHY In the present study, we investigated the role and potential molecular mechanism of long noncoding RNA (lncRNA) UBOX5-AS1 in ovarian endometriosis progression. Combined with the aforementioned, we proposed the hypothesis that lncRNA UBOX5-AS1 regulated by Alk B homologous protein 5 (ALKBH5)-mediated N6-methyladenosine (m6A) modification contributes to the progression of ovarian endometriosis progression.
Collapse
Affiliation(s)
- Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xin Dai
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Xiuping Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ying Xu
- Department of Reproductive Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
7
|
Destefanis E, Sighel D, Dalfovo D, Gilmozzi R, Broso F, Cappannini A, Bujnicki J, Romanel A, Dassi E, Quattrone A. The three YTHDF paralogs and VIRMA are strong cross-histotype tumor driver candidates among m 6A core genes. NAR Cancer 2024; 6:zcae040. [PMID: 39411658 PMCID: PMC11474903 DOI: 10.1093/narcan/zcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification in mRNAs. Despite accumulating evidence for the profound impact of m6A on cancer biology, there are conflicting reports that alterations in genes encoding the m6A machinery proteins can either promote or suppress cancer, even in the same tumor type. Using data from The Cancer Genome Atlas, we performed a pan-cancer investigation of 15 m6A core factors in nearly 10000 samples from 31 tumor types to reveal underlying cross-tumor patterns. Altered expression, largely driven by copy number variations at the chromosome arm level, results in the most common mode of dysregulation of these factors. YTHDF1, YTHDF2, YTHDF3 and VIRMA are the most frequently altered factors and the only ones to be uniquely altered when tumors are grouped according to the expression pattern of the m6A factors. These genes are also the only ones with coherent, pan-cancer predictive power for progression-free survival. On the contrary, METTL3, the most intensively studied m6A factor as a cancer target, shows much lower levels of alteration and no predictive power for patient survival. Therefore, we propose the non-enzymatic YTHDF and VIRMA genes as preferred subjects to dissect the role of m6A in cancer and as priority cancer targets.
Collapse
Affiliation(s)
- Eliana Destefanis
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Denise Sighel
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Davide Dalfovo
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Riccardo Gilmozzi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Francesca Broso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Andrea Cappannini
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
8
|
Peng K, Xia RP, Zhao F, Xiao Y, Ma TD, Li M, Feng Y, Zhou CG. ALKBH5 facilitates the progression of infantile hemangioma by increasing FOXF1 expression in a m 6A-YTHDF2 dependent manner to activate HK-2 signaling. Mol Cell Biochem 2024; 479:3153-3166. [PMID: 38306011 DOI: 10.1007/s11010-024-04936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Alkylation repair homolog protein 5 (ALKBH5) is reported to participate in infantile hemangioma (IH) progression. However, the underlying mechanism of ALKBH5 in IH remains unclear. Using qRT-PCR and Western blotting, ALKBH5, forkhead box F1 (FOXF1) and hexokinase 2 (HK-2) expressions in IH tissues and IH-derived endothelial cells XPTS-1 were assessed. The Me-RIP assay was used to analyze FOXF1 m6A level. CCK8, colony formation, flow cytometry and transwell assays were employed to determine IH cell viability, proliferation, apoptosis, migration and invasion. The interactions between YTH (YT521-B homology) domain 2 (YTHDF2), FOXF1 and HK-2 were analyzed by RIP, dual luciferase reporter gene assay and/or ChIP assay. The in vivo IH growth was evaluated in immunocompromised mice. FOXF1 was overexpressed in IH tissues, and its silencing inhibited IH cell proliferation, migration and invasion whereas promoting cell apoptosis in vitro. ALKBH5 upregulation facilitated FOXF1 mRNA stability and expression in IH cells in a m6A-YTHDF2-dependent manner. FOXF1 downregulation reversed the impact of ALKBH5 upregulation on IH cellular phenotypes. It also turned out that FOXF1 positively regulated HK-2 expression in IH cells through interacting with the HK-2 promoter. HK-2 upregulation abolished FOXF1 knockdown's inhibition on IH cell aggressive behaviors. ALKBH5 or FOXF1 silencing suppressed IH tumor development via HK-2 signaling in immunocompromised mice. ALKBH5 promoted FOXF1 expression m6A-YTHDF2 dependently, which in turn elevated HK-2 expression, thereby accelerating IH development.
Collapse
Affiliation(s)
- Kun Peng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ren-Peng Xia
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Fan Zhao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Yong Xiao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ti-Dong Ma
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ming Li
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Yong Feng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Chong-Gao Zhou
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Song K, Cao Q, Yang Y, Zuo Y, Wu X. ALKBH5 modulates bone cancer pain in a rat model by suppressing NR2B expression. Biotechnol Appl Biochem 2024; 71:1105-1115. [PMID: 38764325 DOI: 10.1002/bab.2601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Currently, the clinical treatment of bone cancer pain (BCP) is mainly related to its pathogenesis. The aim of the present study was to elucidate the potential role of N6-methyladenosine (m6A) in BCP in the spinal cord dorsal root ganglia (DRG) of BCP rats and its specific regulatory mechanism in N-methyl-d-aspartate receptor subunit 2B (NR2B). A rat model of BCP was constructed by tibial injection of Walker256 cells, and ALKBH5 and NR2B expression in the spinal cord DRG was detected. ALKBH5 was silenced or overexpressed in PC12 cells to verify the regulatory effect of ALKBH5 on NR2B. The specific mechanism underlying the interaction between ALKBH5 and NR2B was investigated using methylated RNA immunoprecipitation and dual-luciferase reporter gene assays. The results showed increased expression of m6A, decreased expression of ALKBH5, and increased expression of NR2B in the DRG of the BCP rat model. Overexpression of ALKBH5 inhibited NR2B expression, whereas interference with ALKBH5 caused an increase in NR2B expression. In NR2B, interference with ALKBH5 caused an increase in m6A modification, which caused an increase in NR2B. Taken together, ALKBH5 affected the expression of NR2B by influencing the stability of the m6A modification site of central NR2B, revealing that ALKBH5 is a therapeutic target for BCP.
Collapse
Affiliation(s)
- Kun Song
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- Graduate school, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qionghua Cao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanping Yang
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- Graduate school, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuefen Zuo
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Xianping Wu
- Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| |
Collapse
|
10
|
Wang W, Li H, Qian Y, Li M, Deng M, Bi D, Zou J. ALKBH5 Regulates Corneal Neovascularization by Mediating FOXM1 M6A Demethylation. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 39441582 PMCID: PMC11512564 DOI: 10.1167/iovs.65.12.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose This study aims to explore the regulatory role and potential mechanisms of ALKBH5-mediated N6-methyladenosine (m6A) demethylation modification in corneal neovascularization (CNV). Methods A mouse CNV model was established through corneal alkali burns. Total m6A levels were measured using an m6A RNA methylation quantification kit. The mRNA expression of candidate m6A-related enzymes was quantified by quantitative RT-PCR. Small interfering RNA targeting ALKBH5 was injected subconjunctivally into alkali-burned mice. The CNV area, corneal epithelial thickness, and pathological changes were evaluated. Protein expression was detected by western blot and immunofluorescence. Human umbilical vein endothelial cells (HUVECs) were treated with IL-6. Plasmid transfection knocked down ALKBH5 or overexpressed FOXM1 in IL-6-induced HUVECs. The assays of CCK8, wound healing, and tube formation evaluated the cell proliferation, migration, and tube formation abilities, respectively. The dual-luciferase assay examined the binding between ALKBH5 and FOXM1. Methylated RNA immunoprecipitation-qPCR detected the m6A levels of FOXM1. Results Significant CNV was observed on the seventh day. Total m6A levels were reduced, and ALKBH5 expression was increased in CNV corneas and IL-6-induced HUVECs. ALKBH5 knockdown alleviated corneal neovascularization and inflammation and countered IL-6-induced promotion of cell proliferation, migration, and tube formation in HUVECs. ALKBH5 depletion increased m6A levels and decreased VEGFA and CD31 expression both in vivo and in vitro. This knockdown in HUVECs elevated m6A levels on FOXM1 mRNA while reducing its mRNA and protein expression. Notably, FOXM1 overexpression can reverse ALKBH5 depletion effects. Conclusions ALKBH5 modulates FOXM1 m6A demethylation, influencing CNV progression and highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hua Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiyong Qian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Manli Deng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Jiang X, Yan F, Geng Y, Cheng X, Zhang S, Zhao T, Guo J, Dai Z, Gao J, Yue X, Zhao M, Zhu L. ALKBH5 deficiency attenuates oxygen-glucose deprivation-induced injury in mouse brain microvascular endothelial cells in an m6A dependent manner. Exp Neurol 2024; 380:114910. [PMID: 39098715 DOI: 10.1016/j.expneurol.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Structural and functional alterations in brain microvascular endothelial cells (BMECs) caused by oxygen-glucose deprivation (OGD) are involved in the pathogenesis of various brain disorders. AlkB homolog 5 (ALKBH5) is a primary m6A demethylase that regulates various cell processes, but its distinct roles in BMEC function remain to be clarified. In the present study, in mouse middle cerebral artery occlusion (MCAO) model, knockout of ALKBH5 reduced neurological deficits, infarct volumes and tissue apoptosis caused by ischemia/reperfusion injury. Evans blue leakage and decreased expression of the tight junction protein ZO-1 and Occludin were also attenuated by ALKBH5 knockout. During the exploration of the underlying mechanisms of the role of ALKBH5 in BMECs, we found that the expression of ALKBH5 was induced at both the mRNA and protein levels by hypoxia; however, its protein stability was impaired by OGD treatment. Knockdown of ALKBH5 expression increased total m6A levels and alleviated OGD-induced BMEC injury. At the same time, the selective ALKBH5 inhibitor Cpd 20m also exhibited a protective effect on cell injury. In contrast, overexpression of ALKBH5 increased the sensitivity of BMECs to OGD. Interestingly, the m6A sequencing data revealed that knockdown of ALKBH5altered the expression of many genes via m6A upregulation. The gene expression alterations were verified by real-time PCR. Taken together, our results suggest that ALKBH5, as well as its target genes, plays important roles in the regulation of brain microvascular endothelial cell function through its RNA demethylase activity.
Collapse
Affiliation(s)
- Xiufang Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Feng Yan
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yanan Geng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shaojie Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Chinese PLA Medical School, Beijing 100853, China
| | - Tong Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jianjun Guo
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhonghua Dai
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jiayue Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiangpei Yue
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; School of Pharmaceutical Sciences, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Davletgildeeva AT, Kuznetsov NA. Dealkylation of Macromolecules by Eukaryotic α-Ketoglutarate-Dependent Dioxygenases from the AlkB-like Family. Curr Issues Mol Biol 2024; 46:10462-10491. [PMID: 39329974 PMCID: PMC11431407 DOI: 10.3390/cimb46090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Alkylating modifications induced by either exogenous chemical agents or endogenous metabolites are some of the main types of damage to DNA, RNA, and proteins in the cell. Although research in recent decades has been almost entirely devoted to the repair of alkyl and in particular methyl DNA damage, more and more data lately suggest that the methylation of RNA bases plays an equally important role in normal functioning and in the development of diseases. Among the most prominent participants in the repair of methylation-induced DNA and RNA damage are human homologs of Escherichia coli AlkB, nonheme Fe(II)/α-ketoglutarate-dependent dioxygenases ABH1-8, and FTO. Moreover, some of these enzymes have been found to act on several protein targets. In this review, we present up-to-date data on specific features of protein structure, substrate specificity, known roles in the organism, and consequences of disfunction of each of the nine human homologs of AlkB. Special attention is given to reports about the effects of natural single-nucleotide polymorphisms on the activity of these enzymes and to potential consequences for carriers of such natural variants.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Gao G, Hao YQ, Wang C, Gao P. Role and regulators of N 6-methyladenosine (m 6A) RNA methylation in inflammatory subtypes of asthma: a comprehensive review. Front Pharmacol 2024; 15:1360607. [PMID: 39108751 PMCID: PMC11300364 DOI: 10.3389/fphar.2024.1360607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/03/2024] [Indexed: 01/05/2025] Open
Abstract
Asthma is a common chronic inflammatory disease of the lungs and airway, yet its inflammatory subtypes and potential pathogenesis have not been completely elucidated and require further study. With advances in epigenetic development, methylation has emerged as a new direction for identifying and decoding the occurrence and subtype manifestations of asthma. N6-methyladenosine (m6A), an RNA methylation modification occurring in the N6-position of adenosine, is a prevalent epigenetic modification observed in eukaryotes. It exerts significant control over mRNA metabolism by regulating alternative splicing, stability, export, and translation. The dynamic process of m6A methylation plays a crucial role in the pathogenesis of asthma and is tightly regulated by three types of regulators: writers, readers, and erasers. This article provides a comprehensive review of the association between m6A regulators and the pathogenesis of inflammatory subtypes of asthma, such as involvement of inflammatory cells and related inflammatory response. Furthermore, the findings presented herein provide new insights and a solid foundation for further research on m6A mRNA methylation as biomarkers for the diagnosis and development of personalized treatment for different subtypes of asthma, particularly neutrophilic asthma and eosinophilic asthma.
Collapse
Affiliation(s)
- Ge Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Yu Qiu Hao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Chen Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Wang R, Liang J, Wang Q, Zhang Y, Lu Y, Zhan X, Wang S, Gu Q. m6A mRNA methylation-mediated MAPK signaling modulates the nasal mucosa inflammatory response in allergic rhinitis. Front Immunol 2024; 15:1344995. [PMID: 39011034 PMCID: PMC11246857 DOI: 10.3389/fimmu.2024.1344995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
Background Allergic rhinitis (AR) is a complex disease in which gene-environment interactions contribute to its pathogenesis. Epigenetic modifications, such as N6-methyladenosine (m6A) modification of mRNA, play important roles in regulating gene expression in multiple physiological and pathological processes. However, the function of m6A modification in AR and the inflammatory response is poorly understood. Methods We used the ovalbumin (OVA) and aluminum hydroxide to induce an AR mouse model. Nasal symptoms, histopathology, and serum cytokines were examined. We performed combined m6A and RNA sequencing to analyze changes in m6A modification profiles. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and methylated RNA immunoprecipitation sequencing qPCR (MeRIP-qPCR) were used to verify differential methylation of mRNAs and the m6A methylation level. Knockdown or inhibition of Alkbh5 in nasal mucosa of mice was mediated by lentiviral infection or IOX1 treatment. Results We showed that m6A was enriched in a group of genes involved in MAPK signaling pathway. Moreover, we identified a MAPK pathway involving Map3k8, Erk2, and Nfκb1 that may play a role in the disrupted inflammatory response associated with nasal inflammation. The m6A eraser, Alkbh5, was highly expressed in the nasal mucosa of AR model mice. Furthermore, knockdown of Alkbh5 expression by lentiviral infection resulted in high MAPK pathway activity and a significant nasal mucosa inflammatory response. Our findings indicate that ALKBH5-mediated m6A dysregulation likely contributes to a nasal inflammatory response via the MAPK pathway. Conclusion Together, our data show that m6A dysregulation mediated by ALKBH5, is likely to contribute to inflammation of the nasal mucosa via the MAPK signaling pathway, suggesting that ALKBH5 is a potential biomarker for AR treatment.
Collapse
Affiliation(s)
- Ruikun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing, China
| | - Jieqiong Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Qian Wang
- Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China
| | - Yiming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yingxia Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Xiaojun Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Qinglong Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
15
|
Shen X, Zhong J, Yu P, Liu F, Peng H, Chen N. YTHDC1-dependent m6A modification modulated FOXM1 promotes glycolysis and tumor progression through CENPA in triple-negative breast cancer. Cancer Sci 2024; 115:1881-1895. [PMID: 38566554 PMCID: PMC11145146 DOI: 10.1111/cas.16137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits heightened aggressiveness compared with other breast cancer (BC) subtypes, with earlier relapse, a higher risk of distant metastasis, and a worse prognosis. Transcription factors play a pivotal role in various cancers. Here, we found that factor forkhead box M1 (FOXM1) expression was significantly higher in TNBC than in other BC subtypes and normal tissues. Combining the findings of Gene Ontology (GO) enrichment analysis and a series of experiments, we found that knockdown of the FOXM1 gene attenuated the ability of TNBC cells to proliferate and metastasize both in vivo and in vitro. In addition, Spearman's test showed that FOXM1 significantly correlated with glycolysis-related genes, especially centromere protein A (CENPA) in datasets (GSE76250, GSE76124, GSE206912, and GSE103091). The effect of silencing FOXM1 on the inhibition of CENPA expression, TNBC proliferation, migration, and glycolysis could be recovered by overexpression of CENPA. According to MeRIP, the level of m6A modification on FOMX1 decreased in cells treated with cycloleucine (a m6A inhibitor) compared with that in the control group. The increase in FOXM1 expression caused by YTHDC1 overexpression could be reversed by the m6A inhibitor, which indicated that YTHDC1 enhanced FOXM1 expression depending on m6A modification. Therefore, we concluded that the YTHDC1-m6A modification/FOXM1/CENPA axis plays an important role in TNBC progression and glycolysis.
Collapse
Affiliation(s)
- Xi Shen
- Department of Oncology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Jianxin Zhong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Pan Yu
- Department of Health ManagementThe Second Hospital Affiliated to Chongqing Medical UniversityChongqingChina
| | - Feng Liu
- Department of Thyroid and Breast SurgeryWuhan Fourth HospitalWuhanChina
| | - Haoran Peng
- Department of Stomatology, Shenzhen HospitalUniversity of Chinese Academy of SciencesShenzhenChina
| | - Nianyong Chen
- Department of Radiation Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
16
|
Guo J, Zhao L, Duan M, Yang Z, Zhao H, Liu B, Wang Y, Deng L, Wang C, Jiang X, Jiang X. Demethylases in tumors and the tumor microenvironment: Key modifiers of N 6-methyladenosine methylation. Biomed Pharmacother 2024; 174:116479. [PMID: 38537580 DOI: 10.1016/j.biopha.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.
Collapse
Affiliation(s)
- Junchen Guo
- Departmentof Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liang Zhao
- Department of Anorectal Surgery, Shenyang Anorectal Hospital, Shenyang, Liaoning 110002, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liping Deng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Chen Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Xiaodi Jiang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110002, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China.
| |
Collapse
|
17
|
Qian W, Yang L, Li T, Li W, Zhou J, Xie S. RNA modifications in pulmonary diseases. MedComm (Beijing) 2024; 5:e546. [PMID: 38706740 PMCID: PMC11068158 DOI: 10.1002/mco2.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Threatening public health, pulmonary disease (PD) encompasses diverse lung injuries like chronic obstructive PD, pulmonary fibrosis, asthma, pulmonary infections due to pathogen invasion, and fatal lung cancer. The crucial involvement of RNA epigenetic modifications in PD pathogenesis is underscored by robust evidence. These modifications not only shape cell fates but also finely modulate the expression of genes linked to disease progression, suggesting their utility as biomarkers and targets for therapeutic strategies. The critical RNA modifications implicated in PDs are summarized in this review, including N6-methylation of adenosine, N1-methylation of adenosine, 5-methylcytosine, pseudouridine (5-ribosyl uracil), 7-methylguanosine, and adenosine to inosine editing, along with relevant regulatory mechanisms. By shedding light on the pathology of PDs, these summaries could spur the identification of new biomarkers and therapeutic strategies, ultimately paving the way for early PD diagnosis and treatment innovation.
Collapse
Affiliation(s)
- Weiwei Qian
- Emergency Department of Emergency MedicineLaboratory of Emergency Medicine, West China Hospital, And Disaster Medical, Sichuan UniversityChengduSichuanChina
- Emergency DepartmentShangjinnanfu Hospital, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Lvying Yang
- The Department of Respiratory and Critical Care MedicineThe First Veterans Hospital of Sichuan ProvinceChengduSichuanChina
| | - Tianlong Li
- Department of Critical Care Medicine Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's HospitalShenzhenGuangdongChina
| | - Jian Zhou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical SchoolShenzhenChina
- Department of ImmunologyInternational Cancer Center, Shenzhen University Health Science CenterShenzhenGuangdongChina
| | - Shenglong Xie
- Department of Thoracic SurgerySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
18
|
Ma B, Xiu L, Ding L. The m6 RNA methylation regulator KIAA1429 is associated with autophagy-mediated drug resistance in lung cancer. FASEB Bioadv 2024; 6:105-117. [PMID: 38585432 PMCID: PMC10995705 DOI: 10.1096/fba.2023-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 04/09/2024] Open
Abstract
N6-methyladenosine (m6A) modification plays a crucial role in cancer progression. However, the role of m6A modification-mediated autophagy underlying non-small cell lung cancer (NSCLC) gefitinib resistance remains unknown. Here, we discovered that m6A methyltransferase KIAA1429 was highly expressed in NSCLC gefitinib-resistant cells (PC9-GR) as well as tissues, and KIAA1429 high expression was associated with poor survival. In addition, silent KIAA1429 repressed gefitinib resistance in NSCLC and reduced tumor growth in vivo. Mechanistically, KIAA1429 stabilized WTAP, a significant player in autophagy, by binding to the 3' untranslated regions (3'-UTR) of WTAP. In a word, our findings indicated that KIAA1429 could elevate NSCLC gefitinib resistance, which may provide a promising targeted therapy for NSCLC patients.
Collapse
Affiliation(s)
- Bo Ma
- Department of General Thoracic SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Lei Xiu
- Department of Thoracic and Cardiac SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Lili Ding
- Department of Obstetrics and Gynecology ExaminationGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| |
Collapse
|
19
|
Yuan F, Hu Y, Xu F, Feng X. A review of obstructive sleep apnea and lung cancer: epidemiology, pathogenesis, and therapeutic options. Front Immunol 2024; 15:1374236. [PMID: 38605948 PMCID: PMC11007033 DOI: 10.3389/fimmu.2024.1374236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Despite undeniable advances in modern medicine, lung cancer still has high morbidity and mortality rates. Lung cancer is preventable and treatable, and it is important to identify new risk factors for lung cancer, especially those that can be treated or reversed. Obstructive sleep apnea (OSA) is a very common sleep-breathing disorder that is grossly underestimated in clinical practice. It can cause, exacerbate, and worsen adverse outcomes, including death and various diseases, but its relationship with lung cancer is unclear. A possible causal relationship between OSA and the onset and progression of lung cancer has been established biologically. The pathophysiological processes associated with OSA, such as sleep fragmentation, intermittent hypoxia, and increased sympathetic nervous excitation, may affect normal neuroendocrine regulation, impair immune function (especially innate and cellular immunity), and ultimately contribute to the occurrence of lung cancer, accelerate progression, and induce treatment resistance. OSA may be a contributor to but a preventable cause of the progression of lung cancer. However, whether this effect exists independently of other risk factors is unclear. Therefore, by reviewing the literature on the epidemiology, pathogenesis, and treatment of lung cancer and OSA, we hope to understand the relationships between the two and promote the interdisciplinary exchange of ideas between basic medicine, clinical medicine, respiratory medicine, sleep medicine, and oncology.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Respiratory, The First Hospital of Jiujiang City, Jiujiang, China
| | - Yanxia Hu
- Department of Respiratory, The First Hospital of Jiujiang City, Jiujiang, China
| | - Fei Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xujun Feng
- Department of Respiratory, The First Hospital of Jiujiang City, Jiujiang, China
- Department of Respiratory and Critical Care Medicine, Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Tan J, Chen F, Wang J, Li J, Ouyang B, Li X, Li Y, Zhang W, Jiang Y. ALKBH5 promotes the development of lung adenocarcinoma by regulating the polarization of M2 macrophages through CDCA4. Gene 2024; 895:147975. [PMID: 37949419 DOI: 10.1016/j.gene.2023.147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer, with high morbidity and mortality. N6-methyladenosine (m6A) is an important regulator of LUAD progression. Here, we investigated the potential biological functions of ALKBH5 (a m6A demethylated enzyme) and cell division cycle associated protein 4 (CDCA4) in the progression of LUAD. METHODS The expressions of CDCA4, METTL3, ALKBH5, FTO, YTHDC2 and YTHDC1 mRNA and proteins in LUAD and adjacent tissues, as well as NCI-H1299 and NCI-H157 cells were detected by RT-qPCR and western blot. Meanwhile, the role of ALKBH5 and CDCA4 in macrophage polarization was explored through tumor formation in Lewis lung carcinoma (LLC) mice and the co-culture system of NCI-H1299 and NCI-H157/THP-1 cells. Cell characterization was further analyzed. The expression of Ki-67 in tumor tissue was tested by immunohistochemistry. The scale of M1 and M2 macrophages was determined by flow cytometry. RESULTS CDCA4 was significantly overexpressed in NCI-H1299 and NCI-H157 cell lines compared with BEAS-2B cells. The fold enrichment of CDCA4 m6A level in the overexpression (oe)-METTL3 or short hairpin (sh)-ALKBH5 cells was enhanced. Overexpression of CDCA4 promoted the cell viability, proliferation and migration, and inhibited apoptosis, which was reversed by sh-ALKBH5 intervention. Overexpression of YTHDC2 (not YTHDC1) inhibited the effect of CDCA4 on sh-ALKBH5 cells. sh-CDCA4 inhibited tumor growth and weight of LLC cells in mice, and promoted M1/M2 ratio in LLC mice and NCI-H1299/THP-1 and NCI-H157/THP-1 co-culture systems. Oe-CDCA4 promoted the volume and weight of tumor and inhibited the M1/M2 ratio of tumor tissue in LLC mice, but was reversed by sh-ALKBH5 intervention. CONCLUSION m6A demethylase ALKBH5 promotes the development of LUAD through CDCA4 regulation of malignant characterization and M1/M2 macrophage polarization.
Collapse
Affiliation(s)
- Jianlong Tan
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Fengyu Chen
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jufen Wang
- Department of Respiratory Medicine,The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jianmin Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Ouyang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiuying Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yun Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Weidong Zhang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
21
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
22
|
Cheng C, Yu F, Yuan G, Jia J. Update on N6-methyladenosine methylation in obesity-related diseases. Obesity (Silver Spring) 2024; 32:240-251. [PMID: 37989724 DOI: 10.1002/oby.23932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 11/23/2023]
Abstract
Obesity is a chronic metabolic disease that is closely related to type 2 diabetes mellitus, cardiovascular diseases, nonalcoholic fatty liver disease, obstructive sleep apnea, and osteoarthritis. The prevalence of obesity is increasing rapidly every year and is recognized as a global public health problem. In recent years, the role of epigenetics in the development of obesity and related diseases has been recognized and is currently a research hotspot. N6-methyladenosine (m6A) methylation is the most abundant epigenetic modification in the eukaryotic RNA, including mRNA and noncoding RNA. Several studies have shown that the m6A modifications in the target mRNA and the corresponding m6A regulators play a significant role in lipid metabolism and are strongly associated with the pathogenesis of obesity-related diseases. In this review, the latest research findings regarding the role of m6A methylation in obesity and related metabolic diseases are summarized. The authors' aim is to highlight evidence that suggests the clinical utility of m6A modifications and the m6A regulators as novel early prediction biomarkers and precision therapeutics for obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Caiqin Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fan Yu
- Department of Endocrinology and Metabolism, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
23
|
Gu J, Cao H, Chen X, Zhang XD, Thorne RF, Liu X. RNA m6A modifications regulate crosstalk between tumor metabolism and immunity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1829. [PMID: 38114887 DOI: 10.1002/wrna.1829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
In recent years, m6A modifications in RNA transcripts have arisen as a hot topic in cancer research. Indeed, a number of independent studies have elaborated that the m6A modification impacts the behavior of tumor cells and tumor-infiltrating immune cells, altering tumor cell metabolism along with the differentiation and functional activity of immune cells. This review elaborates on the links between RNA m6A modifications, tumor cell metabolism, and immune cell behavior, discussing this topic from the viewpoint of reciprocal regulation through "RNA m6A-tumor cell metabolism-immune cell behavior" and "RNA m6A-immune cell behavior-tumor cell metabolism" axes. In addition, we discuss the various factors affecting RNA m6A modifications in the tumor microenvironment, particularly the effects of hypoxia associated with cancer cell metabolism along with immune cell-secreted cytokines. Our analysis proposes the conclusion that RNA m6A modifications support widespread interactions between tumor metabolism and tumor immunity. With the current viewpoint that long-term cancer control must tackle cancer cell malignant behavior while strengthening anti-tumor immunity, the recognition of RNA m6A modifications as a key factor provides a new direction for the targeted therapy of tumors. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jinghua Gu
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Huake Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xiaoli Chen
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| | - Xu Dong Zhang
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Rick F Thorne
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
24
|
Wu S, Liu L, Xu H, Zhu Q, Tan M. The involvement of MALAT1-ALKBH5 signaling axis into proliferation and metastasis of human papillomavirus-positive cervical cancer. Cancer Biol Ther 2023; 24:2249174. [PMID: 37639643 PMCID: PMC10464551 DOI: 10.1080/15384047.2023.2249174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/17/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023] Open
Abstract
Infection with high-risk human papillomavirus (HPV), for example, with types 16 and 18, is closely associated with cervical cancer development, which continues to threaten women's health globally. Although HPV oncogenes have been recognized as the main cause of transformation of normal cervical epithelial cells, non-coding RNA could also be involved in the initiation and promotion of cervical cancer development. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a well-documented long non-coding RNA (lncRNA), has been previously reported to exert roles in HPV-positive cervical cancer; however, the detailed underlying mechanism has yet to be investigated. In the present study, high expression levels of MALAT1 in HPV-Positive Cervical Cancer cells were confirmed, and silencing MALAT1 resulted in decreased rates of cell proliferation, migration, and invasion, both in vitro and in a zebrafish xenograft tumor model. Moreover, the results obtained showed that silencing MALAT1 led to down-regulation of the N6-methyladenosine (m6A) demethylase ALKBH5 via regulating miR-141-3p expression, which caused a decrease in the expression levels of matrix metalloproteinase 2 (MMP2) and MMP9 expression, thereby suppressing cell migration and invasion. Taken together, the results obtained have suggested that the MALAT-ALKBH5 signaling axis may be activated in HPV-positive cervical cancer cells, which could contribute to cell proliferation and metastasis through the regulation of key genes, such as MMP2 or MMP9. The findings of the present study should both help to improve our understanding of the underlying tumorigenic mechanisms of HPV-positive cervical cancer and be of further use in the development of potential therapeutic drugs.
Collapse
Affiliation(s)
- Suzhen Wu
- Department of Obstetrics & Gynecology, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, P.R. China
| | - Lili Liu
- Department of Obstetrics & Gynecology, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, P.R. China
| | - Huanying Xu
- Department of Obstetrics & Gynecology, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, P.R. China
| | - Qiaoling Zhu
- Department of Obstetrics & Gynecology, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, P.R. China
| | - Minhua Tan
- Department of Obstetrics & Gynecology, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, P.R. China
| |
Collapse
|
25
|
Li C, Li B, Wang H, Qu L, Liu H, Weng C, Han J, Li Y. Role of N6-methyladenosine methylation in glioma: recent insights and future directions. Cell Mol Biol Lett 2023; 28:103. [PMID: 38072944 PMCID: PMC10712162 DOI: 10.1186/s11658-023-00514-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Glioma is the most pervasive intracranial tumor in the central nervous system (CNS), with glioblastoma (GBM) being the most malignant type having a highly heterogeneous cancer cell population. There is a significantly high mortality rate in GBM patients. Molecular biomarkers related to GBM malignancy may have prognostic values in predicting survival outcomes and therapeutic responses, especially in patients with high-grade gliomas. In particular, N6-methyladenine (m6A) mRNA modification is the most abundant form of post-transcriptional RNA modification in mammals and is involved in regulating mRNA translation and degradation. Cumulative findings indicate that m6A methylation plays a crucial part in neurogenesis and glioma pathogenesis. In this review, we summarize recent advances regarding the functional significance of m6A modification and its regulatory factors in glioma occurrence and progression. Significant advancement of m6A methylation-associated regulators as potential therapeutic targets is also discussed.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Bowen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hui Wang
- Department of Acupuncture, Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang, 277000, Shandong, China
| | - Linglong Qu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hui Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Chao Weng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Suzhou Research Institute of Shandong University, Suzhou 215123, China.
| |
Collapse
|
26
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
27
|
Wei Y, Guo X, Li L, Xue W, Wang L, Chen C, Sun S, Yang Y, Yao W, Wang W, Zhao J, Duan X. The role of N6-methyladenosine methylation in PAHs-induced cancers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118078-118101. [PMID: 37924411 DOI: 10.1007/s11356-023-30710-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), which are a wide range of environmental toxicants, may act on humans through inhalation, ingestion, and skin contact, resulting in a range of toxic reactions. Epidemiological studies showed that long-term exposure to PAHs in the occupational and living environment results in a substantial rise in the incidence rate of many cancers in the population, so the prevention and treatment of these diseases have become a major worldwide public health problem. N6-methyladenosine (m6A) modification greatly affects the metabolism of RNA and is implicated in the etiopathogenesis of many kinds of diseases. In addition, m6A-binding proteins have an important role in disease development. The abnormal expression of these can cause the malignant proliferation, migration, invasion, and metastasis of cancers. Furthermore, a growing number of studies revealed that environmental toxicants are one of the cancer risk factors and are related to m6A modifications. Exposure to environmental toxicants can alter the methylation level of m6A and the expression of the m6A-binding protein, thus promoting the occurrence and development of cancers through diverse mechanisms. m6A may serve as a biomarker for early environmental exposure. Through the study of m6A, we can find the health injury early, thus providing a new sight for preventing and curing environmental health-related diseases.
Collapse
Affiliation(s)
- Yujie Wei
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaona Guo
- Medical School, Huanghe Science and Technology University, Zhengzhou, Henan, China
| | - Lifeng Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Longhao Wang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Chengxin Chen
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shilong Sun
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqi Yang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China.
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Medical School, Huanghe Science and Technology University, Zhengzhou, Henan, China.
| |
Collapse
|
28
|
Yu M, Ji W, Yang X, Tian K, Ma X, Yu S, Chen L, Zhao X. The role of m6A demethylases in lung cancer: diagnostic and therapeutic implications. Front Immunol 2023; 14:1279735. [PMID: 38094306 PMCID: PMC10716209 DOI: 10.3389/fimmu.2023.1279735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
m6A is the most prevalent internal modification of eukaryotic mRNA, and plays a crucial role in tumorigenesis and various other biological processes. Lung cancer is a common primary malignant tumor of the lungs, which involves multiple factors in its occurrence and progression. Currently, only the demethylases FTO and ALKBH5 have been identified as associated with m6A modification. These demethylases play a crucial role in regulating the growth and invasion of lung cancer cells by removing methyl groups, thereby influencing stability and translation efficiency of mRNA. Furthermore, they participate in essential biological signaling pathways, making them potential targets for intervention in lung cancer treatment. Here we provides an overview of the involvement of m6A demethylase in lung cancer, as well as their potential application in the diagnosis, prognosis and treatment of the disease.
Collapse
Affiliation(s)
- Mengjiao Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Wenqian Ji
- College of International Studies, Southwest University, Chongqing, China
| | - Xu Yang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Kai Tian
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyi Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Lin Chen
- Nantong Institute of Liver Diseases, Nantong Third People’s Hospital Affiliated Nantong Hospital of Nantong University, Nantong, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
29
|
Dorgham MG, Elliott BA, Holley CL, Mansfield KD. m6A regulates breast cancer proliferation and migration through stage-dependent changes in Epithelial to Mesenchymal Transition gene expression. Front Oncol 2023; 13:1268977. [PMID: 38023205 PMCID: PMC10661887 DOI: 10.3389/fonc.2023.1268977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
While many factors have been implicated in breast cancer progression, effective treatments are still lacking. In recent years, it has become clear that posttranscriptional regulation plays a key role in the aberrant gene expression underlying malignancy and metastasis. For example, the mRNA modification N6-methyladenosine (m6A) is involved in numerous post-transcriptional regulation processes and has been implicated in many cancer types, including breast cancer. Despite intense study, even within a single type of cancer, there is little consensus, and often conflicting results, as to the role of m6A, suggesting other factors must influence the process. The goal of this study was to determine if the effects of m6A manipulation on proliferation and migration differed based on the stage of disease progression. Using the MCF10 model of breast cancer, we reduced m6A levels by targeting METTL3, the main cellular m6A RNA methyltransferase. Knocking down Mettl3 at different stages of breast cancer progression indeed shows unique effects at each stage. The early-stage breast cancer line showed a more proliferative phenotype with the knockdown of Mettl3 while the transformed breast cancer line showed a more migratory phenotype. Interestingly, the metastasized breast cancer cell line showed almost no effect on phenotype with the knockdown of Mettl3. Furthermore, transcriptome wide analysis revealed EMT as the probable pathway influencing the phenotypic changes. The results of this study may begin to address the controversy of m6A's role in cancer and suggest that m6A may have a dynamic role in cancer that depends on the stage of progression.
Collapse
Affiliation(s)
- Mohammed G. Dorgham
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Brittany A. Elliott
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | | | - Kyle D. Mansfield
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
30
|
Fu D, Si Q, Yu C, Han Z, Zang L. USF1-mediated ALKBH5 stabilizes FLII mRNA in an m6A-YTHDF2-dependent manner to repress glycolytic activity in prostate adenocarcinoma. Mol Carcinog 2023; 62:1700-1716. [PMID: 37493109 DOI: 10.1002/mc.23609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Upstream-stimulating factor 1 (USF1) is a ubiquitously expressed transcription factor implicated in multiple cellular processes, including metabolism and proliferation. This study focused on the function of USF1 in glycolysis and the malignant development of prostate adenocarcinoma (PRAD). Bioinformatics predictions suggested that USF1 is poorly expressed in PRAD. The clinical PRAD samples revealed a low level of USF1, which was correlated with an unfavorable prognosis. Artificial upregulation of USF1 significantly repressed glycolytic activity in PRAD cells and reduced cell growth and metastasis in vitro and in vivo. Potential downstream genes of USF1 were probed by integrated bioinformatics analyses. The chromatin immunoprecipitation and luciferase assays indicated that USF1 bound to the α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) promoter for transcription activation. Flightless I (FLII) was identified as the gene showing the highest degree of correlation with ALKBH5. As an m6A demethylase, ALKBH5 enhanced FLII mRNA stability by inducing m6A demethylation in an m6A-YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2)-dependent manner. Either silencing of ALKBH5 or FLII blocked the role of USF1 in PARD cells and restored glycolysis, cell proliferation, and invasion. This study demonstrates that USF1 activates ALKBH5 to stabilize FLII mRNA in an m6A-YTHDF2-dependent manner, thereby repressing glycolysis processes and the progression of PRAD.
Collapse
Affiliation(s)
- Dewang Fu
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Qingyue Si
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Chenxi Yu
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Zhifu Han
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Li'e Zang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
31
|
Liu L, Zhao H, Li J, Huang J, Xu Y, Li X, Wu Y, Li P, Guan X, Tang R. ALKB homolog 5 (ALKBH5)-induced circPUM1 upregulation facilitated the progression of neuroblastoma via miR-423-5p/PA2G4 axis. Pathol Res Pract 2023; 248:154609. [PMID: 37421841 DOI: 10.1016/j.prp.2023.154609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND The oncogenic role of circPUM1 has been revealed in multiple cancers. Nevertheless, the specific role and molecular mechanism of circPUM1 in neuroblastoma (NB) have never been reported. METHODS The expression of genes was detected using RT-qPCR and Western Blot assay. The proliferation, migration, and invasion of NB cells were evaluated by CCK-8 and Transwell assays. Besides, mouse model was established to evaluate the effect of circPUM1 on the progression of NB. The interaction among genes was verified through RIP, MeRIP, or Luciferase reporter assay. RESULTS Through our investigation, it was discovered that circPUM1 expression was abnormally elevated in NB tissues and the abundance of circPUM1 was correlated with unfavorable clinical outcomes in NB patients. Besides, the viability and mobility of NB cells as well as NB tumor growth were suppressed by silencing circPUM1. Moreover, bioinformatics prediction and experimental verification demonstrated that circPUM1 was a sponge for miR-423-5p which further targeted proliferation-associated protein 2G4 (PA2G4). The oncogenic effect of circPUM1 on NB was exerted through suppressing miR-423-5p to elevate PA2G4 expression. Finally, we investigated the transcriptional factor causing the upregulation of circPUM1 in NB. The result was that ALKB homolog 5 (ALKBH5), an m6A demethylase, suppressed the m6A modification of circPUM1 and caused the elevation of circPUM1 expression in NB. CONCLUSION ALKBH5 induced the upregulation of circPUM1 to accelerate the development of NB through regulating miR-423-5p/PA2G4 axis.
Collapse
Affiliation(s)
- Lin Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Jing Li
- Department of General Surgery, Children's Hospital of Soochow University, China
| | - Jie Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Yunyun Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Yi Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Ping Li
- Department of Clinical Nutrition, Children's Hospital of Soochow University, China.
| | - Xinxian Guan
- Department of Neonatology, Children's Hospital of Soochow University, China.
| | - Ruze Tang
- Department of General Surgery, Children's Hospital of Soochow University, China.
| |
Collapse
|
32
|
Diao MN, Zhang XJ, Zhang YF. The critical roles of m6A RNA methylation in lung cancer: from mechanism to prognosis and therapy. Br J Cancer 2023; 129:8-23. [PMID: 36997662 PMCID: PMC10307841 DOI: 10.1038/s41416-023-02246-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Lung cancer, a highly malignant disease, greatly affects patients' quality of life. N6-methyladenosine (m6A) is one of the most common posttranscriptional modifications of various RNAs, including mRNAs and ncRNAs. Emerging studies have demonstrated that m6A participates in normal physiological processes and that its dysregulation is involved in many diseases, especially pulmonary tumorigenesis and progression. Among these, regulators including m6A writers, readers and erasers mediate m6A modification of lung cancer-related molecular RNAs to regulate their expression. Furthermore, the imbalance of this regulatory effect adversely affects signalling pathways related to lung cancer cell proliferation, invasion, metastasis and other biological behaviours. Based on the close association between m6A and lung cancer, various prognostic risk models have been established and novel drugs have been developed. Overall, this review comprehensively elaborates the mechanism of m6A regulation in the development of lung cancer, suggesting its potential for clinical application in the therapy and prognostic assessment of lung cancer.
Collapse
Affiliation(s)
- Mei-Ning Diao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiao-Jing Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
33
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
34
|
Zhu C, Guo H, Ma Z, Shi S, Zhao X, Zhai D, Zhou X, Jiang P, Xu Q, Cai J. FOXM1 augments sorafenib resistance and promotes progression of hepatocellular carcinoma by epigenetically activating KIF23 expression. Biochem Biophys Res Commun 2023; 656:1-9. [PMID: 36940637 DOI: 10.1016/j.bbrc.2023.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Sorafenib has been used to enhance the survival outcome of hepatocellular carcinoma (HCC) patients. But, occurrence resistance to sorafenib subtracts from its therapeutic benefits. Herein, we identified that FOXM1 was markedly upregulated in both tumor samples and sorafenib-resistant HCC tissues. We also demonstrated that patients with decreased FOXM1 expression had longer overall survival (OS) and progression-free survival (PFS) in the cohort of sorafenib-treated patients. For HCC cells resistant to sorafenib, the IC50 value of sorafenib and the expression of FOXM1 were increased. In addition, Downregulation of FOXM1 expression alleviated the occurrence of resistance to sorafenib and reduced the proliferative potential and viability of HCC cells. Mechanically, the suppression of the FOXM1 gene resulted in the downregulation of KIF23 levels. Moreover, downregulation of FOXM1 expression reduced the levels of RNA polymerase II (RNA pol II) and histone H3 lysine 27 acetylation (H3K27ac) on the KIF23 promoter, further epigenetically silencing the production of KIF23. More intriguingly, our results similarly revealed that FDI-6, a specific inhibitor of FOXM1, suppressed the proliferation of HCC cells resistant to sorafenib, as well as upregulation of FOXM1 or KIF23 abolished this effect. In addition, we found that FDI-6 combined with sorafenib significantly improved the therapeutic effect of sorafenib. Collectively, the present results revealed that FOXM augments sorafenib resistance and enhances HCC progression by upregulating KIF23 expression via an epigenetic mechanism, and targeting FOXM1 can be an effective treatment for HCC.
Collapse
Affiliation(s)
- Cunle Zhu
- Medical College of Qingdao University, Qingdao, Shandong Province, China; Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hua Guo
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Zengyan Ma
- Department of Pathology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shangheng Shi
- Medical College of Qingdao University, Qingdao, Shandong Province, China; Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaodan Zhao
- Department of Medical Iconography, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Dongchang Zhai
- Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Xin Zhou
- Medical College of Qingdao University, Qingdao, Shandong Province, China; Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Peng Jiang
- Medical College of Qingdao University, Qingdao, Shandong Province, China; Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qingguo Xu
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Jinzhen Cai
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
35
|
Li R, Wu X, Xue K, Feng D, Li J, Li J. RNA demethylase ALKBH5 promotes tumorigenesis of t (8;21) acute myeloid leukemia via ITPA m6A modification. Biomark Res 2023; 11:30. [PMID: 36899424 PMCID: PMC10007764 DOI: 10.1186/s40364-023-00464-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Although t (8;21) is in fact considered a good risk acute myeloid leukemia (AML), only 60% of the patients live beyond 5 years after diagnosis. Studies have shown that RNA demethylase ALKBH5 promotes leukemogenesis. However, the molecular mechanism and clinical significance of ALKBH5 in t (8;21) AML have not been elucidated. METHODS The expression of ALKBH5 was assessed in t (8;21) AML patients via qRT-PCR and western blot. The proliferative activity of these cells was examined through CCK-8 or colony-forming assays, while flow cytometry approaches were used to examine apoptotic cell rates. The in vivo role of ALKBH5 promoting leukemogenesis was assessed using t (8;21) murine model, CDX, and PDX models. RNA sequencing, m6A RNA methylation assay, RNA immunoprecipitation, and luciferase reporter assay were used to explore the molecular mechanism of ALKBH5 in t (8;21) AML. RESULTS ALKBH5 is highly expressed in t (8;21) AML patients. Silencing ALKBH5 suppresses the proliferation and promotes the apoptosis of patient-derived AML cells and Kasumi-1 cells. With integrated transcriptome analysis and wet-lab confirmation, we found that ITPA is a functionally important target of ALKBH5. Mechanistically, ALKBH5 demethylates ITPA mRNA and increases its mRNA stability, leading to enhanced ITPA expression. Furthermore, transcription factor TCF15, specifically expressed in leukemia stem/initiating cells (LSCs/LICs), is responsible for the dysregulated expression of ALKBH5 in t (8;21) AML. CONCLUSION Our work uncovers a critical function for the TCF15/ALKBH5/ITPA axis and provides insights into the vital roles of m6A methylation in t (8;21) AML.
Collapse
Affiliation(s)
- Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaolu Wu
- Department of Child Health Care, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Feng
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Identification of m6A/m5C/m1A-associated LncRNAs for prognostic assessment and immunotherapy in pancreatic cancer. Sci Rep 2023; 13:3661. [PMID: 36871072 PMCID: PMC9985641 DOI: 10.1038/s41598-023-30865-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Methylation of RNA plays an important role in cancer. Classical forms of such modifications include N6-methyladenine (m6A), 5-methylcytosine (m5C), and N1-methyladenine (m1A). Methylation-regulated long non-coding (lnc) RNAs are involved in various biological processes, such as tumor proliferation, apoptosis, immune escape, invasion, and metastasis. Therefore, we performed an analysis of transcriptomic and clinical data of pancreatic cancer samples in The Cancer Genome Atlas (TCGA). Using the co-expression method, we summarized 44 m6A/m5C/m1A-related genes and obtained 218 methylation-associated lncRNAs. Next, with COX regression, we screened 39 lncRNAs that are strongly associated with prognosis and found that their expression differed significantly between normal tissues and pancreatic cancer samples (P < 0.001). We then used the least absolute shrinkage and selection operator (LASSO) to construct a risk model comprising seven lncRNAs. In validation set, the nomogram generated by combining clinical characteristics accurately predicted the survival probability of pancreatic cancer patients at 1, 2, and 3 years after diagnosis (AUC = 0.652, 0.686, and 0.740, respectively). Tumor microenvironment analysis showed that the high-risk group had significantly more resting memory CD4 T cells, M0 macrophages, and activated dendritic cells and fewer naïve B cells, plasma cells, and CD8 T cells than the low-risk group (both P < 0.05). Most immune-checkpoint genes were significantly different between the high- and low-risk groups (P < 0.05). The Tumor Immune Dysfunction and Exclusion score showed that high-risk patients benefited more from treatment with immune checkpoint inhibitors (P < 0.001). Overall survival was also lower in high-risk patients with more tumor mutations than in low-risk patients with fewer mutations (P < 0.001). Finally, we explored the sensitivity of the high- and low-risk groups to seven candidate drugs. Our findings indicated that m6A/m5C/m1A-associated lncRNAs are potentially useful biomarkers for the early diagnosis and estimating the prognosis of, and ascertaining the responses to immunotherapy in, patients with pancreatic cancer.
Collapse
|
37
|
Wang S, Liu X, Zhou T, Li J, Lin Y, Zhou A, Huang J, Zhao J, Cai J, Cai X, Huang Y, Li X. PKMYT1 inhibits lung adenocarcinoma progression by abrogating AKT1 activity. Cell Oncol (Dordr) 2023; 46:195-209. [PMID: 36350496 DOI: 10.1007/s13402-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE AKT hyperactivation drives malignant phenotypes in lung cancer via promoting tumor cell proliferation and survival. However, the relationship between dysregulation of cell cycle progression and AKT1 kinase activity is still not clear. METHODS Following the expression level of PKMYT1 in lung cancer, we performed cell proliferation, migration, invasion, and xenograft assays to determine the function of PKMYT1. We used RNA-seq to explore the anti-tumor mechanism of PKMYT1 and examined the effect of PKMYT1 on AKT1 activity. RESULTS In this study, we report that PKMYT1 is downregulated in lung adenocarcinoma (LUAD) tissues and its low expression predicts a poor prognosis in LUAD patients. PKMYT1 exerts potent tumor-suppressive functions in LUAD cells by inhibiting AKT1 activation and thereby repressing cell cycle progression, which depends on its tyrosine and threonine protein kinase activity. Interestingly, PKMYT1 could directly bind AKT1 to abrogate AKT1 activation. Moreover, silencing AKT1 and inhibitors targeting the AKT pathway effectively reverse the promoting effects of PKMYT1 knockdown on proliferation, migration and invasion of LUAD cells. CONCLUSION This work reveals the anti-tumor effect of PKMYT1 in LUAD and provides evidence to clarify the dual roles of PKMYT1 in tumor progression. Moreover, our findings broaden the current understandings on AKT1 activation and identify PKMYT1 as a potential negative regulator of AKT1 kinase activity, providing further insights into targeting the AKT pathway in LUAD.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ximeng Liu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting Zhou
- Department of Immunology, Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Jinling Li
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ying Lin
- Department of Immunology, Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Anni Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiamin Huang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jingjing Zhao
- Department of Cardiac Surgery Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junchao Cai
- Department of Immunology, Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Xiuyu Cai
- Department of General Internal Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China.
| | - Xu Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
38
|
Zhen L, Pan W. ALKBH5 inhibits the SIRT3/ACC1 axis to regulate fatty acid metabolism via an m6A-IGF2BP1-dependent manner in cervical squamous cell carcinoma. Clin Exp Pharmacol Physiol 2023; 50:380-392. [PMID: 36705046 DOI: 10.1111/1440-1681.13754] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Cervical cancer (CC) is the most common malignancy of the female reproductive system, among which cervical squamous cell carcinoma (CESC) is the most common type. The demethylase ALKBH5 has been previously revealed to be downregulated in CC tissue. N6 methyladenine (m6A) is the most common modification in eukaryotic RNAs and is involved in modulating tumour progression. Therefore, we attempted to clarify the ALKBH5 role and mechanism underlying CESC progression. In CESC, patient tissue and control tissue m6A levels were measured. Reverse transcription quantitative real-time polymerase chain reaction, western blotting and immunochemistry were used to measure ALKBH5 levels. A correlation between CESC patient survival and ALKBH5 levels was evaluated. Wound healing, transwell and colony formation assays were used to detect CESC cellular behaviours. Corresponding kits and BODIPY staining were used to detect CESC lipid metabolism. Bioinformatics, immunoprecipitation, RNA pulldown and RNA immunoprecipitation assays as well as half-life measurements were used to assess the association and mechanism of ALKBH5 with silent mating type information regulation 2 homologue 3 (SIRT3), acetyl-CoA carboxylase 1 (ACC1) and insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1). The m6A demethylase ALKBH5 was depleted in CESC tissue and cells, and a low level of ALKBH5 predicted an unfavourable prognosis in CESC patients. ALKBH5 overexpression suppressed CESC growth and lipid metabolism in vitro and CESC tumour growth in vivo, and ACC1 overexpression rescued these changes. ALKBH5 downregulated ACC1 levels in CESC cells by facilitating SIRT3 methylation to repress ACC1 deacetylation. ALKBH5 destabilized SIRT3 to downregulate SIRT3 levels in CESCs in an m6A-IGF2BP1-dependent manner. ALKBH5 demethylates and destabilizes SIRT3 in an m6A-IGF2BP1-dependent manner, repressing CESC growth, lipid metabolism and tumorigenesis by downregulating ACC1.
Collapse
Affiliation(s)
- Lan Zhen
- Department of Gynecology Area 2, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Wuyuan Pan
- Department of Gynecology Area 2, Fujian Maternity and Child Health Hospital, Fuzhou, China
| |
Collapse
|
39
|
Zhang L, Xia J. N6-Methyladenosine Methylation of mRNA in Cell Senescence. Cell Mol Neurobiol 2023; 43:27-36. [PMID: 34767142 PMCID: PMC11415202 DOI: 10.1007/s10571-021-01168-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023]
Abstract
Cell senescence is the growth arrest caused by the accumulation of irreparable cell damage, which is involved in physiological and pathological processes and regulated by the post-transcriptional level. This regulation is performed by transcriptional regulators and driven by aging-related small RNAs, long non-coding RNAs, and RNA-binding proteins. N6-methyladenosine (m6A) is the most common chemical modification in eukaryotic mRNA, which can enhance or reduce the binding of transcriptional regulators. Increasing studies have confirmed the crucial role of m6A in controlling mRNA in various physiological processes. Remarkably, recent reports have indicated that abnormal methylation of m6A-related RNA may affect cell senescence. In this review, we clarified the association between m6A modification and cell senescence and analyzed the limitations of the current research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
40
|
Wang X, Guo Z, Yan F. RNA Epigenetics in Chronic Lung Diseases. Genes (Basel) 2022; 13:genes13122381. [PMID: 36553648 PMCID: PMC9777603 DOI: 10.3390/genes13122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic lung diseases are highly prevalent worldwide and cause significant mortality. Lung cancer is the end stage of many chronic lung diseases. RNA epigenetics can dynamically modulate gene expression and decide cell fate. Recently, studies have confirmed that RNA epigenetics plays a crucial role in the developing of chronic lung diseases. Further exploration of the underlying mechanisms of RNA epigenetics in chronic lung diseases, including lung cancer, may lead to a better understanding of the diseases and promote the development of new biomarkers and therapeutic strategies. This article reviews basic information on RNA modifications, including N6 methylation of adenosine (m6A), N1 methylation of adenosine (m1A), N7-methylguanosine (m7G), 5-methylcytosine (m5C), 2'O-methylation (2'-O-Me or Nm), pseudouridine (5-ribosyl uracil or Ψ), and adenosine to inosine RNA editing (A-to-I editing). We then show how they relate to different types of lung disease. This paper hopes to summarize the mechanisms of RNA modification in chronic lung disease and finds a new way to develop early diagnosis and treatment of chronic lung disease.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
| | - Zhihou Guo
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
| | - Furong Yan
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
- Correspondence:
| |
Collapse
|
41
|
Zheng Y, Yang S, Si J, Zhao Y, Zhao M, Ji E. Shashen-Maidong Decoction inhibited cancer growth under intermittent hypoxia conditions by suppressing oxidative stress and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115654. [PMID: 36058477 DOI: 10.1016/j.jep.2022.115654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lung cancer is one of the most common malignant tumours and has become the leading cause of cancer-related deaths worldwide. Abnormal microcirculation during tumour growth leads to intermittent hypoxia (IH), which is responsible for promoting cancer cell proliferation and migration. Patients with advanced lung cancers show deficiency of both Qi and Yin Syndrome (DQYS) in TCM, and studies have confirmed that IH exposure is related to DQYS. Shashen-Maidong Decoction (SMD), has been widely applied clinically targeting DQYS and has a long history for treating lung cancer by nourishing the body's "zheng qi" and resisting "xie qi". However, whether SMD could be beneficial to lung cancer under IH conditions remains unclear. AIM OF THE STUDY This study aimed to clarify the effects and mechanism of SMD on non-small cell lung cancer (NSCLC) growth under IH conditions. MATERIALS AND METHODS C57 mice were injected subcutaneously into the right axilla with Lewis lung cancer (LLC) cells and exposed to IH conditions (21%-5% O2, 5 min/cycle, 8 h/day) for 21 days. SMDs were orally treated with different concentrations (2.6, 5.2 or 10.4 g/kg/day) 30 min before IH exposure. Tumour proliferation and migration were assessed by HE and IHC staining, and oxidative stress was assessed by DHE staining and MDA or SOD detection. IL-6, IL-1β and TNF-α levels were assessed by IHC staining, and the IL-6/JAK2/STAT3 signalling pathway was detected by western blotting. RESULTS Our results showed that SMD treatment inhibited tumour growth and liver metastasis in LLC-bearing mice exposed to IH, decreased Ki67, CD31, VEGF, and MMP-2, and increased E-cadherin expression in tumourt tissue. SMD reduced ROS production, increased SOD levels and SOD-2 expression, and decreased MDA levels and NOX-2 expression. SMD decreased IL-6, IL-1β and TNF-α levels, reduced IL-6 expression and inhibited JAK2 and STAT3 phosphorylation. Additionally, SMD treatment improved DQYS and liver and kidney function in LLC-bearing mice under IH conditions. CONCLUSION Our research suggests that SMD treatment can inhibit tumour growth in mice exposed to IH. The antitumour effect of SMD may be related to attenuated oxidative stress and inflammation through inactivation of the IL-6/JAK2/STAT3 signalling pathway under IH conditions.
Collapse
Affiliation(s)
- Yuying Zheng
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Yang Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ming Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
42
|
Liu SX, Zhou Y, Zhao L, Zhou LS, Sun J, Liu GJ, Du YS, Zhou YN. Thiostrepton confers protection against reactive oxygen species-related apoptosis by restraining FOXM1-triggerred development of gastric cancer. Free Radic Biol Med 2022; 193:385-404. [PMID: 36152915 DOI: 10.1016/j.freeradbiomed.2022.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022]
Abstract
Gastric cancer is a leading cause of tumor-associated death worldwide. Metastasis and chemoresistance are crucial barriers for gastric cancer treatment. The Forkhead Box M1 (FOXM1) transcription factor has been reported as a promising treatment target for various types of tumors, but its effects on gastric cancer progression are not fully understood. In the present study, we found that FOXM1 expression levels were significantly up-regulated in human gastric cancer cell lines and tissues, and its expression was much higher in patients with metastasis. We then found that suppressing FOXM1 with its inhibitor thiostrepton (THIO) significantly reduced the proliferation of gastric cancer cells, while induced G0/G1 and apoptosis. Moreover, reactive oxygen species (ROS) production, mitochondrial impair and autophagy were remarkably provoked in gastric cancer cells treated with THIO, which were required for the regulation of apoptotic cell death. Furthermore, THIO exposure considerably suppressed the migration, invasion and angiogenesis in gastric cancer cells. The inhibitory effects of THIO on tumor growth and metastasis were confirmed in an established gastric cancer xenograft mouse model without detectable toxicity. Intriguingly, our in vitro studies showed that the anti-cancer effects of THIO on gastric cancer were almost abolished upon FOXM1 over-expression, indicating the necessity of FOXM1 suppression in THIO-inhibited tumor growth. In addition, higher FOXM1 expression was detected in gastric cancer cells with chemoresistance. Both in vitro and in vivo studies illustrated that THIO strongly promoted the drug-resistant gastric cancer cells to chemotherapies, proved by the considerably decreased cell proliferation and epithelial-mesenchymal transition (EMT) process. Together, these findings revealed that FOXM1 was a promising therapeutic target for gastric cancer treatment, and THIO exerted potential as an therapeutic agent for the disease.
Collapse
Affiliation(s)
- Shi-Xiong Liu
- Department of Geriatrics (II), The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yun Zhou
- Department of Geriatrics (II), The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Li Zhao
- Department of Medical Ultrasound, The Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, 730020, China
| | - Ling-Shan Zhou
- Department of Geriatrics (II), The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jie Sun
- Department of Geriatrics (I), The First Hospital of Lanzhou University, Lanzho, 730000, China
| | - Ge-Jing Liu
- Department of Geriatrics (I), The First Hospital of Lanzhou University, Lanzho, 730000, China
| | - Ying-Shi Du
- Department of Geriatrics (I), The First Hospital of Lanzhou University, Lanzho, 730000, China
| | - Yong-Ning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
43
|
Shen W, Pu J, Zuo Z, Gu S, Sun J, Tan B, Wang L, Cheng J, Zuo Y. The RNA demethylase ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the stability of the LncRNA PVT1. Cancer Cell Int 2022; 22:353. [PMID: 36376862 PMCID: PMC9664734 DOI: 10.1186/s12935-022-02770-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background N6-methyladenosine (m6A) is the most common posttranscriptional modification of RNA and plays critical roles in human cancer progression. However, the biological function of m6A methylation requires further studied in cancer, especially in tumor angiogenesis. Methods A public database was used to analyze the expression and overall survival of ALKBH5 and PVT1 in lung cancer patients. CCK-8 and colony formation assays were performed to detect cell proliferation, a transwell assay was used to assess cell migration, and a tube formation assay was performed to assess angiogenic potential in vitro. A zebrafish lung cancer xenograft model was used to verify the function of ALKBH5 and PVT1 in vivo. Western blot assays were used to measure the relative protein expression in lung cancer cells. SRAMP predictor analysis and RNA stability experiments were used to examine the potential m6A modification. Results Bioinformatics analysis showed that the expression levels of m6A-related genes were changed significantly in lung cancer tissues compared with normal lung tissues. We then identified that ALKBH5 was upregulated in lung cancer tissues and associated with poor prognosis of lung cancer patients by analyzing a public database. Knockdown of ALKBH5 inhibited the proliferation and migration of cultured lung cancer cell lines. Zebrafish lung cancer xenografts showed that ALKBH5 silencing also suppressed the growth and metastasis of lung cancer cells. Moreover, knockdown of ALKBH5 inhibited the angiogenesis of lung cancer in vitro and in vivo. Mechanistic studies showed that knockdown of ALKBH5 decreased the expression and stability of PVT1 in lung cancer cells. We next observed that PVT1 promoted the progression of lung cancer cells in vitro and in vivo and regulated the expression of VEGFA and angiogenesis in lung cancer. Finally, rescue experiments revealed that ALKBH5 regulated the proliferation, migration and angiogenesis of lung cancer cells, partially through PVT1. Conclusion Our results demonstrate that ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the expression and stability of PVT1, which provides a potential prognostic and therapeutic target for lung cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02770-0.
Collapse
|
44
|
Quantitative Phase Imaging Detecting the Hypoxia-Induced Patterns in Healthy and Neoplastic Human Colonic Epithelial Cells. Cells 2022; 11:cells11223599. [PMID: 36429026 PMCID: PMC9688862 DOI: 10.3390/cells11223599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia is a frequent phenomenon during carcinogenesis and may lead to functional and structural changes in proliferating cancer cells. Colorectal cancer (CRC) is one of the most common neoplasms in which hypoxia is associated with progression. The aim of this study was to assess the optical parameters and microanatomy of CRC and the normal intestinal epithelium cells using the digital holotomography (DHT) method. The examination was conducted on cancer (HT-29, LoVo) and normal colonic cells (CCD-18Co) cultured in normoxic and hypoxic environments. The assessment included optical parameters such as the refractive index (RI) and dry mass as well as the morphological features. Hypoxia decreased the RI in all cells as well as in their cytoplasm, nucleus, and nucleoli. The opposite tendency was noted for spheroid-vesicular structures, where the RI was higher for the hypoxic state. The total volume of hypoxic CCD-18Co and LoVo cells was decreased, while an increase in this parameter was observed for HT-29 cells. Hypoxia increased the radius and cell volume, including the dry mass of the vesicular content. The changes in the optics and morphology of hypoxic cells may suggest the possibility of using DHT in the detection of circulating tumor cells (CTCs).
Collapse
|
45
|
Tsuchiya K, Yoshimura K, Iwashita Y, Inoue Y, Ohta T, Watanabe H, Yamada H, Kawase A, Tanahashi M, Ogawa H, Funai K, Shinmura K, Suda T, Sugimura H. m 6A demethylase ALKBH5 promotes tumor cell proliferation by destabilizing IGF2BPs target genes and worsens the prognosis of patients with non-small-cell lung cancer. Cancer Gene Ther 2022; 29:1355-1372. [PMID: 35318440 PMCID: PMC9576599 DOI: 10.1038/s41417-022-00451-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/03/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
The modification of N6-methyladenosine (m6A) in RNA and its eraser ALKBH5, an m6A demethylase, play an important role across various steps of human carcinogenesis. However, the involvement of ALKBH5 in non-small-cell lung cancer (NSCLC) development remains to be completely elucidated. The current study revealed that the expression of ALKBH5 was increased in NSCLC and increased expression of ALKBH5 worsened the prognosis of patients with NSCLC. In vitro study revealed that ALKBH5 knockdown suppressed cell proliferation ability of PC9 and A549 cells and promoted G1 arrest and increased the number of apoptotic cells. Furthermore, ALKBH5 overexpression increased the cell proliferation ability of the immortalized cell lines. Microarray analysis and western blotting revealed that the expression of CDKN1A (p21) or TIMP3 was increased by ALKBH5 knockdown. These alterations were offset by a double knockdown of both ALKBH5 and one of the IGF2BPs. The decline of mRNAs was, at least partly, owing to the destabilization of these mRNAs by one of the IGF2BPs. In conclusions, the ALKBH5-IGF2BPs axis promotes cell proliferation and tumorigenicity, which in turn causes the unfavorable prognosis of NSCLC.
Collapse
Affiliation(s)
- Kazuo Tsuchiya
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ohta
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
46
|
Xu L, Zhou L, Yan C, Li L. Emerging role of N6-methyladenosine RNA methylation in lung diseases. Exp Biol Med (Maywood) 2022; 247:1862-1872. [PMID: 36278325 PMCID: PMC9679358 DOI: 10.1177/15353702221128564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In recent years, with the increase of air pollution, smoking, aging, and respiratory infection, the incidence rate and mortality of lung diseases are increasing annually, which has become a major hazard to human health. N6-methyladenosine (m6A) RNA methylation is the most abundant modifications in eukaryotes, and such modified RNA can be specifically recognized and combined by m6A recognition proteins and then mediate RNA splicing, maturation, enucleation, degradation, and translation. More and more studies have revealed that the m6A modification is involved in the pathogenesis and development of some diseases; however, the mechanisms of m6A in lung diseases are poorly understood. In this review, we summarize the latest progress in the biological function of m6A modifications in lung diseases and discuss the potential therapeutic and prognostic strategies. The dysregulation of global m6A levels and m6A regulators may affect the occurrence and development of asthma, chronic obstructive pulmonary disease, lung cancer, and other lung diseases through inflammation and immune function. In lung cancer, this modification has an important impact on malignant cell proliferation, migration, invasion, and drug resistance. In addition, abnormally changed m6A-modified proteins in lung cancer tissue samples and circulating tumor cells (CTCs) may be used as diagnostic and prognostic markers of lung cancer. Models composed of multiple m6A regulators can be used to evaluate the risk prediction or prognosis of asthma and pulmonary fibrosis. In general, the in-depth study of m6A modifications is a frontier direction in disease research. It provides novel insights for understanding of the molecular mechanisms underlying disease occurrence, development, and drug resistance, as well as for the development of effective novel therapeutics.
Collapse
Affiliation(s)
- Limin Xu
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China,Huzhou Hospital, Zhejiang University, Huzhou 313000, China
| | - Lingyan Zhou
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China,Huzhou Hospital, Zhejiang University, Huzhou 313000, China
| | - Chenxin Yan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Liqin Li
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China,Huzhou Hospital, Zhejiang University, Huzhou 313000, China,Liqin Li.
| |
Collapse
|
47
|
Ma Y, Yang J, Ji T, Wen F. Identification of a novel m5C/m6A-related gene signature for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma. Front Genet 2022; 13:990623. [PMID: 36246622 PMCID: PMC9561349 DOI: 10.3389/fgene.2022.990623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent subtype of non-small cell lung cancer (NSCLC) and is associated with high mortality rates. However, effective methods to guide clinical therapeutic strategies for LUAD are still lacking. The goals of this study were to analyze the relationship between an m5C/m6A-related signature and LUAD and construct a novel model for evaluating prognosis and predicting drug resistance and immunotherapy efficacy. We obtained data from LUAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Based on the differentially expressed m5C/m6A-related genes, we identified distinct m5C/m6A-related modification subtypes in LUAD by unsupervised clustering and compared the differences in functions and pathways between different clusters. In addition, a risk model was constructed using multivariate Cox regression analysis based on prognostic m5C/m6A-related genes to predict prognosis and immunotherapy response. We showed the landscape of 36 m5C/m6A regulators in TCGA-LUAD samples and identified 29 differentially expressed m5C/m6A regulators between the normal and LUAD groups. Two m5C/m6A-related subtypes were identified in 29 genes. Compared to cluster 2, cluster 1 had lower m5C/m6A regulator expression, higher OS (overall survival), higher immune activity, and an abundance of infiltrating immune cells. Four m5C/m6A-related gene signatures consisting of HNRNPA2B1, IGF2BP2, NSUN4, and ALYREF were used to construct a prognostic risk model, and the high-risk group had a worse prognosis, higher immune checkpoint expression, and tumor mutational burden (TMB). In patients treated with immunotherapy, samples with high-risk scores had higher expression of immune checkpoint genes and better immunotherapeutic efficacy than those with low-risk scores. We concluded that the m5C/m6A regulator-related risk model could serve as an effective prognostic biomarker and predict the therapeutic sensitivity of chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jun Yang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Tiantai Ji
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Fengyun Wen
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Fengyun Wen,
| |
Collapse
|
48
|
Xu Z, Wang R, Kong K, Begum N, Almakas A, Liu J, Li H, Liu B, Zhao T, Zhao T. An APETALA2/ethylene responsive factor transcription factor GmCRF4a regulates plant height and auxin biosynthesis in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:983650. [PMID: 36147224 PMCID: PMC9485679 DOI: 10.3389/fpls.2022.983650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
Plant height is one of the key agronomic traits affecting soybean yield. The cytokinin response factors (CRFs), as a branch of the APETALA2/ethylene responsive factor (AP2/ERF) super gene family, have been reported to play important roles in regulating plant growth and development. However, their functions in soybean remain unknown. This study characterized a soybean CRF gene named GmCRF4a by comparing the performance of the homozygous Gmcrf4a-1 mutant, GmCRF4a overexpression (OX) and co-silencing (CS) lines. Phenotypic analysis showed that overexpression of GmCRF4a resulted in taller hypocotyls and epicotyls, more main stem nodes, and higher plant height. While down-regulation of GmCRF4a conferred shorter hypocotyls and epicotyls, as well as a reduction in plant height. The histological analysis results demonstrated that GmCRF4a promotes epicotyl elongation primarily by increasing cell length. Furthermore, GmCRF4a is required for the expression of GmYUCs genes to elevate endogenous auxin levels, which may subsequently enhance stem elongation. Taken together, these observations describe a novel regulatory mechanism in soybean, and provide the basis for elucidating the function of GmCRF4a in auxin biosynthesis pathway and plant heigh regulation in plants.
Collapse
Affiliation(s)
- Zhiyong Xu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruikai Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Aisha Almakas
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
49
|
Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F, Li F. Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol 2022; 11:45. [PMID: 35945641 PMCID: PMC9361621 DOI: 10.1186/s40164-022-00298-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023] Open
Abstract
The N(6)-methyladenosine (m6A) modification is the most pervasive modification of human RNAs. In recent years, an increasing number of studies have suggested that m6A likely plays important roles in cancers. Many studies have demonstrated that m6A is involved in the biological functions of cancer cells, such as proliferation, invasion, metastasis, and drug resistance. In addition, m6A is closely related to the prognosis of cancer patients. In this review, we highlight recent advances in understanding the function of m6A in various cancers. We emphasize the importance of m6A to cancer progression and look forward to describe future research directions.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chang Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, Qian Y, Yang Z, Jiang X. Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol 2022; 15:84. [PMID: 35794625 PMCID: PMC9258089 DOI: 10.1186/s13045-022-01304-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME), which is regulated by intrinsic oncogenic mechanisms and epigenetic modifications, has become a research hotspot in recent years. Characteristic features of TME include hypoxia, metabolic dysregulation, and immunosuppression. One of the most common RNA modifications, N6-methyladenosine (m6A) methylation, is widely involved in the regulation of physiological and pathological processes, including tumor development. Compelling evidence indicates that m6A methylation regulates transcription and protein expression through shearing, export, translation, and processing, thereby participating in the dynamic evolution of TME. Specifically, m6A methylation-mediated adaptation to hypoxia, metabolic dysregulation, and phenotypic shift of immune cells synergistically promote the formation of an immunosuppressive TME that supports tumor proliferation and metastasis. In this review, we have focused on the involvement of m6A methylation in the dynamic evolution of tumor-adaptive TME and described the detailed mechanisms linking m6A methylation to change in tumor cell biological functions. In view of the collective data, we advocate treating TME as a complete ecosystem in which components crosstalk with each other to synergistically achieve tumor adaptive changes. Finally, we describe the potential utility of m6A methylation-targeted therapies and tumor immunotherapy in clinical applications and the challenges faced, with the aim of advancing m6A methylation research.
Collapse
|