1
|
Yan X, Li L. Epidemiological investigation of allergic rhinitis in children aged 6-12 years in Bayannur City, China. Front Pediatr 2024; 12:1422323. [PMID: 39380636 PMCID: PMC11458438 DOI: 10.3389/fped.2024.1422323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Background Allergic rhinitis (AR) is an inflammatory condition of the nasal mucosa triggered by exposure to non-harmful substances. Over the past decade, the prevalence of AR in Chinese children has been steadily increasing. However, detailed epidemiological data on AR in children from Bayannur City are lacking. Methods This study randomly selected six primary schools in Bayannur City. Electronic questionnaires were distributed via the web, and parents and children completed the questionnaires by scanning the two-dimensional code within a designated timeframe. Statistical analysis was performed on the collected data. Results A total of 4,754 valid responses were obtained. The self-reported prevalence of AR among children in Bayannur city was 39.79%. Multivariate analysis revealed that male gender, belonging to an ethnic minority, a history of food or drug allergies, frequent antibiotic use (≥3 times per year in the past two years, with each course lasting ≥3 days), and residence in urban or pastoral areas was associated with an increased prevalence of AR in children. The proportion of children experiencing moderate to severe AR hat impacted their studies or daily life was 48.78%. Chronic AR was reported in 56.71% of cases. Among AR patients with other allergic conditions, the incidence rates were as follows: bronchial asthma 35.99%, upper airway cough syndrome (UACS) 64.32%, secretory otitis media (SOM) 22.41%, obstructive sleep apnea hypopnea-syndrome (OSAHS) 49.58%, allergic dermatitis (AD) 48.72%, and allergic conjunctivitis (AC) 85.20%. The prevalence of AR was 50.30% in urban areas, 13.733% in rural areas and 20.90% in pastoral areas. Seasonal effects on AR prevalence were notably significant in urban and pastoral regions. Conclusions The prevalence of AR among children in Bayannur city was 39.80%. Of those with AR, 48.72% experienced significant impacts on their learning or daily life, while only 14.80% had no other allergic conditions. There were significant variations in the prevalence and onset of AR among children between urban, agricultural and pastoral areas.
Collapse
Affiliation(s)
- Xiaobo Yan
- Graduate School, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Limin Li
- Otolaryngology Head and Neck Surgery, Bayannur City Hospital, Bayannur, Inner Mongolia Autonomous Region, China
| |
Collapse
|
2
|
Huang W, Chen X, Liu Z, Li C, Wei X, Zhan J, Qiu Q, Zheng J. Sphk1 regulates HMGB1 via HDAC4 and mediates epithelial pyroptosis in allergic rhinitis. World Allergy Organ J 2024; 17:100963. [PMID: 39295955 PMCID: PMC11408713 DOI: 10.1016/j.waojou.2024.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 09/21/2024] Open
Abstract
Background Allergic rhinitis (AR) is a global health issue affecting millions of individuals worldwide. Pyroptosis has emerged as a major player in the development of AR, and targeting its inhibition with specific drugs holds promise for AR treatment. However, a comprehensive understanding of the precise mechanisms underlying pyroptosis in AR remains to be explored, warranting further investigation. Objective This study aims to elucidate the roles of HMGB1, Sphk1, and HDAC4 in regulating human nasal epithelial cell (hNEC) pyroptosis and AR. Methods An in vitro AR cell culture model and an in vivo AR mouse model were established. Western blot, ELISA, histological staining, and flow cytometry were utilized to confirm the gene and protein expression. The interactions among Sphk1, HDAC4, and HMGB1 were validated through ChIP, Co-IP, and Dual-luciferase assay. Results and conclusion We identified that the expression levels of Sphk1, HMGB1, and inflammasome components, including IL-18, and IL-1β were elevated in AR patients and mouse models. Knockdown of Sphk1 inhibited hNEC pyroptosis induced by dust mite allergen. Overexpression of HDAC4 suppressed HMGB1-mediated pyroptosis in hNECs. In addition, HDAC4 was found to mediate the transcriptional regulation of HMGB1 via MEF2C, a transcription factor. Additionally, Sphk1 was shown to interact with CaMKII-δ, promoting the phosphorylation of HDAC4 and inhibiting its cytoplasmic translocation. Knockdown of HDAC4 reversed the effect of Sphk1 knockdown on pyroptosis. These discoveries offer a glimpse into the molecular mechanisms underlying AR and suggest potential therapeutic targets for the treatment of this condition.
Collapse
Affiliation(s)
- Wei Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Xi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Zizhen Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Changwu Li
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Jiabin Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Quan Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, PR China
| |
Collapse
|
3
|
Panganiban RA, Nadeau KC, Lu Q. Pyroptosis, gasdermins and allergic diseases. Allergy 2024; 79:2380-2395. [PMID: 39003568 PMCID: PMC11368650 DOI: 10.1111/all.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Pyroptosis is an inflammatory form of programmed cell death that is distinct from necrosis and apoptosis. Pyroptosis is primarily mediated by the gasdermin family of proteins (GSDMA-E and PVJK), which, when activated by proteolytic cleavage, form pores in the plasma membrane, leading to cell death. While much of the past research on pyroptosis has focused on its role in cancer, metabolic disorders, and infectious diseases, recent experimental and observational studies have begun to implicate pyroptosis in allergic diseases. These studies suggest that gasdermin-mediated pyroptosis contributes to the development of allergic conditions and could offer novel targets for therapy. Here, we review our current understanding of pyroptosis with an emphasis on the role of gasdermins as executioners of pyroptosis and potential mediators to allergic disease. We highlight new discoveries that establish a mechanistic link between the biochemical actions of gasdermins and the onset of allergic diseases. Additionally, we discuss how pyroptosis and gasdermins might contribute to the dysfunction of epithelial barrier, a key factor believed to initiate the progression of various allergic diseases.
Collapse
Affiliation(s)
- Ronald Allan Panganiban
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Liu Y, Gao J, Xu Q, Wang X, Zhong W, Wu F, Lin X, Zhang Q, Ye Q. Long non-coding RNA NEAT1 exacerbates NLRP3-mediated pyroptosis in allergic rhinitis through regulating the PTBP1/FOXP1 cascade. Int Immunopharmacol 2024; 137:112337. [PMID: 38861915 DOI: 10.1016/j.intimp.2024.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Allergic Rhinitis (AR) is a prevalent chronic non-infectious inflammation affecting the nasal mucosa. NLRP3-mediated pyroptosis of epithelial cells plays a pivotal role in AR pathogenesis. Herein, we evaluated the impact of the long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) on NLR family pyrin domain containing 3 (NLRP3)-mediated pyroptosis in AR. METHODS Nasal inflammation levels in ovalbumin (OVA)-induced AR mice were assessed using HE staining, and NLRP3 expression was evaluated through immunohistochemistry. ELISA was utilized to detect OVA-specific IgE, IL-6, IL-5, and inflammatory cytokines (IL-1β, IL-18). Human nasal epithelial cells (HNEpCs) stimulated with IL4/IL13 were used to analyze the mRNA and protein levels of associated genes utilizing RT-qPCR and western blot, respectively. Cell viability and pyroptosis were assessed by CCK-8 and flow cytometry. The targeting relationship between NEAT1, PTBP1 and FOXP1 were analyzed by RIP and RNA pull down assays. FISH and IF analysis were performed to assess the co-localization of NEAT1 and PTBP1. RESULTS In both the AR mouse and cellular models, increased levels of NEAT1, PTBP1 and FOXP1 were observed. AR mice exhibited elevated inflammatory infiltration and pyroptosis, evidenced by enhanced expressions of OVA-specific IgE, IL-6, and IL-5, NLRP3, Cleaved-caspase 1, GSDMD-N, IL-1β and IL-18. Functional assays revealed that knockdown of PTBP1 or NEAT1 inhibited pyroptosis while promoting the proliferation of IL4/IL13-treated HNEpCs. Mechanistically, NEAT1 directly interacted with PTBP1, thereby maintaining FOXP1 mRNA stability. Rescue assays demonstrated that FOXP1 upregulation reversed the inhibitory effects of silencing NEAT1 or PTBP1 on IL4/IL13-stimulated pyroptosis activation in HNEpCs. CONCLUSION NEAT1 acts as a RNA scaffold for PTBP1, activating the PTBP1/FOXP1 signaling cascade, subsequently triggering NLRP3-mediated pyroptosis in HNEpCs, and ultimately promoting AR progression. These findings highlight some new insights into the pathogenesis of AR.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Pyroptosis
- Rhinitis, Allergic/immunology
- Rhinitis, Allergic/pathology
- Rhinitis, Allergic/genetics
- Rhinitis, Allergic/metabolism
- Humans
- Mice
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Nasal Mucosa/immunology
- Nasal Mucosa/pathology
- Nasal Mucosa/metabolism
- Mice, Inbred BALB C
- Ovalbumin/immunology
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Heterogeneous-Nuclear Ribonucleoproteins/genetics
- Signal Transduction
- Disease Models, Animal
- Female
- Cytokines/metabolism
Collapse
Affiliation(s)
- Yunliang Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian Province, PR China; Department of Otolaryngology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian Province, PR China; Department of Otolaryngology, Fujian Children's Hospital, Fuzhou 350000, Fujian Province, PR China
| | - Jing Gao
- Health Medicine Department, The 900th Hospital of Chinese PLA Joint Logistics Support Force, Fuzhou 350025, Fujian Province, PR China
| | - Qingqing Xu
- Department of Otolaryngology, Fujian Children's Hospital, Fuzhou 350000, Fujian Province, PR China
| | - Xiaoyan Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian Province, PR China; Department of Otorhinolaryngology-Head & Neck Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian Province, PR China
| | - Wenhui Zhong
- Department of Clinical Laboratory, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian Province, PR China
| | - Fengfang Wu
- Department of Otorhinolaryngology-Head & Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, PR China
| | - Xianghang Lin
- Department of Otolaryngology, Fujian Children's Hospital, Fuzhou 350000, Fujian Province, PR China
| | - Qiuyun Zhang
- Department of Otolaryngology, Fujian Children's Hospital, Fuzhou 350000, Fujian Province, PR China
| | - Qing Ye
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian Province, PR China; Department of Otorhinolaryngology-Head & Neck Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian Province, PR China.
| |
Collapse
|
5
|
Lu HF, Zhou YC, Hu TY, Yang DH, Wang XJ, Luo DD, Qiu SQ, Cheng BH, Zeng XH. Unraveling the role of NLRP3 inflammasome in allergic inflammation: implications for novel therapies. Front Immunol 2024; 15:1435892. [PMID: 39131161 PMCID: PMC11310156 DOI: 10.3389/fimmu.2024.1435892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Allergic diseases like asthma, allergic rhinitis and dermatitis pose a significant global health burden, driving the search for novel therapies. The NLRP3 inflammasome, a key component of the innate immune system, is implicated in various inflammatory diseases. Upon exposure to allergens, NLRP3 undergoes a two-step activation process (priming and assembly) to form active inflammasomes. These inflammasomes trigger caspase-1 activation, leading to the cleavage of pro-inflammatory cytokines (IL-1β and IL-18) and GSDMD. This process induces pyroptosis and amplifies inflammation. Recent studies in humans and mice strongly suggest a link between the NLRP3 inflammasome, IL-1β, and IL-18, and the development of allergic diseases. However, further research is needed to fully understand NLRP3's specific mechanisms in allergies. This review aims to summarize the latest advances in NLRP3 activation and regulation. We will discuss small molecule drugs and natural products targeting NLRP3 as potential therapeutic strategies for allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Tian-Yong Hu
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Dun-Hui Yang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Xi-Jia Wang
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Dan-Dan Luo
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Shu-Qi Qiu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Bao-Hui Cheng
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Xian-Hai Zeng
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| |
Collapse
|
6
|
Ding M, Wei X, Liu C, Tan X. Mahuang Fuzi Xixin decoction alleviates allergic rhinitis by inhibiting NLRP3/Caspase-1/GSDMD-N-mediated pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118041. [PMID: 38479543 DOI: 10.1016/j.jep.2024.118041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allergic rhinitis (AR) is a prevalent nasal inflammatory disorder, and pyroptosis plays a crucial role in aggravating AR. Current medications for AR treatment still have deficiencies, and finding new agents is of great interest. Mahuang Fuzi Xixin decoction (MFXD), an ancient Chinese medicine, is now commonly used to treat AR, which has anti-inflammatory and immunomodulatory effects, but its underlying mechanism is unknown. AIM OF THIS STUDY This study aims to evaluate the effects of MFXD on AR and explore its potential mechanisms in view of the regulatory effect on pyroptosis. METHODS MFXD, Mahuang, Fuzi, and Xixin water extracts were analyzed using ultra high performance liquid chromatography-Orbitrap-high-resolution accurate mass spectrometry. In in vivo study, the effects of MFXD on AR treatment were evaluated in an ovalbumin-induced mouse model. Mice were administered saline (control and model groups), MFXD (1.375, 2.75 g/kg), and dexamethasone (2.5 mg/kg) for 13 days. AR symptoms were evaluated by blinded observers. Immunoglobulin E (IgE) and histamine levels were measured using enzyme-linked immunosorbent assays. Expression of pyroptosis-related proteins (NLRP3, ASC, Caspase-1 p10/p20, GSDMD-N and IL-1β) in AR mouse nasal mucosa were estimated by immunohistochemistry. In in vivtro study, the effects of MFXD on pyroptosis were assessed in human nasal epithelial cells (HNEpCs) stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP), and incubated with MFXD (12.5, 25, and 50 μg/mL). Pyroptosis-related protein expression was measured by western blotting. RESULTS Thirty-three compounds in MFXD were identified, including ephedrine, pseudoephedrine, higenamine, aconine, aconitine, benzoylmesaconitine, benzoylhypaconine and hypaconitine. In the in vivo study, oral taken of MFXD/dexamethasone significantly ameliorated AR symptoms, reduced swelling of the nasal mucosa, and decreased the levels of IgE and histamine in AR mice serum. MFXD/dexamethasone attenuated histopathological changes and reduced the expression of pyroptosis-related proteins in nasal mucosa, indicating the inhibitory effect on nasal epithelial pyroptosis. In the in vitro study, MFXD (50 μg/mL) significantly alleviated cytotoxicity, protected cells from swelling and rupture, and downregulated the expression of pyroptosis-related proteins in LPS/ATP-induced HNEpCs. CONCLUSION MFXD suppressed nasal epithelial pyroptosis by inhibiting the NLRP3/Caspase-1/GSDMD-N signaling pathway, which alleviates AR. Our results offer valuable insights into potential AR therapies and provide evidence for the clinical utilization of MFXD to treat AR.
Collapse
Affiliation(s)
- Mengze Ding
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation, Technology, Guangzhou, 510515, China.
| | - Xiaohan Wei
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Changshun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation, Technology, Guangzhou, 510515, China.
| | - Xiaomei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation, Technology, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Tian M, Sun W, Mao Y, Zhang Y, Liu H, Tang Y. Mechanistic study of acupuncture on the pterygopalatine ganglion to improve allergic rhinitis: analysis of multi-target effects based on bioinformatics/network topology strategie. Brief Bioinform 2024; 25:bbae287. [PMID: 38877888 PMCID: PMC11179119 DOI: 10.1093/bib/bbae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
One of the prevalent chronic inflammatory disorders of the nasal mucosa, allergic rhinitis (AR) has become more widespread in recent years. Acupuncture pterygopalatine ganglion (aPPG) is an emerging alternative therapy that is used to treat AR, but the molecular mechanisms underlying its anti-inflammatory effects are unclear. This work methodically demonstrated the multi-target mechanisms of aPPG in treating AR based on bioinformatics/topology using techniques including text mining, bioinformatics, and network topology, among others. A total of 16 active biomarkers and 108 protein targets related to aPPG treatment of AR were obtained. A total of 345 Gene Ontology terms related to aPPG of AR were identified, and 135 pathways were screened based on Kyoto Encyclopedia of Genes and Genomes analysis. Our study revealed for the first time the multi-targeted mechanism of action of aPPG in the treatment of AR. In animal experiments, aPPG ameliorated rhinitis symptoms in OVA-induced AR rats; decreased serum immunoglobulin E, OVA-sIgE, and substance P levels; elevated serum neuropeptide Y levels; and modulated serum Th1/Th2/Treg/Th17 cytokine expression by a mechanism that may be related to the inhibition of activation of the TLR4/NF-κB/NLRP3 signaling pathway. In vivo animal experiments once again validated the results of the bioinformatics analysis. This study revealed a possible multi-target mechanism of action between aPPG and AR, provided new insights into the potential pathogenesis of AR, and proved that aPPG was a promising complementary alternative therapy for the treatment of AR.
Collapse
|
8
|
Wang R, Wang Y, Yang Q, Liu J, Lu Z, Xu W, Zhu J, Liu H, He W, Yan Y, Ruan Y, Zhou M. Xiaoqinglong decoction improves allergic rhinitis by inhibiting NLRP3-mediated pyroptosis in BALB/C mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117490. [PMID: 38030025 DOI: 10.1016/j.jep.2023.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoqinglong decoction (XQLD), first recorded in Shang Han Lun, is a traditional Chinese medicine prescribed for the treatment of allergic rhinitis (AR). XQLD alleviates the clinical symptoms of AR by inhibiting the occurrence of an inflammatory response, but the specific regulatory mechanism remains unclear. AIM OF THE STUDY NLRP3-mediated pyroptosis is closely related to AR pathogenesis. Hence, this study aimed to explore the potential role of NLRP3-mediated pyroptosis pathway in the AR-associated pharmacological mechanism of XQLD. MATERIALS AND METHODS BALB/C mice models of AR was established by using ovalbumin (OVA) and aluminum hydroxide sensitization. After intragastric administration of different dosages of XQLD, nasal allergic symptoms were observed. The expression of OVA-sIgE and Th2 inflammatory factors (IL-4, IL-5, and IL-13) in serum was detected by ELISA. The histopathological morphology and expression of inflammatory factors in nasal mucosa along with pyroptosis were investigated. Molecular docking was performed to analyze the binding of representative compounds of XQLD with NLRP3. Activation of the NLRP3 inflammasome was detected by immunofluorescence and western blotting. RESULTS XQLD significantly improved the nasal allergic symptoms of mice, reduced the degree of goblet cell proliferation, mast cell infiltration, and collagen fiber hyperplasia in nasal mucosa. Meanwhile, it could downregulate the expression of Th2 inflammatory factors (IL-4, IL-5, and IL-13) in serum and nasal mucosa. XQLD significantly reduced the number of GSDMD and TUNEL double-positive cells and IL-1β and IL-18 expression. Molecular docking confirmed that seven representative compounds of XQLD had good binding properties with NLRP3 and were able to inhibit the activation of the NLRP3 inflammasome. CONCLUSIONS The representative compounds of XQLD might inhibit pyroptosis in nasal mucosa mediated by the NLRP3 inflammasome to helping the recovery of AR, which provides a new modern pharmacological proof for XQLD to treat AR.
Collapse
Affiliation(s)
- Ruizhi Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yongchun Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qintai Yang
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China; Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Jiaming Liu
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zesheng Lu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Weizhen Xu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jinxiang Zhu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - He Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Weiping He
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510405, China.
| | - Yajie Yan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510405, China.
| | - Yan Ruan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510405, China.
| | - Min Zhou
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
9
|
Wang Y, Zhao H, Yang J, Cao Z, Hao L, Gu Z. Exposure of nonylphenol promoted NLRP3 inflammasome and GSDMD-mediated pyroptosis in allergic rhinitis mice. Food Chem Toxicol 2024; 184:114435. [PMID: 38176579 DOI: 10.1016/j.fct.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Studies have confirmed that the intake of nonylphenol (NP) can increase nasal symptoms, eosinophils, and Th2 responses in allergic rhinitis (AR) mice. However, the molecular mechanism of NP exacerbating AR inflammatory response remains unclear. Recent data suggest that NOD-like receptor 3 (NLRP3) inflammasome-mediated pyroptosis contributes to AR development. To investigate the effects of NP on NLRP3 inflammasomes and pyroptosis, an AR mouse model induced by ovalbumin (OVA) was established and treated with 0.5 mg/kg/d NP every other day. Nasal symptoms were evaluated after the final OVA instillation. Mast cells and Eosinophils in the nasal mucosa were observed using toluidine blue and Sirius red staining, respectively. The levels of NLRP3, Caspase-1, ASC, phospho-nuclear factor kappa B (NF-κB) p65, interleukin (IL)-6, TNF-α, IL-18, GSDMD and IL-1β, were assessed by using immunohistochemical staining, ELISA, quantitative real-time PCR, or Western blot. Exposure to NP aggravates AR symptoms and promotes eosinophils, mast cells, and inflammatory factors release, along with significantly increased of NF-κB, NLRP3, Caspase-1, ASC, and GSDMD. It was concluded that NP exposure promotes NLRP3 inflammasome and GSDMD-mediated pyroptosis of the nasal mucosa. Targeted of NLRP3 and GSDMD-mediated pyroptosis may be a novel therapeutic strategy for AR exposed to NP.
Collapse
Affiliation(s)
- Yunxiu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China.
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
10
|
Joshi CS, Salazar AM, Wang C, Ligon MM, Chappidi RR, Fashemi BE, Felder PA, Mora A, Grimm SL, Coarfa C, Mysorekar IU. D-Mannose reduces cellular senescence and NLRP3/GasderminD/IL-1β-driven pyroptotic uroepithelial cell shedding in the murine bladder. Dev Cell 2024; 59:33-47.e5. [PMID: 38101412 PMCID: PMC10872954 DOI: 10.1016/j.devcel.2023.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Aging is a risk factor for disease via increased susceptibility to infection, decreased ability to maintain homeostasis, inefficiency in combating stress, and decreased regenerative capacity. Multiple diseases, including urinary tract infection (UTI), are more prevalent with age; however, the mechanisms underlying the impact of aging on the urinary tract mucosa and the correlation between aging and disease remain poorly understood. Here, we show that, relative to young (8-12 weeks) mice, the urothelium of aged (18-24 months) female mice accumulates large lysosomes with reduced acid phosphatase activity and decreased overall autophagic flux in the aged urothelium, indicative of compromised cellular homeostasis. Aged bladders also exhibit basal accumulation of reactive oxygen species (ROS) and a dampened redox response, implying heightened oxidative stress. Furthermore, we identify a canonical senescence-associated secretory phenotype (SASP) in the aged urothelium, along with continuous NLRP3-inflammasome- and Gasdermin-D-dependent pyroptotic cell death. Consequently, aged mice chronically exfoliate urothelial cells, further exacerbating age-related urothelial dysfunction. Upon infection with uropathogenic E. coli, aged mice harbor increased bacterial reservoirs and are more prone to spontaneous recurrent UTI. Finally, we discover that treatment with D-mannose, a natural bioactive monosaccharide, rescues autophagy flux, reverses the SASP, and mitigates ROS and NLRP3/Gasdermin/interleukin (IL)-1β-driven pyroptotic epithelial cell shedding in aged mice. Collectively, our results demonstrate that normal aging affects bladder physiology, with aging alone increasing baseline cellular stress and susceptibility to infection, and suggest that mannose supplementation could serve as a senotherapeutic to counter age-associated urothelial dysfunction.
Collapse
Affiliation(s)
- Chetanchandra S Joshi
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arnold M Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Caihong Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marianne M Ligon
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rayvanth R Chappidi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bisiayo E Fashemi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul A Felder
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy Mora
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sandra L Grimm
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center of Aging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Ran S, Shu Q, Gao X. Dermatophagoides Pteronyssinus 1 (DerP1) May Trigger NLRP3-Mediated Corneal Epithelial Cell Pyroptosis by Elevating Interleukin-33 Expression Levels. Curr Eye Res 2023; 48:1100-1111. [PMID: 37615401 DOI: 10.1080/02713683.2023.2250583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE To characterize the in vivo effects of Dermatophagoides pteronyssinus 1 (DerP1) in mice and determine the underlying NLRP3 inflammasome-mediated pyroptosis signaling mechanisms in the human corneal epithelial cells (HCECs). METHODS DerP1 was used to induce allergic conjunctivitis in C57 mice. HCECs were sensitized with DerP1 in vitro to mimic their condition observed in allergic conjunctivitis in vivo. Transmission electron microscopy was used to evaluate pyroptosis in the HCECs, enzyme-linked immunosorbent assays to assess interleukin (IL)-33, IL-1β and IL-4 levels, flow cytometry to detect the proportion of Th2 cells, MTT assays to assess cell metabolic activity, immunofluorescence to evaluate the effects of DerP1 on functional HCEC phenotypes, and Western blot assays to detect the expression of NOD-like receptor family pyrin domain-containing 3 (NLRP3), gasdermin D (GSDMD), N-terminal fragment of GSDMD (GSDMD-N), pro-caspase-1, cleaved caspase-1, IL-1β, and IL-33. IL-33 expression in the HCECs was knocked down via lentivirus transfection. RESULTS In vivo, DerP1 promotes pyroptosis, production of Th2 inflammatory cytokines and IL-33, and NLRP3 activation in mouse corneas. In vitro, pyroptotic bodies were found in the HCECs after sensitization with DerP1. Various concentrations of DerP1 increased the expression levels of NLRP3, GSDMD, GSDMD-N, pro-caspase-1, cleaved caspase-1, and IL-1β in the HCECs, with the largest increase observed after exposure to 20 µM DerP1. In vitro, recombinant human IL-33 mediated the expression of pyroptotic biomarkers in the HCECs, whereas IL-33 silencing diminished 20 µM DerP1-induced increase in their expression levels. CONCLUSIONS DerP1 induces pyroptosis and allergic conjunctivitis, the expression of Th2 inflammatory cytokines, NLRP3 activation, and IL-33 in mouse corneas in our model. These effects would attribute to its activating NLRP3-GSDMD signaling pathway axis via enhancing IL-33 expression in HCECs.
Collapse
Affiliation(s)
- Shengming Ran
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinxin Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Gao
- Department of Ophthalmology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| |
Collapse
|
12
|
Zhang X, Sun N, Huang Y, Duan Y, Zhang R. Role of NLRP3 in the exacerbation of ozone-induced allergic rhinitis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115506. [PMID: 37742576 DOI: 10.1016/j.ecoenv.2023.115506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE Allergic rhinitis (AR) is an immunoglobulin E (IgE)-mediated inflammatory disorder of the nasal mucosa, and the impact of ozone on AR is gaining increasing attention. Although NOD-like receptor thermal protein domain associated protein 3 (NLRP3) plays a crucial role in the pathogenesis of AR, its regulatory mechanisms in ozone-induced exacerbation remain unclear. Therefore, we explored the impact of ozone inhalation on inflammation in AR and investigated the regulatory mechanisms involving NLRP3. METHODS Fifty female Sprague-Dawley rats were selected and divided into five groups: normal control (NC), normal with ozone exposure (NE), AR model, AR with ozone exposure (ARE), and ARE treated with the NLRP3 inhibitor MCC950 (ARE+MCC950). Behavioral changes were observed in the rats, and the expression of NLRP3, active-caspase 1, and GSDMD-N was detected by western blotting. The expression levels of interleukin (IL)- 4, IL-5, IL-13, IL-1β, and ovalbumin-specific IgE (OVA-sIgE) in nasal lavage fluid as well as IL-6 in the serum were measured by ELISA. The expression and distribution of NLRP3 and IL-1β in nasal mucosal tissue were detected by immunohistochemistry, and pathological changes and eosinophilic infiltration in nasal mucosal tissue were observed by hematoxylin and eosin (HE) staining. The effects of ozone exposure on inflammation in the nasal mucosal tissue of rats with AR and the relationship between NLRP3 and inflammation were analyzed. RESULTS Upregulation of NLRP3 was observed in the AR rat model, and ozone further aggravated the expression of NLRP3 in the nasal mucosal tissue. Compared to the AR, NC, and NE groups, NLRP3 inflammasomes were activated in the ARE group, and the expression levels of related indexes active-caspase 1 and GSDMD-N were significantly increased; the expression levels of Th2 inflammatory factors IL-4, IL-5, IL-13, and OVA-sIgE were increased, and inflammatory factors such as IL-1β and IL-6 expression was also significantly increased. HE staining revealed that ozone aggravated damage to the nasal mucosal tissue in AR. Compared with the ARE group, the expression of NLRP3 inflammasomes was downregulated, sneezing and scratching symptoms were reduced, inflammatory indicators in nasal lavage fluid were decreased, and nasal mucosal tissue damage was alleviated in rats in the ARE+MCC950 group. CONCLUSION Ozone exposure significantly increased the inflammatory response in an animal model of AR. MCC950 can selectively inhibit the expression of NLRP3, inhibit the activity of inflammasomes, and reduce nasal mucosal inflammation by regulating the NLRP3-caspase-1-IL-1β pathway.
Collapse
Affiliation(s)
- Xueyan Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Na Sun
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yu Huang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Qiao YL, Zhu MW, Xu S, Jiao WE, Ni HF, Tao ZZ, Chen SM. Allergen-induced CD11c + dendritic cell pyroptosis aggravates allergic rhinitis. Cell Commun Signal 2023; 21:281. [PMID: 37817225 PMCID: PMC10566027 DOI: 10.1186/s12964-023-01309-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Pyroptosis is crucial for controlling various immune cells. However, the role of allergen-induced CD11c + dendritic cell (DC) pyroptosis in allergic rhinitis (AR) remains unclear. METHODS Mice were grouped into the control group, AR group and necrosulfonamide-treated AR group (AR + NSA group). The allergic symptom scores, OVA-sIgE titres, serum IL-1β/IL-18 levels, histopathological characteristics and T-helper cell-related cytokines were evaluated. CD11c/GSDMD-N-positive cells were examined by immunofluorescence analysis. Murine CD11c + bone marrow-derived DCs (BMDCs) were induced in vitro, stimulated with OVA/HDM, treated with necrosulfonamide (NSA), and further cocultured with lymphocytes to assess BMDC function. An adoptive transfer murine model was used to study the role of BMDC pyroptosis in allergic rhinitis. RESULTS Inhibiting GSDMD-N-mediated pyroptosis markedly protected against Th1/Th2/Th17 imbalance and alleviated inflammatory responses in the AR model. GSDMD-N was mainly coexpressed with CD11c (a DC marker) in AR mice. In vitro, OVA/HDM stimulation increased pyroptotic morphological abnormalities and increased the expression of pyroptosis-related proteins in a dose-dependent manner; moreover, inhibiting pyroptosis significantly decreased pyroptotic morphology and NLRP3, C-Caspase1 and GSDMD-N expression. In addition, OVA-induced BMDC pyroptosis affected CD4 + T-cell differentiation and related cytokine levels, leading to Th1/Th2/Th17 cell imbalance. However, the Th1/Th2/Th17 cell immune imbalance was significantly reversed by NSA. Adoptive transfer of OVA-loaded BMDCs promoted allergic inflammation, while the administration of NSA to OVA-loaded BMDCs significantly reduced AR inflammation. CONCLUSION Allergen-induced dendritic cell pyroptosis promotes the development of allergic rhinitis through GSDMD-N-mediated pyroptosis, which provides a clue to allergic disease interventions. Video Abstract.
Collapse
Affiliation(s)
- Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Ming-Wan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Hai-Feng Ni
- Department of Otolaryngology-Head and Neck surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, P.R. China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| |
Collapse
|
14
|
Jiang W, He F, Ding G, Wu J. Elamipretide reduces pyroptosis and improves functional recovery after spinal cord injury. CNS Neurosci Ther 2023; 29:2843-2856. [PMID: 37081763 PMCID: PMC10493668 DOI: 10.1111/cns.14221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/01/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
AIMS Elamipretide (EPT), a novel mitochondria-targeted peptide, has been shown to be protective in a range of diseases. However, the effect of EPT in spinal cord injury (SCI) has yet to be elucidated. We aimed to investigate whether EPT would inhibit pyroptosis and protect against SCI. METHODS After establishing the SCI model, we determined the biochemical and morphological changes associated with pyroptosis, including neuronal cell death, proinflammatory cytokine expression, and signal pathway levels. Furthermore, mitochondrial function was assessed with flow cytometry, quantitative real-time polymerase chain reaction, and western blot. RESULTS Here, we demonstrate that EPT improved locomotor functional recovery following SCI as well as reduced neuronal loss. Moreover, EPT inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis occurrence and decreased pro-inflammatory cytokines levels following SCI. Furthermore, EPT alleviated mitochondrial dysfunction and reduced mitochondrial reactive oxygen species level. CONCLUSION EPT treatment may protect against SCI via inhibition of pyroptosis.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
15
|
Yu W, Du J, Peng L, Zhang T. RORα overexpression reduced interleukin-33 expression and prevented mast cell degranulation and inflammation by inducing autophagy in allergic rhinitis. Immun Inflamm Dis 2023; 11:e1017. [PMID: 37904695 PMCID: PMC10580702 DOI: 10.1002/iid3.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Retinoid acid receptor related orphan receptor α (RORα) is a nuclear receptor that along with other bioactive factors regulates cell proliferation, differentiation, and immunomodulation in vivo. AIMS The objective of this study was to explore the function and mechanism of RORα in allergic rhinitis (AR). MATERIALS AND METHODS Derp1 was used to construct an AR cell model in HNEpC cells, and RORα was overexpressed or silenced in the AR HNEpC cells. Next, LAD2 cells were co-cultured with the Derp1-treated HNEpC cells. Additionally, an AR mouse model was established using by OVA, and a RORα Adenovirus was delivered by nebulizing. Pathological tissue structures were evaluated by hematoxylin-eosin staining, and the levels of RORα, interleukin-33 (IL-33), and other proteins were analyzed immunohistochemistry, western blotting, and immunofluorescence staining. IL-33, IL-4, IL-5, and IL-13 levels were detected using enzyme-linked immunosorbent assay kits and cell migration was assessed by Transwell assays. RESULTS Our data showed that RORα was downregulated in the nasal mucosa tissues of AR patients. Derp1 treatment could cause a downregulation of RORα, upregulation of IL-33, the induction of NLRP3 inflammasomes, and cell migration in HNEpC cells. Furthermore, RORα overexpression dramatically attenuated IL-33 levels, NLRP3 inflammasome activity, and the migration of AR HNEpC cells induced with Derp1. Moreover, RORα in AR HNEpC cells could prevent mast cell (MC) degranulation and inflammation by accelerating autophagy, RORα overexpression inhibited MC degranulation and NLRP3-induced inflammation in the AR model mice. RORα overexpression reduced IL-33 expression in nasal epithelial cells, and also suppressed MC degranulation and inflammation by promoting autophagy. CONCLUSION RORα inhibits NLRP3 inflammasome in HNEpC, and attenuated mast cells degranulation and inflammation through autophagy in AR.
Collapse
Affiliation(s)
- Wangbo Yu
- Department of Otolaryngology‐Head and Neck SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- Department of Otolaryngology‐Head and Neck SurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Jingwei Du
- Department of Otolaryngology‐Head and Neck Surgery, Nanchong Central Hospital, The Second Clinical Medical CollegeNorth Sichuan Medical CollegeNanchongSichuanChina
| | - Lijuan Peng
- Department of Microbiology and ImmunologySchool of Basic Medical Sciences,North Sichuan Medical CollegeNanchongSichuanChina
| | - Tao Zhang
- Department of Otolaryngology‐Head and Neck SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
16
|
Hu Y, Zhang S, Lou H, Mikaye MS, Xu R, Meng Z, Du M, Tang P, Chen Z, Chen Y, Liu X, Du Z, Zhang Y. Aloe-Emodin Derivative, an Anthraquinone Compound, Attenuates Pyroptosis by Targeting NLRP3 Inflammasome in Diabetic Cardiomyopathy. Pharmaceuticals (Basel) 2023; 16:1275. [PMID: 37765083 PMCID: PMC10536457 DOI: 10.3390/ph16091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is widely recognized as a major contributing factor to the development of heart failure in patients with diabetes. Previous studies have demonstrated the potential benefits of traditional herbal medicine for alleviating the symptoms of cardiomyopathy. We have chemically designed and synthesized a novel compound called aloe-emodin derivative (AED), which belongs to the aloe-emodin (AE) family of compounds. AED was formed by covalent binding of monomethyl succinate to the anthraquinone mother nucleus of AE using chemical synthesis techniques. The purpose of this study was to investigate the effects and mechanisms of AED in treating DCM. We induced type 2 diabetes in Sprague-Dawley (SD) rats by administering a high-fat diet and streptozotocin (STZ) injections. The rats were randomly divided into six groups: control, DCM, AED low concentration (50 mg/kg/day), AED high concentration (100 mg/kg/day), AE (100 mg/kg/day), and positive control (glyburide, 2 mg/kg/day) groups. There were eight rats in each group. The rats that attained fasting blood glucose of ˃16.7 mmol/L were considered successful models. We observed significant improvements in cardiac function in the DCM rats with both AED and AE following four weeks of intragastric treatment. However, AED had a more pronounced therapeutic effect on DCM compared to AE. AED exhibited an inhibitory effect on the inflammatory response in the hearts of DCM rats and high-glucose-treated H9C2 cells by suppressing the pyroptosis pathway mediated by the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain 3 (NLRP3) inflammasome. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes showed a significant enrichment in the NOD-like receptor signaling pathway compared to the high-glucose group. Furthermore, overexpression of NLRP3 effectively reversed the anti-pyroptosis effects of AED in high-glucose-treated H9C2 cells. This study is the first to demonstrate that AED possesses the ability to inhibit myocardial pyroptosis in DCM. Targeting the pyroptosis pathway mediated by the NLRP3 inflammasome could provide a promising therapeutic strategy to enhance our understanding and treatment of DCM.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Shuqian Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Han Lou
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Monayo Seth Mikaye
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Run Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Ziyu Meng
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Menghan Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Pingping Tang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Zhouxiu Chen
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Yongchao Chen
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Xin Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin 150081, China
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China
- Department of Clinical Pharmacology College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Yong Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin 150086, China
| |
Collapse
|
17
|
Cheng N, Wang Y, Gu Z. Understanding the role of NLRP3-mediated pyroptosis in allergic rhinitis: A review. Biomed Pharmacother 2023; 165:115203. [PMID: 37481928 DOI: 10.1016/j.biopha.2023.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
Allergic rhinitis (AR) is a chronic, inflammatory disease of the nasal mucosa, caused by the immunoglobulin E-mediated immune response. The annual incidence rate of AR is on the rise, exerting a significant impact on individuals' physical and mental wellbeing. The treatment effect in some patients is still not ideal, as the pathogenesis of AR is complex and diverse. Recent studies have shown that NLRP3 inflammasome-mediated pyroptosis is widely involved in the occurrence and development of AR through various pathways. This article reviews the mechanism of pyroptosis and its research progress in the field of AR, and puts forward possible therapeutic targets to offer innovative approaches for its management.
Collapse
Affiliation(s)
- Nuo Cheng
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yunxiu Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
18
|
Liu M, Lu J, Liu Q, Chen Y, Wang G, Zhang Q, Guan S. Effects of sodium metabisulfite on pyroptosis, mitophagy and degranulation in mast cells. Food Chem Toxicol 2023:113918. [PMID: 37356559 DOI: 10.1016/j.fct.2023.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Sodium metabisulphite (SMB) is the most used foods and drugs antioxidant among sulfites. So far, there were few studies about its harm, especially in mast cells. Our study was to investigate the effects of SMB on mitophagy and pyroptosis in mast cells. The results revealed that SMB dose-dependently promoted the expressions of NLRP3, GSDMD-N and other marker proteins of pyroptosis. Knockdown of GSDMD, NLRP3 inhibitor, mitophagy activator and mtROS inhibitor all reversed the changes in pyroptosis indicators caused by SMB. Considering the degranulation characteristics of mast cells and the sensitization of sulfite, we examined the effects of the above inhibitors on the degranulation of mast cells caused by SMB. The results showed that SMB-mediated mast cell degranulation was significantly inhibited by the above inhibitors. Meanwhile, we used immunofluorescence co-localization experiments and found that GSDMD pore-forming protein and histamine co-localized near the cell membrane. Overall, evidence suggested that SMB caused pyroptosis by inhibiting mitophagy, leading to mast cell degranulation. These findings are of great significance to the sensitization mechanism of SMB and provide a new insight into SMB toxicology and mast cell degranulation.
Collapse
Affiliation(s)
- Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Qingbin Liu
- The Affiliated to Changchun University of Chinese Medicine, Changchun, Jilin, 130062, China
| | - Yuelin Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Guang Wang
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China
| | - Qian Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.
| |
Collapse
|
19
|
Wo B, Du C, Yang Y, Qi H, Liang Z, He C, Yao F, Li X. Human placental extract regulates polarization of macrophages via IRGM/NLRP3 in allergic rhinitis. Biomed Pharmacother 2023; 160:114363. [PMID: 36746096 DOI: 10.1016/j.biopha.2023.114363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
Allergic rhinitis (AR) is globally prevalent and its pathogenesis remains unclear. Alternative activation of macrophages is suggested in AR and thought to be involved in natural immunoregulatory processes in AR. Aberrant activation of Nod-like receptor protein 3 (NLRP3) inflammasome is linked with AR. Human placenta extract (HPE) is widely used in clinics due to its multiple therapeutic potential carried by diverse bioactive molecules in it. We aim to investigate the effect of HPE on AR and the possible underlying mechanism. Ovalbumin (OVA)-induced AR rat model was set up and treated by HPE or cetirizine. General manifestation of AR was evaluated along with the histological and biochemical analysis performed on rat nasal mucosa. A proteomic analysis was performed on AR rat mucosa. Mouse alveolar macrophages (MH-S cells) were cultured under OVA stimulation to investigate the regulation of macrophages polarization. The morphological changes and the expression of NLRP3 inflammasome and immunity-related GTPase M (IRGM) in nasal mucosa as well as in MH-S cells were evaluated respectively. The results of our study showed the general manifestation of AR along with the histological changes in nasal mucosa of AR rats were improved by HPE. HPE suppresses NLRP3 inflammasome and the decline of IRGM in AR rats and MH-S cells. HPE regulates macrophage polarization through IRGM/NLRP3. We demonstrated that HPE had protection for AR and the protection is achieved partly through suppressing M1 while promoting M2, the process which is mediated by IRGM via inhibiting NLRP3 inflammasome in AR.
Collapse
Affiliation(s)
- Beibei Wo
- Department of Otolaryngology Head and Neck Surgery, the 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, China; Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yan Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Huimin Qi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Zihui Liang
- Department of Surgery, Hebei Medical University, Shijiazhuang, China
| | - Conghui He
- Department of Otolaryngology Head and Neck Surgery, the 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, China
| | - Fang Yao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China.
| | - Xiaoming Li
- Department of Otolaryngology Head and Neck Surgery, the 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, China; Graduate School of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
20
|
Liu S, Wang C, Zhang Y, Zhang Y, Song Y, Jiang J, Liu R, Jin H, Yan G, Jin Y. Polydatin inhibits mitochondrial damage and mitochondrial ROS by promoting PINK1-Parkin-mediated mitophagy in allergic rhinitis. FASEB J 2023; 37:e22852. [PMID: 36906289 DOI: 10.1096/fj.202201231rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
Polydatin (PD), a natural product derived from Polygonum cuspidatum, has anti-inflammatory and antioxidant effects and has significant benefits in treating allergic diseases. However, its role and mechanism in allergic rhinitis (AR) have not been fully elucidated. Herein, we investigated the effect and mechanism of PD in AR. AR model was established in mice with OVA. Human nasal epithelial cells (HNEpCs) were stimulated with IL-13. HNEpCs were also treated with an inhibitor of mitochondrial division or transfected with siRNA. The levels of IgE and cellular inflammatory factors were examined by enzyme linked immunosorbent assay and flow cytometry. The expressions of PINK1, Parkin, P62, LC3B, NLRP3 inflammasome proteins, and apoptosis proteins in nasal tissues and HNEpCs were measured by Western blot. We found that PD suppressed OVA-induced epithelial thickening and eosinophil accumulation in the nasal mucosa, reduced IL-4 production in NALF, and regulated Th1/Th2 balance. In addition, mitophagy was induced in AR mice after OVA challenge and in HNEpCs after IL-13 stimulation. Meanwhile, PD enhanced PINK1-Parkin-mediated mitophagy but decreased mitochondrial reactive oxygen species (mtROS) production, NLRP3 inflammasome activation, and apoptosis. However, PD-induced mitophagy was abrogated after PINK1 knockdown or Mdivi-1 treatment, indicating a key role of the PINK1-Parkin in PD-induced mitophagy. Moreover, mitochondrial damage, mtROS production, NLRP3 inflammasome activation, and HNEpCs apoptosis under IL-13 exposure were more severe after PINK1 knockdown or Mdivi-1 treatment. Conclusively, PD may exert protective effects on AR by promoting PINK1-Parkin-mediated mitophagy, which further suppresses apoptosis and tissue damage in AR through decreasing mtROS production and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Siqi Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P.R. China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Yulian Zhang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P.R. China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Yalin Zhang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P.R. China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P.R. China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Ruobai Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P.R. China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Hainan Jin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P.R. China.,Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Yongde Jin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| |
Collapse
|
21
|
Yao J, Kong Q, Wang Y, Zhang Y, Wang Q. Mechanism of Kruppel-Like Factor 4 in Pyroptosis of Nasal Mucosal Epithelial Cells in Mice With Allergic Rhinitis. Am J Rhinol Allergy 2023; 37:337-347. [PMID: 36799547 DOI: 10.1177/19458924221148568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a chronic nasal inflammation, characterized by nasal epithelial dysfunction. Gene therapy targeting transcription factors is a promising strategy for quenching allergic inflammation, including AR. OBJECTIVE This study sought to probe the mechanism of Kruppel-like factor 4 (KLF4) in pyroptosis of nasal mucosal epithelial cells (NEpCs) in AR mice and provide targets for AR treatment. METHODS AR mouse models were established using sensitization with ovalbumin, followed by injection with short hairpin RNA KLF4 (sh-KLF4). AR symptoms were assessed by the times of sneezing and nose rubbing, hematoxylin-eosin, and periodic acid-Schiff staining. Levels of KLF4, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), cleaved caspase-1, and N-terminal domain (GSDMD-N) in nasal mucosal tissues were determined by Western blot assay, and levels of interleukin (IL)-1β and IL-18 in nasal lavage fluid were determined by enzyme-linked immunosorbent assay. The binding of KLF4 to the NLRP3 promoter was verified using chromatin immunoprecipitation and dual-luciferase assays. The functional rescue experiment was performed with oe-NLRP3 and sh-KLF4 in AR mice. RESULTS KLF4 was upregulated in nasal mucosal tissues of AR mice. KLF4 inhibition reduced the times of sneezing and nose rubbing, inflammatory cell infiltration, and goblet cell hyperplasia in nasal mucosal tissues, and levels of NLRP3, cleaved caspase-1, GSDMD-N, IL-1β, and IL-18. KLF4 was enriched on the NLRP3 promoter and improved NLRP3 expression. NLRP3 overexpression reversed the inhibition of sh-KLF4 on pyroptosis of NEpCs in AR mice. CONCLUSION KLF4 bound to the NLRP3 promoter and promoted pyroptosis of NEpCs in AR mice via activating NLRP3.
Collapse
Affiliation(s)
- Jiaoli Yao
- Department of Otolaryngology, Shanxi children's Hospital, Taiyuan, China
| | - Qingfeng Kong
- Department of Otolaryngology, Shanxi children's Hospital, Taiyuan, China
| | - Yin Wang
- Department of Otolaryngology, Shanxi children's Hospital, Taiyuan, China
| | - Yanting Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Taiyuan, China.,Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| | - Qinxue Wang
- Department of Otolaryngology, Shanxi children's Hospital, Taiyuan, China
| |
Collapse
|
22
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
23
|
Wang HR, Wei SZ, Song XY, Wang Y, Zhang WB, Ren C, Mou YK, Song XC. IL-1 β and Allergy: Focusing on Its Role in Allergic Rhinitis. Mediators Inflamm 2023; 2023:1265449. [PMID: 37091903 PMCID: PMC10115535 DOI: 10.1155/2023/1265449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Allergic rhinitis (AR) is a chronic upper airway immune-inflammation response mediated by immunoglobulin E (IgE) to allergens and can seriously affect the quality of life and work efficiency. Previous studies have shown that interleukin-1β (IL-1β) acts as a key cytokine to participate in and promote the occurrence and development of allergic diseases. It has been proposed that IL-1β may be a potential biomarker of AR. However, its definitive role and potential mechanism in AR have not been fully elucidated, and the clinical sample collection and detection methods were inconsistent among different studies, which have limited the use of IL-1β as a clinical diagnosis and treatment marker for AR. This article systematically summarizes the research advances in the roles of IL-1β in allergic diseases, focusing on the changes of IL-1β in AR and the possible interventions. In addition, based on the findings by our team, we provided new insights into the use of IL-1β in AR diagnosis and treatment, in an attempt to further promote the clinical application of IL-1β in AR and other allergic diseases.
Collapse
Affiliation(s)
- Han-Rui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Shi-Zhuang Wei
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiao-Yu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Wen-Bin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Ya-Kui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
24
|
Jiang W, He F, Ding G, Wu J. Dopamine inhibits pyroptosis and attenuates secondary damage after spinal cord injury in female mice. Neurosci Lett 2023; 792:136935. [PMID: 36307053 DOI: 10.1016/j.neulet.2022.136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND An excessive inflammatory response accompanies the pathogenesis of spinal cord injury (SCI) and has been found to be promoted by inflammasomes in a variety of disease models. Dopamine is a neurotransmitter that also regulates nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome-dependent neuroinflammation. However, little is known regarding the effects and molecular mechanisms underlying the role of dopamine in SCI. METHODS Functional recovery in mice was assessed with the Basso Mouse Scale (BMS). Neuronal loss was evaluated with immunochemical staining of NeuN. Pyroptosis was assessed with immunofluorescence staining, flow cytometry, western blotting, and cell viability and cytotoxicity assays. RESULTS Dopamine was significantly associated with enhanced locomotor recovery after SCI, and with decreased NLRP3 inflammasome activation, pyroptosis, neuronal loss and pro-inflammatory cytokine levels. In vitro data suggested that dopamine suppressed NLRP3 inflammasome activation and pyroptosis, and decreased pro-inflammatory cytokine levels. CONCLUSIONS Dopamine may be a novel approach for alleviating secondary damage after SCI.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China; Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
25
|
Leszczyńska K, Jakubczyk D, Górska S. The NLRP3 inflammasome as a new target in respiratory disorders treatment. Front Immunol 2022; 13:1006654. [PMID: 36203607 PMCID: PMC9531678 DOI: 10.3389/fimmu.2022.1006654] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years a continuous increase in new cases of respiratory disorders, such as rhinitis, asthma, and chronic obstructive pulmonary disease (COPD), has been observed. The exact pathomechanism of these diseases is still blurry, resulting in the lack of targeted and effective therapy. The conventional use of treatment strategies, such as antihistamine drugs and/or glucocorticosteroids act mainly symptomatically and have significant side effects. Specific allergen immunotherapy is only useful in the management of specific allergies and selected patients. Therefore, new therapeutic solutions are constantly being sought. The novelty of recent years has been the association between NLRP3 inflammasome activation and the development of airway inflammatory diseases. This seems to be an interesting therapeutic target that may support or even replace traditional therapies in the future. The review presented, discusses the contribution of NLRP3 inflammasome to the development of allergic rhinitis, allergic asthma, and COPD. Moreover, the modulatory properties of probiotics as potential inhibitors of NLRP3 inflammasome are emphasised.
Collapse
|
26
|
Li Y, Sun L, Zhang Y. Programmed cell death in the epithelial cells of the nasal mucosa in allergic rhinitis. Int Immunopharmacol 2022; 112:109252. [PMID: 36126408 DOI: 10.1016/j.intimp.2022.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
In AR, the epithelial barrier composed of Nasal epithelial cells is the first line of defense, which is crucial to protect the host immune system from harmful stimuli. Moreover, irreversible structural changes in Nasal epithelial cells can occur in response to different allergens, but the mechanism leading to such abnormal changes has not been determined. Programmed cell death is regulated by genes and interacts with multiple cell signaling pathways. To explore the regulatory mechanism and signal pathway of programmed cell death in epithelial cells of allergic rhinitis, is helpful to clarify the pathogenesis of AR and put forward treatment strategies. In this paper, the regulation mechanisms of programmed cell death such as apoptosis, pyroptosis, and autophagy occurring in epithelial cells in AR, are retrospectively summarized to better understand the pathogenesis of AR.
Collapse
Affiliation(s)
- Yanan Li
- Department of Pediatric Respiratory, The First Hospital of Jilin University, China
| | - Liwei Sun
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, China
| | - Ying Zhang
- Department of Pediatric Respiratory, The First Hospital of Jilin University, China.
| |
Collapse
|
27
|
Activation of NLRP3 inflammasome contributes to the inflammatory response to allergic rhinitis via macrophage pyroptosis. Int Immunopharmacol 2022; 110:109012. [DOI: 10.1016/j.intimp.2022.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
|
28
|
Bai X, Liu P, Shen H, Zhang Q, Zhang T, Jin X. Water-extracted Lonicera japonica polysaccharide attenuates allergic rhinitis by regulating NLRP3-IL-17 signaling axis. Carbohydr Polym 2022; 297:120053. [DOI: 10.1016/j.carbpol.2022.120053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022]
|
29
|
Jiang W, He F, Ding G, Wu J. Topotecan Reduces Neuron Death after Spinal Cord Injury by Suppressing Caspase-1-Dependent Pyroptosis. Mol Neurobiol 2022; 59:6033-6048. [DOI: 10.1007/s12035-022-02960-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022]
|
30
|
Yu JI, Kim JH, Nam KE, Lee W, Rhee DK. Pneumococcal Δ pep27 Immunization Attenuates TLRs and NLRP3 Expression and Relieves Murine Ovalbumin-Induced Allergic Rhinitis. J Microbiol Biotechnol 2022; 32:709-717. [PMID: 35484967 PMCID: PMC9628895 DOI: 10.4014/jmb.2203.03006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022]
Abstract
Allergic rhinitis (AR), one of the most common inflammatory diseases, is caused by immunoglobulin E (IgE)-mediated reactions against inhaled allergens. AR involves mucosal inflammation driven by type 2 helper T (Th2) cells. Previously, it was shown that the Streptococcus pneumoniae pep27 mutant (Δpep27) could prevent and treat allergic asthma by reducing Th2 responses. However, the underlying mechanism of Δpep27 immunization in AR remains undetermined. Here, we investigated the role of Δpep27 immunization in the development and progression of AR and elucidated potential mechanisms. In an ovalbumin (OVA)-induced AR mice model, Δpep27 alleviated allergic symptoms (frequency of sneezing and rubbing) and reduced TLR2 and TLR4 expression, Th2 cytokines, and eosinophil infiltration in the nasal mucosa. Mechanistically, Δpep27 reduced the activation of the NLRP3 inflammasome in the nasal mucosa by down-regulating the Toll-like receptor signaling pathway. In conclusion, Δpep27 seems to alleviate TLR signaling and NLRP3 inflammasome activation to subsequently prevent AR.
Collapse
Affiliation(s)
- Jae Ik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki-El Nam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea,DNBio Pharm. Inc., Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea,Corresponding author Phone: +82-31-290-7707 E-mail:
| |
Collapse
|
31
|
Jiang W, He F, Ding G, Wu J. Topoisomerase 1 inhibition modulates pyroptosis to improve recovery after spinal cord injury. FASEB J 2022; 36:e22294. [PMID: 35579890 DOI: 10.1096/fj.202100713rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Excessive neuroinflammation and neuronal loss contribute to mechanisms of spinal cord injury (SCI). Accumulating evidence has suggested that topoisomerase 1 (Top1) inhibition can suppress exacerbated immune responses and protect against lethal inflammation. Pyroptosis is a recently identified pro-inflammatory programmed mode of cell death. However, the effects and underlying mechanisms of Top1 inhibition in SCI remains unclear. Locomotor functional recovery in mice was evaluated through Basso Mouse Scale (BMS). Neuronal loss was evaluated by immunochemistry staining of NeuN. Pyroptosis was determined by immunofluorescence staining, western blot, flow cytometry, cell viability, and cytotoxicity assays. In the present study, we estimated the effects of chemical inhibition of Top1 in an SCI model. Administration of Top1 inhibitor camptothecin (CPT) to mice significantly improved locomotor functional recovery after SCI. Moreover, CPT reduced Top1 level, inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis, attenuated proinflammatory cytokines levels, diminished the number of neutrophil and neuronal loss in mice. Furthermore, CPT in oxygen-glucose deprivation neurons down-regulated Top1 level, attenuated NLRP3 inflammasome activation, and suppressed pyroptosis and inflammatory response. Together, our findings indicate that inhibition of Top1 with CPT can inhibit pyroptosis, control neuroinflammation, and improve functional recovery after SCI.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Wu X, Zhao S, Huang W, Huang L, Huang M, Luo X, Chang S. Aberrant expressions of circulating lncRNA NEAT1 and microRNA‐125a are linked with Th2 cells and symptom severity in pediatric allergic rhinitis. J Clin Lab Anal 2022; 36:e24235. [PMID: 35064698 PMCID: PMC8906029 DOI: 10.1002/jcla.24235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Long noncoding RNA nuclear enriched abundant transcript 1 (lnc‐NEAT1) and its target microRNA‐125a (miR‐125a) are reported to regulate immune and inflammation process in allergic rhinitis (AR). Hence, this study intended to investigate the correlation between lnc‐NEAT1 and miR‐125a expressions, as well as their clinical values in pediatric AR patients. Methods Peripheral blood mononuclear cell samples from 80 pediatric AR patients, 40 disease controls (DCs), and 40 healthy controls (HCs) were collected to detect lnc‐NEAT1 and miR‐125a expressions by reverse transcription‐quantitative polymerase chain reaction. For pediatric AR patients only, serum interferon‐gamma (IFN‐γ) and interleukin (IL)‐10 were measured by enzyme linked immunosorbent assay; meanwhile, T helper (Th) 1 and Th2 cells in CD4+ T cells were analyzed by flow cytometry. Results Lnc‐NEAT1 was overexpressed, while miR‐125a downregulated in pediatric AR patients compared to DCs and HCs (all p < 0.001). Moreover, lnc‐NEAT1 expression negatively correlated with miR‐125a expression in pediatric AR patients (p = 0.002), but not in DCs (p = 0.226) or HCs (p = 0.237). Furthermore, in pediatric AR patients, lnc‐NEAT1 expression positively associated with TNSS (p < 0.001), sneezing score (p = 0.006), and congestion score (p = 0.008); miR‐125a expression was negatively related to TNSS (p < 0.001), itching score (p = 0.040), and sneezing score (p = 0.005). Additionally, lnc‐NEAT1 expression positively, while miR‐125a expression negatively correlated with Th2 cells and IL‐10 (all p < 0.05), but they were not correlated with Th1 cells or IFN‐γ in pediatric AR patients. Conclusion Circulating lnc‐NEAT1 and miR‐125a are aberrantly expressed and linked with Th2 cells and symptom severity in pediatric allergic rhinitis.
Collapse
Affiliation(s)
- Xionghui Wu
- Department of Otorhinolaryngology Head and Neck Surgery Hunan Children's Hospital Changsha China
| | - Sijun Zhao
- Department of Otorhinolaryngology Head and Neck Surgery Hunan Children's Hospital Changsha China
| | - Weiqing Huang
- Department of Neonatology Hunan Children's Hospital Changsha China
| | - Lihua Huang
- Laboratory for Medical Center The Third Xiangya Hospital of Central South University Changsha China
| | - Min Huang
- Department of Otorhinolaryngology Head and Neck Surgery Hunan Children's Hospital Changsha China
| | - Xinyou Luo
- Department of Otorhinolaryngology Head and Neck Surgery Hunan Children's Hospital Changsha China
| | - Shuting Chang
- Department of Neonatology Hunan Children's Hospital Changsha China
| |
Collapse
|
33
|
Li J, Zhang Y, Zhang L, An Z, Song J, Wang C, Ma Y, Gu Q, Luo Q, Yang W, Du Y, Wu W. Fine particulate matter exposure exacerbated nasal mucosal damage in allergic rhinitis mice via NLRP3 mediated pyroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112998. [PMID: 34798361 DOI: 10.1016/j.ecoenv.2021.112998] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The incidence of nasal allergy/allergic rhinitis (AR) is rising worldwide, which has become a serious public health problem. Epidemiological studies point that exposure to environmental PM2.5 is closely linked to AR aggravation, however, the exactly mechanism is not clear. This study was performed to reveal molecular mechanisms of PM2.5 -induced AR deterioration. METHODS Morphology and element analysis of PM2.5 was examined by scanning electron microscopy (SEM) and Energy Dispersive Spectrometer (EDS). A total of 24 female C57BL/6 mice were divided into three groups (control group, AR group, and PM2.5 + AR group, each group contains 8 mice). Mice from AR group and PM2.5 + AR group were intraperitoneally injected with OVA suspension (0.004% OVA+3% aluminum hydroxide) on days 1, 7, and 14. 0.2 mL /kg B.W. for sensitization; then the same mice were intranasal instilled with 5% OVA solution daily for 7 days to established AR mice model (each nostril for 10 μl, day 15-21). The mice were intranasal instilled PBS (control group and AR group, each nostril for 10 μl) or PM2.5 (AR + PM2.5 group, 4.0 mg/kg b.w., each nostril for 10 μl) at the same way from day 23-29. The nasal symptoms were evaluated after the last instillation of PM2.5. Pathological changes and ultrastructure of nasal mucosa were observed by HE staining and SEM. Goblet cells hyperplasia was performed by Periodic acid-Schiff (PAS) staining. NLRP3, Caspase-1, GSDMD and IL-1β protein expression were assessed by immunohistochemical (IHC) staining. RESULTS Exposure to PM2.5 aggravated rhinitis symptom, promoted the secretion of serum IgE level and destroyed ultrastructural of nasal mucosa. Interestingly, NLRP3, Caspase-1 GSDMD and IL-1β protein expression were obviously elevated. NLRP3 /Capase-1/ GSDMD meditated cell pyroptosis participated in the process of AR exacerbation. However, macrophage is not the main effector cell. CONCLUSION PM2.5 exposure induces aggravation of allergic rhinitis, which is related to NLRP3 inflammasome meditated caspase-1 activation and cell pyroptosis in nasal mucosal.
Collapse
Affiliation(s)
- Juan Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Ying Zhang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Shandong Province 250001, China
| | - Zhen An
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Chunzhi Wang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yanmei Ma
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qi Gu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qizhan Luo
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weiling Yang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yue Du
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
34
|
Wu J, Wu L, Zhang L, Xu H, Wang M, Wang L, Chen J, Sun K. Overexpression of miR-224-5p alleviates allergic rhinitis in mice via the TLR4/MyD88/NF-κB pathway. Exp Anim 2021; 70:440-449. [PMID: 34092750 PMCID: PMC8614013 DOI: 10.1538/expanim.20-0195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
Inflammatory allergic reaction is the main cause of allergic rhinitis (AR). Previous studies indicated that miR-224-5p was downregulated in the nasal mucosa of patients with AR, while the function of miR-224-5p in AR remains unclear. To explore this issue, AR mouse model was established using ovalbumin (OVA). For treatment group, lentivirus (LV)-miR-224-5p or its control was intranasally administrated to AR mice. miR-224-5p expression was detected by reverse transcription-quantitative PCR, followed by assessing the immunoglobulin E (IgE) level. Pathological alterations in nasal mucosa were detected using Hematoxylin-Eosin staining and Sirius red staining, followed by assessing the levels of inflammatory cells and factors. The NLRP3 inflammasome and TLR4/MyD88/NF-κB pathway were measured by Western blot, and then the relationship between miR-224-5p and toll-like receptor 4 (TLR4) was verified. The results showed that miR-224-5p was significantly decreased in nasal mucosa of AR mice. AR mice exhibited increased sneezing and nasal rubbing events, IgE level in serum, and pathological alterations in nasal mucosa, while overexpression of miR-224-5p markedly attenuated these changes. The levels of inflammatory cells in nasal lavage fluid and pro-inflammatory factors in serum and nasal mucosa were significantly increased in AR mice, which were reduced by miR-224-5p overexpression. Of note, LV-miR-224-5p treatment remarkably suppressed the activations of NLRP3 inflammasome and the TLR4/MyD88/NF-κB pathway in AR mice. Furthermore, miR-224-5p could bind to 3'-untranslated region (3'-UTR) of TLR4 and negatively regulate TLR4 level. Overall, we conclude that miR-224-5p may relieve AR by negatively regulating TLR4/MyD88/NF-κB pathway, indicating that miR-224-5p may be a promising target for AR treatment.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Otolaryngology Head and Neck Surgery, Binzhou People's Hospital, No. 515, Huanghe 7th Road, Bincheng District, Binzhou, 256610, Shandong, China
| | - Lizhen Wu
- Department of Otolaryngology, Beijing Shijingshan Hospital, No. 24, Shijingshan Road, Beijing, 100043, China
| | - Li Zhang
- Department of Otolaryngology Head and Neck Surgery, Binzhou People's Hospital, No. 515, Huanghe 7th Road, Bincheng District, Binzhou, 256610, Shandong, China
| | - Huanhuan Xu
- Department of Otolaryngology Head and Neck Surgery, Binzhou People's Hospital, No. 515, Huanghe 7th Road, Bincheng District, Binzhou, 256610, Shandong, China
| | - Min Wang
- Department of Otolaryngology Head and Neck Surgery, Binzhou People's Hospital, No. 515, Huanghe 7th Road, Bincheng District, Binzhou, 256610, Shandong, China
| | - Lin Wang
- Department of Otolaryngology Head and Neck Surgery, Binzhou People's Hospital, No. 515, Huanghe 7th Road, Bincheng District, Binzhou, 256610, Shandong, China
| | - Jie Chen
- Department of Otolaryngology Head and Neck Surgery, Binzhou People's Hospital, No. 515, Huanghe 7th Road, Bincheng District, Binzhou, 256610, Shandong, China
| | - Kaiyue Sun
- Shandong Institute of Otolaryngology, Shandong Provincial ENT Hospital Affiliated to Shandong University, No. 4 Duanxing West Road, Jinan, 250022, Shandong, China
| |
Collapse
|
35
|
The Toxicity of Wiped Dust and Airborne Microbes in Individual Classrooms Increase the Risk of Teachers' Work-Related Symptoms: A Cross-Sectional Study. Pathogens 2021; 10:pathogens10111360. [PMID: 34832514 PMCID: PMC8624243 DOI: 10.3390/pathogens10111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The causes and pathophysiological mechanisms of building-related symptoms (BRS) remain open. Objective: We aimed to investigate the association between teachers’ individual work-related symptoms and intrinsic in vitro toxicity in classrooms. This is a further analysis of a previously published dataset. Methods: Teachers from 15 Finnish schools in Helsinki responded to the symptom survey. The boar sperm motility inhibition assay, a sensitive indicator of mitochondrial dysfunction, was used to measure the toxicity of wiped dust and cultured microbial fallout samples collected from the teachers’ classrooms. Results: 231 teachers whose classroom toxicity data had been collected responded to the questionnaire. Logistic regression analysis adjusted for age, gender, smoking, and atopy showed that classroom dust intrinsic toxicity was statistically significantly associated with the following 12 symptoms reported by teachers (adjusted ORs in parentheses): nose stuffiness (4.1), runny nose (6.9), hoarseness (6.4), globus sensation (9.0), throat mucus (7.6), throat itching (4.4), shortness of breath (12.2), dry cough (4.7), wet eyes (12.7), hypersensitivity to sound (7.9), difficulty falling asleep (7.6), and increased need for sleep (7.7). Toxicity of cultured microbes was found to be associated with nine symptoms (adjusted ORs in parentheses): headache (2.3), nose stuffiness (2.2), nose dryness (2.2), mouth dryness (2.8), hoarseness (2.2), sore throat (2.8), throat mucus (2.3), eye discharge (10.2), and increased need for sleep (3.5). Conclusions: The toxicity of classroom dust and airborne microbes in boar sperm motility inhibition assay significantly increased teachers’ risk of work-related respiratory and ocular symptoms. Potential pathophysiological mechanisms of BRS are discussed.
Collapse
|
36
|
Zhang S, Lin S, Tang Q, Yan Z. Knockdown of miR‑205‑5p alleviates the inflammatory response in allergic rhinitis by targeting B‑cell lymphoma 6. Mol Med Rep 2021; 24:818. [PMID: 34558634 PMCID: PMC8477609 DOI: 10.3892/mmr.2021.12458] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/19/2021] [Indexed: 01/22/2023] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated upper airway disease with a high worldwide prevalence. MicroRNA (miR)-205-5p upregulation has been observed in AR; however, its role is poorly understood. The aim of the present study was to investigate the effect of miR-205-5p on AR-associated inflammation. To establish an AR model, BALB/c mice were sensitized using an intraperitoneal injection of ovalbumin (OVA) on days 0, 7 and 14, followed by intranasal challenge with OVA on days 21–27. A lentiviral sponge for miR-205-5p was used to downregulate miR-205-5p in vivo via intranasal administration on days 20–26. Reverse transcription-quantitative PCR revealed that miR-205-5p was upregulated in AR mice. Notably, miR-205-5p knockdown reduced the frequency of nose-rubbing and sneezing, and attenuated pathological alterations in the nasal mucosa. The levels of total and OVA-specific IgE, cytokines IL-4, IL-5 and IL-13, and inflammatory cells, were decreased by miR-205-5p knockdown in AR mice. In addition, miR-205-5p knockdown inhibited nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation by reducing the expression levels of NLRP3, apoptosisassociated specklike protein containing a CARD, cleaved caspase-1 and IL-1β by western blot analysis. B-cell lymphoma 6 (BCL6) was confirmed as a target of miR-205-5p by luciferase reporter assay. In conclusion, the present findings suggested that miR-205-5p knockdown may attenuate the inflammatory response in AR by targeting BCL6, which may be a potential therapeutic target for AR.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning 110000, P.R. China
| | - Sihan Lin
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qiaofei Tang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning 110000, P.R. China
| | - Zhiyong Yan
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
37
|
Wang QL, Xing W, Yu C, Gao M, Deng LT. ROCK1 regulates sepsis-induced acute kidney injury via TLR2-mediated endoplasmic reticulum stress/pyroptosis axis. Mol Immunol 2021; 138:99-109. [PMID: 34365196 DOI: 10.1016/j.molimm.2021.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND It has been reported that ROCK1 participates in the progression of multiple diseases, including septic intestinal barrier, cardiac dysfunction and acute lung injury. However, its regulatory role and specific mechanism in sepsis-induced acute kidney injury (AKI) remain unclear. METHODS Cecal ligation puncture (CLP) was conducted to establish sepsis mouse model, and in vitro model was achieved by lipopolysaccharide (LPS) stimulation. Genes expression was evaluated by qRT-PCR, western blot or ELISA was conducted to assess the levels of proteins. Hoechst staining was performed to evaluate cell pyroptosis. LDH activity assay was detected to assess cytotoxicity. Immunohistochemistry was conducted to detect Ly-6G expression and neutrophils distribution in kidney tissues of mice. H&E and TUNEL staining were carried to evaluate kidney injury of mice. RESULTS Our findings illuminated that ROCK1 was highly expressed in sepsis-induced AKI, and ROCK1 knockdown inhibited NLRP3-mediated cell pyroptosis in LPS-induced HK-2 cells. Moreover, ROCK1 modulated HK-2 cell pyroptosis by regulating endoplasmic reticulum stress (ERS). TLR2 inhibitor could suppress ERS mediated cell pyroptosis under LPS treatment. Further, TLR2 activator partially reversed the effects of ROCK1 inhibition on ERS mediated pyroptosis in LPS-treated HK-2 cells and CLP mice. CONCLUSION In conclusion, ROCK1 may regulate sepsis-induced AKI via TLR2-mediated ERS/pyroptosis axis. Our data demonstrated the role and underlying mechanism of ROCK1 in septic AKI, providing theoretical basis for sepsis-induced AKI treatment.
Collapse
Affiliation(s)
- Qian-Lu Wang
- Department of Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Wei Xing
- Department of Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Can Yu
- Department of Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Min Gao
- Department of Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Long-Tian Deng
- Department of Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
38
|
Liu M, Lu J, Chen Y, Shi X, Li Y, Yang S, Yu J, Guan S. Sodium Sulfite-Induced Mast Cell Pyroptosis and Degranulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7755-7764. [PMID: 34191510 DOI: 10.1021/acs.jafc.1c02436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sodium sulfite, a common food additive, has been proved to cause allergic reaction. Pyroptosis is an inflammatory form of programmed cell death with plasma membrane lysis. In this study, we found that sodium sulfite triggered pyroptosis, which depended on reactive oxygen species (ROS)/NOD-like receptor protein 3 (NLRP3) in RBL-2H3 mast cells. Sodium sulfite increased the generation of ROS and the expression of NLRP3, caspase-1, gasdermin D N-terminal (GSDMD-N), interleukin-1β (IL-1β), and interleukin-18 (IL-18). The ROS scavenger N-acetyl-L-carnosine (NAC) and the NLRP3 inhibitor MCC950 reversed these effects. Furthermore, using a lactate dehydrogenase kit, propidium iodide staining, scanning electron microscopy, colocalization of GSDMD-N with histamine, and neutral red staining, we found that sodium sulfite notably induced cell membrane rupture. Because β-Hexosaminidase and histamine play a key role in allergic reactions, we detected the release of β-Hexosaminidase and histamine. The data showed that the release of β-Hexosaminidase and histamine induced by sodium sulfite was increased with dose independence, which were inhibited after treatment with NAC or MCC950. Overall, evidence suggested that pyroptosis induced by sodium sulfite may rupture the cell membrane and result in degranulation of mast cells. Our study may provide new insights for the mechanism by which sodium sulfite induces mast cell death and sensitization.
Collapse
Affiliation(s)
- Meitong Liu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yuelin Chen
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xiaolei Shi
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - YaZhuo Li
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuting Yang
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Yu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuang Guan
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
39
|
de Souza JG, Starobinas N, Ibañez OCM. Unknown/enigmatic functions of extracellular ASC. Immunology 2021; 163:377-388. [PMID: 34042182 DOI: 10.1111/imm.13375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Apoptosis-associated speck-like protein containing a caspase recruit domain (ASC), encoded by PYCARD gene, is a 22 kDa small molecule, which aggregates into ASC specks during inflammasome activation. ASC protein is an adaptor protein present in several inflammasome complexes that performs several intra- and extracellular functions, in monomeric form or as ASC specks, during physiological and pathological processes related to inflammation and adaptive immunity. Extracellular ASC specks (eASC specks) released during cell death by pyroptosis can contribute as a danger signal to the propagation of inflammation via phagocytosis and activation of surrounding cells. ASC specks are found in the circulation of patients with chronic inflammatory diseases and have been considered as relevant blood biomarkers of inflammation. eASC amplifies the inflammatory signal, may induce the production of autoantibodies, transports molecules that bind to this complex, contributing to the generation of antibodies, and can induce the maturation of cytokines promoting the modelling of the adaptive immunity. Although several advances have been registered in the last 21 years, there are numerous unknown or enigmatic gaps in the understanding of the role of eASC specks in the organism. Here, we provide an overview about the ASC protein focusing on the probable roles of eASC specks in several diseases, up to the most recent studies concerning COVID-19.
Collapse
Affiliation(s)
- Jean Gabriel de Souza
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.,Immunology Catalyst, GlaxoSmithKline, Stevenag, UK
| | - Nancy Starobinas
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Olga Celia Martinez Ibañez
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
40
|
Yu X, Wang M, Zhao H, Cao Z. Targeting a novel hsa_circ_0000520/miR-556-5p/NLRP3 pathway-mediated cell pyroptosis and inflammation attenuates ovalbumin (OVA)-induced allergic rhinitis (AR) in mice models. Inflamm Res 2021; 70:719-729. [PMID: 34028600 DOI: 10.1007/s00011-021-01472-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES The circRNAs-miRNAs-mRNAs competing endogenous RNA (ceRNA) networks involve in regulating the development of various inflammation-associated diseases, including allergic rhinitis (AR), and the present study aimed to identify novel AR-associated ceRNA networks. METHODS The mRNA and protein levels of the associated genes were, respectively, examined by real-time qPCR and western blot analysis. The targeting sites in miR-556-5p and NLRP3 were validated by performing dual-luciferase reporter gene system assay. ELISA was used to measure inflammatory cytokines secretion, and CCK-8 assay was conducted to determine cell proliferation. RESULTS Here, we first identified a hsa_circ_0000520/miR-556-5p/NLRP3 signaling cascade triggered epithelium pyroptosis and inflammation to regulate the development of AR in cellular and mice models. Specifically, the pyroptosis-associated biomarkers (NLRP3, ASC, IL-1β and IL-18) and pro-inflammatory cytokines (OVA-specific IgE, TNF-α, IL-4 and IL-5) were upregulated in the nasal subjects collected from AR patients and ovalbumin (OVA)-induced AR mice models, compared to their normal counterparts. Next, using the ceRNA networks analysis software, we screened out a hsa_circ_0000520/miR-556-5p axis that potentially regulated NLRP3 in the human nasal epithelial cell line. Mechanistically, miR-556-5p targeted both hsa_circ_0000520 and 3' untranslated region (3'UTR) of NLRP3, and knock-down of hsa_circ_0000520 inactivated NLRP3-mediated epithelium pyroptosis through miR-556-5p in a ceRNA-dependent manner. Furthermore, we proved that both hsa_circ_0000520 ablation and miR-556-5p overexpression suppressed NLRP3-mediated cell pyroptosis to attenuate AR in mice models. CONCLUSIONS Taken together, we evidenced that targeting the hsa_circ_0000520/miR-556-5p/NLRP3 signaling pathway was a novel AQ1strategy to ameliorate AR progression; however, future clinical data are still required to validate our preliminary results.
Collapse
Affiliation(s)
- Xiaofeng Yu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China
| | - Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Shenyang, 110004, China.
| |
Collapse
|
41
|
Zhang J, Sun X, Zhong L, Shen B. IL-32 exacerbates adenoid hypertrophy via activating NLRP3-mediated cell pyroptosis, which promotes inflammation. Mol Med Rep 2021; 23:226. [PMID: 33495843 PMCID: PMC7851829 DOI: 10.3892/mmr.2021.11865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Adenoid hypertrophy (AH) is a common pediatric disease caused by inflammatory stimulation. The pro-inflammatory cytokine IL-32 has been reported to promote airway inflammation and also be involved in the pyroptosis pathway. However, whether IL-32 can contribute to AH by mediating pyroptosis remains to be elucidated. The present study aimed to investigate the role of IL-32 in AH and determine the potential underlying mechanisms. Adenoid tissues were collected from healthy children and children with AH, and the expression of IL-32, NACHT LRR and PYD domains-containing protein 3 (NLRP3) and IL-1β in normal and hypertrophic tissues were measured. Human nasal epithelial cells (HNEpCs) were exposed to a series of IL-32 concentrations. HNEpCs with or without IL-32 silencing were stimulated with lipopolysaccharide (LPS), and cell proliferation, cell apoptosis, gasdermin D (GSDMD) activation, production of inflammatory cytokines and the expression levels of proteins related to the potential mechanisms were evaluated by Cell Counting Kit-8, flow cytometry, immunofluorescence staining, ELISA and western blot assays, respectively. The results showed that IL-32, NLRP3 and IL-1β exhibited higher expression in adenoid tissues with AH compared with normal tissues. In HNEpC cells, treatment with IL-32 (2 and 10 ng/ml) promoted cell proliferation, while 50 ng/ml IL-32 inhibited cell proliferation at 12, 24 and 48 h post-treatment. IL-32 (2, 10 and 50 ng/ml) also resulted in differing degrees of apoptosis, GSDMD activation, release of IL-1β, IL-6 and TNF-α, and increased protein expression levels of NLRP3, cleaved-caspase-1, activated GSDMD, nucleotide-binding oligomerization domain-containing protein (NOD) 1/2 and Toll-like receptor (TLR)4 in a concentration-dependent manner. In addition, compared with the LPS group, IL-32 knockdown significantly inhibited LPS-induced enhancement of cell proliferation, cell apoptosis, GSDMD activation and production of inflammatory cytokines, and reversed the increased protein expression of NLRP3, cleaved-caspase-1, activated GSDMD, NOD1/2 and TLR4. In conclusion, IL-32 may play a role in the progression of AH via promoting inflammation, and the potential mechanism may involve the activation of NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Junmei Zhang
- Department of Otolaryngology, Tianjin Children's Hospital, Tianjin 300134, P.R. China
| | - Xuyuan Sun
- Department of Otolaryngology, Tianjin Children's Hospital, Tianjin 300134, P.R. China
| | - Lingling Zhong
- Department of Otolaryngology, Tianjin Children's Hospital, Tianjin 300134, P.R. China
| | - Bei Shen
- Department of Otolaryngology, Tianjin Children's Hospital, Tianjin 300134, P.R. China
| |
Collapse
|
42
|
Du H, Liu T, Gao H, Gao Y, Guo D, Si W. Kirenol ameliorated ovalbumin-induced allergic rhinitis in mice via suppression of oxidative stress and inflammatory response. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_513_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Electroacupuncture Improves Cognitive Function in Senescence-Accelerated P8 (SAMP8) Mice via the NLRP3/Caspase-1 Pathway. Neural Plast 2020; 2020:8853720. [PMID: 33204250 PMCID: PMC7657681 DOI: 10.1155/2020/8853720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Background. Clinically, electroacupuncture (EA) is the most common therapy for aging-related cognitive impairment (CI). However, the underlying pathomechanism remains unidentified. The aims of this study were to observe the effect of EA on cognitive function and explore the potential mechanism by which EA acts on the NLRP3/caspase-1 signaling pathway. Main Methods. Thirty male SAMP8 mice were randomly divided into the model, the 2 Hz EA and 10 Hz EA groups. Ten male SAMR1 mice were assigned to the control group. Cognitive function was assessed through the Morris water maze test. Hippocampal morphology and cell death were observed by HE and TUNEL staining, respectively. The serum IL-1β, IL-6, IL-18, and TNF-α levels were measured by ELISA. Hippocampal NLRP3, ASC, caspase-1, GSDM-D, IL-1β, IL-18, Aβ, and tau proteins were detected by Western blotting. Key Findings. Cognitive function, hippocampal morphology, and TUNEL-positive cell counts were improved by both EA frequencies. The serum IL-1β, IL-6, IL-18, and TNF-α levels were decreased by EA treatment. However, 10 Hz EA reduced the number of TUNEL-positive cells in the CA1 region and serum IL-1β and IL-6 levels more effectively than 2 Hz EA. NLRP3/caspase-1 pathway-related proteins were significantly downregulated by EA, but 2 Hz EA did not effectively reduce ASC protein expression. Interestingly, both EA frequencies failed to reduce the expression of Aβ and tau proteins. Significance. The effects of 10 Hz EA at the GV20 and ST36 acupoints on the NLRP3/caspase-1 signaling pathway may be a mechanism by which this treatment relieves aging-related CI in mice.
Collapse
|
44
|
MicroRNA-103 Protects Coronary Artery Endothelial Cells against H 2O 2-Induced Oxidative Stress via BNIP3-Mediated End-Stage Autophagy and Antipyroptosis Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8351342. [PMID: 32190178 PMCID: PMC7071805 DOI: 10.1155/2020/8351342] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
Endothelial cell damage caused by oxidative stress is widely considered to be a triggering event in atherosclerosis (AS). However, the specific effect elicited by autophagy in endothelial cells undergoing oxidative stress remains controversial, especially during end-stage autophagy. The inhibition of end-stage autophagy has been reported to increase cell pyroptosis and contribute to endothelial damage. Several studies have shown that microRNA-103 is involved in end-stage autophagy; however, its specific mechanism of action is not yet characterized. In this study, we addressed the regulatory role of miR-103 in autophagy during oxidative stress of endothelial cells. Hydrogen peroxide (H2O2) treatment was used as an in vitro model of oxidative stress. MTS and ROS levels were measured to evaluate cell activity. qRT-PCR was used to detect the expression of miR-103. Autophagy was examined using western blot, immunofluorescence staining, and electron microscopy, while western blot analysis detected pyroptosis-related proteins. Results show that miR-103 expression decreased under oxidative stress. Further, miR-103 repressed transcription of Bcl-2/adenovirus E1B 19 kDa interacting protein (BNIP3). The oxidative stress caused by H2O2 caused cell damage from 2 hours (P < 0.05) and increased the level of intracellular reactive oxygen species (P < 0.05); at the same time, the damage could be further aggravated by the stimulation of bafA1 (P < 0.05). Under the stimulation of H2O2, the expression of miR-103 decreased (P < 0.05). However, high expression of miR-103 could reduce the accumulation of LC3II and P62 (P < 0.05) by inhibiting the downstream target gene Bcl-2/adenovirus E1B 19 kDa interacting protein (BNIP3), thus reducing the occurrence of cell pyroptosis (P < 0.05). This process could be blocked by end-stage autophagy inhibitor bafA1 (P < 0.05), which further indicated that miR-103 affected cell injury by autophagy. On the contrary, the low expression of miR-103 promoted the accumulation of autophagy protein and increased the occurrence of pyroptosis (P < 0.05). In conclusion, inhibition of miR-103 restrained end-stage of autophagy by regulating BNIP3, thus changing the occurrence of cell pyroptosis.
Collapse
|