1
|
Yoshida Y, Nishikawa N, Fukuoka K, Tsuruta A, Otsuki K, Fukuda T, Terada Y, Tanihara T, Kumamoto T, Tsukamoto R, Nishi T, Oyama K, Hamamura K, Mayanagi K, Koyanagi S, Ohdo S, Matsunaga N. Monocyte/Macrophage-Specific Loss of ARNTL Suppresses Chronic Kidney Disease-Associated Cardiac Impairment. Int J Mol Sci 2024; 25:13009. [PMID: 39684718 DOI: 10.3390/ijms252313009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Defects in Aryl hydrocarbon receptor nuclear translocator-like 1 (ARNTL), a central component of the circadian clock mechanism, may promote or inhibit the induction of inflammation by monocytes/macrophages, with varying effects on different diseases. However, ARNTL's role in monocytes/macrophages under chronic kidney disease (CKD), which presents with systemic inflammation, is unclear. Here, we report that the expression of Arntl in monocytes promoted CKD-induced cardiac damage. The expression of G-protein-coupled receptor 68 (GPR68), which exacerbates CKD-induced cardiac disease, was regulated by ARNTL. Under CKD conditions, GPR68 expression was elevated via ARNTL, particularly in the presence of PU.1, a transcription factor specific to monocytes and macrophages. In CKD mouse models lacking monocyte-specific ARNTL, GPR68 expression in monocytes was reduced, leading to decreased cardiac damage and fibrosis despite no improvement in renal excretory capacity or renal fibrosis and increased angiotensin II production. The loss of ARNTL did not affect the expression of marker molecules, indicating the origin or differentiation of cardiac macrophages, but affected GPR68 expression only in cardiac macrophages derived from mature monocytes, highlighting the significance of the interplay between GPR68 and ARNTL in monocytes/macrophages and its influence on cardiac pathology. Understanding this complex relationship between circadian clock mechanisms and disease could help uncover novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Nishikawa
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kohei Fukuoka
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kaita Otsuki
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Taiki Fukuda
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuma Terada
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohito Tanihara
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Taisei Kumamoto
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryotaro Tsukamoto
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takumi Nishi
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Oyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kengo Hamamura
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouta Mayanagi
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigehiro Ohdo
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Pratt HG, Ma L, Dziadowicz SA, Ott S, Whalley T, Szomolay B, Eubank TD, Hu G, Boone BA. Analysis of single nuclear chromatin accessibility reveals unique myeloid populations in human pancreatic ductal adenocarcinoma. Clin Transl Med 2024; 14:e1595. [PMID: 38426634 PMCID: PMC10905544 DOI: 10.1002/ctm2.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND A better understanding of the pancreatic ductal adenocarcinoma (PDAC) immune microenvironment is critical to developing new treatments and improving outcomes. Myeloid cells are of particular importance for PDAC progression; however, the presence of heterogenous subsets with different ontogeny and impact, along with some fluidity between them, (infiltrating monocytes vs. tissue-resident macrophages; M1 vs. M2) makes characterisation of myeloid populations challenging. Recent advances in single cell sequencing technology provide tools for characterisation of immune cell infiltrates, and open chromatin provides source and function data for myeloid cells to assist in more comprehensive characterisation. Thus, we explore single nuclear assay for transposase accessible chromatin (ATAC) sequencing (snATAC-Seq), a method to analyse open gene promoters and transcription factor binding, as an important means for discerning the myeloid composition in human PDAC tumours. METHODS Frozen pancreatic tissues (benign or PDAC) were prepared for snATAC-Seq using 10× Chromium technology. Signac was used for preliminary analysis, clustering and differentially accessible chromatin region identification. The genes annotated in promoter regions were used for Gene Ontology (GO) enrichment and cell type annotation. Gene signatures were used for survival analysis with The Cancer Genome Atlas (TCGA)-pancreatic adenocarcinoma (PAAD) dataset. RESULTS Myeloid cell transcription factor activities were higher in tumour than benign pancreatic samples, enabling us to further stratify tumour myeloid populations. Subcluster analysis revealed eight distinct myeloid populations. GO enrichment demonstrated unique functions for myeloid populations, including interleukin-1b signalling (recruited monocytes) and intracellular protein transport (dendritic cells). The identified gene signature for dendritic cells influenced survival (hazard ratio = .63, p = .03) in the TCGA-PAAD dataset, which was unique to PDAC. CONCLUSIONS These data suggest snATAC-Seq as a method for analysis of frozen human pancreatic tissues to distinguish myeloid populations. An improved understanding of myeloid cell heterogeneity and function is important for developing new treatment targets in PDAC.
Collapse
Affiliation(s)
- Hillary G. Pratt
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Li Ma
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Sebastian A. Dziadowicz
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Sascha Ott
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | | | - Barbara Szomolay
- Division of Infection and Immunity & Systems Immunity Research InstituteCardiff UniversityCardiffUK
| | - Timothy D. Eubank
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- In Vivo Multifunctional Magnetic Resonance CenterWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Gangqing Hu
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Brian A. Boone
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of SurgeryWest Virginia UniversityMorgantownWest VirginiaUSA
| |
Collapse
|
3
|
Yu M, Ou Y, Wang H, Gu W. PU.1 interaction with p50 promotes microglial-mediated inflammation in secondary spinal cord injury in SCI rats. Int J Neurosci 2023; 133:389-402. [PMID: 33970748 DOI: 10.1080/00207454.2021.1923017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose/aim of the study Secondary spinal cord injury is the inflammatory damage to surrounding tissues caused by activated microglial-mediated neuroinflammatory responses. The nuclear factor-κB (p65/p50) pathway and PU.1 are closely correlated with inflammatory responses; thus, we examined the relationship and function between PU.1 and p50 in secondary spinal cord injury.Materials and methods In this study, we established an adult rat acute spinal cord injury model to simulate the pathological process of spinal cord injury.Results: We found that the expression of PU.1 was significantly increased at three days after spinal cord injury and mainly expressed in activated microglia. Moreover, p-p50 expression was increased in SCI rats and the protein interacted with PU.1. Lipopolysaccharide was used to induce microglia activation in vitro.Conclusions: The results showed that PU.1 and p-p50 expression was significantly increased and PU.1 interacted with p50 in the nucleus. The levels of tumor necrosis factor-α and interleukin-1β secreted by microglia were detected by enzyme-linked immunosorbent assay. The results showed that when both PU.1 and p50 were overexpressed, tumor necrosis factor-α and interleukin-1β secretion was significantly increased to levels higher than in cells overexpressing PU.1 or p50 alone. These results suggest that PU.1 and p50 interact to promote p65 transcription and the expression of inflammatory factors, which is an important mechanism of the microglial-mediated inflammatory response to secondary injury after spinal cord injury.
Collapse
Affiliation(s)
- Mingchen Yu
- Department of Orthopedics, Changzhou Seventh People's Hospital, Changzhou, Jiangsu Province, China.,Nantong University, Nantong, Jiangsu Province, China
| | - Yiqing Ou
- Nantong University, Nantong, Jiangsu Province, China.,The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Hongmei Wang
- Nantong University, Nantong, Jiangsu Province, China
| | - Weidong Gu
- Department of Orthopedics, Changzhou Seventh People's Hospital, Changzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Zhang Y, Xie X, Huang Y, Liu M, Li Q, Luo J, He Y, Yin X, Ma S, Cao W, Chen S, Peng J, Guo J, Zhou W, Luo H, Dong F, Cheng H, Hao S, Hu L, Zhu P, Cheng T. Temporal molecular program of human hematopoietic stem and progenitor cells after birth. Dev Cell 2022; 57:2745-2760.e6. [PMID: 36493772 DOI: 10.1016/j.devcel.2022.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/29/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) give rise to the blood system and maintain hematopoiesis throughout the human lifespan. Here, we report a transcriptional census of human bone-marrow-derived HSPCs from the neonate, infant, child, adult, and aging stages, showing two subpopulations of multipotent progenitors separated by CD52 expression. From birth to the adult stage, stem and multipotent progenitors shared similar transcriptional alterations, and erythroid potential was enhanced after the infant stage. By integrating transcriptome, chromatin accessibility, and functional data, we further showed that aging hematopoietic stem cells (HSCs) exhibited a bias toward megakaryocytic differentiation. Finally, in comparison with the HSCs from the cord blood, neonate bone-marrow-derived HSCs were more quiescent and had higher long-term regeneration capability and durable self-renewal. Taken together, this work provides an integral transcriptome landscape of HSPCs and identifies their dynamics in post-natal steady-state hemopoiesis, thereby helping explore hematopoiesis in development and diseases.
Collapse
Affiliation(s)
- Yawen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiaowei Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yaojing Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jianming Luo
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory, Nanning 530021, China
| | - Yunyan He
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory, Nanning 530021, China
| | - Xiuxiu Yin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wenbin Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Shulian Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Jiaojiao Guo
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Wen Zhou
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Hongbo Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Linping Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
5
|
Single-cell analysis of transcription factor regulatory networks reveals molecular basis for subtype-specific dysregulation in acute myeloid leukemia. BLOOD SCIENCE 2022; 4:65-75. [PMID: 35957668 PMCID: PMC9362874 DOI: 10.1097/bs9.0000000000000113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Highly heterogeneous acute myeloid leukemia (AML) exhibits dysregulated transcriptional programs. Transcription factor (TF) regulatory networks underlying AML subtypes have not been elucidated at single-cell resolution. Here, we comprehensively mapped malignancy-related TFs activated in different AML subtypes by analyzing single-cell RNA sequencing data from AMLs and healthy donors. We first identified six modules of regulatory networks which were prevalently dysregulated in all AML patients. AML subtypes featured with different malignant cellular composition possessed subtype-specific regulatory TFs associated with differentiation suppression or immune modulation. At last, we validated that ERF was crucial for the development of hematopoietic stem/progenitor cells by performing loss- and gain-of-function experiments in zebrafish embryos. Collectively, our work thoroughly documents an abnormal spectrum of transcriptional regulatory networks in AML and reveals subtype-specific dysregulation basis, which provides a prospective view to AML pathogenesis and potential targets for both diagnosis and therapy.
Collapse
|
6
|
Simmons DP, Nguyen HN, Gomez-Rivas E, Jeong Y, Jonsson AH, Chen AF, Lange JK, Dyer GS, Blazar P, Earp BE, Coblyn JS, Massarotti EM, Sparks JA, Todd DJ, Rao DA, Kim EY, Brenner MB. SLAMF7 engagement superactivates macrophages in acute and chronic inflammation. Sci Immunol 2022; 7:eabf2846. [PMID: 35148199 PMCID: PMC8991457 DOI: 10.1126/sciimmunol.abf2846] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophages regulate protective immune responses to infectious microbes, but aberrant macrophage activation frequently drives pathological inflammation. To identify regulators of vigorous macrophage activation, we analyzed RNA-seq data from synovial macrophages and identified SLAMF7 as a receptor associated with a superactivated macrophage state in rheumatoid arthritis. We implicated IFN-γ as a key regulator of SLAMF7 expression and engaging SLAMF7 drove a strong wave of inflammatory cytokine expression. Induction of TNF-α after SLAMF7 engagement amplified inflammation through an autocrine signaling loop. We observed SLAMF7-induced gene programs not only in macrophages from rheumatoid arthritis patients but also in gut macrophages from patients with active Crohn's disease and in lung macrophages from patients with severe COVID-19. This suggests a central role for SLAMF7 in macrophage superactivation with broad implications in human disease pathology.
Collapse
Affiliation(s)
- Daimon P. Simmons
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Hung N. Nguyen
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Emma Gomez-Rivas
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Yunju Jeong
- Harvard Medical School, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - A. Helena Jonsson
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Antonia F. Chen
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Jeffrey K. Lange
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - George S. Dyer
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Philip Blazar
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Brandon E. Earp
- Harvard Medical School, Boston, MA
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Jonathan S. Coblyn
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Elena M. Massarotti
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Jeffrey A. Sparks
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Derrick J. Todd
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | | | - Deepak A. Rao
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Edy Y. Kim
- Harvard Medical School, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Michael B. Brenner
- Harvard Medical School, Boston, MA
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
7
|
Gentle IE, Moelter I, Badr MT, Döhner K, Lübbert M, Häcker G. The AML-associated K313 mutation enhances C/EBPα activity by leading to C/EBPα overexpression. Cell Death Dis 2021; 12:675. [PMID: 34226527 PMCID: PMC8257693 DOI: 10.1038/s41419-021-03948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Mutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.
Collapse
Affiliation(s)
- Ian Edward Gentle
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany.
| | - Isabel Moelter
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany
| | - Mohamed Tarek Badr
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Faculty of Medicine, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
8
|
Galland A, Gourain V, Habbas K, Güler Y, Martin E, Ebel C, Tavian M, Vallat L, Chenard MP, Mauvieux L, Freund JN, Duluc I, Domon-Dell C. CDX2 expression in the hematopoietic lineage promotes leukemogenesis via TGFβ inhibition. Mol Oncol 2021; 15:2318-2329. [PMID: 33960108 PMCID: PMC8410536 DOI: 10.1002/1878-0261.12982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
The intestine-specific caudal-related homeobox gene-2 (CDX2) homeobox gene, while being a tumor suppressor in the gut, is ectopically expressed in a large proportion of acute leukemia and is associated with poor prognosis. Here, we report that turning on human CDX2 expression in the hematopoietic lineage of mice induces acute monoblastic leukemia, characterized by the decrease in erythroid and lymphoid cells at the benefit of immature monocytic and granulocytic cells. One of the highly stimulated genes in leukemic bone marrow cells was BMP and activin membrane-bound inhibitor (Bambi), an inhibitor of transforming growth factor-β (TGF-β) signaling. The CDX2 protein was shown to bind to and activate the transcription of the human BAMBI promoter. Moreover, in a leukemic cell line established from CDX2-expressing mice, reducing the levels of CDX2 or Bambi stimulated the TGF-β-dependent expression of Cd11b, a marker of monocyte maturation. Taken together, this work demonstrates the strong oncogenic potential of the homeobox gene CDX2 in the hematopoietic lineage, in contrast with its physiological tumor suppressor activity exerted in the gut. It also reveals, through BAMBI and TGF-β signaling, the involvement of CDX2 in the perturbation of the interactions between leukemia cells and their microenvironment.
Collapse
Affiliation(s)
- Ava Galland
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Victor Gourain
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Germany
| | - Karima Habbas
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Yonca Güler
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Elisabeth Martin
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Claudine Ebel
- Inserm, IGBMC, UMR-S 1258, Université de Strasbourg, Illkirch, France
| | - Manuela Tavian
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Laurent Vallat
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Strasbourg, France
| | - Marie-Pierre Chenard
- Département de Pathologie, Centre Hospitalier Universitaire de Strasbourg, France
| | - Laurent Mauvieux
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Strasbourg, France
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Isabelle Duluc
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Claire Domon-Dell
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| |
Collapse
|
9
|
Ting HK, Chen CL, Meng E, Cherng JH, Chang SJ, Kao CC, Yang MH, Leung FS, Wu ST. Inflammatory Regulation by TNF-α-Activated Adipose-Derived Stem Cells in the Human Bladder Cancer Microenvironment. Int J Mol Sci 2021; 22:ijms22083987. [PMID: 33924332 PMCID: PMC8069705 DOI: 10.3390/ijms22083987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs), such as adipose-derived stem cells (ADSCs), have the most impressive ability to reduce inflammation through paracrine growth factors and cytokines that participate in inflammation. Tumor necrosis factor (TNF)-α bioactivity is a prerequisite in several inflammatory and autoimmune disease models. This study investigated the effects of TNF-α stimulate on ADSCs in the tumor microenvironment. The RNAseq analysis and cytokines assay demonstrated that TNF-α stimulated ADSCs proliferation and pro-inflammatory genes that correlated to leukocytes differentiation were upregulated. We found that upregulation of TLR2 or PTGS2 toward to IRF7 gene-associated with immunomodulatory and antitumor pathway under TNF-α treatment. In TNF-α-treated ADSCs cultured with the bladder cancer (BC) cell medium, the results showed that apoptosis ratio and OCT-4 and TLR2 genes which maintained the self-renewal ability of stem cells were decreased. Furthermore, the cell survival regulation genes including TRAF1, NF-kB, and IRF7 were upregulated in TNF-α-treated ADSCs. Additionally, these genes have not been upregulated in BC cell medium. A parallel study showed that tumor progressing genes were downregulated in TNF-α-treated ADSCs. Hence, the study suggests that TNF-α enhances the immunomodulatory potential of ADSCs during tumorigenesis and provides insight into highly efficacious MSC-based therapeutic options for BC.
Collapse
Affiliation(s)
- Hui-Kung Ting
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - En Meng
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Shu-Jen Chang
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chien-Chang Kao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Ming-Hsin Yang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Fang-Shiuan Leung
- College of Biological Science, University of California-Davis, Davis, CA 95616, USA;
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
- Correspondence: ; Tel.: +886-2-87927169; Fax: +886-2-87927172
| |
Collapse
|
10
|
Nuclear P38: Roles in Physiological and Pathological Processes and Regulation of Nuclear Translocation. Int J Mol Sci 2020; 21:ijms21176102. [PMID: 32847129 PMCID: PMC7504396 DOI: 10.3390/ijms21176102] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK, termed here p38) cascade is a central signaling pathway that transmits stress and other signals to various intracellular targets in the cytoplasm and nucleus. More than 150 substrates of p38α/β have been identified, and this number is likely to increase. The phosphorylation of these substrates initiates or regulates a large number of cellular processes including transcription, translation, RNA processing and cell cycle progression, as well as degradation and the nuclear translocation of various proteins. Being such a central signaling cascade, its dysregulation is associated with many pathologies, particularly inflammation and cancer. One of the hallmarks of p38α/β signaling is its stimulated nuclear translocation, which occurs shortly after extracellular stimulation. Although p38α/β do not contain nuclear localization or nuclear export signals, they rapidly and robustly translocate to the nucleus, and they are exported back to the cytoplasm within minutes to hours. Here, we describe the physiological and pathological roles of p38α/β phosphorylation, concentrating mainly on the ill-reviewed regulation of p38α/β substrate degradation and nuclear translocation. In addition, we provide information on the p38α/β ’s substrates, concentrating mainly on the nuclear targets and their role in p38α/β functions. Finally, we also provide information on the mechanisms of nuclear p38α/β translocation and its use as a therapeutic target for p38α/β-dependent diseases.
Collapse
|
11
|
Derecka M, Herman JS, Cauchy P, Ramamoorthy S, Lupar E, Grün D, Grosschedl R. EBF1-deficient bone marrow stroma elicits persistent changes in HSC potential. Nat Immunol 2020; 21:261-273. [PMID: 32066955 DOI: 10.1038/s41590-020-0595-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Crosstalk between mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) is essential for hematopoietic homeostasis and lineage output. Here, we investigate how transcriptional changes in bone marrow (BM) MSCs result in long-lasting effects on HSCs. Single-cell analysis of Cxcl12-abundant reticular (CAR) cells and PDGFRα+Sca1+ (PαS) cells revealed an extensive cellular heterogeneity but uniform expression of the transcription factor gene Ebf1. Conditional deletion of Ebf1 in these MSCs altered their cellular composition, chromatin structure and gene expression profiles, including the reduced expression of adhesion-related genes. Functionally, the stromal-specific Ebf1 inactivation results in impaired adhesion of HSCs, leading to reduced quiescence and diminished myeloid output. Most notably, HSCs residing in the Ebf1-deficient niche underwent changes in their cellular composition and chromatin structure that persist in serial transplantations. Thus, genetic alterations in the BM niche lead to long-term functional changes of HSCs.
Collapse
Affiliation(s)
- Marta Derecka
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Josip Stefan Herman
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Freiburg, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Ekaterina Lupar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Dominic Grün
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
12
|
Poplineau M, Vernerey J, Platet N, N'guyen L, Hérault L, Esposito M, Saurin AJ, Guilouf C, Iwama A, Duprez E. PLZF limits enhancer activity during hematopoietic progenitor aging. Nucleic Acids Res 2019; 47:4509-4520. [PMID: 30892634 PMCID: PMC6511862 DOI: 10.1093/nar/gkz174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022] Open
Abstract
PLZF (promyelocytic leukemia zinc finger) is a transcription factor acting as a global regulator of hematopoietic commitment. PLZF displays an epigenetic specificity by recruiting chromatin-modifying factors but little is known about its role in remodeling chromatin of cells committed toward a given specific hematopoietic lineage. In murine myeloid progenitors, we decipher a new role for PLZF in restraining active genes and enhancers by targeting acetylated lysine 27 of Histone H3 (H3K27ac). Functional analyses reveal that active enhancers bound by PLZF are involved in biological processes related to metabolism and associated with hematopoietic aging. Comparing the epigenome of young and old myeloid progenitors, we reveal that H3K27ac variation at active enhancers is a hallmark of hematopoietic aging. Taken together, these data suggest that PLZF, associated with active enhancers, appears to restrain their activity as an epigenetic gatekeeper of hematopoietic aging.
Collapse
Affiliation(s)
- Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.,Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Julien Vernerey
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nadine Platet
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Lia N'guyen
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Léonard Hérault
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Michela Esposito
- Gustave Roussy, Université Paris-Saclay, Inserm U1170, CNRS Villejuif, France
| | | | - Christel Guilouf
- Gustave Roussy, Université Paris-Saclay, Inserm U1170, CNRS Villejuif, France
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
13
|
Chen ELY, Thompson PK, Zúñiga-Pflücker JC. RBPJ-dependent Notch signaling initiates the T cell program in a subset of thymus-seeding progenitors. Nat Immunol 2019; 20:1456-1468. [PMID: 31636466 PMCID: PMC6858571 DOI: 10.1038/s41590-019-0518-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/11/2019] [Indexed: 12/30/2022]
Abstract
T cell specification and commitment require Notch signaling. Although the requirement for Notch signaling during intrathymic T cell development is known, it is still unclear whether the onset of T cell priming can occur in a prethymic niche and whether RBPJ-dependent Notch signaling has a role during this event. Here, we established an Rbpj-inducible system that allowed temporal and tissue-specific control of the responsiveness to Notch in all hematopoietic cells. Using this system, we found that Notch signaling was required before the early T cell progenitor stage in the thymus. Lymphoid-primed multipotent progenitors in the bone marrow underwent Notch signaling with Rbpj induction, which inhibited development towards the myeloid lineage in thymus-seeding progenitors. Thus, our results indicated that the onset of T cell differentiation occurred in a prethymic setting, and that Notch played an important role during this event.
Collapse
Affiliation(s)
- Edward L Y Chen
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Patrycja K Thompson
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Sunnybrook Research Institute, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Cassatella MA, Östberg NK, Tamassia N, Soehnlein O. Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines. Trends Immunol 2019; 40:648-664. [PMID: 31155315 DOI: 10.1016/j.it.2019.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Neutrophils, the most abundant white blood cells in human circulation, entertain intense interactions with other leukocyte subsets, platelets, and stromal cells. Molecularly, such interactions are typically communicated through proteins generated during granulopoiesis, stored in granules, or produced on demand. Here, we provide an overview of the mammalian regulation of granule protein production in the bone marrow and the de novo synthesis of cytokines by neutrophils recruited to tissues. In addition, we discuss some of the known biological roles of these protein messengers, and how neutrophil-borne granule proteins and cytokines can synergize to modulate inflammation and tumor development. Decoding the neutrophil interactome is important for therapeutically neutralizing individual proteins to putatively dampen inflammation, or for delivering modified neutrophil-borne proteins to boost host defense.
Collapse
Affiliation(s)
| | - Nataliya K Östberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Oliver Soehnlein
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Institute for Cardiovascular Prevention (IPEK), Klinikum der LMU, München, Germany; German Centre for Cardiovascular Research (DZHK), Partner site, Munich, Germany.
| |
Collapse
|
15
|
Wang L, Liu X, Wang H, Yuan H, Chen S, Chen Z, The H, Zhou J, Zhu J. RNF4 regulates zebrafish granulopoiesis through the DNMT1‐C/EBPα axis. FASEB J 2018; 32:4930-4940. [DOI: 10.1096/fj.201701450rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luxiang Wang
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaohui Liu
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haihong Wang
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Yuan
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Saijuan Chen
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhu Chen
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hugues The
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Equipe Labellisée No. 11 Ligue Nationale Contre le CancerHôpital St. LouisUniversité de Paris 7/INSERM/CNRS UMR 944/7212ParisFrance
| | - Jun Zhou
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jun Zhu
- CNRS-LIA Hematology and CancerSino-French Research Center for Life Sciences and GenomicsState Key Laboratory of Medical GenomicsRui-Jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Equipe Labellisée No. 11 Ligue Nationale Contre le CancerHôpital St. LouisUniversité de Paris 7/INSERM/CNRS UMR 944/7212ParisFrance
| |
Collapse
|
16
|
Chen W, Zhu G, Jules J, Nguyen D, Li YP. Monocyte-Specific Knockout of C/ebpα Results in Osteopetrosis Phenotype, Blocks Bone Loss in Ovariectomized Mice, and Reveals an Important Function of C/ebpα in Osteoclast Differentiation and Function. J Bone Miner Res 2018; 33:691-703. [PMID: 29149533 PMCID: PMC6240465 DOI: 10.1002/jbmr.3342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 01/26/2023]
Abstract
CCAAT/enhancer-binding protein α (C/ebpα) is critical for osteoclastogenesis by regulating osteoclast (OC) lineage commitment and is also important for OC differentiation and function in vitro. However, the role of C/ebpα in postnatal skeletal development has not been reported owing to lethality in C/ebpα-/- mice from hypoglycemia within 8 hours after birth. Herein, we generated conditional knockout mice by deleting the C/ebpα gene in monocyte via LysM-Cre to examine its role in OC differentiation and function. C/ebpαf/f LysM-Cre mice exhibited postnatal osteopetrosis due to impaired osteoclastogenesis, OC lineage priming defects, as well as defective OC differentiation and activity. Furthermore, our ex vivo analysis demonstrated that C/ebpα conditional deletion significantly reduced OC differentiation, maturation, and activity while mildly repressing macrophage development. At the molecular level, C/ebpα deficiency significantly suppresses the expressions of OC genes associated with early stages of osteoclastogenesis as well as genes associated with OC differentiation and activity. We also identified numerous C/ebpα critical cis-regulatory elements on the Cathepsin K promoter that allow C/ebpα to significantly upregulate Cathepsin K expression during OC differentiation and activity. In pathologically induced mouse model of osteoporosis, C/ebpα deficiency can protect mice against ovariectomy-induced bone loss, uncovering a central role for C/ebpα in osteolytic diseases. Collectively, our findings have further established C/ebpα as a promising therapeutic target for bone loss by concurrently targeting OC lineage priming, differentiation, and activity. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Guochun Zhu
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Joel Jules
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Diep Nguyen
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| | - Yi-Ping Li
- Department of Pathology, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
17
|
Chen W, Zhu G, Tang J, Zhou HD, Li YP. C/ebpα controls osteoclast terminal differentiation, activation, function, and postnatal bone homeostasis through direct regulation of Nfatc1. J Pathol 2018; 244:271-282. [PMID: 29083488 PMCID: PMC6240466 DOI: 10.1002/path.5001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
Osteoclast lineage commitment and differentiation have been studied extensively, although the mechanism by which transcription factor(s) control osteoclast terminal differentiation, activation, and function remains unclear. CCAAT/enhancer-binding protein α (C/ebpα) has been reported to be a key regulator of osteoclast cell lineage commitment, yet C/ebpα's roles in osteoclast terminal differentiation, activation and function, and bone homeostasis, under physiological or pathological conditions, have not been studied because newborn C/ebpα-null mice die within several hours after birth. Furthermore, the function of C/ebpα in osteoclast terminal differentiation, activation, and function is largely unknown. Herein, we generated and analyzed an osteoclast-specific C/ebpα conditional knockout (CKO) mouse model via Ctsk-Cre mice and found that C/ebpα-deficient mice exhibited a severe osteopetrosis phenotype due to impaired osteoclast terminal differentiation, activation, and function, including mildly reduced osteoclast number, impaired osteoclast polarization, actin formation, and bone resorption, which demonstrated the novel function of C/ebpα in cell function and terminal differentiation. Interestingly, C/ebpα deficiency did not affect bone formation or monocyte/macrophage development. Our results further demonstrated that C/ebpα deficiency suppressed the expression of osteoclast functional genes, e.g. encoding cathepsin K (Ctsk), Atp6i (Tcirg1), and osteoclast regulator genes, e.g. encoding c-fos (Fos), and nuclear factor of activated T-cells 1 (Nfatc1), while having no effect on Pu.1 (Spi1) expression. Promoter activity mapping and ChIP assay defined the critical cis-regulatory element (CCRE) in the promoter region of Nfatc1, and also showed that the CCREs were directly associated with C/ebpα, which enhanced the promoter's activity. The deficiency of C/ebpα in osteoclasts completely blocked ovariectomy-induced bone loss, indicating that C/ebpα is a promising new target for the treatment of osteolytic diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| | - Guochun Zhu
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Jun Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham , Alabama 35294-2182, United States of America,Correspondence to: Yi-Ping Li, Department of Pathology, University of Alabama at Birmingham, SHEL 810, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2606, Fax: 205-975-4919, and Wei Chen, Department of Pathology, University of Alabama at Birmingham, SHEL 815, 1825 University Blvd, Birmingham, AL 35294-2182, USA, Tel: 205-975-2605, Fax: 205-975-4919,
| |
Collapse
|
18
|
Pyrin-only protein 2 limits inflammation but improves protection against bacteria. Nat Commun 2017; 8:15564. [PMID: 28580947 PMCID: PMC5512670 DOI: 10.1038/ncomms15564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
Pyrin domain-only proteins (POPs) are recently evolved, primate-specific proteins demonstrated in vitro as negative regulators of inflammatory responses. However, their in vivo function is not understood. Of the four known POPs, only POP2 is reported to regulate NF-κB-dependent transcription and multiple inflammasomes. Here we use a transgenic mouse-expressing POP2 controlled by its endogenous human promotor to study the immunological functions of POP2. Despite having significantly reduced inflammatory cytokine responses to LPS and bacterial infection, POP2 transgenic mice are more resistant to bacterial infection than wild-type mice. In a pulmonary tularaemia model, POP2 enhances IFN-γ production, modulates neutrophil numbers, improves macrophage functions, increases bacterial control and diminishes lung pathology. Thus, unlike other POPs thought to diminish innate protection, POP2 reduces detrimental inflammation while preserving and enhancing protective immunity. Our findings suggest that POP2 acts as a high-order regulator balancing cellular function and inflammation with broad implications for inflammation-associated diseases and therapeutic intervention. Pyrin-only proteins (POPs) are primate-specific negative regulators of inflammasome activation. Here the authors generate transgenic mice expressing POP2 under the control of the human promoter, and show that POP2 is important for balancing antibacterial inflammatory responses in vivo.
Collapse
|
19
|
Ghaffarizadeh A, Podgorski GJ, Flann NS. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation. Biosystems 2017; 155:29-41. [PMID: 28254369 DOI: 10.1016/j.biosystems.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/06/2016] [Accepted: 12/22/2016] [Indexed: 11/30/2022]
Abstract
The dynamics of gene regulatory networks (GRNs) guide cellular differentiation. Determining the ways regulatory genes control expression of their targets is essential to understand and control cellular differentiation. The way a regulatory gene controls its target can be expressed as a gene regulatory function. Manual derivation of these regulatory functions is slow, error-prone and difficult to update as new information arises. Automating this process is a significant challenge and the subject of intensive effort. This work presents a novel approach to discovering biologically plausible gene regulatory interactions that control cellular differentiation. This method integrates known cell type expression data, genetic interactions, and knowledge of the effects of gene knockouts to determine likely GRN regulatory functions. We employ a genetic algorithm to search for candidate GRNs that use a set of transcription factors that control differentiation within a lineage. Nested canalyzing functions are used to constrain the search space to biologically plausible networks. The method identifies an ensemble of GRNs whose dynamics reproduce the gene expression pattern for each cell type within a particular lineage. The method's effectiveness was tested by inferring consensus GRNs for myeloid and pancreatic cell differentiation and comparing the predicted gene regulatory interactions to manually derived interactions. We identified many regulatory interactions reported in the literature and also found differences from published reports. These discrepancies suggest areas for biological studies of myeloid and pancreatic differentiation. We also performed a study that used defined synthetic networks to evaluate the accuracy of the automated search method and found that the search algorithm was able to discover the regulatory interactions in these defined networks with high accuracy. We suggest that the GRN functions derived from the methods described here can be used to fill gaps in knowledge about regulatory interactions and to offer hypotheses for experimental testing of GRNs that control differentiation and other biological processes.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarizadeh
- Computer Science Department, Utah State University, 4205 Old Main Hill, Logan, UT 84322, United States.
| | - Gregory J Podgorski
- Biology Department, Utah State University, 5305 Old Main Hill, Logan, UT 84322, United States; Center for Integrated BioSystems, 4700 Old Main Hill, Logan, UT 84322, United States.
| | - Nicholas S Flann
- Computer Science Department, Utah State University, 4205 Old Main Hill, Logan, UT 84322, United States; Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109, United States; Synthetic Biomanufacturing Institute, 1780 N. Research Park Way, Suite 108, North Logan, UT 84341, United States.
| |
Collapse
|
20
|
Kong F, Saldarriaga OA, Spratt H, Osorio EY, Travi BL, Luxon BA, Melby PC. Transcriptional Profiling in Experimental Visceral Leishmaniasis Reveals a Broad Splenic Inflammatory Environment that Conditions Macrophages toward a Disease-Promoting Phenotype. PLoS Pathog 2017; 13:e1006165. [PMID: 28141856 PMCID: PMC5283737 DOI: 10.1371/journal.ppat.1006165] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/03/2017] [Indexed: 11/23/2022] Open
Abstract
Visceral Leishmaniasis (VL), caused by the intracellular protozoan Leishmania donovani, is characterized by relentlessly increasing visceral parasite replication, cachexia, massive splenomegaly, pancytopenia and ultimately death. Progressive disease is considered to be due to impaired effector T cell function and/or failure of macrophages to be activated to kill the intracellular parasite. In previous studies, we used the Syrian hamster (Mesocricetus auratus) as a model because it mimics the progressive nature of active human VL. We demonstrated previously that mixed expression of macrophage-activating (IFN-γ) and regulatory (IL-4, IL-10, IL-21) cytokines, parasite-induced expression of macrophage arginase 1 (Arg1), and decreased production of nitric oxide are key immunopathologic factors. Here we examined global changes in gene expression to define the splenic environment and phenotype of splenic macrophages during progressive VL. We used RNA sequencing coupled with de novo transcriptome assembly, because the Syrian hamster does not have a fully sequenced and annotated reference genome. Differentially expressed transcripts identified a highly inflammatory spleen environment with abundant expression of type I and type II interferon response genes. However, high IFN-γ expression was ineffective in directing exclusive M1 macrophage polarization, suppressing M2-associated gene expression, and restraining parasite replication and disease. While many IFN-inducible transcripts were upregulated in the infected spleen, fewer were induced in splenic macrophages in VL. Paradoxically, IFN-γ enhanced parasite growth and induced the counter-regulatory molecules Arg1, Ido1 and Irg1 in splenic macrophages. This was mediated, at least in part, through IFN-γ-induced activation of STAT3 and expression of IL-10, which suggests that splenic macrophages in VL are conditioned to respond to macrophage activation signals with a counter-regulatory response that is ineffective and even disease-promoting. Accordingly, inhibition of STAT3 activation led to a reduced parasite load in infected macrophages. Thus, the STAT3 pathway offers a rational target for adjunctive host-directed therapy to interrupt the pathogenesis of VL. Visceral leishmaniasis (VL) is a neglected parasitic disease that is caused by the intracellular protozoan Leishmania donovani. Patients with this disease suffer from muscle wasting, enlargement of the spleen, reduced blood counts and ultimately will die without treatment. Progressive disease is considered to be due to impaired cellular immunity, with T cell or macrophage dysfunction, or both. We studied the Syrian hamster as an infection model because it mimics the progressive nature of human disease. We examined global changes in gene expression in the spleen and splenic macrophages during experimental VL and identified a highly inflammatory spleen environment with abundant expression of interferon and interferon-response genes that would be expected to control the infection. However, the high level of IFN-γ expression was ineffective in mediating a protective macrophage response, restraining parasite replication and halting progression of disease. We found that IFN-γ itself stimulated parasite growth in splenic macrophages and induced expression of counter-regulatory molecules, which may paradoxically make the host more susceptible. These data give insights into the nature of the immune response that promotes the infection, and identifies potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fanping Kong
- Bioinformatics Program, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Omar A. Saldarriaga
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi Spratt
- Bioinformatics Program, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (HS)
| | - E. Yaneth Osorio
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L. Travi
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruce A. Luxon
- Bioinformatics Program, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter C. Melby
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (HS)
| |
Collapse
|
21
|
miR-181a Induces Macrophage Polarized to M2 Phenotype and Promotes M2 Macrophage-mediated Tumor Cell Metastasis by Targeting KLF6 and C/EBPα. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e368. [PMID: 27673564 PMCID: PMC5056994 DOI: 10.1038/mtna.2016.71] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
Abstract
Macrophages can acquire a variety of polarization status and functions: classically activated macrophages (M1 macrophages); alternatively activated macrophages (M2 macrophages). However, the molecular basis of the process is still unclear. Here, this study addresses that microRNA-181a (miR-181a) is a key molecule controlling macrophage polarization. We found that miR-181a is overexpressed in M2 macrophages than in M1 macrophages. miR-181a expression was decreased when M2 phenotype converted to M1, whereas it increased when M1 phenotype converted to M2. Overexpression of miR-181a in M1 macrophages diminished M1 phenotype expression while promoting polarization to the M2 phenotype. In contrast, knockdown of miR-181a in M2 macrophages promoted M1 polarization and diminished M2 phenotype expression. Mechanistically, Bioinformatic analysis revealed that Kruppel-like factor 6 (KLF6) and CCAAT/enhancer binding protein-α (C/EBPα) is a potential target of miR-181a and luciferase assay confirmed that KLF6 and C/EBPα translation is suppressed by miR-181a through interaction with the 3′UTR of KLF6 and C/EBPα mRNA. Further analysis showed that induction of miR-181a suppressed KLF6 and C/EBPα protein expression. Importantly, miR-181a also diminishes M2 macrophages-mediated migration and invasion capacity of tumor cells. Collectively, our results suggest that miR-181a plays a significant role in regulating macrophage polarization through directly target KLF6 and C/EBPα.
Collapse
|
22
|
Role of C/EBP-α in Adriamycin-induced podocyte injury. Sci Rep 2016; 6:33520. [PMID: 27644413 PMCID: PMC5028749 DOI: 10.1038/srep33520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/30/2016] [Indexed: 01/27/2023] Open
Abstract
Podocytes are terminally differentiated epithelial cells in the kidney glomeruli that act as a key component of the glomerular filtration barrier. Although the inciting injury to the podocyte may vary between various glomerular diseases, the inevitable consequence of podocyte injury results in their loss, leading to progressive kidney disease. Here, we report that the expression of CCAAT/enhancer binding protein-α (C/EBP-α), a transcription factor known to interact with and activate PPAR-γ and NF-κB, is suppressed in the glomerular cells, particularly in podocytes, in human kidneys with focal segmental glomerulosclerosis. Genetic ablation of C/EBP-α in podocytes resulted in increased proteinuria, increased podocyte foot process effacement, and to decreased podocyte number in the setting of Adriamycin (ADR)-induced nephropathy. Overexpression of C/EBP-α in human podocytes in vitro led to an inhibition of MCP-1 and IL-6 expression in response to TNF-α and IL-1β treatments. Conversely, augmented production of MCP-1 and IL-6 was observed in the glomeruli of C/EBP-α knockout mice and was associated increased infiltration of macrophages in vivo. Together, our data suggest that C/EBP-α mediates anti-inflammatory effects in podocytes to confer protection against podocyte injury and loss that may contribute to worsening glomerulosclerosis.
Collapse
|
23
|
Wu L, Li M, Wang J, Wu F. Minimum steering node set of complex networks and its applications to biomolecular networks. IET Syst Biol 2016; 10:116-23. [DOI: 10.1049/iet-syb.2015.0077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Lin Wu
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonCanadaSK S7N 5A9
| | - Min Li
- School of Information Science and EngineeringCentral South UniversityChangshaHunan410083People's Republic of China
| | - Jianxin Wang
- School of Information Science and EngineeringCentral South UniversityChangshaHunan410083People's Republic of China
| | - Fang‐Xiang Wu
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonCanadaSK S7N 5A9
- School of Mathematical SciencesNankai UniversityTianjin300071People's Republic of China
| |
Collapse
|
24
|
Katzenback BA, Katakura F, Belosevic M. Goldfish (Carassius auratus L.) as a model system to study the growth factors, receptors and transcription factors that govern myelopoiesis in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:68-85. [PMID: 26546240 DOI: 10.1016/j.dci.2015.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
The process of myeloid cell development (myelopoiesis) in fish has mainly been studied in three cyprinid species: zebrafish (Danio rerio), ginbuna carp (Carassius auratus langsdorfii) and goldfish (C. auratus, L.). Our studies on goldfish myelopoiesis have utilized in vitro generated primary kidney macrophage (PKM) cultures and isolated primary kidney neutrophils (PKNs) cultured overnight to study the process of macrophage (monopoiesis) and neutrophil (granulopoiesis) development and the key growth factors, receptors, and transcription factors that govern this process in vitro. The PKM culture system is unique in that all three subpopulations of macrophage development, namely progenitor cells, monocytes, and mature macrophages, are simultaneously present in culture unlike mammalian systems, allowing for the elucidation of the complex mixture of cytokines that regulate progressive and selective macrophage development from progenitor cells to fully functional mature macrophages in vitro. Furthermore, we have been able to extend our investigations to include the development of erythrocytes (erythropoiesis) and thrombocytes (thrombopoiesis) through studies focusing on the progenitor cell population isolated from the goldfish kidney. Herein, we review the in vitro goldfish model systems focusing on the characteristics of cell sub-populations, growth factors and their receptors, and transcription factors that regulate goldfish myelopoiesis.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Fumihiko Katakura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
25
|
Bertolino E, Reinitz J, Manu. The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification. Dev Biol 2016; 413:128-44. [PMID: 26945717 DOI: 10.1016/j.ydbio.2016.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/13/2016] [Accepted: 02/15/2016] [Indexed: 11/25/2022]
Abstract
C/EBPα plays an instructive role in the macrophage-neutrophil cell-fate decision and its expression is necessary for neutrophil development. How Cebpa itself is regulated in the myeloid lineage is not known. We decoded the cis-regulatory logic of Cebpa, and two other myeloid transcription factors, Egr1 and Egr2, using a combined experimental-computational approach. With a reporter design capable of detecting both distal enhancers and silencers, we analyzed 46 putative cis-regulatory modules (CRMs) in cells representing myeloid progenitors, and derived early macrophages or neutrophils. In addition to novel enhancers, this analysis revealed a surprisingly large number of silencers. We determined the regulatory roles of 15 potential transcriptional regulators by testing 32,768 alternative sequence-based transcriptional models against CRM activity data. This comprehensive analysis allowed us to infer the cis-regulatory logic for most of the CRMs. Silencer-mediated repression of Cebpa was found to be effected mainly by TFs expressed in non-myeloid lineages, highlighting a previously unappreciated contribution of long-distance silencing to hematopoietic lineage resolution. The repression of Cebpa by multiple factors expressed in alternative lineages suggests that hematopoietic genes are organized into densely interconnected repressive networks instead of hierarchies of mutually repressive pairs of pivotal TFs. More generally, our results demonstrate that de novo cis-regulatory dissection is feasible on a large scale with the aid of transcriptional modeling. Current address: Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA.
Collapse
Affiliation(s)
- Eric Bertolino
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - John Reinitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Statistics, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Manu
- Department of Ecology and Evolution and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA.
| |
Collapse
|
26
|
Staitieh BS, Fan X, Neveu W, Guidot DM. Nrf2 regulates PU.1 expression and activity in the alveolar macrophage. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1086-93. [PMID: 25840997 PMCID: PMC4437011 DOI: 10.1152/ajplung.00355.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/27/2015] [Indexed: 12/30/2022] Open
Abstract
Alveolar macrophage (AM) immune function depends on the activation of the transcription factor PU.1 by granulocyte macrophage colony-stimulating factor. We have determined that chronic alcohol ingestion dampens PU.1 signaling via an unknown zinc-dependent mechanism; specifically, although PU.1 is not known to be a zinc-dependent transcription factor, zinc treatment reversed alcohol-mediated dampening of PU.1 signaling. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a zinc-dependent basic leucine zipper protein essential for antioxidant defenses, is also impaired by chronic alcohol ingestion and enhanced by zinc treatment. We hypothesized that the response of PU.1 to zinc treatment may result from the action of Nrf2 on PU.1. We first performed Nrf2/PU.1 protein coimmunoprecipitation on a rat AM cell line (NR8383) and found no evidence of protein-protein interactions. We then found evidence of increased Nrf2 binding to the PU.1 promoter region by chromatin immunoprecipitation. We next activated Nrf2 using either sulforaphane or an overexpression vector and inhibited Nrf2 with silencing RNA to determine whether Nrf2 could actively regulate PU.1. Nrf2 activation increased protein expression of both factors as well as gene expression of their respective downstream effectors, NAD(P)H dehydrogenase[quinone] 1 (NQO1) and cluster of differentiation antigen-14 (CD14). In contrast, Nrf2 silencing decreased the expression of both proteins, as well as gene expression of their effectors. Activating and inhibiting Nrf2 in primary rat AMs resulted in similar effects. Taken together, these findings suggest that Nrf2 regulates the expression and activity of PU.1 and that antioxidant response and immune activation are coordinately regulated within the AM.
Collapse
Affiliation(s)
- Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Xian Fan
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Wendy Neveu
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
27
|
Identification of transcription factor AML-1 binding site upstream of human cytomegalovirus UL111A gene. PLoS One 2015; 10:e0117773. [PMID: 25658598 PMCID: PMC4320089 DOI: 10.1371/journal.pone.0117773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/30/2014] [Indexed: 11/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) interleukin-10 (hcmvIL-10), encoded by HCMV UL111A gene, is a homolog of human IL-10. It exerts immunomodulatory effects that allow HCMV to evade host defense mechanisms. However, the exact mechanism underlying the regulation of hcmvIL-10 expression is not well understood. The transcription factor acute myeloid leukemia 1 (AML-1) plays an important role in the regulation of various genes involved in the differentiation of hematopoietic lineages. A putative AML-1 binding site is present within the upstream regulatory region (URR) of UL111A gene. To provide evidence that AML-1 is involved in regulating UL111A gene expression, we examined the interaction of AML-1 with the URR of UL111A in HCMV-infected human monocytic THP-1 cells using a chromatin immunoprecipitation assay. HcmvIL-10 transcription was detected in differentiated THP-1 cells, but not in undifferentiated ones. Furthermore, the URR of UL111A showed a higher intensity of AML-1 binding, a higher level of histone H3 acetyl-K9, but a lower level of histone H3 dimethyl-K9 in differentiated THP-1 cells than undifferentiated cells. Down-regulation of AML1 by RNA interference decreased the expression of the UL111A gene. Our results suggest that AML-1 may contribute to the epigenetic regulation of UL111A gene via histone modification in HCMV-infected differentiated THP-1 cells. This finding could be useful for the development of new anti-viral therapies.
Collapse
|
28
|
Satoh JI, Asahina N, Kitano S, Kino Y. A Comprehensive Profile of ChIP-Seq-Based PU.1/Spi1 Target Genes in Microglia. GENE REGULATION AND SYSTEMS BIOLOGY 2014; 8:127-39. [PMID: 25574134 PMCID: PMC4262374 DOI: 10.4137/grsb.s19711] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/02/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023]
Abstract
Microglia are resident mononuclear phagocytes that play a principal role in the maintenance of normal tissue homeostasis in the central nervous system (CNS). Microglia, rapidly activated in response to proinflammatory stimuli, are accumulated in brain lesions of neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. The E26 transformation-specific (ETS) family transcription factor PU.1/Spi1 acts as a master regulator of myeloid and lymphoid development. PU.1-deficient mice show a complete loss of microglia, indicating that PU.1 plays a pivotal role in microgliogenesis. However, the comprehensive profile of PU.1/Spi1 target genes in microglia remains unknown. By analyzing a chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) dataset numbered SRP036026 with the Strand NGS program, we identified 5,264 Spi1 target protein-coding genes in BV2 mouse microglial cells. They included Spi1, Irf8, Runx1, Csf1r, Csf1, Il34, Aif1 (Iba1), Cx3cr1, Trem2, and Tyrobp. By motif analysis, we found that the PU-box consensus sequences were accumulated in the genomic regions surrounding ChIP-Seq peaks. By using pathway analysis tools of bioinformatics, we found that ChIP-Seq-based Spi1 target genes show a significant relationship with diverse pathways essential for normal function of monocytes/macrophages, such as endocytosis, Fc receptor-mediated phagocytosis, and lysosomal degradation. These results suggest that PU.1/Spi1 plays a crucial role in regulation of the genes relevant to specialized functions of microglia. Therefore, aberrant regulation of PU.1 target genes might contribute to the development of neurodegenerative diseases with accumulation of activated microglia.
Collapse
Affiliation(s)
- Jun-Ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Naohiro Asahina
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Shouta Kitano
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
29
|
Regression analysis of combined gene expression regulation in acute myeloid leukemia. PLoS Comput Biol 2014; 10:e1003908. [PMID: 25340776 PMCID: PMC4207489 DOI: 10.1371/journal.pcbi.1003908] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/13/2014] [Indexed: 12/04/2022] Open
Abstract
Gene expression is a combinatorial function of genetic/epigenetic factors such as copy number variation (CNV), DNA methylation (DM), transcription factors (TF) occupancy, and microRNA (miRNA) post-transcriptional regulation. At the maturity of microarray/sequencing technologies, large amounts of data measuring the genome-wide signals of those factors became available from Encyclopedia of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA). However, there is a lack of an integrative model to take full advantage of these rich yet heterogeneous data. To this end, we developed RACER (Regression Analysis of Combined Expression Regulation), which fits the mRNA expression as response using as explanatory variables, the TF data from ENCODE, and CNV, DM, miRNA expression signals from TCGA. Briefly, RACER first infers the sample-specific regulatory activities by TFs and miRNAs, which are then used as inputs to infer specific TF/miRNA-gene interactions. Such a two-stage regression framework circumvents a common difficulty in integrating ENCODE data measured in generic cell-line with the sample-specific TCGA measurements. As a case study, we integrated Acute Myeloid Leukemia (AML) data from TCGA and the related TF binding data measured in K562 from ENCODE. As a proof-of-concept, we first verified our model formalism by 10-fold cross-validation on predicting gene expression. We next evaluated RACER on recovering known regulatory interactions, and demonstrated its superior statistical power over existing methods in detecting known miRNA/TF targets. Additionally, we developed a feature selection procedure, which identified 18 regulators, whose activities clustered consistently with cytogenetic risk groups. One of the selected regulators is miR-548p, whose inferred targets were significantly enriched for leukemia-related pathway, implicating its novel role in AML pathogenesis. Moreover, survival analysis using the inferred activities identified C-Fos as a potential AML prognostic marker. Together, we provided a novel framework that successfully integrated the TCGA and ENCODE data in revealing AML-specific regulatory program at global level. Recent studies from The Cancer Genome Atlas (TCGA) showed that most Acute Myeloid Leukemia (AML) patients lack DNA mutations, which can potentially explain the tumorigenesis, and motivated a systematic approach to elucidate aberrant molecular signatures at the transcriptional and epigenetic levels. Using recently available data from two large consortia namely Encyclopedia of DNA Elements and TCGA, we developed a novel computational model to infer the regulatory activities of the expression regulators and their target genes in AML samples. Our analysis revealed 18 regulators whose dysregulation contributed significantly to explaining the global mRNA expression changes. Encouragingly, the inferred activities of these regulatory features followed a consistent pattern with cytogenetic phenotypes of the AML patients. Among these regulators, we identified microRNA hsa-miR-548p, whose regulatory relationships with leukemia-related genes including YY1 suggest its novel role in AML pathogenesis. Additionally, we discovered that the inferred activities of transcription factor C-Fos can be used as a prognostic marker to characterize survival rate of the AML patients. Together, we demonstrated an effective model that can integrate useful information from a large amount of heterogeneous data to dissect regulatory effects. Furthermore, the novel biological findings from this study may be constructive to future experimental research in AML.
Collapse
|
30
|
BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways. Blood 2014; 124:393-402. [PMID: 24894772 DOI: 10.1182/blood-2014-02-556993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling regulates early hematopoietic development, proceeding from mesoderm patterning through the progressive commitment and differentiation of progenitor cells. The BMP pathway signals largely through receptor-mediated activation of Mothers Against Decapentaplegic homolog (SMAD) proteins, although alternate pathways are modulated through various components of mitogen-activated protein kinase (MAPK) signaling. Using a conditional, short hairpin RNA (shRNA)-based knockdown system in the context of differentiating embryonic stem cells (ESCs), we demonstrated previously that Smad1 promotes hemangioblast specification, but then subsequently restricts primitive progenitor potential. Here we show that co-knockdown of Smad5 restores normal progenitor potential of Smad1-depleted cells, suggesting opposing functions for Smad1 and Smad5. This balance was confirmed by cotargeting Smad1/5 with a specific chemical antagonist, LDN193189 (LDN). However, we discovered that LDN treatment after hemangioblast commitment enhanced primitive myeloid potential. Moreover, inhibition with LDN (but not SMAD depletion) increased expression of Delta-like ligands Dll1 and Dll3 and NOTCH activity; abrogation of NOTCH activity restored LDN-enhanced myeloid potential back to normal, corresponding with expression levels of the myeloid master regulator, C/EBPα. LDN but not SMAD activity was also associated with activation of the p38MAPK pathway, and blocking this pathway was sufficient to enhance myelopoiesis. Therefore, NOTCH and p38MAPK pathways balance primitive myeloid progenitor output downstream of the BMP pathway.
Collapse
|
31
|
Marchwicka A, Cebrat M, Sampath P, Snieżewski L, Marcinkowska E. Perspectives of differentiation therapies of acute myeloid leukemia: the search for the molecular basis of patients' variable responses to 1,25-dihydroxyvitamin d and vitamin d analogs. Front Oncol 2014; 4:125. [PMID: 24904835 PMCID: PMC4034350 DOI: 10.3389/fonc.2014.00125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022] Open
Abstract
The concept of differentiation therapy of cancer is ~40 years old. Despite many encouraging results obtained in laboratories, both in vitro and in vivo studies, the only really successful clinical application of differentiation therapy was all-trans-retinoic acid (ATRA)-based therapy of acute promyelocytic leukemia (APL). ATRA, which induces granulocytic differentiation of APL leukemic blasts, has revolutionized the therapy of this disease by converting it from a fatal to a curable one. However, ATRA does not work for other acute myeloid leukemias (AMLs). Since 1,25-dihydroxyvitamin D3 (1,25D) is capable of inducing monocytic differentiation of leukemic cells, the idea of treating other AMLs with vitamin D analogs (VDAs) was widely accepted. Also, some types of solid cancers responded to in vitro applied VDAs, and hence it was postulated that VDAs can be used in many clinical applications. However, early clinical trials in which cancer patients were treated either with 1,25D or with VDAs, did not lead to conclusive results. In order to search for a molecular basis of such unpredictable responses of AML patients toward VDAs, we performed ex vivo experiments using patient’s blast cells. Experiments were also performed using 1,25D-responsive and 1,25D-non-responsive cell lines, to study their mechanisms of resistance toward 1,25D-induced differentiation. We found that one of the possible reasons might be due to a very low expression level of vitamin D receptor (VDR) mRNA in resistant cells, which can be increased by exposing the cells to ATRA. Our considerations concerning the molecular mechanism behind the low VDR expression and its regulation by ATRA are reported in this paper.
Collapse
Affiliation(s)
| | - Małgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Science , Wroclaw , Poland
| | - Preetha Sampath
- Faculty of Biotechnology, University of Wroclaw , Wroclaw , Poland
| | - Lukasz Snieżewski
- Laboratory of Molecular and Cellular Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Science , Wroclaw , Poland
| | - Ewa Marcinkowska
- Faculty of Biotechnology, University of Wroclaw , Wroclaw , Poland
| |
Collapse
|
32
|
Pten regulates homeostasis and inflammation-induced migration of myelocytes in zebrafish. J Hematol Oncol 2014; 7:17. [PMID: 24598081 PMCID: PMC4015859 DOI: 10.1186/1756-8722-7-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/27/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Loss of the tumor suppressor phosphatase and tensin homolog (PTEN) is frequently observed in hematopoietic malignancies. Although PTEN has been implicated in maintaining the quiescence of hematopoietic stem cells (HSCs), its role in hematopoiesis during ontogeny remains largely unexplored. METHODS The expression of hematopoietic marker genes was analyzed via whole mount in situ hybridization assay in ptena and ptenb double mutant zebrafish. The embryonic myelopoiesis was characterized by living imaging and whole mount in situ immunofluorescence with confocal microscopy, as well as cell-specific chemical staining for neutrophils and macrophages. Analyses of the involved signaling pathway were carried out by inhibitor treatment and mRNA injection. RESULTS Pten-deficient zebrafish embryos exhibited a strikingly increased number of myeloid cells, which were further characterized as being immune deficient. In accordance with this finding, the inhibition of phosphoinositide 3-kinase (PI3K) or the mechanistic target of rapamycin (mTOR) corrected the expansive myelopoiesis in the pten-deficient embryos. Further mechanistic studies revealed that the expression of cebpa, a critical transcription factor in myeloid precursor cells, was downregulated in the pten-deficient myeloid cells, whereas the injection of cebpa mRNA markedly ameliorated the dysmyelopoiesis induced by the loss of pten. CONCLUSIONS Our data provide in vivo evidence that definitive myelopoiesis in zebrafish is critically regulated by pten via the elevation of cebpa expression.
Collapse
|
33
|
Huber R, Pietsch D, Günther J, Welz B, Vogt N, Brand K. Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks. Cell Mol Life Sci 2014; 71:63-92. [PMID: 23525665 PMCID: PMC11113479 DOI: 10.1007/s00018-013-1322-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 02/12/2013] [Accepted: 03/07/2013] [Indexed: 12/26/2022]
Abstract
Monocyte/macrophages are important players in orchestrating the immune response as well as connecting innate and adaptive immunity. Myelopoiesis and monopoiesis are characterized by the interplay between expansion of stem/progenitor cells and progression towards further developed (myelo)monocytic phenotypes. In response to a variety of differentiation-inducing stimuli, various prominent signaling pathways are activated. Subsequently, specific transcription factors are induced, regulating cell proliferation and maturation. This review article focuses on the integration of signaling modules and transcriptional networks involved in the determination of monocytic differentiation.
Collapse
Affiliation(s)
- René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany,
| | | | | | | | | | | |
Collapse
|
34
|
Gautam M, Mathur A, Khan MA, Majumdar SS, Rai U. Transcriptome analysis of spermatogenically regressed, recrudescent and active phase testis of seasonally breeding wall lizards Hemidactylus flaviviridis. PLoS One 2013; 8:e58276. [PMID: 23536792 PMCID: PMC3594293 DOI: 10.1371/journal.pone.0058276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/01/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Reptiles are phylogenically important group of organisms as mammals have evolved from them. Wall lizard testis exhibits clearly distinct morphology during various phases of a reproductive cycle making them an interesting model to study regulation of spermatogenesis. Studies on reptile spermatogenesis are negligible hence this study will prove to be an important resource. METHODOLOGY/PRINCIPAL FINDINGS Histological analyses show complete regression of seminiferous tubules during regressed phase with retracted Sertoli cells and spermatognia. In the recrudescent phase, regressed testis regain cellular activity showing presence of normal Sertoli cells and developing germ cells. In the active phase, testis reaches up to its maximum size with enlarged seminiferous tubules and presence of sperm in seminiferous lumen. Total RNA extracted from whole testis of regressed, recrudescent and active phase of wall lizard was hybridized on Mouse Whole Genome 8×60 K format gene chip. Microarray data from regressed phase was deemed as control group. Microarray data were validated by assessing the expression of some selected genes using Quantitative Real-Time PCR. The genes prominently expressed in recrudescent and active phase testis are cytoskeleton organization GO 0005856, cell growth GO 0045927, GTpase regulator activity GO: 0030695, transcription GO: 0006352, apoptosis GO: 0006915 and many other biological processes. The genes showing higher expression in regressed phase belonged to functional categories such as negative regulation of macromolecule metabolic process GO: 0010605, negative regulation of gene expression GO: 0010629 and maintenance of stem cell niche GO: 0045165. CONCLUSION/SIGNIFICANCE This is the first exploratory study profiling transcriptome of three drastically different conditions of any reptilian testis. The genes expressed in the testis during regressed, recrudescent and active phase of reproductive cycle are in concordance with the testis morphology during these phases. This study will pave the way for deeper insight into regulation and evolution of gene regulatory mechanisms in spermatogenesis.
Collapse
Affiliation(s)
- Mukesh Gautam
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Amitabh Mathur
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Meraj Alam Khan
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Umesh Rai
- Comparative Immuno-Endocrinology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
35
|
Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 2012; 61:91-103. [PMID: 22653784 DOI: 10.1002/glia.22363] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are a class of small (∼22 nucleotides) noncoding RNAs involved in the regulation of gene expression at the post-translational level. It is estimated that 30-90% of human genes are regulated by miRNAs, which makes these molecules of great importance for cell growth, activation, and differentiation. Microglia is CNS-resident cells of a myeloid lineage that play an important role in immune surveillance and are actively involved in many neurologic pathologies. Although the exact origin of microglia remains enigmatic, it is established that primitive macrophages from a yolk sac populate the brain and spinal cord in normal conditions throughout development. During various pathological events such as neuroinflammation, bone marrow derived myeloid cells also migrate into the CNS. Within the CNS, both primitive macrophages from the yolk sac and bone marrow derived myeloid cells acquire a specific phenotype upon interaction with other cell types within the CNS microenvironment. The factors that drive differentiation of progenitors into microglia and control the state of activation of microglia and bone marrow-derived myeloid cells within the CNS are not well understood. In this review we will summarize the role of miRNAs during activation and differentiation of myeloid cells. The role of miR-124 in the adaptation of microglia and macrophages to the CNS microenvironment will be further discussed. We will also summarize the role of miRNAs as modulators of activation of microglia and microphages. Finally, we will describe the role of miR-155 and miR-124 in the polarization of macrophages towards classically and alternatively activated phenotypes.
Collapse
Affiliation(s)
- Eugene D Ponomarev
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
36
|
Manea A, Manea SA, Florea IC, Luca CM, Raicu M. Positive regulation of NADPH oxidase 5 by proinflammatory-related mechanisms in human aortic smooth muscle cells. Free Radic Biol Med 2012; 52:1497-507. [PMID: 22348975 DOI: 10.1016/j.freeradbiomed.2012.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 11/30/2022]
Abstract
NADPH oxidase Nox5 subtype expression is significantly increased in vascular smooth muscle cells (SMCs) underlying fibro-lipid atherosclerotic lesions. The mechanisms that up-regulate Nox5 are not understood. Consequently, we characterized the promoter of the human Nox5 gene and investigated the role of various proinflammatory transcription factors in the regulation of Nox5 in human aortic SMCs. The Nox5 promoter was cloned in the pGL3 basic reporter vector. Functional analysis was done employing 5' deletion mutants to identify the sequences necessary to effect high levels of expression in SMCs. Transcriptional initiation site was detected by rapid amplification of the 5'-cDNA ends. In silico analysis indicated the existence of typical NF-kB, AP-1, and STAT1/STAT3 sites. Transient overexpression of p65/NF-kB, c-Jun/AP-1, or STAT1/STAT3 increased significantly the Nox5 promoter activity. Chromatin immunoprecipitation demonstrated the physical interaction of c-Jun/AP-1 and STAT1/STAT3 proteins with the Nox5 promoter. Lucigenin-enhanced chemiluminescence, real-time PCR, and Western blot assays showed that pharmacological inhibition and the silencing of p65/NF-kB, c-Jun/AP-1, or STAT1/STAT3 reduced significantly the interferon γ-induced Ca(2+)-dependent Nox activity and Nox5 expression. Up-regulated Nox5 correlated with increases in intracellular Ca(2+), an essential condition for Nox5 activity. NF-kB, AP-1, and STAT1/STAT3 are important regulators of Nox5 in SMCs by either direct or indirect mechanisms. Overexpressed Nox5 may generate free radicals in excess, further contributing to SMCs dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Adrian Manea
- Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | | | | | | | | |
Collapse
|
37
|
Kinase control prevents HIV-1 reactivation in spite of high levels of induced NF-κB activity. J Virol 2012; 86:4548-58. [PMID: 22345467 DOI: 10.1128/jvi.06726-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite its clinical importance, the molecular biology of HIV-1 latency control is at best partially understood, and the literature remains conflicting. The most recent description that latent HIV-1 is integrated into actively expressed host genes has further confounded the situation. This lack of molecular understanding complicates our efforts to identify therapeutic compounds or strategies that could reactivate latent HIV-1 infection in patients, a prerequisite for the eradication of HIV-1 infection. Currently, many therapeutic development efforts operate under the assumption that a restrictive histone code could govern latent infection and that either dissipation of the histone-based restrictions or NF-κB activation could be sufficient to trigger HIV-1 reactivation. We here present data that suggest an additional, higher level of molecular control. During a high-content drug screening effort, we identified AS601245 as a potent inhibitor of HIV-1 reactivation in latently infected primary T cells and T cell lines. In either system, AS601245 inhibited HIV-1 reactivation despite high levels of induced NF-κB activation. This finding suggests the presence of a gatekeeper kinase activity that controls latent HIV-1 infection even in the presence of high levels of NF-κB activity. Potential therapeutic stimuli that do not target this gatekeeper kinase will likely fail to trigger efficient system-wide HIV-1 reactivation.
Collapse
|
38
|
Schütte J, Moignard V, Göttgens B. Establishing the stem cell state: insights from regulatory network analysis of blood stem cell development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:285-95. [PMID: 22334489 DOI: 10.1002/wsbm.1163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transcription factors (TFs) have long been recognized as powerful regulators of cell-type identity and differentiation. As TFs function as constituents of regulatory networks, identification and functional characterization of key interactions within these wider networks will be required to understand how TFs exert their powerful biological functions. The formation of blood cells (hematopoiesis) represents a widely used model system for the study of cellular differentiation. Moreover, specific TFs or groups of TFs have been identified to control the various cell fate choices that must be made when blood stem cells differentiate into more than a dozen distinct mature blood lineages. Because of the relative ease of accessibility, the hematopoietic system represents an attractive experimental system for the development of regulatory network models. Here, we review the modeling efforts carried out to date, which have already provided new insights into the molecular control of blood cell development. We also explore potential areas of future study such as the need for new high-throughput technologies and a focus on studying dynamic cellular systems. Many leukemias arise as the result of mutations that cause transcriptional dysregulation, thus suggesting that a better understanding of transcriptional control mechanisms in hematopoiesis is of substantial biomedical relevance. Moreover, lessons learned from regulatory network analysis in the hematopoietic system are likely to inform research on less experimentally tractable tissues.
Collapse
Affiliation(s)
- Judith Schütte
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
39
|
Abstract
C/EBPα (CEBPA) is mutated in approximately 8 % of AML in both familial and sporadic AML and, with FLT3 and NPM1, has received most attention as a predictive marker of outcome in patients with normal karyotype disease. Mutations clustering to either the N- or C-terminal (N-and C-ter) portions of the protein have different consequences on the protein function. In familial cases the N-ter form is inherited with patients exhibiting long latency period before the onset of overt disease, typically with the acquisition of a C-ter mutation. Despite the essential insights murine models provide the functional consequences of wild-type C/EBPα in human hematopoiesis and how different mutations are involved in AML development have received less attention. Our data underline the critical role of C/EBPα in human hematopoiesis and demonstrate that C/EBPα mutations (alone or in combination) are insufficient to convert normal human hematopoietic stem/progenitors (HSC/HPCs) into leukemic initiating cells, although individually each altered normal hematopoiesis. It provides the first insight into the effects of N- and C-terminal mutations acting alone and to the combined effects of N/C double mutants. Our results mimicked closely what happens in CEBPA mutated patients.
Collapse
|
40
|
Sakamoto KM. Editorial: granulopoiesis versus monopoiesis: a consequence of transcription factors dancing with the right partners. J Leukoc Biol 2011; 90:637-8. [PMID: 21965310 DOI: 10.1189/jlb.0411187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Krumsiek J, Marr C, Schroeder T, Theis FJ. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS One 2011; 6:e22649. [PMID: 21853041 PMCID: PMC3154193 DOI: 10.1371/journal.pone.0022649] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022] Open
Abstract
Hematopoiesis is an ideal model system for stem cell biology with advanced experimental access. A systems view on the interactions of core transcription factors is important for understanding differentiation mechanisms and dynamics. In this manuscript, we construct a Boolean network to model myeloid differentiation, specifically from common myeloid progenitors to megakaryocytes, erythrocytes, granulocytes and monocytes. By interpreting the hematopoietic literature and translating experimental evidence into Boolean rules, we implement binary dynamics on the resulting 11-factor regulatory network. Our network contains interesting functional modules and a concatenation of mutual antagonistic pairs. The state space of our model is a hierarchical, acyclic graph, typifying the principles of myeloid differentiation. We observe excellent agreement between the steady states of our model and microarray expression profiles of two different studies. Moreover, perturbations of the network topology correctly reproduce reported knockout phenotypes in silico. We predict previously uncharacterized regulatory interactions and alterations of the differentiation process, and line out reprogramming strategies.
Collapse
Affiliation(s)
- Jan Krumsiek
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, München, Germany
| | - Carsten Marr
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, München, Germany
| | - Timm Schroeder
- Institute of Stem Cell Research, Helmholtz Zentrum München, München, Germany
| | - Fabian J. Theis
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, München, Germany
- Department of Mathematics, Technische Universität München, München, Germany
- * E-mail:
| |
Collapse
|
42
|
Protein disulfide isomerase blocks CEBPA translation and is up-regulated during the unfolded protein response in AML. Blood 2011; 117:5931-40. [PMID: 21471526 DOI: 10.1182/blood-2010-08-304485] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deregulation of the myeloid key transcription factor CEBPA is a common event in acute myeloid leukemia (AML). We previously reported that the chaperone calreticulin is activated in subgroups of AML patients and that calreticulin binds to the stem loop region of the CEBPA mRNA, thereby blocking CEBPA translation. In this study, we screened for additional CEBPA mRNA binding proteins and we identified protein disulfide isomerase (PDI), an endoplasmic reticulum (ER) resident protein, to bind to the CEBPA mRNA stem loop region. We found that forced PDI expression in myeloid leukemic cells in fact blocked CEBPA translation, but not transcription, whereas abolishing PDI function restored CEBPA protein. In addition, PDI protein displayed direct physical interaction with calreticulin. Induction of ER stress in leukemic HL60 and U937 cells activated PDI expression, thereby decreasing CEBPA protein levels. Finally, leukemic cells from 25.4% of all AML patients displayed activation of the unfolded protein response as a marker for ER stress, and these patients also expressed significantly higher PDI levels. Our results indicate a novel role of PDI as a member of the ER stress-associated complex mediating blocked CEBPA translation and thereby suppressing myeloid differentiation in AML patients with activated unfolded protein response (UPR).
Collapse
|
43
|
Kreisel D, Sugimoto S, Tietjens J, Zhu J, Yamamoto S, Krupnick AS, Carmody RJ, Gelman AE. Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis. J Clin Invest 2010; 121:265-76. [PMID: 21157041 DOI: 10.1172/jci42596] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 10/27/2010] [Indexed: 12/18/2022] Open
Abstract
Granulocytes are pivotal regulators of tissue injury. However, the transcriptional mechanisms that regulate granulopoiesis under inflammatory conditions are poorly understood. Here we show that the transcriptional coregulator B cell leukemia/lymphoma 3 (Bcl3) limits granulopoiesis under emergency (i.e., inflammatory) conditions, but not homeostatic conditions. Treatment of mouse myeloid progenitors with G-CSF--serum concentrations of which rise under inflammatory conditions--rapidly increased Bcl3 transcript accumulation in a STAT3-dependent manner. Bcl3-deficient myeloid progenitors demonstrated an enhanced capacity to proliferate and differentiate into granulocytes following G-CSF stimulation, whereas the accumulation of Bcl3 protein attenuated granulopoiesis in an NF-κB p50-dependent manner. In a clinically relevant model of transplant-mediated lung ischemia reperfusion injury, expression of Bcl3 in recipients inhibited emergency granulopoiesis and limited acute graft damage. These data demonstrate a critical role for Bcl3 in regulating emergency granulopoiesis and suggest that targeting the differentiation of myeloid progenitors may be a therapeutic strategy for preventing inflammatory lung injury.
Collapse
Affiliation(s)
- Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lin C, Datta V, Okwan-Duodu D, Chen X, Fuchs S, Alsabeh R, Billet S, Bernstein KE, Shen XZ. Angiotensin-converting enzyme is required for normal myelopoiesis. FASEB J 2010; 25:1145-55. [PMID: 21148418 DOI: 10.1096/fj.10-169433] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inhibition of angiotensin-converting enzyme (ACE) induces anemia in humans and mice, but it is unclear whether ACE is involved in other aspects of hematopoiesis. Here, we systemically evaluated ACE-knockout (KO) mice and found myelopoietic abnormalities characterized by increased bone marrow myeloblasts and myelocytes, as well as extramedullary myelopoiesis. Peritoneal macrophages from ACE-KO mice were deficient in the production of effector molecules, such as tumor necrosis factor-α, interleukin-12p40, and CD86 when stimulated with lipopolysaccharide and interferon-γ. ACE-KO mice were more susceptible to Staphylococcus aureus infection. Further studies using total or fractionated bone marrows revealed that ACE regulates myeloid proliferation, differentiation, and functional maturation via angiotensin II and substance P and through the angiotensin II receptor type 1 and substance P neurokinin 1 receptors. Angiotensin II was correlated with CCAAT-enhancer-binding protein-α up-regulation during myelopoiesis. Angiotensin II supplementation of ACE-KO mice rescued macrophage functional maturation. These results demonstrate a previous unrecognized significant role for ACE in myelopoiesis and imply new perspectives for manipulating myeloid cell expansion and maturation.
Collapse
Affiliation(s)
- Chentao Lin
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology 2009; 6:118. [PMID: 20030845 PMCID: PMC2805609 DOI: 10.1186/1742-4690-6-118] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/23/2009] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has been shown to replicate productively in cells of the monocyte-macrophage lineage, although replication occurs to a lesser extent than in infected T cells. As cells of the monocyte-macrophage lineage become differentiated and activated and subsequently travel to a variety of end organs, they become a source of infectious virus and secreted viral proteins and cellular products that likely initiate pathological consequences in a number of organ systems. During this process, alterations in a number of signaling pathways, including the level and functional properties of many cellular transcription factors, alter the course of HIV-1 long terminal repeat (LTR)-directed gene expression. This process ultimately results in events that contribute to the pathogenesis of HIV-1 infection. First, increased transcription leads to the upregulation of infectious virus production, and the increased production of viral proteins (gp120, Tat, Nef, and Vpr), which have additional activities as extracellular proteins. Increased viral production and the presence of toxic proteins lead to enhanced deregulation of cellular functions increasing the production of toxic cellular proteins and metabolites and the resulting organ-specific pathologic consequences such as neuroAIDS. This article reviews the structural and functional features of the cis-acting elements upstream and downstream of the transcriptional start site in the retroviral LTR. It also includes a discussion of the regulation of the retroviral LTR in the monocyte-macrophage lineage during virus infection of the bone marrow, the peripheral blood, the lymphoid tissues, and end organs such as the brain. The impact of genetic variation on LTR-directed transcription during the course of retrovirus disease is also reviewed.
Collapse
Affiliation(s)
- Evelyn M Kilareski
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Sonia Shah
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Michael R Nonnemacher
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
46
|
Bonadies N, Neururer C, Steege A, Vallabhapurapu S, Pabst T, Mueller BU. PU.1 is regulated by NF-κB through a novel binding site in a 17 kb upstream enhancer element. Oncogene 2009; 29:1062-72. [DOI: 10.1038/onc.2009.371] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Geurts J, Joosten LAB, Takahashi N, Arntz OJ, Glück A, Bennink MB, van den Berg WB, van de Loo FAJ. Computational design and application of endogenous promoters for transcriptionally targeted gene therapy for rheumatoid arthritis. Mol Ther 2009; 17:1877-87. [PMID: 19690516 DOI: 10.1038/mt.2009.182] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The promoter regions of genes that are differentially regulated in the synovial membrane during the course of rheumatoid arthritis (RA) represent attractive candidates for application in transcriptionally targeted gene therapy. In this study, we applied an unbiased computational approach to define proximal-promoters from a gene expression profiling study of murine experimental arthritis. Synovium expression profiles from progressing stages of collagen-induced arthritis (CIA) were classified into six distinct groups using k-means clustering. Using an algorithm based on local over-representation and comparative genomics, we identified putatively functional transcription factor-binding sites (TFBS) in TATA-dependent proximal-promoters. Applying a filter based on spacing between TATA box and transcription start site (TSS) combined with the presence of over-represented nuclear factor kappaB (NFkappaB), AP-1, or CCAAT/enhancer-binding protein beta (C/EBPbeta) sites, 382 candidate murine and human promoters were reduced to 66, corresponding to 45 genes. In vitro, 9 out of 10 computationally defined promoter regions conferred cytokine-inducible expression in murine cells and human synovial fibroblasts. Under these conditions, the serum amyloid A3 (Saa3) promoter showed the strongest transcriptional induction and strength. We applied this promoter for driving therapeutically efficacious levels of the interleukin-1 receptor antagonist (Il1rn) in a disease-regulated fashion. These results demonstrate the value of bioinformatics for guiding the selection of endogenous promoters for transcriptionally targeted gene therapy.
Collapse
Affiliation(s)
- Jeroen Geurts
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Fuchs O, Kostecka A, Provaznikova D, Krasna B, Brezinova J, Filkukova J, Kotlin R, Kouba M, Kobylka P, Neuwirtova R, Jonasova A, Caniga M, Schwarz J, Markova J, Maaloufova J, Sponerova D, Novakova L, Cermak J. Nature of frequent deletions in CEBPA. Blood Cells Mol Dis 2009; 43:260-3. [PMID: 19651529 DOI: 10.1016/j.bcmd.2009.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
Abstract
C/EBPalpha (CCAAT/enhancer binding protein alpha) belongs to the family of leucine zipper transcription factors and is necessary for transcriptional control of granulocyte, adipocyte and hepatocyte differentiation, glucose metabolism and lung development. C/EBPalpha is encoded by an intronless gene. CEBPA mutations cause a myeloid differentiation block and were detected in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), multiple myeloma and non-Hodgkin's lymphoma (NHL) patients. In this study we identified in 41 individuals from 824 screened individuals (290 AML patients, 382 MDS patients, 56 NHL patients and 96 healthy individuals) a single class of 23 deletions in CEBPA gene which involved a direct repeat of at least 2 bp. These mutations are characterised by the loss of one of two same repeats at the ends of deleted sequence. Three most frequent repeats included in these deletions in CEBPA gene are CGCGAG (493-498_865-870), GCCAAGCAGC (508-517_907-916) and GG (486-487_885-886), all according to GenBank accession no. NM_004364.2. A mechanism for deletion formation between two repetitive sequences can be recombination events in the repair process. Double-stranded cut in DNA can initiate these recombination events of adjacent DNA sequences.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, Department of Cell Physiology, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yin H, Lowery M, Glass J. In prostate cancer C/EBPalpha promotes cell growth by the loss of interactions with CDK2, CDK4, and E2F and by activation of AKT. Prostate 2009; 69:1001-16. [PMID: 19347879 DOI: 10.1002/pros.20947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The CCAAT/Enhancer binding protein alpha (C/EBPalpha) is an important transcription factor for granulopoiesis and adipogenesis. While decreased expression and mutation of C/EBPalpha has been found in several types of tumors, the role of C/EBPalpha in prostate cancer has not been well characterized. METHODS We quantitatively analyzed the immunochemical staining of prostate cancer tissue and examined the growth properties of prostate cancer cells stably expressing C/EBPalpha by measure growth curve, cell cycle, and anchorage independent colony formation, investigated the association of C/EBPalpha with E2Fs and CDKs by co-immunoprecipitation and examined the expression of CDKs and activation of AKT by Western blot analysis. RESULTS The ratio of C/EBPalpha expression between cancer cells close to the pseudolumen of glands and those nearer the basal cell layer was more than threefold greater than that seen in the normal prostate epithelium. Further, this ratio increased with increased Gleason score of the prostate cancer. Forced expression of C/EBPalpha in prostate cancer cell lines accelerated cell growth, stimulated cells into the S and G2 phases of cell cycle, and enhanced anchorage-independent colony formation. Simultaneously, forced expression of C/EBPalpha increased expression of CDK2/CDK4 and nuclear PP2A, and activated AKT. In addition, C/EBPalpha was no longer found associated with E2F1/E2F4 and CDK2/CDK4. AKT and PPA2 inhibitors restored both the anti-proliferation function of C/EBPalpha and the interaction between C/EBPalpha and E2F1/E2F4. CONCLUSION In prostate cancer cells C/EBPalpha cannot function as a tumor suppressor.
Collapse
Affiliation(s)
- Hong Yin
- Department of Medicine, Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana 71130-3932, USA.
| | | | | |
Collapse
|
50
|
Abstract
Transcription is a molecular requisite for long-term synaptic plasticity and long-term memory formation. Thus, in the last several years, one main interest of molecular neuroscience has been the identification of families of transcription factors that are involved in both of these processes. Transcription is a highly regulated process that involves the combined interaction and function of chromatin and many other proteins, some of which are essential for the basal process of transcription, while others control the selective activation or repression of specific genes. These regulated interactions ultimately allow a sophisticated response to multiple environmental conditions, as well as control of spatial and temporal differences in gene expression. Evidence based on correlative changes in expression, genetic mutations, and targeted molecular inhibition of gene expression have shed light on the function of transcription in both synaptic plasticity and memory formation. This review provides a brief overview of experimental work showing that several families of transcription factors, including CREB, C/EBP, Egr, AP-1, and Rel, have essential functions in both processes. The results of this work suggest that patterns of transcription regulation represent the molecular signatures of long-term synaptic changes and memory formation.
Collapse
Affiliation(s)
- Cristina M Alberini
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|