1
|
Yahya SMM, Nabih HK, Elsayed GH, Mohamed SIA, Elfiky AM, Salem SM. Restoring microRNA-34a overcomes acquired drug resistance and disease progression in human breast cancer cell lines via suppressing the ABCC1 gene. Breast Cancer Res Treat 2024; 204:133-149. [PMID: 38057687 PMCID: PMC10806220 DOI: 10.1007/s10549-023-07170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Breast cancer is one of the leading types of cancer diagnosed in women. Despite the improvements in chemotherapeutic cure strategies, drug resistance is still an obstacle leading to disease aggressiveness. The small non-coding RNA molecules, miRNAs, have been implicated recently to be involved as regulators of gene expression through the silencing of mRNA targets that contributed to several cellular processes related to cancer metastasis. Hence, the present study aimed to investigate the beneficial role and mechanism of miRNA-34a-based gene therapy as a novel approach for conquering drug resistance mediated by ATP-binding cassette (ABC) transporters in breast cancer cells, besides exploring the associated invasive behaviors. MATERIAL AND METHODS Bioinformatics tools were used to predict miRNA ABC transporter targets by tracking the ABC transporter pathway. After the establishment of drug-resistant breast cancer MCF-7 and MDA-MB-231 sublines, cells were transfected with the mimic or inhibitor of miRNA-34a-5p. The quantitative expression of genes involved in drug resistance was performed by QRT-PCR, and the exact ABC transporter target specification interaction was confirmed by dual-luciferase reporter assay. Furthermore, flow cytometric analysis was utilized to determine the ability of miRNA-34a-treated cells against doxorubicin uptake and accumulation in cell cycle phases. The spreading capability was examined by colony formation, migration, and wound healing assays. The apoptotic activity was estimated as well. RESULTS Our findings firstly discovered the mechanism of miRNA-34a-5p restoration as an anti-drug-resistant molecule that highly significantly attenuates the expression of ABCC1 via the direct targeting of its 3'- untranslated regions in resistant breast cancer cell lines, with a significant increase of doxorubicin influx by MDA-MB-231/Dox-resistant cells. Additionally, the current data validated a significant reduction of metastatic potentials upon miRNA-34a-5p upregulation in both types of breast cancer-resistant cells. CONCLUSION The ectopic expression of miRNA-34a ameliorates the acquired drug resistance and the migration properties that may eventually lead to improved clinical strategies and outcomes for breast cancer patients. Additionally, miRNA-34a could be monitored as a diagnostic/prognostic biomarker for resistant conditions.
Collapse
Affiliation(s)
- Shaymaa M M Yahya
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Ghada H Elsayed
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | | | - Asmaa M Elfiky
- Environmental and Occupational Medicine Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
2
|
Martini T, Naef F, Tchorz JS. Spatiotemporal Metabolic Liver Zonation and Consequences on Pathophysiology. ANNUAL REVIEW OF PATHOLOGY 2023; 18:439-466. [PMID: 36693201 DOI: 10.1146/annurev-pathmechdis-031521-024831] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatocytes are the main workers in the hepatic factory, managing metabolism of nutrients and xenobiotics, production and recycling of proteins, and glucose and lipid homeostasis. Division of labor between hepatocytes is critical to coordinate complex complementary or opposing multistep processes, similar to distributed tasks at an assembly line. This so-called metabolic zonation has both spatial and temporal components. Spatial distribution of metabolic function in hepatocytes of different lobular zones is necessary to perform complex sequential multistep metabolic processes and to assign metabolic tasks to the right environment. Moreover, temporal control of metabolic processes is critical to align required metabolic processes to the feeding and fasting cycles. Disruption of this complex spatiotemporal hepatic organization impairs key metabolic processes with both local and systemic consequences. Many metabolic diseases, such as nonalcoholic steatohepatitis and diabetes, are associated with impaired metabolic liver zonation. Recent technological advances shed new light on the spatiotemporal gene expression networks controlling liver function and how their deregulation may be involved in a large variety of diseases. We summarize the current knowledge about spatiotemporal metabolic liver zonation and consequences on liver pathobiology.
Collapse
Affiliation(s)
- Tomaz Martini
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland;
| |
Collapse
|
3
|
Zhou D, Long C, Shao Y, Li F, Sun W, Zheng Z, Wang X, Huang Y, Pan F, Chen G, Guo Y, Huang Y. Integrated Metabolomics and Proteomics Analysis of Urine in a Mouse Model of Posttraumatic Stress Disorder. Front Neurosci 2022; 16:828382. [PMID: 35360173 PMCID: PMC8963102 DOI: 10.3389/fnins.2022.828382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a serious stress disorder that occurs in individuals who have experienced major traumatic events. The underlying pathological mechanisms of PTSD are complex, and the related predisposing factors are still not fully understood. In this study, label-free quantitative proteomics and untargeted metabolomics were used to comprehensively characterize changes in a PTSD mice model. Differential expression analysis showed that 12 metabolites and 27 proteins were significantly differentially expressed between the two groups. Bioinformatics analysis revealed that the differentiated proteins were mostly enriched in: small molecule binding, transporter activity, extracellular region, extracellular space, endopeptidase activity, zymogen activation, hydrolase activity, proteolysis, peptidase activity, sodium channel regulator activity. The differentially expressed metabolites were mainly enriched in Pyrimidine metabolism, D-Glutamine and D-glutamate metabolism, Alanine, aspartate and glutamate metabolism, Arginine biosynthesis, Glutathione metabolism, Arginine, and proline metabolism. These results expand the existing understanding of the molecular basis of the pathogenesis and progression of PTSD, and also suggest a new direction for potential therapeutic targets of PTSD. Therefore, the combination of urine proteomics and metabolomics explores a new approach for the study of the underlying pathological mechanisms of PTSD.
Collapse
Affiliation(s)
- Daxue Zhou
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Chengyan Long
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yan Shao
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fei Li
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Wei Sun
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Zihan Zheng
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Yiwei Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Feng Pan
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Chongqing Key Laboratory of Cytomics, Chongqing, China
- *Correspondence: Gang Chen,
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Yanlei Guo,
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- Yi Huang,
| |
Collapse
|
4
|
Shen Y, Zhao Z, Zhao J, Chen X, Cao M, Wu M. Expression and Functional Analysis of Hepcidin from Mandarin Fish ( Siniperca chuatsi). Int J Mol Sci 2019; 20:ijms20225602. [PMID: 31717495 PMCID: PMC6887715 DOI: 10.3390/ijms20225602] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Hepcidin is a liver-derived peptide hormone that is related to iron balance and immunity in humans. However, its function in Siniperca chuatsi has not been well elucidated. In this study, we analyzed the expression and function of the S. chuatsi hepcidin (Sc-hep) gene. Sc-hep was specifically expressed in the liver and appeared to be one of the most highly expressed genes in the liver. After spleen and kidney necrosis virus (ISKNV) infection and lipopolysaccharide (LPS) and polyinosinic—polycytidylic acid (Poly I:C) stimulation, the expression of Sc-hep in the liver increased by approximately 110, 6500, and 225 times, respectively. After ferrous sulfate (FS) injection, the expression of Sc-hep in the liver increased approximately 520-fold. We found that miR-19c-5p could inhibit Sc-hep expression. Five CpG dinucleotides distributed in the promoter region showed no differential methylation between the liver and the stomach, both presenting high methylation rates. After FS or LPS injection, the expression of three iron balance-related genes (FPN1, TFR1, and FTN) and five immune-related cytokine genes (IL-1β, IL8, TNF-α, TLR22, and SOCS3) significantly changed. These results indicate that Sc-hep participates in the regulation of iron balance and plays an important role in the immune system. Sc-hep increased approximately 52-fold when mandarin fish were domesticated with artificial diets. Sc-hep might be used as a real-time biomarker of mandarin fish liver because its expression markedly varies under different physiological conditions.
Collapse
Affiliation(s)
- Yawei Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (Z.Z.)
| | - Ziwei Zhao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (Z.Z.)
| | - Jinliang Zhao
- Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
- Correspondence: (J.Z.); (X.C.)
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China
- Correspondence: (J.Z.); (X.C.)
| | - Ming Cao
- Guangdong Provincial Fishery Germplasm Conservation Center, Guangzhou 511400, China;
| | - Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230000, China;
| |
Collapse
|
5
|
Abstract
Hepatocytes operate in highly structured repeating anatomical units termed liver lobules. Blood flow along the lobule radial axis creates gradients of oxygen, nutrients and hormones, which, together with morphogenetic fields, give rise to a highly variable microenvironment. In line with this spatial variability, key liver functions are expressed non-uniformly across the lobules, a phenomenon termed zonation. Technologies based on single-cell transcriptomics have constructed a global spatial map of hepatocyte gene expression in mice revealing that ~50% of hepatocyte genes are expressed in a zonated manner. This broad spatial heterogeneity suggests that hepatocytes in different lobule zones might have not only different gene expression profiles but also distinct epigenetic features, regenerative capacities, susceptibilities to damage and other functional aspects. Here, we present genomic approaches for studying liver zonation, describe the principles of liver zonation and discuss the intrinsic and extrinsic factors that dictate zonation patterns. We also explore the challenges and solutions for obtaining zonation maps of liver non-parenchymal cells. These approaches facilitate global characterization of liver function with high spatial resolution along physiological and pathological timescales.
Collapse
Affiliation(s)
- Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Abstract
There are numerous blood-based biomarkers for assessing iron stores, but all come with certain limitations. Hepcidin is a hormone primarily produced in the liver that has been proposed as the 'master regulator' of dietary uptake and iron metabolism, and has enormous potential to provide a 'real time' indicator of body iron levels. In this Minireview, the biochemical function of hepcidin in regulating iron levels will be discussed, with a specific focus on how hepcidin can aid in the assessment of iron stores and clinical diagnosis of iron deficiency, iron deficiency anaemia and other iron-related disorders. The role hepcidin itself plays in diseases of iron metabolism will be examined, and current efforts to translate hepcidin assays into the clinic will be critically appraised. Potential limitations of hepcidin as a marker of iron need will also be addressed, as well as the development of new therapies that directly target the hormone that sits atop the hierarchy of systemic iron metabolism.
Collapse
Affiliation(s)
- Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
7
|
Ceramide Induces Human Hepcidin Gene Transcription through JAK/STAT3 Pathway. PLoS One 2016; 11:e0147474. [PMID: 26807955 PMCID: PMC4726556 DOI: 10.1371/journal.pone.0147474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Changes in lipid metabolism and iron content are observed in the livers of patients with fatty liver disease. The expression of hepcidin, an iron-regulatory and acute phase protein synthesized by the liver, is also modulated. The potential interaction of lipid and iron metabolism is largely unknown. We investigated the role of lipid intermediate, ceramide in the regulation of human hepcidin gene, HAMP. Human hepatoma HepG2 cells were treated with cell-permeable ceramide analogs. Ceramide induced significant up-regulation of HAMP mRNA expression in HepG2 cells. The effect of ceramide on HAMP expression was mediated through transcriptional mechanisms because it was completely blocked with actinomycin D treatment. Reporter assays also confirmed the activation of 0.6 kb HAMP promoter by ceramide. HepG2 cells treated with ceramide displayed increased phosphorylation of STAT3, JNK, and NF-κB proteins. However, ceramide induced the binding of STAT3, but not NF-κB or c-Jun, to HAMP promoter, as shown by the chromatin immunoprecipitation assays. The mutation of STAT3 response element within 0.6 kb HAMP promoter region significantly inhibited the stimulatory effect of ceramide on HAMP promoter activity. Similarly, the inhibition of STAT3 with a pan-JAK kinase inhibitor and STAT3 siRNA pool also diminished the induction of both HAMP promoter activity and mRNA expression by ceramide. In conclusion, we have shown a direct role for ceramide in the activation of hepatic HAMP transcription via STAT3. Our findings suggest a crosstalk between lipid and iron metabolism in the liver, which may contribute to the pathogenesis of obesity-related fatty liver disease.
Collapse
|
8
|
Kanamori Y, Murakami M, Matsui T, Funaba M. Role of a TPA-responsive element in hepcidin transcription induced by the bone morphogenetic protein pathway. Biochem Biophys Res Commun 2015; 466:162-6. [PMID: 26343458 DOI: 10.1016/j.bbrc.2015.08.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/28/2015] [Indexed: 12/11/2022]
Abstract
Systemic iron balance is governed by the liver-derived peptide hormone hepcidin. The transcription of hepcidin is primarily regulated by the bone morphogenetic protein (BMP) and inflammatory cytokine pathways through the BMP-response element (BMP-RE) and STAT-binding site, respectively. In addition to these elements, we previously identified a TPA-responsive element (TRE) in the hepcidin promoter and showed that it mediated the transcriptional activation of hepcidin through activator protein (AP)-1 induced by serum. In the present study, we examined the role of TRE in the BMP-induced transcription of hepcidin in HepG2 liver cells. The serum treatment increased the basal transcription of hepcidin; however, responsiveness to the expression of ALK3(QD), a constitutively active BMP type I receptor, was unaffected. Consistent with these results, mutations in TRE in the hepcidin promoter decreased basal transcription, whereas responsiveness to the expression of ALK3(QD) remained unchanged. HepG2 cells significantly expressed AP-1 components in the basal state, whereas BMP did not up-regulate the expression of these components. The expression of c-fos enhanced the basal transcription of hepcidin as well as ALK3(QD)-mediated hepcidin transcription, whereas that of dominant-negative c-fos decreased hepcidin transcription. The results of the present study suggested that the cis-elements of the hepcidin promoter, BMP-RE and TRE, individually transmitted BMP-mediated and AP-1-mediated signals, respectively, whereas transcription was synergistically increased by the stimulation of BMP-RE and TRE.
Collapse
Affiliation(s)
- Yohei Kanamori
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara 252-5201, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
Glutamyl cysteine dipeptide suppresses ferritin expression and alleviates liver injury in iron-overload rat model. Biochimie 2015; 115:203-11. [DOI: 10.1016/j.biochi.2015.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022]
|
10
|
Abstract
Leptin is an adipose-derived cytokine that has an important role in bodyweight homeostasis and energy balance. There are a number of studies which have suggested that leptin and its receptors dysregulation play a critical role in the development of malignancies including hematological malignancies, mainly via activation of the JAK/STAT pathway which regulates downstream signaling pathways such as PI3K/AKT signaling and ERK1/2. In this review, current understandings of leptin/leptin receptors mediated pathogenesis in various lymphoid malignancies are described. Blocking of the leptin receptor might be a unique therapeutic approach for many hematological malignancies.
Collapse
Affiliation(s)
- Shahab Uddin
- a Translational Research Institute, Academic Health System, Hamad Medical Corporation , Doha , Qatar
| | - Ramzi M Mohammad
- a Translational Research Institute, Academic Health System, Hamad Medical Corporation , Doha , Qatar
| |
Collapse
|
11
|
Foka P, Dimitriadis A, Kyratzopoulou E, Giannimaras DA, Sarno S, Simos G, Georgopoulou U, Mamalaki A. A complex signaling network involving protein kinase CK2 is required for hepatitis C virus core protein-mediated modulation of the iron-regulatory hepcidin gene expression. Cell Mol Life Sci 2014; 71:4243-58. [PMID: 24718935 PMCID: PMC11114079 DOI: 10.1007/s00018-014-1621-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/25/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) infection is associated with hepatic iron overload and elevated serum iron that correlate to poor antiviral responses. Hepcidin (HAMP), a 25-aa cysteine-rich liver-specific peptide, controls iron homeostasis. Its expression is up-regulated in inflammation and iron excess. HCV-mediated hepcidin regulation remains controversial. Chronic HCV patients possess relatively low hepcidin levels; however, elevated HAMP mRNA has been reported in HCV core transgenic mice and HCV replicon-expressing cells. We investigated the effect of HCV core protein on HAMP gene expression and delineated the complex interplay of molecular mechanisms involved. HCV core protein up-regulated HAMP promoter activity, mRNA, and secreted protein levels. Enhanced promoter activity was abolished by co-transfections of core with HAMP promoter constructs containing mutated/deleted BMP and STAT binding sites. Dominant negative constructs, pharmacological inhibitors, and silencing experiments against STAT3 and SMAD4 confirmed the participation of both pathways in HAMP gene regulation by core protein. STAT3 and SMAD4 expression levels were found increased in the presence of HCV core, which orchestrated SMAD4 translocation into the nucleus and STAT3 phosphorylation. To further understand the mechanisms governing the core effect, the role of the JAK/STAT-activating kinase CK2 was investigated. A CK2-dominant negative construct, a CK2-specific inhibitor, and RNAi interference abrogated the core-induced increase on HAMP promoter activity, mRNA, and protein levels, while CK2 acted in synergy with core to significantly enhance HAMP gene expression. Therefore, HCV core up-regulates HAMP gene transcription via a complex signaling network that requires both SMAD/BMP and STAT3 pathways and CK2 involvement.
Collapse
Affiliation(s)
- Pelagia Foka
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Alexios Dimitriadis
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Eleni Kyratzopoulou
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Dionysios A. Giannimaras
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Avgi Mamalaki
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
12
|
Kanamori Y, Murakami M, Matsui T, Funaba M. The regulation of hepcidin expression by serum treatment: requirements of the BMP response element and STAT- and AP-1-binding sites. Gene 2014; 551:119-26. [PMID: 25151311 DOI: 10.1016/j.gene.2014.08.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/26/2014] [Accepted: 08/20/2014] [Indexed: 12/26/2022]
Abstract
Expression of hepcidin, a central regulator of systemic iron metabolism, is transcriptionally regulated by the bone morphogenetic protein (BMP) pathway. However, the factors other than the BMP pathway also participate in the regulation of hepcidin expression. In the present study, we show that serum treatment increased hepcidin expression and transcription without inducing the phosphorylation of Smad1/5/8 in primary hepatocytes, HepG2 cells or Hepa1-6 cells. Co-treatment with LDN-193189, an inhibitor of the BMP type I receptor, abrogated this hepcidin induction. Reporter assays using mutated reporters revealed the involvement of the BMP response element-1 (BMP-RE1) and signal transducers and activator of transcription (STAT)- and activator protein (AP)-1-binding sites in serum-induced hepcidin transcription in HepG2 cells. Serum treatment induced the expression of the AP-1 components c-fos and junB in primary hepatocytes and HepG2 cells. Forced expression of c-fos or junB enhanced the response of hepcidin transcription to serum treatment. By contrast, the expression of dominant negative (dn)-c-fos and dn-junB decreased hepcidin transcription. The present study reveals that serum contains factors stimulating hepcidin transcription. Basal BMP activity is essential for the serum-induced hepcidin transcription, although serum treatment does not stimulate the BMP pathway. The induction of c-fos and junB by serum treatment stimulates hepcidin transcription, through possibly cooperation with BMP-mediated signaling. Considering that AP-1 is induced by various stimuli, the present results suggest that hepcidin expression is regulated by more diverse factors than had been previously considered.
Collapse
Affiliation(s)
- Yohei Kanamori
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara 252-5201, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
13
|
Lee SY, Kim BS, Noh CH, Nam YK. Genomic organization and functional diversification of two warm-temperature-acclimation-associated 65-kDa protein genes in rockbream (Oplegnathus fasciatus; Perciformes). FISH & SHELLFISH IMMUNOLOGY 2014; 37:11-21. [PMID: 24434646 DOI: 10.1016/j.fsi.2014.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/04/2014] [Accepted: 01/04/2014] [Indexed: 06/03/2023]
Abstract
Two paralogue genes of warm-temperature-acclimation-associated 65-kDa protein were characterized and their mRNA expression patterns during various experimental stimulations were examined in the rockbream (Oplegnathus fasciatus; Perciformes). Rockbream Wap65 isoforms (rbWap65-1 and rbWap65-2) share basically common structural features with other teleostean orthologues and human hemopexin (HPX) at both amino acid (conserved cysteine and histidine residues) and genomic levels (ten-exon structure), although the rbWap65-2 reveals more homologous characteristics to human HPX than does rbWap65-1 isoform. Southern blot analysis indicates that each rbWap65 isoform exists as a single copy gene in the rockbream genome. Both rbWap65 genes were predicted to possess various transcription factor (TF) binding motifs related with stress and innate immunity in their 5ʹ-upstream regions, in which inflammation-related motifs were more highlighted in the rbWap65-2 than in rbWap65-1. Based on the RT-PCR assay, the liver-predominant expression pattern was more apparent in rbWap65-1 than rbWap65-2 isoform. During thermal elevation, clear upregulation was found only for the rbWap65-1. In contrast, immune stimulations (bacterial challenges, viral infection and iron overload) activated more preferentially the rbWap65-2 isoform in overall, although the inducibility was affected by the kinds of stimulators and tissue types. Taken together, our data suggest that the two paralogue rbWap65 isoforms have experienced subfunctionalization and/or neofunctionalization during their evolutionary history, in which the rbWap65-2 has retained closer, functional orthology to the human HPX while the rbWap65-1 have been diversified to be more related with thermal acclimation physiology.
Collapse
Affiliation(s)
- Sang Yoon Lee
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan 608-737, Republic of Korea
| | - Byoung Soo Kim
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan 608-737, Republic of Korea
| | - Choong Hwan Noh
- Korea Institute of Ocean Science & Technology, Ansan 426-744, Republic of Korea
| | - Yoon Kwon Nam
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan 608-737, Republic of Korea; Center of Marine-Integrated Biomedical Technology, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
14
|
A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis. PLoS Comput Biol 2014; 10:e1003421. [PMID: 24391488 PMCID: PMC3879105 DOI: 10.1371/journal.pcbi.1003421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/08/2013] [Indexed: 01/24/2023] Open
Abstract
Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF) phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease. The nutritional iron uptake is tightly regulated because the body has limited capacity of iron excretion. Mammals maintain iron homeostasis by a negative feedback loop, in which the peptide hepcidin senses the iron blood level and controls iron resorption. Molecular perturbations in the homeostasis loop lead to iron-related diseases such as hemochromatosis or anemia of inflammation. Quantitative studies are required to understand the dynamics of the iron homeostasis circuitry in health and disease. We investigated how the biological activity of hepcidin is regulated by combining experiments with mathematical modeling. We present a multi-scale model that describes the signaling network and the gene promoter controlling hepcidin expression. Possible scenarios of hepcidin regulation were systematically tested against experimental data, and interpreted using a network model of iron metabolism in vivo. The analysis showed that the presence of multiple redundant regulatory elements in the hepcidin gene promoter facilitates homeostasis, because changes in iron blood levels are sensed with high sensitivity. We further suggest that inflammatory signals establish molecular competition at the hepcidin promoter, thereby reducing its iron sensitivity and leading to a loss of homeostasis in anemia of inflammation. We conclude that quantitative insights into hepcidin expression regulation explain features of systemic iron homeostasis.
Collapse
|
15
|
Millonig G, Ganzleben I, Peccerella T, Casanovas G, Brodziak-Jarosz L, Breitkopf-Heinlein K, Dick TP, Seitz HK, Muckenthaler MU, Mueller S. Sustained submicromolar H2O2 levels induce hepcidin via signal transducer and activator of transcription 3 (STAT3). J Biol Chem 2012; 287:37472-82. [PMID: 22932892 DOI: 10.1074/jbc.m112.358911] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peptide hormone hepcidin regulates mammalian iron homeostasis by blocking ferroportin-mediated iron export from macrophages and the duodenum. During inflammation, hepcidin is strongly induced by interleukin 6, eventually leading to the anemia of chronic disease. Here we show that hepatoma cells and primary hepatocytes strongly up-regulate hepcidin when exposed to low concentrations of H(2)O(2) (0.3-6 μM), concentrations that are comparable with levels of H(2)O(2) released by inflammatory cells. In contrast, bolus treatment of H(2)O(2) has no effect at low concentrations and even suppresses hepcidin at concentrations of >50 μM. H(2)O(2) treatment synergistically stimulates hepcidin promoter activity in combination with recombinant interleukin-6 or bone morphogenetic protein-6 and in a manner that requires a functional STAT3-responsive element. The H(2)O(2)-mediated hepcidin induction requires STAT3 phosphorylation and is effectively blocked by siRNA-mediated STAT3 silencing, overexpression of SOCS3 (suppressor of cytokine signaling 3), and antioxidants such as N-acetylcysteine. Glycoprotein 130 (gp130) is required for H(2)O(2) responsiveness, and Janus kinase 1 (JAK1) is required for adequate basal signaling, whereas Janus kinase 2 (JAK2) is dispensable upstream of STAT3. Importantly, hepcidin levels are also increased by intracellular H(2)O(2) released from the respiratory chain in the presence of rotenone or antimycin A. Our results suggest a novel mechanism of hepcidin regulation by nanomolar levels of sustained H(2)O(2). Thus, similar to cytokines, H(2)O(2) provides an important regulatory link between inflammation and iron metabolism.
Collapse
Affiliation(s)
- Gunda Millonig
- Center for Alcohol Research, University of Heidelberg and Salem Medical Center, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun CC, Vaja V, Babitt JL, Lin HY. Targeting the hepcidin-ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation. Am J Hematol 2012; 87:392-400. [PMID: 22290531 DOI: 10.1002/ajh.23110] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/21/2022]
Abstract
Anemia of chronic disease (ACD) or anemia of inflammation is prevalent in patients with chronic infection, autoimmune disease, cancer, and chronic kidney disease. ACD is associated with poor prognosis and lower quality of life. Management of ACD using intravenous iron and erythropoiesis stimulating agents are ineffective for some patients and are not without adverse effects, driving the need for new alternative therapies. Recent advances in our understanding of the molecular mechanisms of iron regulation reveal that increased hepcidin, the iron regulatory hormone, is a key factor in the development of ACD. In this review, we will summarize the role of hepcidin in iron homeostasis, its contribution to the pathophysiology of ACD, and novel strategies that modulate hepcidin and its target ferroportin for the treatment of ACD.
Collapse
Affiliation(s)
- Chia Chi Sun
- Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
17
|
Cho YS, Lee SY, Kim YK, Kim DS, Nam YK. Functional ability of cytoskeletal β-actin regulator to drive constitutive and ubiquitous expression of a fluorescent reporter throughout the life cycle of transgenic marine medaka Oryzias dancena. Transgenic Res 2011; 20:1333-55. [PMID: 21437716 DOI: 10.1007/s11248-011-9501-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 02/20/2011] [Indexed: 01/16/2023]
Abstract
Marine medaka Oryzias dancena, a candidate model organism, represents many attractive merits as a material for experimental transgenesis and/or heterologous expression assay particularly in the field of ecotoxicology and developmental biology. In this study, cytoskeletal β-actin gene was characterized from O. dancena and the functional capability of its promoter to drive constitutive expression of foreign reporter protein was evaluated. The O. dancena β-actin gene possessed a conserved genomic organization of vertebrate major cytoplasmic actin genes and the bioinformatic analysis of its 5'-upstream regulatory region predicted various transcription factor binding motifs. Heterologous expression assay using a red fluorescent protein (RFP) reporter construct driven by the O. dancena β-actin regulator resulted in stunningly bright expression of red fluorescence signals in not only microinjected embryos but also grown-up transgenic adults. Although founder transgenics exhibited mosaic patterns of RFP expression, transgenic offspring in subsequent generations displayed a vivid and uniform expression of RFP continually from embryos to adults. Based on the blot hybridization assays, two transgenic lines established in this study were proven to possess high copy numbers of transgene integrants (approximately 240 and 34 copies, respectively), and the transgenic genotype in both lines could successfully be passed stably up to three generations, although the rate of transgene transmission in one of the two transgenic lines was significantly lower than expected Mendelian ratio. Significant red fluorescence color could be ubiquitously observable in all the tissues or organs of the transgenics. Quantitative real-time RT-PCR represented that the expression pattern of transgene under the regulation of β-actin promoter would resemble, in overall, the regulation of endogenous β-actin gene in adult tissues, although putative mechanism for competitive or independent regulation between transgene and endogenous gene could also be found in several tissues. Results from this study undoubtedly indicate that the O. dancena β-actin promoter would be powerful enough to fluorescently visualize most cell types in vivo throughout its whole lifespan. This study could be a useful start point for a variety of transgenic experiments with this species concerning the constitutive expression of living fluorescent color reporters and other foreign proteins.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animal Structures/cytology
- Animal Structures/metabolism
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Blotting, Southern
- Cloning, Molecular
- Computational Biology
- Cytoskeleton/genetics
- Cytoskeleton/metabolism
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Embryonic Development
- Female
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Gene Dosage
- Gene Expression Regulation, Developmental
- Gene Library
- Genes, Reporter
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Inheritance Patterns
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Microinjections
- Microscopy, Fluorescence
- Oryzias/embryology
- Oryzias/genetics
- Oryzias/metabolism
- Promoter Regions, Genetic
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transgenes
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Young Sun Cho
- Institute of Marine Living Modified Organisms, Pukyong National University, Busan 608-737, Korea
| | | | | | | | | |
Collapse
|
18
|
Pini M, Rhodes DH, Fantuzzi G. Hematological and acute-phase responses to diet-induced obesity in IL-6 KO mice. Cytokine 2011; 56:708-16. [PMID: 21996012 DOI: 10.1016/j.cyto.2011.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/06/2011] [Accepted: 09/19/2011] [Indexed: 02/08/2023]
Abstract
Obesity is associated with chronic inflammation and elevated levels of IL-6. The role of IL-6 in induction of acute-phase proteins and modulation of hematological responses has been demonstrated in models of inflammation and aging, but not in obesity. We hypothesized that IL-6 is necessary to regulate the acute-phase response and hematological changes associated with diet-induced obesity (DIO) in mice. Feeding a 60%kcal/fat diet for 13 weeks to C57BL6 WT male mice induced a significant increase in IL-6 expression in visceral adipose tissue (VAT), but not liver, compared to mice fed chow diet. Significantly elevated IL-6 levels were present in the peritoneal lavage fluid, but not plasma, of DIO compared to lean mice. A comparable degree of obesity, hepatomegaly, hyperleptinemia, VAT inflammation and insulin resistance was observed in DIO WT and IL-6 KO mice compared to WT and KO mice fed chow diet. Significant leukocytosis was observed in DIO WT but not DIO KO mice compared to lean groups. A significant reduction in platelet counts, without alterations in platelet size, percentage of circulating reticulated platelets and number of bone marrow megakaryocytes, was present in DIO KO mice compared to each other group. Hepatic expression of thrombopoietin was comparable in each group, with DIO WT and KO mice having reduced VAT expression compared to lean mice. Lean KO mice had significantly elevated plasma levels of thrombopoietin compared to each other group, whereas liver-associated thrombopoietin levels were comparable in each group. Deficiency of IL-6 resulted in blunted hepatic induction of the acute-phase protein serum amyloid A-1, whereas expression of hepcidin-1 and -2, LPS-binding protein, ceruloplasmin, plasminogen activator inhibitor-1 and thrombospondin-1 was IL-6-independent. In conclusion, in the absence of overt metabolic alterations, IL-6 modulates leukocytosis, thrombopoiesis and induction of SAA-1, but not other acute-phase proteins in obese mice.
Collapse
Affiliation(s)
- Maria Pini
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, United States
| | | | | |
Collapse
|
19
|
Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation. Blood 2011; 117:4915-23. [PMID: 21393479 DOI: 10.1182/blood-2010-10-313064] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anemia of inflammation develops in settings of chronic inflammatory, infectious, or neoplastic disease. In this highly prevalent form of anemia, inflammatory cytokines, including IL-6, stimulate hepatic expression of hepcidin, which negatively regulates iron bioavailability by inactivating ferroportin. Hepcidin is transcriptionally regulated by IL-6 and bone morphogenetic protein (BMP) signaling. We hypothesized that inhibiting BMP signaling can reduce hepcidin expression and ameliorate hypoferremia and anemia associated with inflammation. In human hepatoma cells, IL-6-induced hepcidin expression, an effect that was inhibited by treatment with a BMP type I receptor inhibitor, LDN-193189, or BMP ligand antagonists noggin and ALK3-Fc. In zebrafish, the induction of hepcidin expression by transgenic expression of IL-6 was also reduced by LDN-193189. In mice, treatment with IL-6 or turpentine increased hepcidin expression and reduced serum iron, effects that were inhibited by LDN-193189 or ALK3-Fc. Chronic turpentine treatment led to microcytic anemia, which was prevented by concurrent administration of LDN-193189 or attenuated when LDN-193189 was administered after anemia was established. Our studies support the concept that BMP and IL-6 act together to regulate iron homeostasis and suggest that inhibition of BMP signaling may be an effective strategy for the treatment of anemia of inflammation.
Collapse
|
20
|
In anemia of multiple myeloma, hepcidin is induced by increased bone morphogenetic protein 2. Blood 2010; 116:3635-44. [PMID: 20679527 DOI: 10.1182/blood-2010-03-274571] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepcidin is the principal iron-regulatory hormone and a pathogenic factor in anemia of inflammation. Patients with multiple myeloma (MM) frequently present with anemia. We showed that MM patients had increased serum hepcidin, which inversely correlated with hemoglobin, suggesting that hepcidin contributes to MM-related anemia. Searching for hepcidin-inducing cytokines in MM, we quantified the stimulation of hepcidin promoter-luciferase activity in HuH7 cells by MM sera. MM sera activated the hepcidin promoter significantly more than did normal sera. We then examined the role of bone morphogenetic proteins (BMPs) and interleukin-6 (IL-6), the major transcriptional regulators of hepcidin. Mutations in both BMP-responsive elements abrogated the activation dramatically, while mutations in the IL-6-responsive signal transducer and activator of transcription 3-binding site (STAT3-BS) had only a minor effect. Cotreatment with anti-BMP-2/4 or noggin-Fc blocked the promoter induction with all MM sera, anti-IL-6 blocked it with a minority of sera, whereas anti-BMP-4, -6, or -9 antibodies had no effect. BMP-2-immunodepleted MM sera had decreased promoter stimulatory capacity, and BMP-2 concentrations in MM sera were significantly higher than in normal sera. Our results demonstrate that BMP-2 is a major mediator of the hepcidin stimulatory activity of MM sera.
Collapse
|
21
|
Abstract
Recent advances in research on iron metabolism have revealed the identity of a number of genes, signal transduction pathways, and proteins involved in iron regulation in mammals. The emerging paradigm is a coordination of homeostasis within a network of classical iron metabolic pathways and other cellular processes such as cell differentiation, growth, inflammation, immunity, and a host of physiologic and pathologic conditions. Iron, immunity, and infection are intricately linked and their regulation is fundamental to the survival of mammals. The mutual dependence on iron by the host and invading pathogenic organisms elicits competition for the element during infection. While the host maintains mechanisms to utilize iron for its own metabolism exclusively, pathogenic organisms are armed with a myriad of strategies to circumvent these measures. This review explores iron metabolism in mammalian host, defense mechanisms against pathogenic microbes and the competitive devices of microbes for access to iron.
Collapse
Affiliation(s)
- Gladys O Latunde-Dada
- King's College London, Nutritional Sciences Division, School of Biomedical and Health Sciences, Franklin-Wilkins Building, London SE1 9NH, United Kingdom.
| |
Collapse
|
22
|
Toll-like receptors mediate induction of hepcidin in mice infected with Borrelia burgdorferi. Blood 2009; 114:1913-8. [PMID: 19587376 DOI: 10.1182/blood-2009-03-209577] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepcidin is the major regulator of systemic iron homeostasis in mammals. Hepcidin is produced mainly by the liver and is increased by inflammation, leading to hypoferremia. We measured serum levels of bioactive hepcidin and its effects on serum iron levels in mice infected with Borrelia burgdorferi. Bioactive hepcidin was elevated in the serum of mice resulting in hypoferremia. Infected mice produced hepcidin in both liver and spleen. Both intact and sonicated B burgdorferi induced hepcidin expression in cultured mouse bone marrrow macrophages. Hepcidin production by cultured macrophages represents a primary transcriptional response stimulated by B burgdorferi and not a secondary consequence of cytokine elaboration. Hepcidin expression induced by B burgdorferi was mediated primarily by activation of Toll-like receptor 2.
Collapse
|
23
|
Cho YS, Lee SY, Kim KH, Kim SK, Kim DS, Nam YK. Gene structure and differential modulation of multiple rockbream (Oplegnathus fasciatus) hepcidin isoforms resulting from different biological stimulations. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:46-58. [PMID: 18761369 DOI: 10.1016/j.dci.2008.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/16/2008] [Accepted: 07/16/2008] [Indexed: 05/26/2023]
Abstract
Hepcidin, an antimicrobial and iron-regulating peptide, is a key molecule of the innate immune system of bony fish. In this study, four isoforms of hepcidin genes were characterized from a marine Perciform fish, rockbream (Oplegnathus fasciatus), and the transcriptional modulations of these isoforms in response to different biological stimulations were also examined. All rockbream hepcidin isoform genes exhibited a tripartite structure and their promoter regions displayed typical binding motifs for the transcription factors including C/EBP, HNF, AP, NF-kbeta, GATA, USF and/or STAT. Hepcidin transcripts in juvenile or fingerling tissues were dramatically induced during experimental challenges with various bacterial species, iron overload and rockbream iridovirus infection. The transcription ofhepcidins was regulated in an isoform- and tissue-specific fashion. In addition, we identified for the first time that partially processed hepcidin transcripts were significantly elevated during bacterial infection and iron overload. Results from this study provide a good basis to better understand the isoform-specific role of hepcidin in the fish innate immune system.
Collapse
Affiliation(s)
- Young S Cho
- Department of Aquaculture, Pukyong National University, Busan 608-737, South Korea
| | | | | | | | | | | |
Collapse
|
24
|
Two BMP responsive elements, STAT, and bZIP/HNF4/COUP motifs of the hepcidin promoter are critical for BMP, SMAD1, and HJV responsiveness. Blood 2008; 113:688-95. [PMID: 18997172 DOI: 10.1182/blood-2008-05-160184] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepcidin plays a major role in the regulation of iron homeostasis. Several bone morphogenetic proteins (BMPs) are strong inducers of hepcidin (Hamp1, HAMP) expression. Hemojuvelin, a protein critical for maintaining appropriate levels of hepcidin, acts as a coreceptor for BMP2 and BMP4, thereby providing a link between iron homeostasis and the BMP-signaling pathway. We show that a robust BMP, hemojuvelin, and SMAD1 response by murine Hamp1 is dependent on a distal BMP responsive element (BMP-RE2), the adjacent bZIP, HNF4alpha/COUP binding sites, and plus or minus 50 bp of the flanking area within -1.6 to -1.7 kb of the Hamp1 promoter. Furthermore, the STAT site and the BMP responsive element (BMP-RE1) located in the proximal 260-bp region of the Hamp1 promoter are also indispensable for maximal activation of hepcidin transcription. The homologous motifs in the distal and proximal regions of the human HAMP promoter act in a manner similar to the murine Hamp1 promoter. Therefore, we propose that the regulation of hepcidin by the BMP pathway involves the formation of a complex of liver-specific and response-specific transcription factors bound to the distal BMP-RE2 /bZIP/HNF4alpha/COUP region and to the proximal BMP-RE1/STAT region possibly by physical association of the 2 regions.
Collapse
|
25
|
Verga Falzacappa MV, Casanovas G, Hentze MW, Muckenthaler MU. A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells. J Mol Med (Berl) 2008; 86:531-40. [DOI: 10.1007/s00109-008-0313-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 01/09/2023]
|
26
|
Abstract
Abstract
Systemic iron homeostasis depends on the regulated expression of hepcidin, a peptide hormone that negatively regulates iron egress from intestinal cells and macrophages by altering the expression of the cellular iron exporter ferroportin. In doing so, hepcidin can control both the total body iron by modulating intestinal iron absorption as well as promote iron available for erythropoiesis by affecting the efficiency with which macrophages recycle iron from effete red blood cells. This review focuses on the systemic and cellular physiology of hepcidin regulation in relation to iron stores, erythropoiesis, inflammation, and hypoxia and how hepcidin regulation and dysregulation contributes to normal iron homeostasis and iron metabolism disorders.
Collapse
|