1
|
Gu Q, Palani CD, Smith A, Li B, Amos-Abanyie EK, Ogu U, Lu L, Pace BS, Starlard-Davenport A. MicroRNA29B induces fetal hemoglobin via inhibition of the HBG repressor protein MYB in vitro and in humanized sickle cell mice. Front Med (Lausanne) 2022; 9:1043686. [PMID: 36507536 PMCID: PMC9732025 DOI: 10.3389/fmed.2022.1043686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Therapeutic strategies aimed at reactivating HBG gene transcription and fetal hemoglobin (HbF) synthesis remain the most effective strategy to ameliorate the clinical symptoms of sickle cell disease (SCD). We previously identified microRNA29B (MIR29B) as a novel HbF inducer via targeting enzymes involved in DNA methylation. We provided further evidence that the introduction of MIR29B into KU812 leukemia cells significantly reduced MYB protein expression. Therefore, the aim of this study was to determine the extent to which MIR29B mediates HbF induction via targeting MYB in KU812 leukemia cells and human primary erythroid progenitors and to investigate the role of MIR29B in HbF induction in vivo in the humanized Townes SCD mouse model. Materials and methods Human KU812 were cultured and normal CD34 cells (n = 3) were differentiated using a two-phase erythropoiesis culturing system and transfected with MIR29B (50 and 100 nM) mimic or Scrambled (Scr) control in vitro. A luciferase reporter plasmid overexpressing MYB was transfected into KU812 cells. Luciferase activity was quantified after 48 h. Gene expression was determined by quantitative real-time PCR. In vivo studies were conducted using Townes SCD mice (6 per group) treated with MIR29B (2, 3, and 4 mg/kg/day) or Scr control by 28-day continuous infusion using subcutaneous mini osmotic pumps. Blood samples were collected and processed for complete blood count (CBC) with differential and reticulocytes at weeks 0, 2, and 4. Flow cytometry was used to measure the percentage of HbF-positive cells. Results In silico analysis predicted complementary base-pairing between MIR29B and the 3'-untranslated region (UTR) of MYB. Overexpression of MIR29B significantly reduced MYB mRNA and protein expression in KU812 cells and erythroid progenitors. Using a luciferase reporter vector that contained the full-length MYB 3'-UTR, we observed a significant reduction in luciferase activity among KU812 cells that co-expressed MIR29B and the full-length MYB 3'-UTR as compared to cells that only expressed MYB 3'-UTR. We confirmed the inhibitory effect of a plasmid engineered to overexpress MYB on HBG activation and HbF induction in both KU812 cells and human primary erythroid progenitors. Co-expression of MIR29B and MYB in both cell types further demonstrated the inhibitory effect of MIR29B on MYB expression, resulting in HBG reactivation by real-time PCR, Western blot, and flow cytometry analysis. Finally, we confirmed the ability of MIR29B to reduce sickling and induce HbF by decreasing expression of MYB and DNMT3 gene expression in the humanized Townes sickle cell mouse model. Discussion Our findings support the ability of MIR29B to induce HbF in vivo in Townes sickle cell mice. This is the first study to provide evidence of the ability of MIR29B to modulate HBG transcription by MYB gene silencing in vivo. Our research highlights a novel MIR-based epigenetic approach to induce HbF supporting the discovery of new drugs to expand treatment options for SCD.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chithra D. Palani
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, United States,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Alana Smith
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Biaori Li
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, United States,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Ernestine Kubi Amos-Abanyie
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ugochi Ogu
- Center for Sickle Cell Disease, Department of Medicine-Hematology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Betty S. Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, United States,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States,Center for Sickle Cell Disease, The University of Tennessee Health Science Center, Memphis, TN, United States,*Correspondence: Athena Starlard-Davenport,
| |
Collapse
|
2
|
Lopez NH, Li B, Palani C, Siddaramappa U, Takezaki M, Xu H, Zhi W, Pace BS. Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice. PLoS One 2022; 17:e0261799. [PMID: 35639781 PMCID: PMC9154101 DOI: 10.1371/journal.pone.0261799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a mutation in the HBB gene leading to hemoglobin S production and polymerization under hypoxia conditions leading to vaso-occlusion, chronic hemolysis, and progressive organ damage. This disease affects ~100,000 people in the United States and millions worldwide. An effective therapy for SCD is fetal hemoglobin (HbF) induction by pharmacologic agents such as hydroxyurea, the only Food and Drug Administration-approved drug for this purpose. Therefore, the goal of our study was to determine whether salubrinal (SAL), a selective protein phosphatase 1 inhibitor, induces HbF expression through the stress-signaling pathway by activation of p-eIF2α and ATF4 trans-activation in the γ-globin gene promoter. Sickle erythroid progenitors treated with 24μM SAL increased F-cells levels 1.4-fold (p = 0.021) and produced an 80% decrease in reactive oxygen species. Western blot analysis showed SAL enhanced HbF protein by 1.6-fold (p = 0.0441), along with dose-dependent increases of p-eIF2α and ATF4 levels. Subsequent treatment of SCD mice by a single intraperitoneal injection of SAL (5mg/kg) produced peak plasma concentrations at 6 hours. Chronic treatments of SCD mice with SAL mediated a 2.3-fold increase in F-cells (p = 0.0013) and decreased sickle erythrocytes supporting in vivo HbF induction.
Collapse
Affiliation(s)
- Nicole H. Lopez
- Department of Biochemistry and Cancer Biology, Augusta University, Augusta, GA, United States of America
| | - Biaoru Li
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Chithra Palani
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Umapathy Siddaramappa
- Department of Medicine, Division of Hematology/Oncology Augusta University, Augusta GA, United States of America
| | - Mayuko Takezaki
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| | - Hongyan Xu
- Department of Biostatistics and Epidemiology, Augusta University, Augusta, GA, United States of America
| | - Wenbo Zhi
- Center for Biotechnology & Genomic Medicine, Augusta University, Augusta, GA, United States of America
| | - Betty S. Pace
- Department of Biochemistry and Cancer Biology, Augusta University, Augusta, GA, United States of America
- Department of Pediatrics, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
3
|
de Melo TRF, Dulmovits BM, Fernandes GFDS, de Souza CM, Lanaro C, He M, Al Abed Y, Chung MC, Blanc L, Costa FF, Dos Santos JL. Synthesis and pharmacological evaluation of pomalidomide derivatives useful for sickle cell disease treatment. Bioorg Chem 2021; 114:105077. [PMID: 34130111 PMCID: PMC8387409 DOI: 10.1016/j.bioorg.2021.105077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022]
Abstract
Fetal hemoglobin (HbF) induction constitutes a valuable and validated approach to treat the symptoms of sickle cell disease (SCD). Here, we synthesized pomalidomide-nitric oxide (NO) donor derivatives (3a-f) and evaluated their suitability as novel HbF inducers. All compounds demonstrated different capacities of releasing NO, ranging 0.3-30.3%. Compound 3d was the most effective HbF inducer for CD34+ cells, exhibiting an effect similar to that of hydroxyurea. We investigated the mode of action of compound 3d for HbF induction by studying the in vitro alterations in the levels of transcription factors (BCL11A, IKAROS, and LRF), inhibition of histone deacetylase enzymes (HDAC-1 and HDAC-2), and measurement of cGMP levels. Additionally, compound 3d exhibited a potent anti-inflammatory effect similar to that of pomalidomide by reducing the TNF-α levels in human mononuclear cells treated with lipopolysaccharides up to 58.6%. Chemical hydrolysis studies revealed that compound 3d was stable at pH 7.4 up to 24 h. These results suggest that compound 3d is a novel HbF inducer prototype with the potential to treat SCD symptoms.
Collapse
Affiliation(s)
| | - Brian M Dulmovits
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Pediatric Oncology Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | | | - Cristiane M de Souza
- Faculty of Medical Sciences, State University of Campinas - UNICAMP, Campinas 13083-970, Brazil
| | - Carolina Lanaro
- Faculty of Medical Sciences, State University of Campinas - UNICAMP, Campinas 13083-970, Brazil
| | - Minghzu He
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Pediatric Oncology Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Yousef Al Abed
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Laboratory of Developmental Erythropoiesis, Les Nelkin Memorial Pediatric Oncology Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Man Chin Chung
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara 14800-903, Brazil
| | - Lionel Blanc
- Department of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Fernando Ferreira Costa
- Faculty of Medical Sciences, State University of Campinas - UNICAMP, Campinas 13083-970, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara 14800-903, Brazil.
| |
Collapse
|
4
|
Long X, Yang Z, Li Y, Sun Q, Li X, Kuang E. BRLF1-dependent viral and cellular transcriptomes and transcriptional regulation during EBV primary infection in B lymphoma cells. Genomics 2021; 113:2591-2604. [PMID: 34087421 DOI: 10.1016/j.ygeno.2021.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/17/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022]
Abstract
The immediate-early protein BRLF1 plays important roles in lytic infection of Epstein-Barr virus (EBV), in which it activates lytic viral transcription and replication. However, knowledge of the influence of BRLF1 on cellular gene expression and transcriptional reprogramming during the early lytic cycle remains limited. In the present study, deep RNA-sequencing analysis identified all differentially expressed genes (DEGs) and alternative splicing in B lymphoma cells subjected to wild-type and BRLF1-deficient EBV primary infection. The BRLF1-dependent cellular DEGs were annotated, and major differentially enriched pathways were related to DNA replication and transcription, immune and inflammatory responses, cytokine-receptor interactions and chemokine signaling and metabolic processes. Furthermore, analysis of BRLF1-binding proteins by mass spectrometry shows that BRLF1 binds to and cooperates with several transcription factors and components of the spliceosome and then influences both RNA polymerase II-dependent transcription and pre-mRNA splicing. The RTA-binding RRE motifs or specific motifs of unique cooperative transcription factors in viral and cellular DEG promoter regions indicate that BRLF1 employs different strategies for regulating viral and cellular transcription. Thus, our study characterized BRLF1-dependent cellular and viral transcriptional profile during primary infection and then revealed the comprehensive virus-cell interaction and alterations of transcription during EBV primary infection and lytic replication.
Collapse
Affiliation(s)
- Xubing Long
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Ziwei Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yang Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiaojuan Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
5
|
Watson G, Ronai ZA, Lau E. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res 2017; 119:347-357. [PMID: 28212892 PMCID: PMC5457671 DOI: 10.1016/j.phrs.2017.02.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/16/2023]
Abstract
Stringent transcriptional regulation is crucial for normal cellular biology and organismal development. Perturbations in the proper regulation of transcription factors can result in numerous pathologies, including cancer. Thus, understanding how transcription factors are regulated and how they are dysregulated in disease states is key to the therapeutic targeting of these factors and/or the pathways that they regulate. Activating transcription factor 2 (ATF2) has been studied in a number of developmental and pathological conditions. Recent findings have shed light on the transcriptional, post-transcriptional, and post-translational regulatory mechanisms that influence ATF2 function, and thus, the transcriptional programs coordinated by ATF2. Given our current knowledge of its multiple levels of regulation and function, ATF2 represents a paradigm for the mechanistic complexity that can regulate transcription factor function. Thus, increasing our understanding of the regulation and function of ATF2 will provide insights into fundamental regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into a genomic response through transcription factors. Characterization of ATF2 dysfunction in the context of pathological conditions, particularly in cancer biology and response to therapy, will be important in understanding how pathways controlled by ATF2 or other transcription factors might be therapeutically exploited. In this review, we provide an overview of the currently known upstream regulators and downstream targets of ATF2.
Collapse
Affiliation(s)
- Gregory Watson
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, 3109601, Israel
| | - Eric Lau
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
6
|
Fridlyand D, Wilder C, Clay ELJ, Gilbert B, Pace BS. Stroke in a Child with Hemoglobin SC Disease: A Case Report Describing use of Hydroxyurea after Transfusion Therapy. Pediatr Rep 2017; 9:6984. [PMID: 28435652 PMCID: PMC5379224 DOI: 10.4081/pr.2017.6984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/28/2022] Open
Abstract
Children with hemoglobin SC (HbSC) disease suffer a significant incidence of silent cerebral infarcts but stroke is rare. A 2-year-old African American boy with HbSC disease presented with focal neurologic deficits associated with magnetic resonance imaging evidence of cerebral infarction with vascular abnormalities. After the acute episode he was treated with monthly transfusions and subsequently transitioned to hydroxyurea therapy. The benefits of hydroxyurea as a fetal hemoglobin inducer in HbSC disease, to ameliorate clinical symptoms are supported by retrospective studies. This case highlights the rare occurrence of stroke in a child with HbSC disease and the use of hydroxyurea therapy.
Collapse
Affiliation(s)
| | | | | | - Bruce Gilbert
- Department of Radiology, Augusta University, GA, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, GA, USA
| |
Collapse
|
7
|
Pule GD, Mowla S, Novitzky N, Wonkam A. Hydroxyurea down-regulates BCL11A, KLF-1 and MYB through miRNA-mediated actions to induce γ-globin expression: implications for new therapeutic approaches of sickle cell disease. Clin Transl Med 2016; 5:15. [PMID: 27056246 PMCID: PMC4824700 DOI: 10.1186/s40169-016-0092-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/29/2016] [Indexed: 12/29/2022] Open
Abstract
Background The major therapeutic benefit of hydroxyurea, the only FDA-approved pharmacologic treatment for sickle cell disease (SCD), is directly related to fetal hemoglobin (HbF) production that leads to significant reduction of morbidity and mortality. However, potential adverse effects such as infertility, susceptibility to infections, or teratogenic effect have been subject of concerns. Therefore, understanding HU molecular mechanisms of action, could lead to alternative therapeutic agents to increase HbF with less toxicity. This paper investigated whether HU-induced HbF could operate through post-transcriptional miRNAs regulation of BCL11A, KLF-1 and MYB, potent negative regulators of HbF. Both ex vivo differentiated primary erythroid cells from seven unrelated individuals, and K562 cells were treated with hydroxyurea (100 μM) and changes in BCL11A, KLF-1, GATA-1, MYB, β- and γ-globin gene expression were investigated. To explore potential mechanisms of post-transcriptional regulation, changes in expression of seven targeted miRNAs, previously associated with basal γ-globin expression were examined using miScript primer assays. In addition, K562 cells were transfected with miScript miRNA inhibitors/anti-miRNAs followed by Western Blot analysis to assess the effect on HbF protein levels. Direct interaction between miRNAs and the MYB 3′-untranslated region (UTR) was also investigated by a dual-luciferase reporter assays. Results Down-regulation of BCL11A and MYB was associated with a sevenfold increase in γ-globin expression in both primary and K562 cells (p < 0.003). Similarly, KLF-1 was down-regulated in both cell models, corresponding to the repressed expression of BCL11A and β-globin gene (p < 0.04). HU induced differential expression of all miRNAs in both cell models, particularly miR-15a, miR-16, miR-26b and miR-151-3p. An HU-induced miRNAs-mediated mechanism of HbF regulation was illustrated with the inhibition of miR-26b and -151-3p resulting in reduced HbF protein levels. There was direct interaction between miR-26b with the MYB 3′-untranslated region (UTR). Conclusions These experiments have shown the association between critical regulators of γ-globin expression (MYB, BCL11A and KLF-1) and specific miRNAs; in response to HU, and demonstrated a mechanism of HbF production through HU-induced miRNAs inhibition of MYB. The role of miRNAs-mediated post-transcriptional regulation of HbF provides potential targets for new treatments of SCD that may minimize alterations to the cellular transcriptome. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0092-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gift Dineo Pule
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, Republic of South Africa
| | - Shaheen Mowla
- Division of Hematology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Nicolas Novitzky
- Division of Hematology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, Republic of South Africa.
| |
Collapse
|
8
|
Liu L, Pertsemlidis A, Ding LH, Story MD, Steinberg MH, Sebastiani P, Hoppe C, Ballas SK, Pace BS. Original Research: A case-control genome-wide association study identifies genetic modifiers of fetal hemoglobin in sickle cell disease. Exp Biol Med (Maywood) 2016; 241:706-18. [PMID: 27022141 DOI: 10.1177/1535370216642047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sickle cell disease (SCD) is a group of inherited blood disorders that have in common a mutation in the sixth codon of the β-globin (HBB) gene on chromosome 11. However, people with the same genetic mutation display a wide range of clinical phenotypes. Fetal hemoglobin (HbF) expression is an important genetic modifier of SCD complications leading to milder symptoms and improved long-term survival. Therefore, we performed a genome-wide association study (GWAS) using a case-control experimental design in 244 African Americans with SCD to discover genetic factors associated with HbF expression. The case group consisted of subjects with HbF≥8.6% (133 samples) and control group subjects with HbF≤£3.1% (111 samples). Our GWAS results replicated SNPs previously identified in an erythroid-specific enhancer region located in the second intron of the BCL11A gene associated with HbF expression. In addition, we identified SNPs in the SPARC, GJC1, EFTUD2 and JAZF1 genes as novel candidates associated with HbF levels. To gain insights into mechanisms of globin gene regulation in the HBB locus, linkage disequilibrium (LD) and haplotype analyses were conducted. We observed strong LD in the low HbF group in contrast to a loss of LD and greater number of haplotypes in the high HbF group. A search of known HBB locus regulatory elements identified SNPs 5' of δ-globin located in an HbF silencing region. In particular, SNP rs4910736 created a binding site for a known transcription repressor GFi1 which is a candidate protein for further investigation. Another HbF-associated SNP, rs2855122 in the cAMP response element upstream of Gγ-globin, was analyzed for functional relevance. Studies performed with siRNA-mediated CREB binding protein (CBP) knockdown in primary erythroid cells demonstrated γ-globin activation and HbF induction, supporting a repressor role for CBP. This study identifies possible molecular determinants of HbF production.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Dallas, TX 75083, USA
| | - Alexander Pertsemlidis
- Departments of Pediatrics and Cellular & Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin H Steinberg
- Center of Excellence in Sickle Cell Disease Boston Medical Center, Pediatrics, Pathology and Laboratory Medicine, Boston University, Boston, MA 02215, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02215, USA
| | - Carolyn Hoppe
- Department of Hematology/Oncology, UCSF Benioff Children's Hospital, Oakland, CA 94609, USA
| | - Samir K Ballas
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Pace BS, Liu L, Li B, Makala LH. Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease. Exp Biol Med (Maywood) 2015; 240:1050-64. [PMID: 26283707 DOI: 10.1177/1535370215596859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Fetal hemoglobin has been shown to block sickle hemoglobin S polymerization to improve symptoms of sickle cell disease; moreover, fetal hemoglobin functions to replace inadequate hemoglobin A synthesis in β-thalassemia thus serving as an effective therapeutic target. In the perinatal period, fetal hemoglobin is synthesized at high levels followed by a decline to adult levels by one year of age. It is known that naturally occurring mutations in the γ-globin gene promoters and distant cis-acting transcription factors produce persistent fetal hemoglobin synthesis after birth to ameliorate clinical symptoms. Major repressor proteins that silence γ-globin during development have been targeted for gene therapy in β-hemoglobinopathies patients. In parallel effort, several classes of pharmacological agents that induce fetal hemoglobin expression through molecular and cell signaling mechanisms have been identified. Herein, we reviewed the progress made in the discovery of signaling molecules targeted by pharmacologic agents that enhance γ-globin expression and have the potential for future drug development to treat the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75083, USA
| | - Biaoru Li
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| | - Levi H Makala
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Pule GD, Mowla S, Novitzky N, Wiysonge CS, Wonkam A. A systematic review of known mechanisms of hydroxyurea-induced fetal hemoglobin for treatment of sickle cell disease. Expert Rev Hematol 2015; 8:669-79. [PMID: 26327494 DOI: 10.1586/17474086.2015.1078235] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM To report on molecular mechanisms of fetal hemoglobin (HbF) induction by hydroxyurea (HU) for the treatment of sickle cell disease. STUDY DESIGN Systematic review. RESULTS Studies have provided consistent associations between genomic variations in HbF-promoting loci and variable HbF level in response to HU. Numerous signal transduction pathways have been implicated, through the identification of key genomic variants in BCL11A, HBS1L-MYB, SAR1 or XmnI polymorphism that predispose the response to the treatment, and signal transduction pathways that modulate γ-globin expression (cAMP/cGMP; Giα/c-Jun N-terminal kinase/Jun; methylation and miRNA). Three main molecular pathways have been reported: i) Epigenetic modifications, transcriptional events and signaling pathways involved in HU-mediated response, ii) Signaling pathways involving HU-mediated response and iii) Post-transcriptional pathways (regulation by miRNAs). CONCLUSIONS The complete picture of HU-mediated mechanisms of HbF production in Sickle Cell Disease remains elusive. Research on post-transcriptional mechanisms could lead to therapeutic targets that may minimize alterations to the cellular transcriptome.
Collapse
Affiliation(s)
- Gift D Pule
- a 1 Department of Medicine, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | | | | | | | | |
Collapse
|
11
|
Hydroxyurea-inducible SAR1 gene acts through the Giα/JNK/Jun pathway to regulate γ-globin expression. Blood 2014; 124:1146-56. [PMID: 24914133 DOI: 10.1182/blood-2013-10-534842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hydroxyurea (HU) is effectively used in the management of β-hemoglobinopathies by augmenting the production of fetal hemoglobin (HbF). However, the molecular mechanisms underlying HU-mediated HbF regulation remain unclear. We previously reported that overexpression of the HU-induced SAR1 gene closely mimics the known effects of HU on K562 and CD34(+) cells, including γ-globin induction and cell-cycle regulation. Here, we show that HU stimulated nuclear factor-κB interaction with its cognate-binding site on the SAR1 promoter to regulate transcriptional expression of SAR1 in K562 and CD34(+) cells. Silencing SAR1 expression not only significantly lowered both basal and HU-elicited HbF production in K562 and CD34(+) cells, but also significantly reduced HU-mediated S-phase cell-cycle arrest and apoptosis in K562 cells. Inhibition of c-Jun N-terminal kinase (JNK)/Jun phosphorylation and silencing of Giα expression in SAR1-transfected K562 and CD34(+) cells reduced both γ-globin expression and HbF level, indicating that activation of Giα/JNK/Jun proteins is required for SAR1-mediated HbF induction. Furthermore, reciprocal coimmunoprecipitation assays revealed an association between forcibly expressed SAR1 and Giα2 or Giα3 proteins in both K562 and nonerythroid cells. These results indicate that HU induces SAR1, which in turn activates γ-globin expression, predominantly through the Giα/JNK/Jun pathway. Our findings identify SAR1 as an alternative therapeutic target for β-globin disorders.
Collapse
|
12
|
Abstract
Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway.
Collapse
|
13
|
Regulation of Gγ-globin gene by ATF2 and its associated proteins through the cAMP-response element. PLoS One 2013; 8:e78253. [PMID: 24223142 PMCID: PMC3819381 DOI: 10.1371/journal.pone.0078253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
The upstream Gγ-globin cAMP-response element (G-CRE) plays an important role in regulating Gγ-globin expression through binding of ATF2 and its DNA-binding partners defined in this study. ATF2 knockdown resulted in a significant reduction of γ-globin expression accompanied by decreased ATF2 binding to the G-CRE. By contrast, stable ATF2 expression in K562 cells increased γ-globin transcription which was reduced by ATF2 knockdown. Moreover, a similar effect of ATF2 on γ-globin expression was observed in primary erythroid progenitors. To understand the role of ATF2 in γ-globin expression, chromatographically purified G-CRE/ATF2-interacting proteins were subjected to mass spectrometry analysis; major binding partners included CREB1, cJun, Brg1, and histone deacetylases among others. Immunoprecipitation assays demonstrated interaction of these proteins with ATF2 and in vivo GCRE binding in CD34+ cells undergoing erythroid differentiation which was correlated with γ-globin expression during development. These results suggest synergism between developmental stage-specific recruitments of the ATF2 protein complex and expression of γ-globin during erythropoiesis. Microarray studies in K562 cells support ATF2 plays diverse roles in hematopoiesis and chromatin remodeling.
Collapse
|
14
|
Banan M, Esmaeilzadeh-Gharehdaghi E, Nezami M, Deilami Z, Farashi S, Philipsen S, Esteghamat F, Pourfarzad F, Ali Imam AM, Najmabadi H. cAMP response element-binding protein 1 is required for hydroxyurea-mediated induction of γ-globin expression in K562 cells. Clin Exp Pharmacol Physiol 2013; 39:510-7. [PMID: 22469229 DOI: 10.1111/j.1440-1681.2012.05702.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Hydroxyurea (HU) is a drug used for the treatment of haemoglobinopathies. Hydroxyurea functions by upregulating γ-globin transcription and fetal haemoglobin (HbF) production in erythroid cells. The K562 erythroleukaemia cell line is widely used as a model system in which to study the mechanism of γ-globin induction by HU. However, the transcription factors required for the upregulation of γ-globin expression by HU in K562 cells have not been identified. Similarities between the HU and sodium butyrate (SB) pathways suggest cAMP response element-binding protein (CREB) 1 as a potential candidate. Thus, the aim of the present study was to investigate the possible role of CREB1 in the HU pathway. 2. Experiments were performed using transient and stable RNA interference (RNAi) to show that CREB1 is necessary for HU-mediated induction of γ-globin expression and haemoglobin production in K562 cells. 3. Furthermore, western blot analyses demonstrated that CREB1 becomes phosphorylated in a dose-dependent manner after HU (100-400 µmol/L) treatment of K562 cells for 72 h. 4. We also investigated role of a Gγ promoter CREB1 response element (G-CRE) in this pathway. Quantitative amplification refractory mutation system-polymerase chain reaction experiments were performed to demonstrate that HU induces the expression of both Gγ and Aγ in this cell line. In addition, electrophoretic mobility shift assays were used to show that levels of CREB1 complexes binding to the G-CRE site are increased following HU treatment and are decreased in CREB1-knockdown cells. 5. The results suggest that CREB1 is necessary for γ-globin induction by HU in K562 cells, a role that may be mediated, in part, through the G-CRE element.
Collapse
Affiliation(s)
- Mehdi Banan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Čokić VP, Smith RD, Biancotto A, Noguchi CT, Puri RK, Schechter AN. Globin gene expression in correlation with G protein-related genes during erythroid differentiation. BMC Genomics 2013; 14:116. [PMID: 23425329 PMCID: PMC3602204 DOI: 10.1186/1471-2164-14-116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 02/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background The guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) regulate cell growth, proliferation and differentiation. G proteins are also implicated in erythroid differentiation, and some of them are expressed principally in hematopoietic cells. GPCRs-linked NO/cGMP and p38 MAPK signaling pathways already demonstrated potency for globin gene stimulation. By analyzing erythroid progenitors, derived from hematopoietic cells through in vitro ontogeny, our study intends to determine early markers and signaling pathways of globin gene regulation and their relation to GPCR expression. Results Human hematopoietic CD34+ progenitors are isolated from fetal liver (FL), cord blood (CB), adult bone marrow (BM), peripheral blood (PB) and G-CSF stimulated mobilized PB (mPB), and then differentiated in vitro into erythroid progenitors. We find that growth capacity is most abundant in FL- and CB-derived erythroid cells. The erythroid progenitor cells are sorted as 100% CD71+, but we did not find statistical significance in the variations of CD34, CD36 and GlyA antigens and that confirms similarity in maturation of studied ontogenic periods. During ontogeny, beta-globin gene expression reaches maximum levels in cells of adult blood origin (176 fmol/μg), while gamma-globin gene expression is consistently up-regulated in CB-derived cells (60 fmol/μg). During gamma-globin induction by hydroxycarbamide, we identify stimulated GPCRs (PTGDR, PTGER1) and GPCRs-coupled genes known to be activated via the cAMP/PKA (ADIPOQ), MAPK pathway (JUN) and NO/cGMP (PRPF18) signaling pathways. During ontogeny, GPR45 and ARRDC1 genes have the most prominent expression in FL-derived erythroid progenitor cells, GNL3 and GRP65 genes in CB-derived cells (high gamma-globin gene expression), GPR110 and GNG10 in BM-derived cells, GPR89C and GPR172A in PB-derived cells, and GPR44 and GNAQ genes in mPB-derived cells (high beta-globin gene expression). Conclusions These results demonstrate the concomitant activity of GPCR-coupled genes and related signaling pathways during erythropoietic stimulation of globin genes. In accordance with previous reports, the stimulation of GPCRs supports the postulated connection between cAMP/PKA and NO/cGMP pathways in activation of γ-globin expression, via JUN and p38 MAPK signaling.
Collapse
Affiliation(s)
- Vladan P Čokić
- Laboratory of Experimental Hematology, Institute for Medical Research, University of Belgrade, Dr, Subotica 4, 11129, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
16
|
Banan M. Hydroxyurea treatment in β-thalassemia patients: to respond or not to respond? Ann Hematol 2013; 92:289-99. [PMID: 23318979 DOI: 10.1007/s00277-012-1671-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 12/29/2012] [Indexed: 01/03/2023]
Abstract
Hydroxyurea (HU) is a drug that induces fetal hemoglobin production. As a result, HU is widely used to treat β-thalassemia (β-thal) patients. However, the response of these patients to HU varies. Some β-thal patients respond favorably to treatment while others do not respond at all. HU has a number of side-effects and therefore its targeted prescription is beneficial. Hence, identifying the genetic determinants which lead to the differential HU response is important. This review summarizes recent findings which have shed light on this topic. Special emphasis is given to the mechanisms and genetic loci which may govern these differences. These findings have helped identify several single nucleotide polymorphisms which associate with the response to HU in both β-thal and sickle cell disease patients.
Collapse
Affiliation(s)
- Mehdi Banan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Evin, Daneshjoo Blvd., Koodakyar St, Tehran, Iran.
| |
Collapse
|
17
|
Rahim F, Allahmoradi H, Salari F, Shahjahani M, Fard AD, Hosseini SA, Mousakhani H. Evaluation of Signaling Pathways Involved in γ-Globin Gene Induction Using Fetal Hemoglobin Inducer Drugs. Int J Hematol Oncol Stem Cell Res 2013; 7:41-6. [PMID: 24505534 PMCID: PMC3913148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 06/15/2013] [Indexed: 11/08/2022] Open
Abstract
Potent induction of fetal hemoglobin (HbF) production results in alleviating the complications of β-thalassemia and sickle cell disease (SCD). HbF inducer agents can trigger several molecular signaling pathways critical for erythropoiesis. Janus kinase/Signal transducer and activator of transcription (JAK/STAT), mitogen activated protein kinas (MAPK) and Phosphoinositide 3-kinase (PI3K) are considered as main signaling pathways, which may play a significant role in HbF induction. All these signaling pathways are triggered by erythropoietin (EPO) as the main growth factor inducing erythroid differentiation, when it binds to its cell surface receptor, erythropoietin receptor (EPO-R) HbF inducer agents have been shown to upregulate HbF production level by triggering certain signaling pathways. As a result, understanding the pivotal signaling pathways influencing HbF induction leads to effective upregulation of HbF. In this mini review article, we try to consider the correlation between HbF inducer agents and their molecular mechanisms of γ-globin upregulation. Several studies suggest that activating P38 MAPK, RAS and STAT5 signaling pathways result in efficient HbF induction. Nevertheless, the role of other erythroid signaling pathways in HbF induction seems to be indispensible and should be emphasized.
Collapse
Affiliation(s)
- Fakher Rahim
- Toxicology Research Center, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Hossein Allahmoradi
- General Practitioner, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Salari
- Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Department of Hematology and Blood Banking, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Dehghani Fard
- Sarem Cell Research Center- SCRC, Sarem Women's Hospital, Tehran, Iran
| | - Seyed Ahmad Hosseini
- Department of nutrition, Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Mousakhani
- Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Lau E, Ronai ZA. ATF2 - at the crossroad of nuclear and cytosolic functions. J Cell Sci 2012; 125:2815-24. [PMID: 22685333 DOI: 10.1242/jcs.095000] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An increasing number of transcription factors have been shown to elicit oncogenic and tumor suppressor activities, depending on the tissue and cell context. Activating transcription factor 2 (ATF2; also known as cAMP-dependent transcription factor ATF-2) has oncogenic activities in melanoma and tumor suppressor activities in non-malignant skin tumors and breast cancer. Recent work has shown that the opposing functions of ATF2 are associated with its subcellular localization. In the nucleus, ATF2 contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. ATF2 can also translocate to the cytosol, primarily following exposure to severe genotoxic stress, where it impairs mitochondrial membrane potential and promotes mitochondrial-based cell death. Notably, phosphorylation of ATF2 by the epsilon isoform of protein kinase C (PKCε) is the master switch that controls its subcellular localization and function. Here, we summarize our current understanding of the regulation and function of ATF2 in both subcellular compartments. This mechanism of control of a non-genetically modified transcription factor represents a novel paradigm for 'oncogene addiction'.
Collapse
Affiliation(s)
- Eric Lau
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92130, USA.
| | | |
Collapse
|
19
|
Li B, Ding L, Li W, Story MD, Pace BS. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation. BMC Genomics 2012; 13:153. [PMID: 22537182 PMCID: PMC3353202 DOI: 10.1186/1471-2164-13-153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 04/26/2012] [Indexed: 12/14/2022] Open
Abstract
Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation.
Collapse
Affiliation(s)
- Biaoru Li
- Department Pediatrics, Georgia Health Sciences University, 1120 15th St, CN-4112, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
20
|
Kalra IS, Alam MM, Choudhary PK, Pace BS. Krüppel-like Factor 4 activates HBG gene expression in primary erythroid cells. Br J Haematol 2011; 154:248-59. [PMID: 21539536 DOI: 10.1111/j.1365-2141.2011.08710.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The SP1/Krüppel-like Factor (SP1/KLF) family of transcription factors plays a role in diverse cellular processes, including proliferation, differentiation and control of gene transcription. The discovery of KLF1 (EKLF), a key regulator of HBB (β-globin) gene expression, expanded our understanding of the role of KLFs in erythropoiesis. In this study, we investigated a mechanism of HBG (γ-globin) regulation by KLF4. siRNA-mediated gene silencing and enforced expression of KLF4 in K562 cells substantiated the ability of KLF4 to positively regulate endogenous HBG gene transcription. The physiological significance of this finding was confirmed in primary erythroid cells, where KLF4 knockdown at day 11 significantly attenuated HBG mRNA levels and enforced expression at day 28 stimulated the silenced HBG genes. In vitro binding characterization using the γ-CACCC and β-CACCC probes demonstrated KLF4 preferentially binds the endogenous γ-CACCC, while CREB binding protein (CREBBP) binding was not selective. Co-immunoprecipitation studies confirmed protein-protein interaction between KLF4 and CREBBP. Furthermore, sequential chromatin immunoprecipitation assays showed co-localization of both factors in the γ-CACCC region. Subsequent luciferase reporter studies demonstrated that KLF4 trans-activated HBG promoter activity and that CREBBP enforced expression resulted in gene repression. Our data supports a model of antagonistic interaction of KLF4/CREBBP trans-factors in HBG regulation.
Collapse
Affiliation(s)
- Inderdeep S Kalra
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX, USA
| | | | | | | |
Collapse
|
21
|
Ramakrishnan V, Pace BS. Regulation of γ-globin gene expression involves signaling through the p38 MAPK/CREB1 pathway. Blood Cells Mol Dis 2011; 47:12-22. [PMID: 21497119 DOI: 10.1016/j.bcmd.2011.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
In response to sodium butyrate and trichostatin A treatment in erythroid cells, p38 mitogen activated protein kinase (MAPK) mediates fetal hemoglobin (HbF) induction by activating cAMP response element binding protein 1 (CREB1). To expand on this observation, we completed studies to determine the role of p38 MAPK in steady-state γ-globin regulation. We propose that p38 signaling regulates Gγ-globin transcription during erythroid maturation through its downstream effector CREB1 which binds the Gγ-globin cAMP response element (G-CRE). We demonstrated that a loss of p38 or CREB1 function by siRNA knockdown resulted in target gene silencing. Moreover, gain of p38 or CREB1 function augments γ-globin transcription. These regulatory effects were conserved under physiological conditions tested in primary erythroid cells. When the G-CRE was mutated in a stable chromatin environment Gγ-globin promoter activity was nearly abolished. Furthermore, introduction of mutations in the G-CRE abolished Gγ-globin activation via p38 MAPK/CREB1 signaling. Chromatin immunoprecipitation assays (ChIP) demonstrated that CREB1 and its binding partner CREB binding protein (CBP) co-localize at the G-CRE region. These data support the role of p38 MAPK/CREB1 signaling in Gγ-globin gene transcription under steady-state conditions.
Collapse
Affiliation(s)
- Valya Ramakrishnan
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | | |
Collapse
|