1
|
Glyoxalase-I Is Upregulated in Acute Cerulein-Induced Pancreatitis: A New Mechanism in Pancreatic Inflammation? Antioxidants (Basel) 2021; 10:antiox10101574. [PMID: 34679710 PMCID: PMC8533479 DOI: 10.3390/antiox10101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/13/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation caused by oxidative stress (ROS) demonstrates an essential mechanism in the pathogenesis of acute pancreatitis (AP). Important sources for ROS comprise the reactive compound methylglyoxal (MGO) itself and the MGO-derived formation of advanced glycation end-products (AGEs). AGEs bind to the transmembrane receptor RAGE and activate NF-κB, and lead to the production of pro-inflammatory cytokines. MGO is detoxified by glyoxalase-I (Glo-I). The importance of Glo-I was shown in different models of inflammation and carcinogenesis. Nevertheless, the role of Glo-I and MGO in AP has not been evaluated so far. This study analyzed Glo-I in cerulein-(CN)-induced AP and determined the effects of Glo-I knockdown, overexpression and pharmacological modulation. Methods: AP was induced in C57BL6/J mice by i.p. injection of CN. Glo-I was analyzed in explanted pancreata by Western Blot, qRT-PCR and immunohistochemistry. AR42J cells were differentiated by dexamethasone and stimulated with 100 nM of CN. Cells were simultaneously treated with ethyl pyruvate (EP) or S-p-bromobenzylglutathione-cyclopentyl-diester (BrBz), two Glo-I modulators. Knockdown and overexpression of Glo-I was achieved by transient transfection with Glo-I siRNA and pEGFP-N1-Glo-I-Vector. Amylase secretion, TNF-α production (ELISA) and expression of Glo-I, RAGE and NF-κB were measured. Results: Glo-I was significantly upregulated on protein and mRNA levels in CN-treated mice and AR42J cells. Dexamethasone-induced differentiation of AR42J cells increased the expression of Glo-I and RAGE. Treatment of AR42J cells with CN and EP or BrBz resulted in a significant reduction of CN-induced amylase secretion, NF-κB, RAGE and TNF-α. Overexpression of Glo-I led to a significant reduction of CN-induced amylase levels, NF-κB expression and TNF-α, whereas Glo-I knockdown revealed only slight alterations. Measurements of specific Glo-I activity and MGO levels indicated a complex regulation in the model of CN-induced AP. Conclusion: Glo-I is overexpressed in a model of CN-induced AP. Pharmacological modulation and overexpression of Glo-I reduced amylase secretion and the release of pro-inflammatory cytokines in AP in vitro. Targeting Glo-I in AP seems to be an interesting approach for future in vivo studies of AP.
Collapse
|
2
|
Prantner D, Nallar S, Richard K, Spiegel D, Collins KD, Vogel SN. Classically activated mouse macrophages produce methylglyoxal that induces a TLR4- and RAGE-independent proinflammatory response. J Leukoc Biol 2021; 109:605-619. [PMID: 32678947 PMCID: PMC7855181 DOI: 10.1002/jlb.3a0520-745rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023] Open
Abstract
The highly reactive compound methylglyoxal (MG) can cause direct damage to cells and tissues by reacting with cellular macromolecules. MG has been identified as a biomarker associated with increased sepsis-induced mortality. Patients undergoing septic shock have significantly elevated circulating MG levels compared to postoperative patients and healthy controls. Furthermore, MG has been implicated in the development of type II diabetes mellitus and Alzheimer's disease. Because MG is generated during glycolysis, we hypothesized that MG may be produced by classically activated (M1) macrophages, possibly contributing to the inflammatory response. LPS and IFN-γ-treated macrophages acquired an M1 phenotype (as evidenced by M1 markers and enhanced glycolysis) and formed MG adducts, MG-H1, MG-H2, and MG-H3, which were detected using antibodies specific for MG-modified proteins (methylglyoxal 5-hydro-5-methylimidazolones). MG adducts were also increased in the lungs of LPS-treated mice. Macrophages treated with LPS and IFN-γ also exhibited decreased expression of glyoxalase 1 (Glo1), an enzyme that metabolizes MG. Concentrations of exogenous, purified MG > 0.5 mM were toxic to macrophages; however, a nontoxic dose of 0.3 mM induced TNF-α and IL-1β, albeit to a lesser extent than LPS stimulation. Despite prior evidence that MG adducts may signal through "receptor for advanced glycation endproducts" (RAGE), MG-mediated cell death and cytokine induction by exogenous MG was RAGE-independent in primary macrophages. Finally, RAGE-deficient mice did not exhibit a significant survival advantage following lethal LPS injection. Overall, our evidence suggests that MG may be produced by M1 macrophages during sepsis, following IFN-γ-dependent down-regulation of Glo1, contributing to over-exuberant inflammation.
Collapse
Affiliation(s)
- Daniel Prantner
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Shreeram Nallar
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Katharina Richard
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - David Spiegel
- Department of Chemistry, Yale University, New Haven, CT
| | - Kim D. Collins
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
- Institute of Marine and Environmental Technology (IMET), University of Maryland, Baltimore, Baltimore, MD
| | - Stefanie N. Vogel
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Braun JD, Pastene DO, Breedijk A, Rodriguez A, Hofmann BB, Sticht C, von Ochsenstein E, Allgayer H, van den Born J, Bakker S, Hauske SJ, Krämer BK, Yard BA, Albrecht T. Methylglyoxal down-regulates the expression of cell cycle associated genes and activates the p53 pathway in human umbilical vein endothelial cells. Sci Rep 2019; 9:1152. [PMID: 30718683 PMCID: PMC6362029 DOI: 10.1038/s41598-018-37937-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022] Open
Abstract
Although methylglyoxal (MGO) has emerged as key mediator of diabetic microvascular complications, the influence of MGO on the vascular transcriptome has not thoroughly been assessed. Since diabetes is associated with low grade inflammation causing sustained nuclear factor-kappa B (NF-κB) activation, the current study addressed 1) to what extent MGO changes the transcriptome of human umbilical vein endothelial cells (HUVECs) exposed to an inflammatory milieu, 2) what are the dominant pathways by which these changes occur and 3) to what extent is this affected by carnosine, a putative scavenger of MGO. Microarray analysis revealed that exposure of HUVECs to high MGO concentrations significantly changes gene expression, characterized by prominent down-regulation of cell cycle associated genes and up-regulation of heme oxygenase-1 (HO-1). KEGG-based pathway analysis identified six significantly enriched pathways of which the p53 pathway was the most affected. No significant enrichment of inflammatory pathways was found, yet, MGO did inhibit VCAM-1 expression in Western blot analysis. Carnosine significantly counteracted MGO-mediated changes in a subset of differentially expressed genes. Collectively, our results suggest that MGO initiates distinct transcriptional changes in cell cycle/apoptosis genes, which may explain MGO toxicity at high concentrations. MGO did not augment TNF-α induced inflammation.
Collapse
Affiliation(s)
- Jana D Braun
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Diego O Pastene
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annette Breedijk
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Angelica Rodriguez
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Björn B Hofmann
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carsten Sticht
- Center of Medical Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Elke von Ochsenstein
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jacob van den Born
- Department of Internal Medicine, University Medical Centre Groningen, Groningen, Netherlands
| | - Stephan Bakker
- Department of Internal Medicine, University Medical Centre Groningen, Groningen, Netherlands
| | - Sibylle J Hauske
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bernhard K Krämer
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Albrecht
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
4
|
Xiang L, Xu X, Zhang S, Cai D, Dai X. Cold atmospheric plasma conveys selectivity on triple negative breast cancer cells both in vitro and in vivo. Free Radic Biol Med 2018; 124:205-213. [PMID: 29870749 DOI: 10.1016/j.freeradbiomed.2018.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/17/2018] [Accepted: 06/02/2018] [Indexed: 01/27/2023]
Abstract
Breast cancers are heterogeneous, with the triple negative subtype being the most aggressive and lack of effective therapy. Cold atmospheric plasma has become a promising onco-therapeutic approach as demonstrated by many pre-clinical studies. We found from both in vitro and in vivo experiments that plasma-activated medium could selectively induce the apoptosis, inhibit the proliferation and migration of triple negative breast cancers rather than the other subtypes. We propose that it is the accelerated genome mutation rate, hyper-activated MAPK/JNK and NF-kB pathways of triple negative breast cancers that make them more vulnerable to plasma treatment than non-triple negative tumors, and MAPK/JNK and NF-κB signalings in response to reactive oxygen species generated by plasma that play deterministic roles in this differential therapeutic response. Our work contributes in establishing a correlation between plasma efficacy and cancer subtypes, which facilitates the clinical translation of plasma as a precision medicinal approach.
Collapse
Affiliation(s)
| | - Xiaoyu Xu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, China
| | - Shuo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dongyan Cai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China; Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Antognelli C, Mancuso F, Frosini R, Arato I, Calvitti M, Calafiore R, Talesa VN, Luca G. Testosterone and Follicle Stimulating Hormone-Dependent Glyoxalase 1 Up-Regulation Sustains the Viability of Porcine Sertoli Cells through the Control of Hydroimidazolone- and Argpyrimidine-Mediated NF-κB Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2553-2563. [PMID: 30125541 DOI: 10.1016/j.ajpath.2018.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Because Sertoli cells (SCs) play a central role in germ cell survival, their death may result in marked germ cell loss and infertility. SCs are the only somatic cells within the seminiferous tubules and are essential for regulating spermatogenesis. Factors that enhance or diminish the viability of SCs may have profound effects on spermatogenesis. Yet the mechanisms underlying the maintenance of SC viability remain largely unknown. Glyoxalase 1 (Glo1) detoxifies methylglyoxal (MG), a highly reactive carbonyl species mainly formed during glycolysis, which is a potent precursor of cytotoxic advanced glycation end products (AGEs). Hydroimidazolone (MG-H1) and argpyrimidine (ArgPyr) are AGEs resulting from MG-mediated post-translational modification of arginine residues in various proteins. The role of Glo1 and MG-derived AGEs in regulating the fate of SCs has never been investigated. By using gene silencing and the specific MG scavenger, aminoguanidine, the authors demonstrate that Glo1, under testosterone and follicle-stimulating hormone control, sustains viability of porcine neonatal SCs through a mechanism involving the NF-κB pathway. Glo1 knockdown induces a mitochondrial apoptotic pathway driven by the intracellular accumulation of MG-H1 and ArgPyr that desensitizes NF-κB signaling by modifying the inhibitor of NF-κB kinase, IKKß. This is the first report describing a role for Glo1 and MG-derived AGEs in SC biology, providing valuable new insights into the potential involvement of this metabolic axis into spermatogenesis.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.
| | - Francesca Mancuso
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Roberta Frosini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Vincenzo N Talesa
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance. Sci Rep 2018; 8:5451. [PMID: 29615695 PMCID: PMC5883029 DOI: 10.1038/s41598-018-23806-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/21/2018] [Indexed: 01/31/2023] Open
Abstract
Methylglyoxal(MG) is a potent cytotoxin that is produced as a byproduct of various metabolic reactions in the cell. The major enzymes for MG detoxification are Glyoxalase I(GLYI), Glyoxalase II(GLYII) and D-lactate dehydrogenase(D-LDH). These three enzymes work together and convert MG into D-pyruvate, which directly goes to TCA cycle. Here, a comparative study of the ability of MG detoxification of these three enzymes has been done in both E. coli and yeast. Ectopic expression of these three genes from Arabidopsis in E. coli in presence of different abiotic stress revealed the contribution of each of these genes in detoxifying MG. Yeast mutants of MG detoxification enzymes were also grown in different stress conditions to record the effect of each gene. These mutants were also used for complementation assays using the respective MG detoxifying genes from Arabidopsis in presence of various stress conditions. The MG content and the corresponding growth of cells was measured in all the bacterial as well as yeast strains. This study reveals differential contribution of MG detoxification enzymes in mitigating MG levels and alleviating stress in both prokaryotes as well as eukaryotes. GLYI and D-LDH were found to be key enzymes in MG detoxification under various abiotic stresses.
Collapse
|
7
|
Roy A, Ahir M, Bhattacharya S, Parida PK, Adhikary A, Jana K, Ray M. Induction of mitochondrial apoptotic pathway in triple negative breast carcinoma cells by methylglyoxal via generation of reactive oxygen species. Mol Carcinog 2017; 56:2086-2103. [PMID: 28418078 DOI: 10.1002/mc.22665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/14/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022]
Abstract
Triple negative breast cancer (TNBC) tends to form aggressive tumors associated with high mortality and morbidity which urge the need for development of new therapeutic strategies. Recently, the normal metabolite Methylglyoxal (MG) has been documented for its anti-proliferative activity against human breast cancer. However, the mode of action of MG against TNBC remains open to question. In our study, we investigated the anticancer activity of MG in MDA MB 231 and 4T1 TNBC cell lines and elucidated the underlying mechanisms. MG dose-dependently caused cell death, induced apoptosis, and generated ROS in both the TNBC cell lines. Furthermore, such effects were attenuated in presence of ROS scavenger N-Acetyl cysteine. MG triggered mitochondrial cytochrome c release in the cytosol and up-regulated Bax while down-regulated anti-apoptotic protein Bcl-2. Additionally, MG treatment down-regulated phospho-akt and inhibited the nuclear translocation of the p65 subunit of NF-κB. MG exhibited a tumor suppressive effect in BALB/c mouse 4T1 breast tumor model as well. The cytotoxic effect was studied using MTT assay. Apoptosis, ROS generation, and mitochondrial dysfunction was evaluated by flow cytometry as well as fluorescence microscopy. Western blot assay was performed to analyze proteins responsible for apoptosis. This study demonstrated MG as a potent anticancer agent against TNBC both in vitro and in vivo. The findings will furnish fresh insights into the treatment of this subgroup of breast cancer.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Saurav Bhattacharya
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Manju Ray
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Jang JH, Kim EA, Park HJ, Sung EG, Song IH, Kim JY, Woo CH, Doh KO, Kim KH, Lee TJ. Methylglyoxal-induced apoptosis is dependent on the suppression of c-FLIP L expression via down-regulation of p65 in endothelial cells. J Cell Mol Med 2017; 21:2720-2731. [PMID: 28444875 PMCID: PMC5661116 DOI: 10.1111/jcmm.13188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/07/2017] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl metabolite of glucose, and its plasma levels are elevated in patients with diabetes. Studies have shown that MGO combines with the amino and sulphhydryl groups of proteins to form stable advanced glycation end products (AGEs), which are associated with vascular endothelial cell (EC) injury and may contribute to the progression of atherosclerosis. In this study, MGO induced apoptosis in a dose-dependent manner in HUVECs, which was attenuated by pre-treatment with z-VAD, a pan caspase inhibitor. Treatment with MGO increased ROS levels, followed by dose-dependent down-regulation of c-FLIPL . In addition, pre-treatment with the ROS scavenger NAC prevented the MGO-induced down-regulation of p65 and c-FLIPL , and the forced expression of c-FLIPL attenuated MGO-mediated apoptosis. Furthermore, MGO-induced apoptotic cell death in endothelium isolated from mouse aortas. Finally, MGO was found to induce apoptosis by down-regulating p65 expression at both the transcriptional and posttranslational levels, and thus, to inhibit c-FLIPL mRNA expression by suppressing NF-κB transcriptional activity. Collectively, this study showed that MGO-induced apoptosis is dependent on c-FLIPL down-regulation via ROS-mediated down-regulation of p65 expression in endothelial cells.
Collapse
Affiliation(s)
- Ji Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Eun-Ae Kim
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Hye-Jin Park
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Eon-Gi Sung
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - In-Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Chang-Hoon Woo
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Kook Hyun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
9
|
Matafome P, Rodrigues T, Sena C, Seiça R. Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Med Res Rev 2017; 37:368-403. [PMID: 27636890 DOI: 10.1002/med.21410] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 08/26/2024]
Abstract
Glucose and fructose metabolism originates the highly reactive byproduct methylglyoxal (MG), which is a strong precursor of advanced glycation end products (AGE). The MG has been implicated in classical diabetic complications such as retinopathy, nephropathy, and neuropathy, but has also been recently associated with cardiovascular diseases and central nervous system disorders such as cerebrovascular diseases and dementia. Recent studies even suggested its involvement in insulin resistance and beta-cell dysfunction, contributing to the early development of type 2 diabetes and creating a vicious circle between glycation and hyperglycemia. Despite several drugs and natural compounds have been identified in the last years in order to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the endogenous and exogenous sources of MG, also addressing the current controversy about the importance of exogenous MG sources. The mechanisms by which MG changes cell behavior and its involvement in type 2 diabetes development and complications and the pathophysiological implication are also summarized. Particular emphasis will be given to pathophysiological relevance of studies using higher MG doses, which may have produced biased results. Finally, we also overview the current knowledge about detoxification strategies, including modulation of endogenous enzymatic systems and exogenous compounds able to inhibit MG effects on biological systems.
Collapse
Affiliation(s)
- Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, 3045-601, Coimbra, Portugal
| | - Tiago Rodrigues
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Cristina Sena
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Raquel Seiça
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
10
|
Hollenbach M, Thonig A, Pohl S, Ripoll C, Michel M, Zipprich A. Expression of glyoxalase-I is reduced in cirrhotic livers: A possible mechanism in the development of cirrhosis. PLoS One 2017; 12:e0171260. [PMID: 28231326 PMCID: PMC5322979 DOI: 10.1371/journal.pone.0171260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High concentrations of methylglyoxal (MGO) cause cytotoxiticy via formation of advanced glycation endproducts (AGEs) and inflammation. MGO is detoxificated enzymatically by glyoxalase-I (Glo-I). The aim of this study was to analyze the role of Glo-I during the development of cirrhosis. METHODS In primary hepatocytes, hepatic stellate cells (pHSC) and sinusoidal endothelial cells (pLSEC) from rats with early (CCl4 8wk) and advanced cirrhosis (CCl4 12wk) expression and activity of Glo-I were determined and compared to control. LPS stimulation (24h; 100ng/ml) of HSC was conducted in absence or presence of the partial Glo-I inhibitor ethyl pyruvate (EP) and the specific Glo-I inhibitor BrBzGSHCp2. MGO, inflammatory and fibrotic markers were measured by ELISA and Western blot. Additional rats were treated with CCl4 ± EP 40mg/kg b.w. i.p. from wk 8-12 and analyzed with sirius red staining and Western blot. RESULTS Expression of Glo-I was significantly reduced in cirrhosis in whole liver and primary liver cells accompanied by elevated levels of MGO. Activity of Glo-I was reduced in cirrhotic pHSC and pLSEC. LPS induced increases of TNF-α, Nrf2, collagen-I, α-SMA, NF-kB and pERK of HSC were blunted by EP and BrBzGSHCp2. Treatment with EP during development of cirrhosis significantly decreased the amount of fibrosis (12wk CCl4: 33.3±7.3%; EP wk 8-12: 20.7±6.2%; p<0.001) as well as levels of α-SMA, TGF-β and NF-κB in vivo. CONCLUSIONS Our results show the importance of Glo-I as major detoxifying enzyme for MGO in cirrhosis. The reduced expression of Glo-I in cirrhosis demonstrates a possible explanation for increased inflammatory injury and suggests a "vicious circle" in liver disease. Blunting of the Glo-I activity decrease the amount of fibrosis in established cirrhosis and constitutes a novel target for antifibrotic therapy.
Collapse
Affiliation(s)
- Marcus Hollenbach
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Antje Thonig
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sabine Pohl
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Cristina Ripoll
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Maurice Michel
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Zipprich
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg, Halle, Germany
- * E-mail:
| |
Collapse
|
11
|
Mirra P, Nigro C, Prevenzano I, Procopio T, Leone A, Raciti GA, Andreozzi F, Longo M, Fiory F, Beguinot F, Miele C. The role of miR-190a in methylglyoxal-induced insulin resistance in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2016; 1863:440-449. [PMID: 27864140 DOI: 10.1016/j.bbadis.2016.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/17/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023]
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl produced as by-product of glycolysis, and its formation is heightened in hyperglycaemia. MGO plasma levels are two-fold to five-fold increased in diabetics and its accumulation promotes the progression of vascular complications. Impairment of endothelium-derived nitric oxide represents a common feature of endothelial dysfunction in diabetics. We previously demonstrated that MGO induces endothelial insulin resistance. Increasing evidence shows that high glucose and MGO modify vascular expression of several microRNAs (miRNAs), suggesting their potential role in the impairment of endothelial insulin sensitivity. The aim of the study is to investigate whether miRNAs may be involved in MGO-induced endothelial insulin resistance in endothelial cells. MGO reduces the expression of miR-190a both in mouse aortic endothelial cells (MAECs) and in aortae from mice knocked-down for glyoxalase-1. miR-190a inhibition impairs insulin sensitivity, whereas its overexpression prevents the MGO-induced insulin resistance in MAECs. miR-190a levels are not affected by the inhibition of ERK1/2 phosphorylation. Conversely, ERK1/2 activation is sustained by miR-190a inhibitor and the MGO-induced ERK1/2 hyper-activation is reduced by miR-190a mimic transfection. Similarly, protein levels of the upstream KRAS are increased by both MGO and miR-190a inhibitor, and these levels are reduced by miR-190a mimic transfection. Interestingly, silencing of KRAS is able to rescue the MGO-impaired activation of IRS1/Akt/eNOS pathway in response to insulin. In conclusion, miR-190a down-regulation plays a role in MGO-induced endothelial insulin resistance by increasing KRAS. This study highlights miR-190a as new candidate for the identification of strategies aiming at ameliorating vascular function in diabetes.
Collapse
Affiliation(s)
- Paola Mirra
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Cecilia Nigro
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Immacolata Prevenzano
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Teresa Procopio
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Alessia Leone
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gregory Alexander Raciti
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna-Graecia, Catanzaro, Italy
| | - Michele Longo
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesca Fiory
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Beguinot
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Claudia Miele
- URT of the Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research, Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
12
|
Charyasriwong S, Haruyama T, Kobayashi N. In vitro evaluation of the antiviral activity of methylglyoxal against influenza B virus infection. Drug Discov Ther 2016; 10:201-10. [PMID: 27558282 DOI: 10.5582/ddt.2016.01045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Influenza A and B virus infections are serious public health concerns globally. However, the concerns regarding influenza B infection have been underestimated. The currently used anti-influenza drugs have not provided equal efficacy for both influenza A and B viruses. Susceptibility to neuraminidase (NA) inhibitors has been observed to be lower for influenza B viruses than for influenza A viruses. Moreover, the emergence of resistance to anti-influenza drugs underscores the need to develop new drugs. Recently, we reported that methylglyoxal (MGO) suppressed influenza A virus replication in a strain-independent manner. Therefore, we hypothesize that MGO exhibits anti-influenza activity against B strains. This study aimed to evaluate the anti-influenza viral activity of MGO against influenza B strains by using Madin-Darby canine kidney (MDCK) cells. Several types of influenza B viruses were used to determine the activity of MGO. The susceptibilities of influenza A and B viruses to NA inhibitors were compared. MGO inhibited influenza B virus replication, with 50% inhibitory concentrations ranging from 23-140 μM, which indicated greater sensitivity of influenza B viruses than influenza A viruses. Our results show that MGO has potent inhibitory activity against influenza B viruses, including NA inhibitor-resistant strains.
Collapse
Affiliation(s)
- Siriwan Charyasriwong
- Laboratory of Molecular Biology of Infectious Agents, Graduate School of Biomedical Sciences, Nagasaki University
| | | | | |
Collapse
|
13
|
Abstract
Methylglyoxal (MG) is a highly reactive compound derived mainly from glucose and fructose metabolism. This metabolite has been implicated in diabetic complications as it is a strong AGE precursor. Furthermore, recent studies suggested a role for MG in insulin resistance and beta-cell dysfunction. Although several drugs have been developed in the recent years to scavenge MG and inhibit AGE formation, we are still far from having an effective strategy to prevent MG-induced mechanisms. This review summarizes the mechanisms of MG formation, detoxification, and action. Furthermore, we review the current knowledge about its implication on the pathophysiology and complications of obesity and diabetes.
Collapse
Affiliation(s)
- Paulo Matafome
- Laboratory of Physiology, Institute of Biomedical Research on Light and Image (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | | | | |
Collapse
|
14
|
Silva DS, Pereira LMG, Moreira AR, Ferreira-da-Silva F, Brito RM, Faria TQ, Zornetta I, Montecucco C, Oliveira P, Azevedo JE, Pereira PJB, Macedo-Ribeiro S, do Vale A, dos Santos NMS. The apoptogenic toxin AIP56 is a metalloprotease A-B toxin that cleaves NF-κb P65. PLoS Pathog 2013; 9:e1003128. [PMID: 23468618 PMCID: PMC3585134 DOI: 10.1371/journal.ppat.1003128] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/28/2012] [Indexed: 12/15/2022] Open
Abstract
AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-κB p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-κB are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-κB at the Cys39-Glu40 peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol. The apoptosis inducing protein of 56 kDa (AIP56) is a key virulence factor secreted by Photobacterium damselae piscicida (Phdp), a Gram-negative bacterium that causes septicaemic infections in economically important marine fish species. It is known that AIP56 induces massive destruction of the phagocytic cells of the infected host, allowing the extracellular multiplication of the bacteria and contributing to the genesis of the pathology. Here we show that AIP56 acts by cleaving NF-κB p65. The NF-κB family of transcription factors is evolutionarily conserved and plays a central role in the host responses to microbial pathogen invasion, regulating the expression of inflammatory and anti-apoptotic genes. Pathogenic bacteria have evolved complex strategies to interfere with NF-κB signalling, usually by injecting protein effectors directly into the cell's cytosol through bacterial secretion machineries that require contact with host cells. In contrast, AIP56 acts at distance and has an intrinsic ability to reach the cytosol due to the presence of a C-terminal domain that functions as “delivery module.”
Collapse
Affiliation(s)
- Daniela S. Silva
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Liliana M. G. Pereira
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana R. Moreira
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- Protein Production and Purification, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Rui M. Brito
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Tiago Q. Faria
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Irene Zornetta
- Dipartimento di Scienze Biomediche dell'Università di Padova and Instituto di Neuroscienze del CNR, Padova, Italy
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche dell'Università di Padova and Instituto di Neuroscienze del CNR, Padova, Italy
| | - Pedro Oliveira
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Jorge E. Azevedo
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Organelle Biogenesis and Function, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pedro J. B. Pereira
- Biomolecular Structure, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Protein Crystallography, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nuno M. S. dos Santos
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
15
|
Sharma RK, Otsuka M, Gaba G, Mehta S. Inhibitors of transcription factor nuclear factor-kappa beta (NF-κβ)-DNA binding. RSC Adv 2013. [DOI: 10.1039/c2ra21852f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
16
|
Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int J Vasc Med 2012; 2012:569654. [PMID: 22489274 PMCID: PMC3303762 DOI: 10.1155/2012/569654] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/27/2011] [Indexed: 12/18/2022] Open
Abstract
A clear relationship between diabetes and cardiovascular disease has been established for decades. Despite this, the mechanisms by which diabetes contributes to plaque formation remain in question. Some of this confusion derives from studies in type 2 diabetics where multiple components of metabolic syndrome show proatherosclerotic effects independent of underlying diabetes. However, the hyperglycemia that defines the diabetic condition independently affects atherogenesis in cell culture systems, animal models, and human patients. Endothelial cell biology plays a central role in atherosclerotic plaque formation regulating vessel permeability, inflammation, and thrombosis. The current paper highlights the mechanisms by which hyperglycemia affects endothelial cell biology to promote plaque formation.
Collapse
|
17
|
The chaperone-dependent ubiquitin ligase CHIP targets HIF-1α for degradation in the presence of methylglyoxal. PLoS One 2010; 5:e15062. [PMID: 21124777 PMCID: PMC2993942 DOI: 10.1371/journal.pone.0015062] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/17/2010] [Indexed: 11/24/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) plays a key role in cell adaptation to low oxygen and stabilization of HIF-1 is vital to ensure cell survival under hypoxia. Diabetes has been associated with impairment of the cell response to hypoxia and downregulation of HIF-1 is most likely the event that transduces hyperglycemia into increased cell death in diabetes-associated hypoxia. In this study, we aimed at identifying the molecular mechanism implicated in destabilization of HIF-1 by high glucose. In this work, we identified a new molecular mechanism whereby methylglyoxal (MGO), which accumulates in high-glucose conditions, led to a rapid proteasome-dependent degradation of HIF-1α under hypoxia. Significantly, MGO-induced degradation of HIF-1α did not require the recruitment of the ubiquitin ligase pVHL nor did it require hydroxylation of the proline residues P402/P564 of HIF-1α. Moreover, we identified CHIP (Carboxy terminus of Hsp70-Interacting Protein) as the E3 ligase that ubiquitinated HIF-1α in the presence of MGO. Consistently, silencing of endogenous CHIP and overexpression of glyoxalase I both stabilized HIF-1α under hypoxia in the presence of MGO. Data shows that increased association of Hsp40/70 with HIF-1α led to recruitment of CHIP, which promoted polyubiquitination and degradation of HIF-1α. Moreover, MGO-induced destabilization of HIF-1α led to a dramatic decrease in HIF-1 transcriptional activity. Altogether, data is consistent with a new pathway for degradation of HIF-1α in response to intracellular accumulation of MGO. Moreover, we suggest that accumulation of MGO is likely to be the link between high glucose and the loss of cell response to hypoxia in diabetes.
Collapse
|
18
|
Birkenmeier G, Stegemann C, Hoffmann R, Günther R, Huse K, Birkemeyer C. Posttranslational modification of human glyoxalase 1 indicates redox-dependent regulation. PLoS One 2010; 5:e10399. [PMID: 20454679 PMCID: PMC2861629 DOI: 10.1371/journal.pone.0010399] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/11/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) are ubiquitously expressed cytosolic enzymes that catalyze the conversion of toxic alpha-oxo-aldehydes into the corresponding alpha-hydroxy acids using L-glutathione (GSH) as a cofactor. Human Glo1 exists in various isoforms; however, the nature of its modifications and their distinct functional assignment is mostly unknown. METHODOLOGY/PRINCIPAL FINDINGS We characterized native Glo1 purified from human erythrocytes by mass spectrometry. The enzyme was found to undergo four so far unidentified posttranslational modifications: (i) removal of the N-terminal methionine 1, (ii) N-terminal acetylation at alanine 2, (iii) a vicinal disulfide bridge between cysteine residues 19 and 20, and (iv) a mixed disulfide with glutathione on cysteine 139. Glutathionylation of Glo1 was confirmed by immunological methods. Both, N-acetylation and the oxidation state of Cys(19/20), did not impact enzyme activity. In contrast, glutathionylation strongly inhibited Glo1 activity in vitro. The discussed mechanism for enzyme inhibition by glutathionylation was validated by molecular dynamics simulation. CONCLUSION/SIGNIFICANCE It is shown for the first time that Glo1 activity directly can be regulated by an oxidative posttranslational modification that was found in the native enzyme, i.e., glutathionylation. Inhibition of Glo1 by chemical reaction with its co-factor and the role of its intramolecular disulfides are expected to be important factors within the context of redox-dependent regulation of glucose metabolism in cells.
Collapse
Affiliation(s)
- Gerd Birkenmeier
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 2009; 11:3071-109. [PMID: 19489690 DOI: 10.1089/ars.2009.2484] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a multifactorial disease, classically influenced by genetic determinants of individual susceptibility and by environmental accelerating factors, such as lifestyle. It is considered a major health concern,as its incidence is increasing at an alarming rate, and the high invalidating effects of its long-term complications affect macro- and microvasculature, heart, kidney, eye, and nerves. Increasing evidence indicates that hyperglycemia is the initiating cause of the tissue damage occurring in diabetes, either through repeated acute changes in cellular glucose metabolism, or through the long-term accumulation of glycated biomolecules and advanced glycation end products (AGEs). AGEs represent a heterogeneous group of chemical products resulting from a nonenzymatic reaction between reducing sugars and proteins, lipids, nucleic acids, or a combination of these.The glycation process (glucose fixation) affects circulating proteins (serum albumin, lipoprotein, insulin, hemoglobin),whereas the formation of AGEs implicates reactive intermediates such as methylglyoxal. AGEs form cross-links on long-lived extracellular matrix proteins or react with their specific receptor RAGE, resulting inoxidative stress and proinflammatory signaling implicated in endothelium dysfunction, arterial stiffening, and microvascular complications. This review summarizes the mechanism of glycation and of AGEs formation and the role of hyperglycemia, AGEs, and oxidative stress in the pathophysiology of diabetic complications.
Collapse
|
20
|
Gloire G, Piette J. Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal 2009; 11:2209-22. [PMID: 19203223 DOI: 10.1089/ars.2009.2463] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The transcription factor NF-kappaB controls the expression of hundreds of genes involved in the regulation of the immune/inflammatory response, development, and apoptosis. In resting cells, NF-kappaB proteins are sequestered in the cytoplasm through their tight association with IkappaB proteins. NF-kappaB activation relies on the signal-induced IkappaB phosphorylation and degradation, thereby allowing the nuclear translocation of NF-kappaB proteins. In the nucleus, several post-translational modifications of NF-kappaB and chromatin remodeling of target genes are mandatory for NF-kappaB DNA binding and full transcription. Since 1991, reactive oxygen species (ROS) have been implicated in NF-kappaB activation. ROS enhance the cytoplasmic signaling pathways leading to NF-kappaB nuclear translocation, but reduction/oxidation (redox) also controls several key steps in the nuclear phase of the NF-kappaB program, including chromatin remodeling, recruitment of co-activators, and DNA binding. Here we describe the redox regulation of NF-kappaB activity in the nucleus.
Collapse
Affiliation(s)
- Geoffrey Gloire
- GIGA-Research (B34), Unit of Signal Transduction, Laboratory of Virology and Immunology, University of Liège, Liège, Belgium
| | | |
Collapse
|
21
|
Price CL, Knight SC. Methylglyoxal: possible link between hyperglycaemia and immune suppression? Trends Endocrinol Metab 2009; 20:312-7. [PMID: 19709901 DOI: 10.1016/j.tem.2009.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/31/2009] [Accepted: 03/31/2009] [Indexed: 11/25/2022]
Abstract
No matter the cause of diabetes, the result is always hyperglycaemia. This excess glucose metabolism drives several damage pathways and raises concentrations of the reactive dicarbonyl, methylglyoxal (MG). MG can modify the structure and function of target molecules by forming advanced glycation end-products (AGEs) that act through their receptor (RAGE) to perpetuate vascular and neuronal injury responsible for long-term complications of diabetes. Diabetes patients also suffer lower resistance to many common infections, although the cause(s) for this lower resistance remains elusive. Here, we review recent evidence concerning immune suppression in diabetes and discuss the effects of MG on components of the immune system. We suggest that MG could be a missing link between hyperglycaemia and immune suppression in diabetes.
Collapse
Affiliation(s)
- Claire L Price
- Antigen Presentation Research Group, Imperial College London Faculty of Medicine, Level 7W, NWLH campus, Watford Road, Harrow, Middlesex, HA1 3UJ, UK
| | | |
Collapse
|
22
|
Ovaska K, Laakso M, Hautaniemi S. Fast gene ontology based clustering for microarray experiments. BioData Min 2008; 1:11. [PMID: 19025591 PMCID: PMC2613876 DOI: 10.1186/1756-0381-1-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 11/21/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. RESULTS We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. CONCLUSION Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.
Collapse
Affiliation(s)
- Kristian Ovaska
- Computational Systems Biology Laboratory, Institute of Biomedicine and Genome-Scale Biology Program, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
23
|
Santel T, Pflug G, Hemdan NYA, Schäfer A, Hollenbach M, Buchold M, Hintersdorf A, Lindner I, Otto A, Bigl M, Oerlecke I, Hutschenreuter A, Sack U, Huse K, Groth M, Birkemeyer C, Schellenberger W, Gebhardt R, Platzer M, Weiss T, Vijayalakshmi MA, Krüger M, Birkenmeier G. Curcumin inhibits glyoxalase 1: a possible link to its anti-inflammatory and anti-tumor activity. PLoS One 2008; 3:e3508. [PMID: 18946510 PMCID: PMC2567432 DOI: 10.1371/journal.pone.0003508] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/26/2008] [Indexed: 12/29/2022] Open
Abstract
Background Glyoxalases (Glo1 and Glo2) are involved in the glycolytic pathway by detoxifying the reactive methylglyoxal (MGO) into D-lactate in a two-step reaction using glutathione (GSH) as cofactor. Inhibitors of glyoxalases are considered as anti-inflammatory and anti-carcinogenic agents. The recent finding that various polyphenols modulate Glo1 activity has prompted us to assess curcumin's potency as an Glo1 inhibitor. Methodology/Principal Findings Cultures of whole blood cells and tumor cell lines (PC-3, JIM-1, MDA-MD 231 and 1321N1) were set up to investigate the effect of selected polyphenols, including curcumin, on the LPS-induced cytokine production (cytometric bead-based array), cell proliferation (WST-1 assay), cytosolic Glo1 and Glo2 enzymatic activity, apoptosis/necrosis (annexin V-FITC/propidium iodide staining; flow cytometric analysis) as well as GSH and ATP content. Results of enzyme kinetics revealed that curcumin, compared to the polyphenols quercetin, myricetin, kaempferol, luteolin and rutin, elicited a stronger competitive inhibitory effect on Glo1 (Ki = 5.1±1.4 µM). Applying a whole blood assay, IC50 values of pro-inflammatory cytokine release (TNF-α, IL-6, IL-8, IL-1β) were found to be positively correlated with the Ki-values of the aforementioned polyphenols. Moreover, whereas curcumin was found to hamper the growth of breast cancer (JIMT-1, MDA-MB-231), prostate cancer PC-3 and brain astrocytoma 1321N1 cells, no effect on growth or vitality of human primary hepatocytes was elucidated. Curcumin decreased D-lactate release by tumor cells, another clue for inhibition of intracellular Glo1. Conclusions/Significance The results described herein provide new insights into curcumin's biological activities as they indicate that inhibition of Glo1 by curcumin may result in non-tolerable levels of MGO and GSH, which, in turn, modulate various metabolic cellular pathways including depletion of cellular ATP and GSH content. This may account for curcumin's potency as an anti-inflammatory and anti-tumor agent. The findings support the use of curcumin as a potential therapeutic agent.
Collapse
Affiliation(s)
- Thore Santel
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Gabi Pflug
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Nasr Y. A. Hemdan
- Frauenhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Clinical Immunology and Transfusion Medicine, Leipzig, Germany
- Department of Zoology, Faculty of Science, University of Alexandria, Moharram Bay, Alexandria, Egypt
| | - Angelika Schäfer
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | | | - Martin Buchold
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Anja Hintersdorf
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Inge Lindner
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Andreas Otto
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Marina Bigl
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ilka Oerlecke
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | | | - Ulrich Sack
- Frauenhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute of Clinical Immunology and Transfusion Medicine, Leipzig, Germany
| | - Klaus Huse
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany
| | - Marco Groth
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany
| | | | | | - Rolf Gebhardt
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Mathias Platzer
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany
| | - Thomas Weiss
- Center for Liver Cell Research and Department of Surgery, University of Regensburg Hospital, Regensburg, Germany
| | | | - Monika Krüger
- Institute of Bacteriology and Mycology, Veterinary Faculty, Leipzig, Germany
| | - Gerd Birkenmeier
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
24
|
Hollenbach M, Hintersdorf A, Huse K, Sack U, Bigl M, Groth M, Santel T, Buchold M, Lindner I, Otto A, Sicker D, Schellenberger W, Almendinger J, Pustowoit B, Birkemeyer C, Platzer M, Oerlecke I, Hemdan N, Birkenmeier G. Ethyl pyruvate and ethyl lactate down-regulate the production of pro-inflammatory cytokines and modulate expression of immune receptors. Biochem Pharmacol 2008; 76:631-44. [PMID: 18625205 DOI: 10.1016/j.bcp.2008.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/26/2008] [Accepted: 06/09/2008] [Indexed: 02/03/2023]
Abstract
Esters of alpha-oxo-carbonic acids such as ethyl pyruvate (EP) have been demonstrated to exert inhibitory effects on the production of anti-inflammatory cytokines. So far, there is no information about effects, if any, of ethyl lactate (EL), an obviously inactive analogue of EP, on inflammatory immune responses. In the present study, we provide evidence that the anti-inflammatory action of alpha-oxo-carbonic acid esters is mediated by inhibition of glyoxalases (Glo), cytosolic enzymes that catalyse the conversion of alpha-oxo-aldehydes such as methylglyoxal (MGO) into the corresponding alpha-hydroxy acids using glutathione as a cofactor. In vitro enzyme activity measurements revealed the inhibition of human Glo1 by alpha-oxo-carbonic acid esters, whilst alpha-hydroxy-carbonic acid esters such as EL were not inhibitory. In contrast, both EP and EL were shown to suppress the Lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6 and IL-8 from human immunocompetent cells, and modulated the expression of the immune receptors HLA-DR, CD14 and CD91 on human monocytes. Here, we show a crossing link between glyoxalases and the immune system. The results described herein introduce glyoxalases as a possible target for therapeutic approaches of immune suppression.
Collapse
Affiliation(s)
- Marcus Hollenbach
- University of Leipzig, Institute of Biochemistry, Johannisallee 30, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hipkiss AR. Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms? Biogerontology 2007; 9:49-55. [PMID: 17929190 PMCID: PMC2174522 DOI: 10.1007/s10522-007-9110-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/11/2007] [Indexed: 12/11/2022]
Abstract
The predominant molecular symptom of ageing is the accumulation of altered gene products. Nutritional studies show that ageing in animals can be significantly influenced by dietary restriction. Genetics has revealed that ageing may be controlled by changes in intracellular NAD/NADH ratio regulating sirtuin activity. Physiological and other approaches indicate that mitochondria may also regulate ageing. A mechanism is proposed which links diet, exercise and mitochondria-dependent changes in NAD/NADH ratio to intracellular generation of altered proteins. It is suggested that ad libitum feeding conditions decrease NAD availability which also decreases metabolism of the triose phosphate glycolytic intermediates, glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate, which can spontaneously decompose into methylglyoxal (MG). MG is a highly toxic glycating agent and a major source of protein advanced-glycosylation end-products (AGEs). MG and AGEs can induce mitochondrial dysfunction and formation of reactive oxygen species (ROS), as well as affect gene expression and intracellular signalling. In dietary restriction–induced fasting, NADH would be oxidised and NAD regenerated via mitochondrial action. This would not only activate sirtuins and extend lifespan but also suppress MG formation. This proposal can also explain the apparent paradox whereby increased aerobic activity suppresses formation of glycoxidized proteins and extends lifespan. Variation in mitochondrial DNA composition and consequent mutation rate, arising from dietary-controlled differences in DNA precursor ratios, could also contribute to tissue differences in age-related mitochondrial dysfunction.
Collapse
Affiliation(s)
- Alan R Hipkiss
- Centre for Experimental Therapeutics, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|