1
|
Liu T, Asif IM, Bai C, Huang Y, Li B, Wang L. The effectiveness and safety of natural food and food-derived extract supplements for treating functional gastrointestinal disorders-current perspectives. Nutr Rev 2024:nuae047. [PMID: 38908001 DOI: 10.1093/nutrit/nuae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) were highly prevalent and involve gastrointestinal discomfort characterized by non-organic abnormalities in the morphology and physiology of the gastrointestinal tract. According to the Rome IV criteria, irritable bowel syndrome and functional dyspepsia are the most common FGIDs. Complementary and alternative medicines are employed by increasing numbers of individuals around the world, and they include herbal and dietary supplements, acupuncture, and hypnosis. Of these, herbal and dietary supplements seem to have the greatest potential for relieving FGIDs, through multiple modes of action. However, despite the extensive application of natural extracts in alternative treatments for FGIDs, the safety and effectiveness of food and orally ingested food-derived extracts remain uncertain. Many randomized controlled trials have provided compelling evidence supporting their potential, as detailed in this review. The consumption of certain foods (eg, kiwifruit, mentha, ginger, etc) and food ingredients may contribute to the alleviation of symptoms associated with FGID,. However, it is crucial to emphasize that the short-term consumption of these components may not yield satisfactory efficacy. Physicians are advised to share both the benefits and potential risks of these alternative therapies with patients. Furthermore, larger randomized clinical trials with appropriate comparators are imperative.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Chengmei Bai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Yutian Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| |
Collapse
|
2
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
3
|
Amer NA, Badawi MF, Elbeltagi MG, Badr AE. Effect of Boswellic Acid on Viability of Dental Pulp Stem Cells Compared to the Commonly Used Intracanal Medications: An In Vitro Study. J Contemp Dent Pract 2023; 24:957-966. [PMID: 38317393 DOI: 10.5005/jp-journals-10024-3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
AIM This study was aimed at evaluating the effect of acetyl-11-keto-β-boswellic acid (AKBA) on dental pulp stem cells (DPSCs) viability and proliferation to be used as a potential root canal medicament. MATERIALS AND METHODS Dental pulp stem cells were isolated from human third molars. The phenotypic characterization of DPSCs was verified by flow cytometry analysis. The viability assay was performed using the methyl-thiazoltetrazolium (MTT) assay. Cells were treated with different concentration of triple antibiotic paste (TAP) and calcium hydroxide Ca(OH2) (5, 2.5, 1, 0.5, and 0.25 mg/mL), AKBA (10, 5, 1, 0.1, and 0.01 µM). All experiments were done in separate triplicate experiments. Results: Dental pulp stem cells were characterized by flow cytometry. Cells treated with Ca(OH)2 (1, 2.5, and 5 mg/mL) showed significantly reduced viability compared with the control cells (p < 0.05). Dental pulp stem cells treated with 1, 2.5, and 5 mg/mL TAP resulted in a significant decrease in viability (p < 0.05). Cells treated with AKBA in concentrations (1, 0.1, and 0.01 µM) demonstrated higher viability than the control group (p < 0.05), while AKBA in concentrations (5 and 10 µM) showed equal or decreased viability than the control group. (p > 0.05). Regarding cell density assay, AKBA showed significant increase in cell density after 5 and 7 days compared with cells medicated with TAP and Ca(OH)2 while TAP revealed marked reduction in cell density in all the tested intervals. CONCLUSION Acetyl-11-keto-β-boswellic acid in lower concentrations (0.01, 0.1, and 1 µM) demonstrated superior cell viability than TAP and Ca(OH)2, and it may possess the potential to be an intracanal medicament in regenerative endodontics. CLINICAL SIGNIFICANCE Studying the effect of different potential root canal medicaments and their capability to induce DPSCs proliferation might be of value. The influence of AKBA on the viability and proliferation of DPSCs tested in this study sheds light on its use as a potential intracanal medication especially in regenerative endodontics. How to cite this article: Amer NA, Badawi MF, Elbeltagi MG, et al. Effect of Boswellic Acid on Viability of Dental Pulp Stem Cells Compared to the Commonly Used Intracanal Medications: An In Vitro Study. J Contemp Dent Pract 2023;24(12):957-966.
Collapse
Affiliation(s)
- Nouran Ahmad Amer
- Department of Endodontics, Faculty of Dentistry, Mansoura University; Horus University, Egypt, Phone: +201068857871, e-mail: , Orcid: https://orcid.org/0000-0001-6818-8626
| | - Manal Farouk Badawi
- Dental Biomaterials, Faculty of Dentistry, Mansoura University, Egypt, Orcid: https://orcid.org/0000-0001-9979-4354
| | - Mohamed Gamal Elbeltagi
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt, Orcid: https://orcid.org/0000-0003-3309-4480
| | - Amany Elsaid Badr
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Egypt, Orcid: https://orcid.org/0000-0002-3811-149X
| |
Collapse
|
4
|
Obiștioiu D, Hulea A, Cocan I, Alexa E, Negrea M, Popescu I, Herman V, Imbrea IM, Heghedus-Mindru G, Suleiman MA, Radulov I, Imbrea F. Boswellia Essential Oil: Natural Antioxidant as an Effective Antimicrobial and Anti-Inflammatory Agent. Antioxidants (Basel) 2023; 12:1807. [PMID: 37891886 PMCID: PMC10603989 DOI: 10.3390/antiox12101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The research aimed to determine the chemical composition, the antioxidant and anti-inflammatory activity as well as the antimicrobial activity against Gram-positive, Gram-negative and two fungal Candida ATCC strains of a commercial Boswellia essential oil (BEO) containing Boswellia carteri, Boswellia sacra, Boswellia papryfera, and Boswellia frereana. Additionally, molecular docking was carried out to show the molecular dynamics of the compounds identified from the essential oil against three bacterial protein targets and one fungal protein target. The major components identified by GC-MS (Gas Chromatography-Mass Spectrometry) were represented by α-pinene, followed by limonene. Evaluation of antioxidant activity using the DPPH (2,2-Diphenyl-1-Picrylhydrazyl) method showed high inhibition comparable to the synthetic antioxidant used as a control. Oxidative stability evaluation showed that BEO has the potential to inhibit primary and secondary oxidation products with almost the same efficacy as butylated hydroxyanisole (BHA). The use of BEO at a concentration of 500 ppm provided the best protection against secondary oxidation during 30 days of storage at room temperature, which was also evident in the peroxide value. Regarding the in vitro anti-inflammatory activity, the membrane lysis assay and the protein denaturation test revealed that even if the value of protection was lower than the value registered in the case of dexamethasone, the recommendation of using BEO as a protective agent stands, considering the lower side effects. Gram-positive bacteria proved more sensitive, while Pseudomonas aeruginosa presented different sensitivity, with higher MICs (minimal inhibitory concentration). Haemophilus influenzae demonstrated a MIC at 2% but with consecutive inhibitory values in a negative correlation with the increase in concentration, in contrast to E. coli, which demonstrated low inhibitory rates at high concentrations of BEO. The computational tools employed revealed interesting binding energies with compounds having low abundance. The interaction of these compounds and the proteins (tyrosyl-tRNA synthetase, DNA gyrase, peptide deformylase, 1,3-β-glucan synthase) predicts hydrogen bonds with amino acid residues, which are reported in the active sites of the proteins. Even so, compounds with low abundance in BEO could render the desired bioactive properties to the overall function of the oil sustained by physical factors such as storage and temperature. Interestingly, the findings from this study demonstrated the antioxidant and antimicrobial potential of Boswellia essential oil against food-related pathogens, thus making the oil a good candidate for usage in food, feed or food-safety-related products.
Collapse
Affiliation(s)
- Diana Obiștioiu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Anca Hulea
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Monica Negrea
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Iuliana Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Viorel Herman
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ilinca Merima Imbrea
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Gabriel Heghedus-Mindru
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Mukhtar Adeiza Suleiman
- Faculty of Life Science, Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria;
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Florin Imbrea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| |
Collapse
|
5
|
Huang K, Chen Y, Liang K, Xu X, Jiang J, Liu M, Zhou F. Review of the Chemical Composition, Pharmacological Effects, Pharmacokinetics, and Quality Control of Boswellia carterii. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6627104. [PMID: 35069765 PMCID: PMC8776457 DOI: 10.1155/2022/6627104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE This review aimed to systematically summarize studies that investigated the bioactivities of compounds and extracts from Boswellia. METHODS A literature review on the pharmacological properties and phytochemicals of B. carterii was performed. The information was retrieved from secondary databases such as PubMed, Chemical Abstracts Services (SciFinder), Google Scholar, and ScienceDirect. RESULTS The various Boswellia extracts and compounds demonstrated pharmacological properties, such as anti-inflammatory, antitumour, and antioxidant activities. B. carterii exhibited a positive effect on the treatment and prevention of many ageing diseases, such as diabetes, cancer, cardiovascular disease, and neurodegenerative diseases. CONCLUSION Here, we highlight the pharmacological properties and phytochemicals of B. carterii and propose further evidence-based research on plant-derived remedies and compounds.
Collapse
Affiliation(s)
- Kai Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanrong Chen
- First Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Kaiyong Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyan Xu
- Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Park GD, Cheon YH, Eun SY, Lee CH, Lee MS, Kim JY, Cho HJ. β-Boswellic Acid Inhibits RANKL-Induced Osteoclast Differentiation and Function by Attenuating NF-κB and Btk-PLCγ2 Signaling Pathways. Molecules 2021; 26:molecules26092665. [PMID: 34062884 PMCID: PMC8125251 DOI: 10.3390/molecules26092665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 12/04/2022] Open
Abstract
Osteoporosis is a systemic metabolic bone disorder that is caused by an imbalance in the functions of osteoclasts and osteoblasts and is characterized by excessive bone resorption by osteoclasts. Targeting osteoclast differentiation and bone resorption is considered a good fundamental solution for overcoming bone diseases. β-boswellic acid (βBA) is a natural compound found in Boswellia serrata, which is an active ingredient with anti-inflammatory, anti-rheumatic, and anti-cancer effects. Here, we explored the anti-resorptive effect of βBA on osteoclastogenesis. βBA significantly inhibited the formation of tartrate-resistant acid phosphatase-positive osteoclasts induced by receptor activator of nuclear factor-B ligand (RANKL) and suppressed bone resorption without any cytotoxicity. Interestingly, βBA significantly inhibited the phosphorylation of IκB, Btk, and PLCγ2 and the degradation of IκB. Additionally, βBA strongly inhibited the mRNA and protein expression of c-Fos and NFATc1 induced by RANKL and subsequently attenuated the expression of osteoclast marker genes, such as OC-STAMP, DC-STAMP, β3-integrin, MMP9, ATP6v0d2, and CtsK. These results suggest that βBA is a potential therapeutic candidate for the treatment of excessive osteoclast-induced bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Gyeong Do Park
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
| | - Yoon-Hee Cheon
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
| | - So Young Eun
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
| | - Chang Hoon Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
| | - Myeung Su Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
| | - Ju-Young Kim
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
- Correspondence: (J.-Y.K.); (H.J.C.)
| | - Hae Joong Cho
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea; (G.D.P.); (Y.-H.C.); (S.Y.E.); (C.H.L.); (M.S.L.)
- Department of Obstetrics and Gynecology, Wonkwang University Hospital, Iksan 54538, Korea
- Correspondence: (J.-Y.K.); (H.J.C.)
| |
Collapse
|
7
|
Karra AG, Tziortziou M, Kylindri P, Georgatza D, Gorgogietas VA, Makiou A, Krokida A, Tsialtas I, Kalousi FD, Papadopoulos GE, Papadopoulou KΚ, Psarra AMG. Boswellic acids and their derivatives as potent regulators of glucocorticoid receptor actions. Arch Biochem Biophys 2020; 695:108656. [PMID: 33127380 DOI: 10.1016/j.abb.2020.108656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/20/2022]
Abstract
Glucocorticoid (GCs) hormones exert their actions via their cognate steroid receptors the Glucocorticoid Receptors (GR), by genomic or non-genomic mechanisms of actions. GCs regulate many cellular functions among them growth, metabolism, immune response and apoptosis. Due to their cell type specific induction of apoptosis GCs are used for the treatment of certain type of cancer. In addition, due to their anti-inflammatory actions, GCs are among the most highly prescribed drug to treat chronic inflammatory disorders, albeit to the many adverse side effects arising by their long term and high doses use. Thus, there is a high need for selective glucocorticoid receptor agonist - modulators (SEGRA- SGRMs) as effective as classic GCs, but with a reduced side effect profile. Boswellic acids (BAs) are triterpenes that show structural similarities with GCs and exhibit anti-inflammatory and anti-cancer activities. In this study we examined whether BA alpha and beta and certain BAs derivatives exert their actions, at least in part, through the regulation of GR activities. Applying docking analysis we found that BAs can bind stably into the deacylcortivazol (DAC) accommodation pocket of GR. Moreover we showed that certain boswellic acids derivatives induce glucocorticoid receptor nuclear translocation, no activation of GRE dependent luciferase gene expression, and suppression of the TNF-α induced NF-κB transcriptional activation in GR positive HeLa and HEK293 cells, but not in low GR level COS-7 cells. Furthermore, certain boswellic acids compounds exert antagonistic effect on the DEX-induced GR transcriptional activation and induce cell type specific mitochondrial dependent apoptosis. Our results indicate that certain BAs are potent selective glucocorticoid receptor regulators and could have great potential for therapeutic use.
Collapse
Affiliation(s)
- Aikaterini G Karra
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Maria Tziortziou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Paraskevi Kylindri
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Dimitra Georgatza
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Vyron A Gorgogietas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Anthi Makiou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Afroditi Krokida
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Foteini D Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | | | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
| |
Collapse
|
8
|
Tavakoli R, Tabeshpour J, Asili J, Shakeri A, Sahebkar A. Cardioprotective Effects of Natural Products via the Nrf2 Signaling Pathway. Curr Vasc Pharmacol 2020; 19:525-541. [PMID: 33155913 DOI: 10.2174/1570161119999201103191242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
Due to its poor regenerative capacity, the heart is specifically vulnerable to xenobiotic- induced cardiotoxicity, myocardial ischaemia/reperfusion injury and other pathologies. Nuclear factor erythroid-2-related factor 2 (Nrf2) is considered as an essential factor in protecting cardiomyocytes against oxidative stress resulting from free radicals and reactive oxygen species. It also serves as a key regulator of antioxidant enzyme expression via the antioxidant response element, a cis-regulatory element, which is found in the promoter region of several genes encoding detoxification enzymes and cytoprotective proteins. It has been reported that a variety of natural products are capable of activating Nrf2 expression, and in this way, increase the antioxidant potential of cardiomyocytes. In the present review, we consider the cardioprotective activities of natural products and their possible therapeutic potential.
Collapse
Affiliation(s)
- Rasool Tavakoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Tabeshpour
- Faculty of Pharmacy, Damghan Bransh, Islamic Azad University, Damghan, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities. Semin Cancer Biol 2020; 80:39-57. [PMID: 32027979 DOI: 10.1016/j.semcancer.2020.01.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
The oleogum resins of Boswellia species known as frankincense have been used for ages in traditional medicine in India, China and the Arabian world independent of its use for cultural and religious rituals in Europe. During the past two decades, scientific investigations provided mounting evidence for the therapeutic potential of frankincense. We conducted a systematic review on the anti-inflammatory and anti-cancer activities of Boswellia species and their chemical ingredients (e.g. 3-O-acetyl-11-keto-β boswellic acid, α- and β-boswellic acids, 11-keto-β-boswellic acid and other boswellic acids, lupeolic acids, incensole, cembrenes, triterpenediol, tirucallic acids, and olibanumols). Frankincense acts by multiple mechanisms, e.g. by the inhibition of leukotriene synthesis, of cyclooxygenase 1/2 and 5-lipoxygenase, of oxidative stress, and by regulation of immune cells from the innate and acquired immune systems. Furthermore, frankincense modulates signaling transduction responsible for cell cycle arrest and inhibition of proliferation, angiogenesis, invasion and metastasis. Clinical trials showed the efficacy of frankincense and its phytochemicals against osteoarthritis, multiple sclerosis, asthma, psoriasis and erythematous eczema, plaque-induced gingivitis and pain. Frankincense revealed beneficial effects towards brain tumor-related edema, but did not reduce glioma size. Even if there is no treatment effect on brain tumors itself, the management of glioma-associated edema may represent a desirable improvement. The therapeutic potential against other tumor types is still speculative. Experimental toxicology and clinical trials revealed only mild adverse side effects. More randomized clinical trials are required to estimate the full clinical potential of frankincense for cancer therapy.
Collapse
|
10
|
Majeed M, Majeed S, Narayanan NK, Nagabhushanam K. A pilot, randomized, double-blind, placebo-controlled trial to assess the safety and efficacy of a novel Boswellia serrata extract in the management of osteoarthritis of the knee. Phytother Res 2019; 33:1457-1468. [PMID: 30838706 PMCID: PMC6681146 DOI: 10.1002/ptr.6338] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 01/20/2023]
Abstract
A double-blind, placebo-controlled human trial was conducted to evaluate the safety and efficacy of a standardized oral supplementation of Boswellin®, a novel extract of Boswellia serrata extract (BSE) containing 3-acetyl-11-keto-β-boswellic acid (AKBBA) with β-boswellic acid (BBA). A total of 48 patients with osteoarthritis (OA) of the knee were randomized and allocated to the BSE and placebo groups for intervention. Patients were administered BSE or placebo for a period of 120 days. The trial results revealed that BSE treatment significantly improved the physical function of the patients by reducing pain and stiffness compared with placebo. Radiographic assessments showed improved knee joint gap and reduced osteophytes (spur) confirming the efficacy of BSE treatment. BSE also significantly reduced the serum levels of high-sensitive C-reactive protein, a potential inflammatory marker associated with OA of the knee. No serious adverse events were reported. This is the first study with BSE conducted for a period of 120 days, longer than any other previous clinical trial on patients with OA of the knee. The findings provide evidence that biologically active constituents of BSE, namely, AKBBA and BBA, act synergistically to exert anti-inflammatory/anti-arthritic activity showing improvement in physical and functional ability and reducing the pain and stiffness.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami Labs Limited, Research & Development Division, Bangalore, India.,Sabinsa Corporation, Research & Development Division, Payson, Utah.,Sabinsa Corporation, Research & Development Division, East Windsor, New Jersey
| | - Shaheen Majeed
- Sabinsa Corporation, Research & Development Division, Payson, Utah
| | | | | |
Collapse
|
11
|
Bertocchi M, Isani G, Medici F, Andreani G, Tubon Usca I, Roncada P, Forni M, Bernardini C. Anti-Inflammatory Activity of Boswellia serrata Extracts: An In Vitro Study on Porcine Aortic Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2504305. [PMID: 30046370 PMCID: PMC6036794 DOI: 10.1155/2018/2504305] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 11/24/2022]
Abstract
This study is aimed at investigating the cytotoxicity, anti-inflammatory, and angiogenic activities of two Boswellia serrata extracts on primary culture of porcine aortic endothelial cells (pAECs). Chemical characterization of a dry extract (extract A) and a hydroenzymatic extract (extract G) of B. serrata was performed by HPLC using pure boswellic acids (BAs) as standard. In cultured pAECs, extract G improved cell viability, following LPS challenge, in a dose-dependent manner and did not show any toxic effect. On the other hand, extract A was toxic at higher doses and restored pAEC viability after LPS challenge only at lower doses. Pure BAs, used at the same concentrations as those determined in the phytoextracts, did not contrast LPS-induced cytotoxicity. Extract A showed proangiogenic properties at the lowest dose, and the same result was observed using pure AKBA at the corresponding concentration, whereas extract G did not show any effect on the migration capacity of endothelial cells. In conclusion, an anti-inflammatory activity of B. serrata extracts on endothelial cells was reported, though cytotoxicity or proliferative stimulation can occur instead of a protective effect, depending on the dose and the formulation.
Collapse
Affiliation(s)
- Martina Bertocchi
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Gloria Isani
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Federica Medici
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Giulia Andreani
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Irvin Tubon Usca
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Paola Roncada
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| |
Collapse
|
12
|
Al-Harrasi A, Rehman NU, Khan AL, Al-Broumi M, Al-Amri I, Hussain J, Hussain H, Csuk R. Chemical, molecular and structural studies of Boswellia species: β-Boswellic Aldehyde and 3-epi-11β-Dihydroxy BA as precursors in biosynthesis of boswellic acids. PLoS One 2018; 13:e0198666. [PMID: 29912889 PMCID: PMC6005567 DOI: 10.1371/journal.pone.0198666] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023] Open
Abstract
The distribution and biosynthesis of boswellic acids (BAs) is scarce in current literature. Present study aims to elucidate the BAs biosynthetic and its diversity in the resins of Boswellia sacra and Boswellia papyrifera. Results revealed the isolation of new (3β, 11β-dihydroxy BA) and recently known (as new source, β-boswellic aldehyde) precursors from B. sacra resin along with α-amyrin. Following this, a detailed nomenclature of BAs was elucidated. The quantification and distribution of amyrins (3-epi-α-amyrin, β-amyrin and α-amyrin) and BAs in different Boswellia resins showed highest amyrin and BAs in B. sacra as compared with B. serrata and B. papyrifera. Distribution of BAs significantly varied in the resin of B. sacra collected from dry mountains than coastal trees. In B. sacra, high content of α-amyrin was found in the roots but it lacked β-amyrin and BAs. The leaf part showed traces of β-ABA and AKBA but was deficient in amyrins. This was further confirmed by lack of transcript accumulation of amyrin-related biosynthesis gene in leaf part. In contrast, the stem showed presence of all six BAs which are attributed to existence of resin-secretory canals. In conclusion, the boswellic acids are genus-specific chemical constituents for Boswellia species albeit the variation of the amounts among different Boswellia species and grades.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
- * E-mail:
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Muhammed Al-Broumi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Issa Al-Amri
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Hidayat Hussain
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Halle (Saale), Germany
| |
Collapse
|
13
|
Loeser K, Seemann S, König S, Lenhardt I, Abdel-Tawab M, Koeberle A, Werz O, Lupp A. Protective Effect of Casperome ®, an Orally Bioavailable Frankincense Extract, on Lipopolysaccharide- Induced Systemic Inflammation in Mice. Front Pharmacol 2018; 9:387. [PMID: 29731716 PMCID: PMC5921439 DOI: 10.3389/fphar.2018.00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Introduction: Despite recent advances in critical care, sepsis remains a crucial cause of morbidity and mortality in intensive care units. Therefore, the identification of new therapeutic strategies is of great importance. Since ancient times, frankincense is used in traditional medicine for the treatment of chronic inflammatory disorders such as rheumatoid arthritis. Thus, the present study intends to evaluate if Casperome® (Casp), an orally bioavailable soy lecithin-based formulation of standardized frankincense extract, is able to ameliorate systemic effects and organ damages induced by severe systemic inflammation using a murine model of sepsis, i.e., intraperitoneal administration of lipopolysaccharides (LPS). Methods: Male 60-day-old mice were assigned to six treatment groups: (1) control, (2) LPS, (3) soy lecithin (blank lecithin without frankincense extract), (4) Casp, (5) soy lecithin plus LPS, or (6) Casp plus LPS. Soy lecithin and Casp were given 3 h prior to LPS treatment; 24 h after LPS administration, animals were sacrificed and health status and serum cytokine levels were evaluated. Additionally, parameters representing liver damage or liver function and indicating oxidative stress in different organs were determined. Furthermore, markers for apoptosis and immune cell redistribution were assessed by immunohistochemistry in liver and spleen. Results: LPS treatment caused a decrease in body temperature, blood glucose levels, liver glycogen content, and biotransformation capacity along with an increase in serum cytokine levels and oxidative stress in various organs. Additionally, apoptotic processes were increased in spleen besides a pronounced immune cell infiltration in both liver and spleen. Pretreatment with Casp significantly improved health status, blood glucose values, and body temperature of the animals, while serum levels of pro-inflammatory cytokines and oxidative stress in all organs tested were significantly diminished. Finally, apoptotic processes in spleen, liver glycogen loss, and immune cell infiltration in liver and spleen were distinctly reduced. Casp also appears to induce various cytochromeP450 isoforms, thus causing re-establishment of liver biotransformation capacity in LPS-treated mice. Conclusion: Casp displayed anti-inflammatory, anti-oxidative, and hepatoprotective effects. Thus, orally bioavailable frankincense extracts may serve as a new supportive treatment option in acute systemic inflammation and accompanied liver dysfunction.
Collapse
Affiliation(s)
- Konstantin Loeser
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany.,Chair of Pharmaceutical Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Semjon Seemann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Stefanie König
- Chair of Pharmaceutical Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Isabell Lenhardt
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | | | - Andreas Koeberle
- Chair of Pharmaceutical Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Chair of Pharmaceutical Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| |
Collapse
|
14
|
Triterpene Acids from Frankincense and Semi-Synthetic Derivatives That Inhibit 5-Lipoxygenase and Cathepsin G. Molecules 2018; 23:molecules23020506. [PMID: 29495286 PMCID: PMC6017322 DOI: 10.3390/molecules23020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 11/23/2022] Open
Abstract
Age-related diseases, such as osteoarthritis, Alzheimer’s disease, diabetes, and cardiovascular disease, are often associated with chronic unresolved inflammation. Neutrophils play central roles in this process by releasing tissue-degenerative proteases, such as cathepsin G, as well as pro-inflammatory leukotrienes produced by the 5-lipoxygenase (5-LO) pathway. Boswellic acids (BAs) are pentacyclic triterpene acids contained in the gum resin of the anti-inflammatory remedy frankincense that target cathepsin G and 5-LO in neutrophils, and might thus represent suitable leads for intervention with age-associated diseases that have a chronic inflammatory component. Here, we investigated whether, in addition to BAs, other triterpene acids from frankincense interfere with 5-LO and cathepsin G. We provide a comprehensive analysis of 17 natural tetra- or pentacyclic triterpene acids for suppression of 5-LO product synthesis in human neutrophils. These triterpene acids were also investigated for their direct interference with 5-LO and cathepsin G in cell-free assays. Furthermore, our studies were expanded to 10 semi-synthetic BA derivatives. Our data reveal that besides BAs, several tetra- and pentacyclic triterpene acids are effective or even superior inhibitors of 5-LO product formation in human neutrophils, and in parallel, inhibit cathepsin G. Their beneficial target profile may qualify triterpene acids as anti-inflammatory natural products and pharmacological leads for intervention with diseases related to aging.
Collapse
|
15
|
Chou YC, Suh JH, Wang Y, Pahwa M, Badmaev V, Ho CT, Pan MH. Boswellia serrata resin extract alleviates azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon tumorigenesis. Mol Nutr Food Res 2017; 61. [PMID: 28245338 DOI: 10.1002/mnfr.201600984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/23/2022]
Abstract
SCOPE Boswellia serrata (BS) resin is a popular dietary supplement for joint nourishment. In this study, we investigated the chemopreventive effects of dietary BS extract and its impact of gut microbiota on azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colitis-associated colon cancer in mice. METHODS AND RESULTS Male ICR mice were injected with AOM and 2% DSS via drinking water. The mice were fed with 0.25 or 0.5% BS extract, and colonic tissue were collected at 15 weeks. The main effective components of BS supercritical CO2 extraction were analyzed by LC-MS/MS are boswellic acids. We found that treatment with BS extract significantly reduce the colonic tumor formation. Western blot and histological analysis revealed that dietary BS extract could markedly reduce the inflammation associated protein levels expression. Furthermore, BS extract reduced cell proliferation via inhibiting phosphorylation level of protein kinase B (Akt), glycogen synthase kinase 3β (GSK3β), and downregulation of cyclin D1. In addition, BS extract also altered the composition of gut microbiota by enhancing the proportion of Clostridiales and reducing the percentage of Bacteroidales. CONCLUSION In summary, BS extract decreased the protein levels of inflammative enzymes such as inducible nitric oxide synthase and cyclooxygenase-2 in colonic mucosa. It also mediated Akt/GSK3β/cyclin D1 signaling pathway and altered the composition of gut microbiota to alleviate tumor growth. Taken together, this study suggests that BS extract has great potential to suppress colon tumorigenesis.
Collapse
Affiliation(s)
- Ya-Chun Chou
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Joon Hyuk Suh
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | | | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
16
|
Yanez M, Blanchette J, Jabbarzadeh E. Modulation of Inflammatory Response to Implanted Biomaterials Using Natural Compounds. Curr Pharm Des 2017; 23:6347-6357. [PMID: 28521709 PMCID: PMC5681444 DOI: 10.2174/1381612823666170510124348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
Abstract
Tissue engineering offers a promising strategy to restore injuries resulting from trauma, infection, tumor resection, or other diseases. In spite of significant progress, the field faces a significant bottleneck; the critical need to understand and exploit the interdependencies of tissue healing, angiogenesis, and inflammation. Inherently, the balance of these interacting processes is affected by a number of injury site conditions that represent a departure from physiological environment, including reduced pH, increased concentration of free radicals, hypoglycemia, and hypoxia. Efforts to harness the potential of immune response as a therapeutic strategy to promote tissue repair have led to identification of natural compounds with significant anti-inflammatory properties. This article provides a concise review of the body's inflammatory response to biomaterials and describes the role of oxygen as a physiological cue in this process. We proceed to highlight the potential of natural compounds to mediate inflammatory response and improve host-graft integration. Herein, we discuss the use of natural compounds to map signaling molecules and checkpoints that regulate the cross-linkage of immune response and skeletal repair.
Collapse
Affiliation(s)
- Maria Yanez
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - James Blanchette
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Ehsan Jabbarzadeh
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Orthopedic Surgery, University of South Carolina School of Medicine, Columbia SC, 29209, USA
| |
Collapse
|
17
|
Riva A, Morazzoni P, Artaria C, Allegrini P, Meins J, Savio D, Appendino G, Schubert-Zsilavecz M, Abdel-Tawab M. A single-dose, randomized, cross-over, two-way, open-label study for comparing the absorption of boswellic acids and its lecithin formulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1375-1382. [PMID: 27765357 DOI: 10.1016/j.phymed.2016.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/24/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The oral administration of the gum resin extracts of Indian frankincense (Boswellia serrata Roxb. ex Colebr) results in very low plasma concentrations of boswellic acids (BAs), being far below the pharmacologically active concentrations required in vitro for anti-inflammatory activity. For that reason the use of Indian frankincense in clinical practice and pharmaceutical development has substantially lagged behind. Recently the application of new formulation technologies resulted in a formulation of frankincense extract with lecithin, which revealed improved absorption and tissue penetration of BAs in a rodent study, leading for the first time to plasma concentrations of BAs in the range of their anti-inflammatory activity. PURPOSE In order to verify these encouraging results in humans, the absorption of a standardized Boswellia serrata extract (BE) and its lecithin formulation (CSP) was comparatively investigated in healthy volunteers. STUDY DESIGN According to a randomized cross-over design with two treatments, two sequences and two periods, 12 volunteers alternatively received the lecithin-formulated Boswellia extract (CSP) or the non-formulated Boswellia extract (BE) at a dosage of 2×250mg capsules. METHODS The plasma concentrations of the six major BAs (KBA, AKBA, βBA, αBA, AβBA, AαBA) were determined using LC/MS. RESULTS With the exception of KBA, a significantly higher (both in terms of weight-to-weight and molar comparison) and quicker absorption of BAs from the lecithin formulation was observed, leading to Cmax in the range required for the interaction with their molecular targets. CONCLUSION These findings pave the way to further studies evaluating the clinical potential of BAs, and verify the beneficial effect of lecithin formulation to improve the absorption of poorly soluble phytochemicals.
Collapse
Affiliation(s)
| | | | | | | | - Jürgen Meins
- Central Laboratory of German Pharmacists, Carl-Mannich-Str. 20, 65760 Eschborn, Germany
| | - Daniele Savio
- R&D Solution s.r.l., Via Luigi Perna, 51 00142 Roma, Italy
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Manfred Schubert-Zsilavecz
- Department of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Mona Abdel-Tawab
- Central Laboratory of German Pharmacists, Carl-Mannich-Str. 20, 65760 Eschborn, Germany.
| |
Collapse
|
18
|
Hussain H, Al-Harrasi A, Csuk R, Shamraiz U, Green IR, Ahmed I, Khan IA, Ali Z. Therapeutic potential of boswellic acids: a patent review (1990-2015). Expert Opin Ther Pat 2016; 27:81-90. [DOI: 10.1080/13543776.2017.1235156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Casapullo A, Cassiano C, Capolupo A, Del Gaudio F, Esposito R, Tosco A, Riccio R, Monti MC. β-Boswellic acid, a bioactive substance used in food supplements, inhibits protein synthesis by targeting the ribosomal machinery. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:821-827. [PMID: 27460774 DOI: 10.1002/jms.3819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
The Boswellia gum resin extracts have been used in traditional medicines because of their remarkable anti-inflammatory properties. Nowadays, these extracts are on the market as food supplements. β-Boswellic acid (βBA) is one of the main pentacyclic triterpene components, among the family of BAs, of the Boswellia gum resins. BAs have been broadly studied and are well known for their wide anti-inflammatory and potential anticancer properties. In this paper, a mass spectrometry-based chemoproteomic approach has been applied to characterize the whole βBA interacting profile. Among the large numbers of proteins fished out, proteasome, 14-3-3 and some ribosomal proteins were considered the most interesting targets strictly connected to the modulation of the cancer progression. In particular, because of their recent assessment as innovative chemotherapeutic targets, the ribosomal proteins were considered the most attractive βBA partners, and the biological role of their interaction with the natural compound has been evaluated. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A Casapullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - C Cassiano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - A Capolupo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
- PhD Program in Drug Discovery and Development, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, SA, I-84084, Italy
| | - F Del Gaudio
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
- PhD Program in Drug Discovery and Development, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, SA, I-84084, Italy
- Farmaceutici Damor S.p.A, Via E. Scaglione 27, 80145, Naples, Italy
| | - R Esposito
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - A Tosco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - R Riccio
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - M C Monti
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| |
Collapse
|
20
|
Chen M, Wang M, Yang Q, Wang M, Wang Z, Zhu Y, Zhang Y, Wang C, Jia Y, Li Y, Wen A. Antioxidant effects of hydroxysafflor yellow A and acetyl-11-keto-β-boswellic acid in combination on isoproterenol-induced myocardial injury in rats. Int J Mol Med 2016; 37:1501-10. [PMID: 27121241 PMCID: PMC4866969 DOI: 10.3892/ijmm.2016.2571] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 04/05/2016] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress plays an important role in the initiation and development of myocardial injury (MI). The peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is considered to be a potential target for cardioprotection in MI. Acetyl-11-keto-β-boswellic acid (AKBA) is the major organic acid component extracted from Boswellia serrata Roxb. ex Colebr. Hydroxysafflor yellow A (HSYA) is the principal active constituent of Carthamus tinctorius L. In the present study, we aimed to investigate the cardioprotective effects of HSYA and AKBA in combination in vivo and in vitro, as well as the underlying mechanisms responsible for these effects. For this purpose, MI was produced in Sprague-Dawley rats by subcutaneous injection with isoproterenol. To model ischemic-like conditions in vitro, H9C2 cells were subjected to oxygen-glucose deprivation (OGD). The levels of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), malondialdehyde (MDA) as well as superoxide dismutase (SOD) activity were examined as well as apoptotic cell death. Mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential (ΔΨm or MMP) were measured using MitoSOX Red and 5,5′,6,6′-tetraethylbenzimidazolylcarbocya-nine iodide (JC-1) dye. The expression of PGC-1α and Nrf2 was quantified by western blot analysis and immunohistochemistry. HSYA and AKBA prevented myocardial pathological changes, significantly reduced the blood levels of CK-MB and LDH, and decreased apoptotic cell death. They significantly increased the expression of PGC-1α and Nrf2, and the activity of the antioxidant enzyme SOD and also decreased the levels of MDA and ROS. Moreover, the reduction in MMP was partly prevented by HSYA and AKBA. Taken together, these findings elucidate the underlying mechanisms through which HSYA and AKBA protect against MI. Additionally, HSYA and AKBA appear to act synergistically in order to exert cardioprotective effects.
Collapse
Affiliation(s)
- Minchun Chen
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Mingming Wang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiong Yang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Min Wang
- Department of Pharmacology, College of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhipeng Wang
- Department of Pharmacology, College of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yikai Zhang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chao Wang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yanyan Jia
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuwen Li
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
21
|
Henkel A, Tausch L, Pillong M, Jauch J, Karas M, Schneider G, Werz O. Boswellic acids target the human immune system-modulating antimicrobial peptide LL-37. Pharmacol Res 2015; 102:53-60. [PMID: 26361729 DOI: 10.1016/j.phrs.2015.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 12/27/2022]
Abstract
The antimicrobial peptide LL-37 is the sole member of the human cathelicidin family with immune system-modulating properties and roles in autoimmune disease development. Small molecules able to interact with LL-37 and to modulate its functions have not been described yet. Boswellic acids (BAs) are pentacyclic triterpene acids that are bioactive principles of frankincense extracts used as anti-inflammatory remedies. Although various anti-inflammatory modes of action have been proposed for BAs, the pharmacological profile of these compounds is still incompletely understood. Here, we describe the identification of human LL-37 as functional target of BAs. In unbiased target fishing experiments using immobilized BAs as bait and human neutrophils as target source, LL-37 was identified as binding partner assisted by MALDI-TOF mass spectrometry. Thermal stability experiments using circular dichroism spectroscopy confirm direct interaction between BAs and LL-37. Of interest, this binding of BAs resulted in an inhibition of the functionality of LL-37. Thus, the LPS-neutralizing properties of isolated LL-37 were inhibited by 3-O-acetyl-β-BA (Aβ-BA) and 3-O-acetyl-11-keto-β-BA (AKβ-BA) in a cell-free limulus amoebocyte lysate assay with EC50=0.2 and 0.8 μM, respectively. Also, LL-37 activity was inhibited by these BAs in LL-37-enriched supernatants of stimulated neutrophils or human plasma derived from stimulated human whole blood. Together, we reveal BAs as inhibitors of LL-37, which might be a relevant mechanism underlying the anti-inflammatory properties of BAs and suggests BAs as suitable chemical tools or potential agents for intervention with LL-37 and related disorders.
Collapse
Affiliation(s)
- Arne Henkel
- Department for Pharmaceutical Analytics, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany.
| | - Lars Tausch
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, D-60439 Frankfurt, Germany.
| | - Max Pillong
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| | - Johann Jauch
- Organic Chemistry II, University of Saarland, Campus C 4.2, D-66123 Saarbrücken, Germany.
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Max-von-Laue-Str. 9, D-60439 Frankfurt, Germany.
| | - Gisbert Schneider
- Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University of Jena, Philosophenweg 14, D-07743 Jena, Germany.
| |
Collapse
|
22
|
Souza MTDS, Almeida JRGDS, Araujo AADS, Duarte MC, Gelain DP, Moreira JCF, dos Santos MRV, Quintans-Júnior LJ. Structure–activity relationship of terpenes with anti-inflammatory profile – a systematic review. Basic Clin Pharmacol Toxicol 2015; 115:244-56. [PMID: 25275147 DOI: 10.1111/bcpt.12221] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a complex biological response that in spite of having available treatments, their side effects limit their usefulness. Because of this, natural products have been the subject of incessant studies, among which the class of terpenes stands out. They have been the source of study for the development of anti-inflammatory drugs, once their chemical diversity is well suited to provide skeleton for future anti-inflammatory drugs. This systematic review reports the studies present in the literature that evaluate the anti-inflammatory activity of terpenes suffering any change in their structures, assessing whether these changes also brought changes in their effects. The search terms anti-inflammatory agents, terpenes, and structure–activity relationship were used to retrieve English language articles in SCOPUS, PUBMED and EMBASE published between January 2002 and August 2013. Twenty-seven papers were found concerning the structural modification of terpenes with the evaluation of antiinflammatory activity. The data reviewed here suggest that modified terpenes are an interesting tool for the development of new anti-inflammatory drugs.
Collapse
|
23
|
Zhang Y, Ning Z, Lu C, Zhao S, Wang J, Liu B, Xu X, Liu Y. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties. Chem Cent J 2013; 7:153. [PMID: 24028654 PMCID: PMC3847453 DOI: 10.1186/1752-153x-7-153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/09/2013] [Indexed: 01/11/2023] Open
Abstract
The resinous metabolites commonly known as frankincense or olibanum are produced by trees of the genus Boswellia and have attracted increasing popularity in Western countries in the last decade for their various pharmacological activities. This review described the pharmacological specific details mainly on anti-inflammatory, anti-carcinogenic, anti-bacterial and apoptosis-regulating activities of individual triterpenoid together with the relevant mechanism. In addition, species-characterizing triterpenic markers with the methods for their detection, bioavailability, safety and other significant properties were reviewed for further research.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
A novel C(28)-hydroxylated lupeolic acid suppresses the biosynthesis of eicosanoids through inhibition of cytosolic phospholipase A2. Biochem Pharmacol 2012; 84:681-91. [DOI: 10.1016/j.bcp.2012.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 11/23/2022]
|