1
|
Bauri R, Bele S, Edelli J, Reddy NC, Kurukuti S, Devasia T, Ibrahim A, Rai V, Mitra P. Reduced incretin receptor trafficking upon activation enhances glycemic control and reverses obesity in diet-induced obese mice. Am J Physiol Cell Physiol 2024; 327:C74-C96. [PMID: 38738303 DOI: 10.1152/ajpcell.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic β cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.
Collapse
Affiliation(s)
- Rathin Bauri
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shilpak Bele
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jhansi Edelli
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| | - Neelesh C Reddy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | | | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Ahamed Ibrahim
- Division of Lipid Chemistry, National Institute of Nutrition Hyderabad, Hyderabad, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | - Prasenjit Mitra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Institute of Transformative Molecular medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
2
|
Tian H, Chang M, Lyu Y, Dong N, Yu N, Yin T, Zhang Y, He H, Gou J, Tang X. Intramuscular injection of palmitic acid-conjugated Exendin-4 loaded multivesicular liposomes for long-acting and improving in-situ stability. Expert Opin Drug Deliv 2024; 21:169-185. [PMID: 38224039 DOI: 10.1080/17425247.2024.2305110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Exendin-4 (Ex4) is a promising drug for diabetes mellitus with a half-life of 2.4 h in human bodies. Besides, the Ex4 formulations currently employed in the clinic or under development have problems pertaining to stability. In this study, palmitic acid-modified Ex4 (Pal-Ex4) was prepared and purified to extend the half-life of Ex4. In addition, Pal-Ex4-MVLs were further designed and optimized as a long-acting delivery system for intramuscular injection. METHODS Pal-Ex4 was encapsulated within multivesicular liposomes (MVLs) via a two-step double emulsification process. The formulated products were then assessed for their vesicle size, encapsulation efficiency, and in vitro and in vivo. RESULTS Pal-Ex4-MVLs with a notable encapsulation efficiency of 99.18% were successfully prepared. Pal-Ex4-MVLs, administered via a single intramuscular injection in Sprague-Dawley rats, sustained stable plasma concentrations for 168 h, presenting extended half-life (77.28 ± 12.919 h) and enhanced relative bioavailability (664.18%). MVLs protected Ex4 through providing stable retention and slow release. This approach considerably improved the in-situ stability of the drug for intramuscular administration. CONCLUSIONS The combination of palmitic acid modification process with MVLs provides dual protection for Ex4 and can be a promising strategy for other hydrophilic protein/polypeptide-loaded sustained-release delivery systems with high drug bioactivity.
Collapse
Affiliation(s)
- Huixian Tian
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Minsi Chang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Yanlin Lyu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Nan Dong
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Nini Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| |
Collapse
|
3
|
Zhang Y, Wang L, Tombling BJ, Lammi C, Huang YH, Li Y, Bartolomei M, Hong B, Craik DJ, Wang CK. Improving Stability Enhances In Vivo Efficacy of a PCSK9 Inhibitory Peptide. J Am Chem Soc 2022; 144:19485-19498. [DOI: 10.1021/jacs.2c08029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuhui Zhang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Li Wang
- NHC Key Laboratory of Biotechnology Antibiotics and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, & Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing100050, China
| | - Benjamin J. Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milan, Via L. Mangiagalli 25, 20133Milan, Italy
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Yue Li
- NHC Key Laboratory of Biotechnology Antibiotics and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, & Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing100050, China
| | - Martina Bartolomei
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milan, Via L. Mangiagalli 25, 20133Milan, Italy
| | - Bin Hong
- NHC Key Laboratory of Biotechnology Antibiotics and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, & Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing100050, China
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
4
|
Chen H, Lu Y, Shi S, Zhang Q, Cao X, Sun L, An D, Zhang X, Kong X, Liu J. Design and Development of a New Glucagon-Like Peptide-1 Receptor Agonist to Obtain High Oral Bioavailability. Pharm Res 2022; 39:1891-1906. [PMID: 35698011 DOI: 10.1007/s11095-022-03265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Semaglutide is the only oral GLP-1 RA in the market, but oral bioavailability is generally limited in range of 0.4-1%. In this study, a new GLP-1RA named SHR-2042 was developed to gain higher oral bioavailability than semaglutide. METHOD Self-association of SHR-2042, semaglutide and liraglutide were assessed using SEC-MALS. The intestinal perfusion test in SD rats was used to select permeation enhancers (PEs) including SNAC, C10 and LCC. ITC, CD and DLS were used to explore the interaction between SHR-2042 and SNAC. Gastric administrated test in SD rats was used to screen SHR-2042 granules with different SHR-2042/SNAC ratios. The oral bioavailability of SHR-2042 was studied in rats and monkeys. RESULT The designed GLP-1RA, SHR-2042, gives a better solubility and lipophilicity than semaglutide. While it forms a similar oligomer with that of semaglutide. During the selection of PEs, SNAC shows better exposure than the other competing PEs including C10 and LCC. SHR-2042 and SNAC bind quickly and exhibit hydrophobic interaction. SNAC could promote monomerization of SHR-2042 and form micelles to trap the monomerized SHR-2042. The oral bioavailability of SHR-2042 paired with SNAC is 0.041% (1:0, w/w), 0.083% (1:10, w/w), 0.32% (1:30, w/w) and 2.83% (1:60, w/w) in rats. And the oral bioavailability of SHR-2042 matched with SNAC is 3.39% (1:30, w/w) in monkeys, which is over 10 times higher than that of semaglutide. CONCLUSION We believe that the design and development of oral SHR-2042 will provide a new way to design more and more GLP-1RAs with high oral bioavailability in the future.
Collapse
Affiliation(s)
- Hao Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, 222000, People's Republic of China
| | - Yun Lu
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, 222000, People's Republic of China
| | - Shuai Shi
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, 222000, People's Republic of China
| | - Qiang Zhang
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, 222000, People's Republic of China
| | - Xiaoli Cao
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, 222000, People's Republic of China
| | - Lei Sun
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, 222000, People's Republic of China
| | - Dong An
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, 222000, People's Republic of China
| | - Xiaojie Zhang
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, 222000, People's Republic of China
| | - Xianglin Kong
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, 222000, People's Republic of China
| | - Jianping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
5
|
Wang L. Designing a Dual GLP-1R/GIPR Agonist from Tirzepatide: Comparing Residues Between Tirzepatide, GLP-1, and GIP. Drug Des Devel Ther 2022; 16:1547-1559. [PMID: 35651477 PMCID: PMC9149770 DOI: 10.2147/dddt.s358989] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Improving type 2 diabetes using incretin analogues is becoming increasingly plausible. Currently, tirzepatide is the most promising listed incretin analogue. Here, I briefly explain the evolution of drugs of this kind, analyze the residue discrepancies between tirzepatide and endogenous incretins, summarize some existing strategies for prolonging half-life, and present suggestions for future research, mainly involving biased functions. This review aims to present some useful information for designing a dual glucagon like peptide-1 receptor/glucose-dependent insulinotropic polypeptide receptor agonist. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/yo_lgebnhRo
Collapse
Affiliation(s)
- Lijing Wang
- College of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Park BG, Kim GM, Lee HJ, Ryu JH, Kim DH, Seong JY, Kim S, Park ZY, Kim YJ, Lee J, Kim JI. Antiobesity therapeutics with complementary dual-agonist activities at glucagon and glucagon-like peptide 1 receptors. Diabetes Obes Metab 2022; 24:50-60. [PMID: 34491605 DOI: 10.1111/dom.14546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022]
Abstract
AIM To develop more effective and long-lasting antiobesity and antidiabetic therapeutics by employing novel chemical modifications of glucagon-like peptide-1 receptor (GLP-1R) agonists. METHODS We constructed novel unimolecular dual agonists of GLP-1R and glucagon receptor prepared by linking sEx-4 and native glucagon (GCG) via lysine or triazole [sEx4-GCG(K) and sEx4-GCG(T), respectively] and evaluated their antiobesity and antidiabetic efficacy in the diabetic and obese mouse model. RESULTS Both sEx4-GCG(K) and sEx4-GCG(T) showed the beneficial metabolic effects of GLP-1 and glucagon: they promoted weight loss and ameliorated insulin resistance and hepatic steatosis. They also increased thermogenesis in brown adipose tissue, and lipolysis and β-oxidation in white adipose tissue, with concomitant suppression of lipogenesis. Furthermore, both dual agonists activated the 5'-AMP-activated protein kinase signalling pathway and prevented palmitate-induced oxidative stress in skeletal muscle cells. CONCLUSION Through their complementary dual agonism, sEx4-GCG(T) and sEx4-GCG(K) induce more marked weight loss and metabolic improvements than conventional agonists, and could be developed as novel therapeutic agents for the treatment of obesity and associated metabolic disorders in humans.
Collapse
Affiliation(s)
- Bong Gyu Park
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Gyeong Min Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hye-Jin Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Ha Ryu
- Pilot Plant, Anygen, Gwangju, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae-Young Seong
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Soojeong Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Zee-Yong Park
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Young-Joon Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jae Il Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Pilot Plant, Anygen, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Lucey M, Ashik T, Marzook A, Wang Y, Goulding J, Oishi A, Broichhagen J, Hodson DJ, Minnion J, Elani Y, Jockers R, Briddon SJ, Bloom SR, Tomas A, Jones B. Acylation of the Incretin Peptide Exendin-4 Directly Impacts Glucagon-Like Peptide-1 Receptor Signaling and Trafficking. Mol Pharmacol 2021; 100:319-334. [PMID: 34315812 PMCID: PMC8626645 DOI: 10.1124/molpharm.121.000270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor and mainstay therapeutic target for the treatment of type 2 diabetes and obesity. Recent reports have highlighted how biased agonism at the GLP-1R affects sustained glucose-stimulated insulin secretion through avoidance of desensitization and downregulation. A number of GLP-1R agonists (GLP-1RAs) feature a fatty acid moiety to prolong their pharmacokinetics via increased albumin binding, but the potential for these chemical changes to influence GLP-1R function has rarely been investigated beyond potency assessments for cAMP. Here, we directly compare the prototypical GLP-1RA exendin-4 with its C-terminally acylated analog, exendin-4-C16. We examine relative propensities of each ligand to recruit and activate G proteins and β-arrestins, endocytic and postendocytic trafficking profiles, and interactions with model and cellular membranes in HEK293 and HEK293T cells. Both ligands had similar cAMP potency, but exendin-4-C16 showed ∼2.5-fold bias toward G protein recruitment and a ∼60% reduction in β-arrestin-2 recruitment efficacy compared with exendin-4, as well as reduced GLP-1R endocytosis and preferential targeting toward recycling pathways. These effects were associated with reduced movement of the GLP-1R extracellular domain measured using a conformational biosensor approach and a ∼70% increase in insulin secretion in INS-1 832/3 cells. Interactions with plasma membrane lipids were enhanced by the acyl chain. Exendin-4-C16 showed extensive albumin binding and was highly effective for lowering of blood glucose in mice over at least 72 hours. Our study highlights the importance of a broad approach to the evaluation of GLP-1RA pharmacology. SIGNIFICANCE STATEMENT: Acylation is a common strategy to enhance the pharmacokinetics of peptide-based drugs. This work shows how acylation can also affect various other pharmacological parameters, including biased agonism, receptor trafficking, and interactions with the plasma membrane, which may be therapeutically important.
Collapse
Affiliation(s)
- Maria Lucey
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Tanyel Ashik
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Amaara Marzook
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Yifan Wang
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Joëlle Goulding
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Atsuro Oishi
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Johannes Broichhagen
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - David J Hodson
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - James Minnion
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Yuval Elani
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Ralf Jockers
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Stephen J Briddon
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Stephen R Bloom
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Alejandra Tomas
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine (M.L., T.A., A.M., J.M., S.R.B., B.J.) and Section of Cell Biology and Functional Genomics (Y.W., A.T.), Department of Metabolism, Digestion and Reproduction, and Department of Chemical Engineering (Y.E.), Imperial College London, London, United Kingdom; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom (J.G., S.J.B.); Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (J.G., D.J.H., S.J.B.); Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France (A.O., R.J.); Department of Anatomy, Kyorin University Faculty of Medicine, Tokyo, Japan (A.O.); Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (J.B.); Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom (D.J.H.); and Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom (D.J.H.)
| |
Collapse
|
8
|
Tinsley IC, Borner T, Swanson ML, Chepurny OG, Doebley SA, Kamat V, Sweet IR, Holz GG, Hayes MR, De Jonghe BC, Doyle RP. Synthesis, Optimization, and Biological Evaluation of Corrinated Conjugates of the GLP-1R Agonist Exendin-4. J Med Chem 2021; 64:3479-3492. [PMID: 33677970 PMCID: PMC8279408 DOI: 10.1021/acs.jmedchem.1c00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Corrination
is the conjugation of a corrin ring containing molecule,
such as vitamin B12 (B12) or B12 biosynthetic precursor
dicyanocobinamide (Cbi), to small molecules, peptides, or proteins
with the goal of modifying pharmacology. Recently, a corrinated GLP-1R
agonist (GLP-1RA) exendin-4 (Ex4) has been shown in vivo to have reduced penetration into the central nervous system relative
to Ex4 alone, producing a glucoregulatory GLP-1RA devoid of anorexia
and emesis. The study herein was designed to optimize the lead conjugate
for GLP-1R agonism and binding. Two specific conjugation sites were
introduced in Ex4, while also utilizing various linkers, so that it
was possible to identify Cbi conjugates of Ex4 that exhibit improved
binding and agonist activity at the GLP-1R. An optimized conjugate
(22), comparable with Ex4, was successfully screened
and subsequently assayed for insulin secretion in rat islets and in vivo in shrews for glucoregulatory and emetic behavior,
relative to Ex4.
Collapse
Affiliation(s)
- Ian C Tinsley
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Tito Borner
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania 19104, United States
| | - MacKenzie L Swanson
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Sarah A Doebley
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania 19104, United States
| | - Varun Kamat
- Department of Medicine, University of Washington, Medicine Diabetes Institute, Seattle, Washington 98109, United States
| | - Ian R Sweet
- Department of Medicine, University of Washington, Medicine Diabetes Institute, Seattle, Washington 98109, United States
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania 19104, United States
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States.,Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
9
|
Fang Z, Chen S, Manchanda Y, Bitsi S, Pickford P, David A, Shchepinova MM, Corrêa Jr IR, Hodson DJ, Broichhagen J, Tate EW, Reimann F, Salem V, Rutter GA, Tan T, Bloom SR, Tomas A, Jones B. Ligand-Specific Factors Influencing GLP-1 Receptor Post-Endocytic Trafficking and Degradation in Pancreatic Beta Cells. Int J Mol Sci 2020; 21:E8404. [PMID: 33182425 PMCID: PMC7664906 DOI: 10.3390/ijms21218404] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important regulator of blood glucose homeostasis. Ligand-specific differences in membrane trafficking of the GLP-1R influence its signalling properties and therapeutic potential in type 2 diabetes. Here, we have evaluated how different factors combine to control the post-endocytic trafficking of GLP-1R to recycling versus degradative pathways. Experiments were performed in primary islet cells, INS-1 832/3 clonal beta cells and HEK293 cells, using biorthogonal labelling of GLP-1R to determine its localisation and degradation after treatment with GLP-1, exendin-4 and several further GLP-1R agonist peptides. We also characterised the effect of a rare GLP1R coding variant, T149M, and the role of endosomal peptidase endothelin-converting enzyme-1 (ECE-1), in GLP1R trafficking. Our data reveal how treatment with GLP-1 versus exendin-4 is associated with preferential GLP-1R targeting towards a recycling pathway. GLP-1, but not exendin-4, is a substrate for ECE-1, and the resultant propensity to intra-endosomal degradation, in conjunction with differences in binding affinity, contributes to alterations in GLP-1R trafficking behaviours and degradation. The T149M GLP-1R variant shows reduced signalling and internalisation responses, which is likely to be due to disruption of the cytoplasmic region that couples to intracellular effectors. These observations provide insights into how ligand- and genotype-specific factors can influence GLP-1R trafficking.
Collapse
Affiliation(s)
- Zijian Fang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Philip Pickford
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Alessia David
- Centre for Bioinformatics and System Biology, Department of Life Sciences, Imperial College London, London SW7 2BX, UK;
| | - Maria M. Shchepinova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK; (M.M.S.); (E.W.T.)
| | | | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Johannes Broichhagen
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany;
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK; (M.M.S.); (E.W.T.)
| | - Frank Reimann
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Victoria Salem
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Stephen R. Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| |
Collapse
|
10
|
Characterization of attributes and in vitro performance of exenatide-loaded PLGA long-acting release microspheres. Eur J Pharm Biopharm 2020; 158:401-409. [PMID: 33122118 DOI: 10.1016/j.ejpb.2020.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 09/12/2020] [Accepted: 10/13/2020] [Indexed: 11/23/2022]
Abstract
Bydureon® (Bdn) is a once-weekly injectable long-acting release (LAR) product for adults with type 2 diabetes based on PLGA microspheres encapsulating the glucagon like peptide (GLP-1) analog, exenatide. Despite its widespread use in type 2 diabetes treatment, little information has been published concerning the physical-chemical aspects and exenatide stability in this product. Here, we developed and validated methods to evaluate attributes and performance of Bdn such as particle size/size distribution and residual levels of moisture and organic solvent(s). The reverse engineering of the exenatide LAR was also performed to identify and quantify principal components in the product. Stability-indicating UPLC and LC-MS methods were applied to characterize exenatide degradation (such as oxidation, deamidation and acylation products) during in vitro release evaluation. The 55-μm volume-median Bdn microspheres slowly released the exenatidein vitroover two months with a very low initial burst release to avoid unwanted side effects. Residual organic solvent levels (methylene chloride, ethanol, heptane, and silicon oil) also met the USP criteria. Peptide acylation was the most prominent peptide reaction during both encapsulation and in vitro release, and the acylated peptide steadily increased during release relative to parent exenatide, becoming the most abundant peptide species extracted from the microspheres at later release stages. The presence of peptide impurities during the release period, which are not extractable in the polymer and likely insoluble in water, might be one potential cause for immunogenicity. Further evaluation will be needed to confirm this hypothesis. Release of peptide was minimal over the first 2 weeks before the microspheres steadily released peptide for more than 28 days. The rigorous technical approach discussed in this paper may provide critical information for both companies and the FDA for developing generic exenatide-PLGA formulations and other important PLGA microsphere products.
Collapse
|
11
|
Pickford P, Lucey M, Fang Z, Bitsi S, de la Serna JB, Broichhagen J, Hodson DJ, Minnion J, Rutter GA, Bloom SR, Tomas A, Jones B. Signalling, trafficking and glucoregulatory properties of glucagon-like peptide-1 receptor agonists exendin-4 and lixisenatide. Br J Pharmacol 2020; 177:3905-3923. [PMID: 32436216 PMCID: PMC7429481 DOI: 10.1111/bph.15134] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Amino acid substitutions at the N-termini of glucagon-like peptide-1 (GLP-1) receptor agonist peptides result in distinct patterns of intracellular signalling, sub-cellular trafficking and efficacy in vivo. Here, we to determine whether sequence differences at the ligand C-termini of clinically approved GLP-1 receptor agonists exendin-4 and lixisenatide lead to similar phenomena. EXPERIMENTAL APPROACH Exendin-4, lixisenatide and N-terminally substituted analogues with biased signalling characteristics were compared across a range of in vitro trafficking and signalling assays in different cell types. Fluorescent ligands and new time-resolved FRET approaches were developed to study agonist behaviours at the cellular and sub-cellular level. Anti-hyperglycaemic and anorectic effects of each parent ligand and their biased derivatives were assessed in mice. KEY RESULTS Lixisenatide and exendin-4 showed equal binding affinity, but lixisenatide was fivefold less potent for cAMP signalling. Both peptides induced extensive GLP-1 receptor clustering in the plasma membrane and were rapidly endocytosed, but the GLP-1 receptor recycled more slowly to the cell surface after lixisenatide treatment. These combined deficits resulted in reduced maximal sustained insulin secretion and reduced anti-hyperglycaemic and anorectic effects in mice with lixisenatide. N-terminal substitution of His1 by Phe1 to both ligands had favourable effects on their pharmacology, resulting in improved insulin release and lowering of blood glucose. CONCLUSION AND IMPLICATIONS Changes to the C-terminus of exendin-4 affect signalling potency and GLP-1 receptor trafficking via mechanisms unrelated to GLP-1 receptor occupancy. These differences were associated with changes in their ability to control blood glucose and therefore may be therapeutically relevant.
Collapse
Affiliation(s)
- Philip Pickford
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| | - Maria Lucey
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| | - Zijian Fang
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| | - Stavroula Bitsi
- Section of Cell Biology and Functional GenomicsImperial College LondonLondonUK
| | | | - Johannes Broichhagen
- Department Chemical BiologyMax Planck Institute for Medical ResearchHeidelbergGermany
- Department Chemical BiologyLeibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE)University of BirminghamBirminghamUK
- Centre for Endocrinology, Diabetes and MetabolismBirmingham Health PartnersBirminghamUK
| | - James Minnion
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| | - Guy A. Rutter
- Section of Cell Biology and Functional GenomicsImperial College LondonLondonUK
| | - Stephen R. Bloom
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| | - Alejandra Tomas
- Section of Cell Biology and Functional GenomicsImperial College LondonLondonUK
| | - Ben Jones
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| |
Collapse
|
12
|
Amatya R, Park T, Hwang S, Yang J, Lee Y, Cheong H, Moon C, Kwak HD, Min KA, Shin MC. Drug Delivery Strategies for Enhancing the Therapeutic Efficacy of Toxin-Derived Anti-Diabetic Peptides. Toxins (Basel) 2020; 12:toxins12050313. [PMID: 32397648 PMCID: PMC7290885 DOI: 10.3390/toxins12050313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Toxin peptides derived from the skin secretions of amphibians possess unique hypoglycemic activities. Many of these peptides share cationic and amphipathic structural similarities and appear to possess cell-penetrating abilities. The mechanism of their insulinotropic action is yet not elucidated, but they have shown great potential in regulating the blood glucose levels in animal models. Therefore, they have emerged as potential drug candidates as therapeutics for type 2 diabetes. Despite their anti-diabetic activity, there remain pharmaceutical challenges to be addressed for their clinical applications. Here, we present an overview of recent studies related to the toxin-derived anti-diabetic peptides derived from the skin secretions of amphibians. In the latter part, we introduce the bottleneck challenges for their delivery in vivo and general drug delivery strategies that may be applicable to extend their blood circulation time. We focus our research on the strategies that have been successfully applied to improve the plasma half-life of exendin-4, a clinically available toxin-derived anti-diabetic peptide drug.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Korea; (R.A.); (T.P.)
| | - Taehoon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Korea; (R.A.); (T.P.)
| | - Seungmi Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Korea;
| | - JaeWook Yang
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, 75 Bokjiro, Busanjin-gu, Busan 47392, Korea; (J.Y.); (H.D.K.)
- T2B Infrastructure Center for Ocular Disease, Inje University Busan Paik Hospital, 81 Jinsaro 83 Beon-gil, Busanjin-gu, Busan 47397, Korea;
| | - Yoonjin Lee
- T2B Infrastructure Center for Ocular Disease, Inje University Busan Paik Hospital, 81 Jinsaro 83 Beon-gil, Busanjin-gu, Busan 47397, Korea;
| | - Heesun Cheong
- Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10408, Korea;
| | - Cheol Moon
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, Korea;
| | - Hyun Duck Kwak
- Department of Ophthalmology, Busan Paik Hospital, Inje University College of Medicine, 75 Bokjiro, Busanjin-gu, Busan 47392, Korea; (J.Y.); (H.D.K.)
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Korea;
- Correspondence: (K.A.M.); (M.C.S.); Tel.: +82-55-320-3459 (K.A.M.); +82-55-772-2429 (M.C.S.)
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Korea; (R.A.); (T.P.)
- Correspondence: (K.A.M.); (M.C.S.); Tel.: +82-55-320-3459 (K.A.M.); +82-55-772-2429 (M.C.S.)
| |
Collapse
|
13
|
Fang Z, Chen S, Pickford P, Broichhagen J, Hodson DJ, Corrêa IR, Kumar S, Görlitz F, Dunsby C, French PMW, Rutter GA, Tan T, Bloom SR, Tomas A, Jones B. The Influence of Peptide Context on Signaling and Trafficking of Glucagon-like Peptide-1 Receptor Biased Agonists. ACS Pharmacol Transl Sci 2020; 3:345-360. [PMID: 32296773 PMCID: PMC7155199 DOI: 10.1021/acsptsci.0c00022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/14/2023]
Abstract
Signal bias and membrane trafficking have recently emerged as important considerations in the therapeutic targeting of the glucagon-like peptide-1 receptor (GLP-1R) in type 2 diabetes and obesity. In the present study, we have evaluated a peptide series with varying sequence homology between native GLP-1 and exendin-4, the archetypal ligands on which approved GLP-1R agonists are based. We find notable differences in agonist-mediated cyclic AMP signaling, recruitment of β-arrestins, endocytosis, and recycling, dependent both on the introduction of a His → Phe switch at position 1 and the specific midpeptide helical regions and C-termini of the two agonists. These observations were linked to insulin secretion in a beta cell model and provide insights into how ligand factors influence GLP-1R function at the cellular level.
Collapse
Affiliation(s)
- Zijian Fang
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Shiqian Chen
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Philip Pickford
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Johannes Broichhagen
- Department
Chemical Biology, Leibniz-Forschungsinstitut
für Molekulare Pharmakologie (FMP), Berlin, 13125, Germany
| | - David J. Hodson
- Institute
of Metabolism and Systems Research (IMSR), and Centre of Membrane
Proteins and Receptors (COMPARE), University
of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre
for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, United Kingdom
| | - Ivan R. Corrêa
- New
England
Biolabs, Ipswich, Massachusetts 01938, United States
| | - Sunil Kumar
- Department
of Physics, Imperial College London, London, SW7 2BX, United Kingdom
| | - Frederik Görlitz
- Department
of Physics, Imperial College London, London, SW7 2BX, United Kingdom
| | - Chris Dunsby
- Department
of Physics, Imperial College London, London, SW7 2BX, United Kingdom
| | - Paul M. W. French
- Department
of Physics, Imperial College London, London, SW7 2BX, United Kingdom
| | - Guy A. Rutter
- Section
of Cell Biology and Functional Genomics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Tricia Tan
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Stephen R. Bloom
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Alejandra Tomas
- Section
of Cell Biology and Functional Genomics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Ben Jones
- Section
of Endocrinology and Investigative Medicine, Imperial College London, London, W12 0NN, United Kingdom
| |
Collapse
|
14
|
Tang C, Li Q, Deng X, Wu W, Liao L, Liang K, Huo R, Li C, Han J, Tang W, Jiang N. Discovery of lixisenatide analogues as long-acting hypoglycemic agents using novel peptide half-life extension technology based on mycophenolic acid. RSC Adv 2020; 10:12089-12104. [PMID: 35496622 PMCID: PMC9050719 DOI: 10.1039/d0ra01002b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Noncovalent binding of peptides to human serum albumin protects against renal clearance and enzymatic degradation. Herein, we investigated the effect of mycophenolic acid (MPA) albumin binders for improving the stability of peptides. For proof-of-principle, the short acting glucagon-like peptide-1 (GLP-1) receptor agonist lixisenatide was selected and functionalized with different MPA albumin binders. In vitro, all lixisenatide analogues showed well preserved GLP-1 receptor activation potency. High performance affinity chromatography (HPAC) and ultrafiltration analyses indicated that DiMPA was able to confer high albumin affinity to lixisenatide and revealed that affinity is increased for DiMPA modified lixisenatide analogues containing OEG spacers. In db/db mice, the selected peptide 2c showed comparable efficacies to lixisenatide with respect to glucose-lowering and insulinotropic activities. Furthermore, the duration of action of glucose homeostasis of 2c was comparable to semaglutide in db/db mice. Importantly, DiMPA albumin binder did not bring significant toxicity of lixisenatide, as reflected by the comparable toxicity indexes in 2c and semaglutide groups after 2 weeks dosing in normal Kunming mice. Short-term study (21 days) conducted on db/db mice showed the better therapeutic efficacies of 2c than semaglutide on pancreas islets protection. Importantly, in chronic studies (84 days) on db/db mice, 2c exhibited a sustained improvement in glycaemic control, to a greater extent than that of semaglutide. Thus, we propose DiMPA modification as a novel and general method for development of long-acting GLP-1 receptor agonists for type 2 diabetes treatments, and 2c as a promising antidiabetic candidate. DiMPA albumin binders were effectively applied to lixisenatide to make 2c as a long-acting antidiabetic agent.![]()
Collapse
Affiliation(s)
- Chunli Tang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China .,Editorial Department, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Qing Li
- Pharmaceutical College, Guangxi Medical University Nanning 530021 China
| | - Xiaoyan Deng
- Pharmaceutical College, Guangxi Medical University Nanning 530021 China
| | - Weiwei Wu
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Liufeng Liao
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Kai Liang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Rongrui Huo
- Editorial Department, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University Xuzhou China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 PR China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| | - Neng Jiang
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University Nanning PR China
| |
Collapse
|
15
|
Wang A, Yan X, Liang R, Wang L, Chu L, Sun K, Fu F. Preparation and evaluation of lactic acid acylated exenatide and its long-acting preparation. Pharm Dev Technol 2019; 24:1229-1235. [PMID: 31368418 DOI: 10.1080/10837450.2019.1651857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Exenatide (EX), a glucagon-like peptide-1 receptor agonist, is used to treat diabetes mellitus. However, its short half-life necessitates frequent administration and fluctuations in its plasma concentration may cause adverse effects. Previously, we developed glycolic acid acylated EX, which showed a good glucose-lowering effect. However, the release of lactic acid (LA) acylated exenatide (LA-EX) as an acylated adduct in EX microspheres has not been studied. Here, we investigated the biological properties of LA-EX. Additionally, LA-EX-loaded microspheres were formulated by an emulsion-solvent evaporation method and their in vitro characteristics, in vivo pharmacokinetic properties, and antidiabetic activities were evaluated. Pharmacokinetic studies revealed that the t1/2 of LA-EX (5.95 h) was 2.3-fold longer than that of EX. The antidiabetic activities of LA-EX in db/db mice were similar to those of EX. LA-EX release from microspheres was fairly well-sustained compared to that of EX microspheres. Additionally, LA-EX-loaded microspheres were more effective in lowering nonfasting blood glucose concentrations than EX microspheres. These findings suggest that LA-EX have the same efficacy as EX and that encapsulating LA-EX into microspheres can achieve better efficacy for the long-term type 2 diabetes mellitus treatment.
Collapse
Affiliation(s)
- Aiping Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Xiuju Yan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Rongcai Liang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Linlin Wang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd , Yantai , Shandong Province , People's Republic of China
| | - Liuxiang Chu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Fenghua Fu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , Shandong Province , People's Republic of China
| |
Collapse
|
16
|
Han J, Meng T, Chen X, Han Y, Fu J, Zhou F, Fei Y, Li C. The chronic administration of two novel long‐acting
Xenopus
glucagon‐like peptide‐1 analogs xGLP159 and XGLP296 potently improved systemic metabolism and glycemic control in rodent models. FASEB J 2019; 33:7113-7125. [DOI: 10.1096/fj.201801479r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Han
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouChina
- School of Chemistry and Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal UniversityXuzhouChina
| | - Tingting Meng
- Department of Medicinal ChemistrySchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Xinyu Chen
- School of Chemistry and Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal UniversityXuzhouChina
| | - Yue Han
- School of Chemistry and Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal UniversityXuzhouChina
| | - Junjie Fu
- Department of Medicinal ChemistrySchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Feng Zhou
- School of Chemistry and Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal UniversityXuzhouChina
| | - Yingying Fei
- School of Chemistry and Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal UniversityXuzhouChina
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
17
|
Han J, Huang Y, Chen X, Zhou F, Fei Y, Fu J. Lipidation and conformational constraining for prolonging the effects of peptides: Xenopus glucagon-like peptide 1 analogues with potent and long-acting hypoglycemic activity. Eur J Pharm Sci 2018; 123:111-123. [DOI: 10.1016/j.ejps.2018.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
|
18
|
Han J, Huang Y, Chen X, Zhou F, Fei Y, Fu J. Rational design of dimeric lipidated Xenopus glucagon-like peptide 1 analogues as long-acting antihyperglycaemic agents. Eur J Med Chem 2018; 157:177-187. [DOI: 10.1016/j.ejmech.2018.07.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/12/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022]
|
19
|
Han J, Chen X, Zhao L, Fu J, Sun L, Zhang Y, Zhou F, Fei Y. Lithocholic Acid-Based Peptide Delivery System for an Enhanced Pharmacological and Pharmacokinetic Profile of Xenopus GLP-1 Analogs. Mol Pharm 2018; 15:2840-2856. [DOI: 10.1021/acs.molpharmaceut.8b00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Xinyu Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Liming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Junjie Fu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Lidan Sun
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, PR China
| | - Ying Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Feng Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yingying Fei
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| |
Collapse
|
20
|
Yu M, Benjamin MM, Srinivasan S, Morin EE, Shishatskaya EI, Schwendeman SP, Schwendeman A. Battle of GLP-1 delivery technologies. Adv Drug Deliv Rev 2018; 130:113-130. [PMID: 30009885 PMCID: PMC6843995 DOI: 10.1016/j.addr.2018.07.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) belong to an important therapeutic class for treatment of type 2 diabetes. Six GLP-1 RAs, each utilizing a unique drug delivery strategy, are now approved by the Food and Drug Administration (FDA) and additional, novel GLP-1 RAs are still under development, making for a crowded marketplace and fierce competition among the manufacturers of these products. As rapid elimination is a major challenge for clinical application of GLP-1 RAs, various half-life extension strategies have been successfully employed including sequential modification, attachment of fatty-acid to peptide, fusion with human serum albumin, fusion with the fragment crystallizable (Fc) region of a monoclonal antibody, sustained drug delivery systems, and PEGylation. In this review, we discuss the scientific rationale of the various half-life extension strategies used for GLP-1 RA development. By analyzing and comparing different approved GLP-1 RAs and those in development, we focus on assessing how half-life extending strategies impact the pharmacokinetics, pharmacodynamics, safety, patient usability and ultimately, the commercial success of GLP-1 RA products. We also anticipate future GLP-1 RA development trends. Since similar drug delivery strategies are also applied for developing other therapeutic peptides, we expect this case study of GLP-1 RAs will provide generalizable concepts for the rational design of therapeutic peptides products with extended duration of action.
Collapse
Affiliation(s)
- Minzhi Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, United States of America
| | - Mason M Benjamin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, United States of America
| | | | - Emily E Morin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, United States of America
| | - Ekaterina I Shishatskaya
- Siberian Federal University, 79 Svobodnuy Ave, Krasnoyarsk 660041, Russian Federation; Institute of Biophysics SBRAS, 50 Akademgorodok, 660036, Russian Federation
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, United States of America; Biointerfaces Institute, NCRC, 2800 Plymouth Rd, Ann Arbor, MI 48109, United States of America; Department of Biomedical Engineering, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, United States of America.
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109, United States of America; Biointerfaces Institute, NCRC, 2800 Plymouth Rd, Ann Arbor, MI 48109, United States of America.
| |
Collapse
|