1
|
Canan C, Kalschne DL, Corso MP, Cursino ACT, Drunkler DA, Cardoso FAR, Bittencourt PRS, Ida EI. Use of phytic acid from rice bran combined with sodium erythorbate as antioxidants in chicken mortadella. Food Chem 2024; 456:139957. [PMID: 38870808 DOI: 10.1016/j.foodchem.2024.139957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
The antioxidant effect of purified phytic acid (PPA) from rice bran (rice polishing by-product) combined with sodium erythorbate (SE) was evaluated for the first time in mortadella (added with 60% mechanically separated meat), a cured product with high-fat content and highly prone to oxidation, characteristic in Brazil. PPA proved effective compared to standard analytical grade phytic acid (SPA). Two central composite rotational designs (CCRD) (A and B) were employed to investigate the influence of PPA and SE, and SPA and SE, respectively, on mortadella lipid oxidation evaluated by TBARS after 30 days at 30 °C. Due to the high phytic acid's potent antioxidant capacity, the combination of PPA and SE synergistically reduced mortadella lipid oxidation. Furthermore, PPA from rice bran effectively controlled lipid oxidation in mortadella when combined with SE in the range of 5.0 to 9.0 mmol/kg of SPA and 25.0 to 50.0 mmol/kg of SE.
Collapse
Affiliation(s)
- Cristiane Canan
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil; Centro de Ciências Agrárias, Universidade Estadual de Londrina, Londrina, Brazil.
| | - Daneysa Lahis Kalschne
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil
| | - Marines Paula Corso
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil.
| | | | - Deisy Alessandra Drunkler
- Departamento Acadêmico de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil.
| | | | | | - Elza Iouko Ida
- Centro de Ciências Agrárias, Universidade Estadual de Londrina, Londrina, Brazil.
| |
Collapse
|
2
|
Wu J, Li X, Nie H, Shen Y, Guo Z, Huihan Chu C, Cai K, Tang C. Phytic acid promotes high glucose-mediated bone marrow mesenchymal stem cells osteogenesis via modulating circEIF4B that sponges miR-186-5p and complexes with IGF2BP3. Biochem Pharmacol 2024; 222:116118. [PMID: 38467376 DOI: 10.1016/j.bcp.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/26/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetes-related hyperglycemia inhibits bone marrow mesenchymal stem cell (BMSC) function, thereby disrupting osteoblast capacity and bone regeneration. Dietary supplementation with phytic acid (PA), a natural inositol phosphate, has shown promise in preventing osteoporosis and diabetes-related complications. Emerging evidence has suggested that circular (circ)RNAs implicate in the regulation of bone diseases, but their specific regulatory roles in BMSC osteogenesis in hyperglycemic environments remain elucidated. In this study, in virto experiments demonstrated that PA treatment effectively improved the osteogenic capability of high glucose-mediated BMSCs. Differentially expressed circRNAs in PA-induced BMSCs were identified using circRNA microarray analysis. Here, our findings highlight an upregulation of circEIF4B expression in BMSCs stimulated with PA under a high-glucose microenvironment. Further investigations demonstrated that circEIF4B overexpression promoted high glucose-mediated BMSC osteogenesis. In contrast, circEIF4B knockdown exerted the opposite effect. Mechanistically, circEIF4B sequestered microRNA miR-186-5p and triggered osteogenesis enhancement in BMSCs by targeting FOXO1 directly. Furthermore, circEIF4B inhibited the ubiquitin-mediated degradation of IGF2BP3, thereby stabilizing ITGA5 mRNA and promoting BMSC osteogenic differentiation. In vivo experiments, circEIF4B inhibition attenuated the effectiveness of PA treatment in diabetic rats with cranial defects. Collectively, our study identifies PA as a novel positive regulator of BMSC osteogenic differentiation through the circEIF4B/miR-186-5p/FOXO1 and circEIF4B/IGF2BP3/ITGA5 axes, which offers a new strategy for treating high glucose-mediatedBMSCosteogenic dysfunction and delayed bone regeneration in diabetes.
Collapse
Affiliation(s)
- Jin Wu
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Xiang Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Department of Oral and Maxillofacial Surgery Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Hepeng Nie
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Department of General Dentistry Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Yue Shen
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Zixiang Guo
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Catherine Huihan Chu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Department of Orthodontics Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Kunzhan Cai
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China
| | - Chunbo Tang
- Department of Oral Implantology Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu Province 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
3
|
Frybortova V, Satka S, Jourova L, Zapletalova I, Srejber M, Briolotti P, Daujat-Chavanieu M, Gerbal-Chaloin S, Anzenbacher P, Otyepka M, Anzenbacherova E. On the Possible Effect of Phytic Acid (Myo-Inositol Hexaphosphoric Acid, IP6) on Cytochromes P450 and Systems of Xenobiotic Metabolism in Different Hepatic Models. Int J Mol Sci 2024; 25:3610. [PMID: 38612422 PMCID: PMC11011971 DOI: 10.3390/ijms25073610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
As compounds of natural origin enter human body, it is necessary to investigate their possible interactions with the metabolism of drugs and xenobiotics in general, namely with the cytochrome P450 (CYP) system. Phytic acid (myo-inositol hexaphosphoric acid, IP6) is mainly present in plants but is also an endogenous compound present in mammalian cells and tissues. It has been shown to exhibit protective effect in many pathological conditions. For this paper, its interaction with CYPs was studied using human liver microsomes, primary human hepatocytes, the HepG2 cell line, and molecular docking. Docking experiments and absorption spectra demonstrated the weak ability of IP6 to interact in the heme active site of CYP1A. Molecular docking suggested that IP6 preferentially binds to the protein surface, whereas binding to the active site of CYP1A2 was found to be less probable. Subsequently, we investigated the ability of IP6 to modulate the metabolism of xenobiotics for both the mRNA expression and enzymatic activity of CYP1A enzymes. Our findings revealed that IP6 can slightly modulate the mRNA levels and enzyme activity of CYP1A. However, thanks to the relatively weak interactions of IP6 with CYPs, the chances of the mechanisms of clinically important drug-drug interactions involving IP6 are low.
Collapse
Affiliation(s)
- Veronika Frybortova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (V.F.); (E.A.)
| | - Stefan Satka
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (V.F.); (E.A.)
| | - Lenka Jourova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (V.F.); (E.A.)
| | - Iveta Zapletalova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic;
| | - Martin Srejber
- Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, 779 00 Olomouc, Czech Republic
| | - Philippe Briolotti
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, INSERM, CHU Montpellier, F-34000 Montpellier, France (S.G.-C.)
| | - Martine Daujat-Chavanieu
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, INSERM, CHU Montpellier, F-34000 Montpellier, France (S.G.-C.)
| | - Sabine Gerbal-Chaloin
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, INSERM, CHU Montpellier, F-34000 Montpellier, France (S.G.-C.)
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic;
| | - Michal Otyepka
- Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (V.F.); (E.A.)
| |
Collapse
|
4
|
Semwal P, Painuli S, Begum J P S, Jamloki A, Rauf A, Olatunde A, Mominur Rahman M, Mukerjee N, Ahmed Khalil A, Aljohani ASM, Al Abdulmonem W, Simal-Gandara J. Exploring the nutritional and health benefits of pulses from the Indian Himalayan region: A glimpse into the region's rich agricultural heritage. Food Chem 2023; 422:136259. [PMID: 37150115 DOI: 10.1016/j.foodchem.2023.136259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Pulses have been consumed worldwide for over 10 centuries and are currently among the most widely used foods. They are not economically important, but also nutritionally beneficial as they constitute a good source of protein, fibre, vitamins and minerals such as iron, zinc, folate and magnesium. Pulses, but particularly species such as Macrotyloma uniflorum, Phaseolus vulgaris L., Glycine max L. and Vigna umbellate, are essential ingredients of the local diet in the Indian Himalayan Region (IHR). Consuming pulses can have a favourable effect on cardiovascular health as they improve serum lipid profiles, reduce blood pressure, decrease platelet activity, regulate blood glucose and insulin levels, and reduce inflammation. Although pulses also contain anti-nutritional compounds such as phytates, lectins or enzyme inhibitors, their deleterious effects can be lessened by using effective processing and cooking methods. Despite their great potential, however, the use of some pulses is confined to IHR regions. This comprehensive review discusses the state of the art in available knowledge about various types of pulses grown in IHR in terms of chemical and nutritional properties, health effects, accessibility, and agricultural productivity.
Collapse
Affiliation(s)
- Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India.
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology, Premnagar, Dehradun 248006, Uttarakhand, India
| | - Shabaaz Begum J P
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Abhishek Jamloki
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Srinagar, Uttarakhand, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber, Pakhtunkhwa, Pakistan.
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, Kolkata 700118, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary of Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain.
| |
Collapse
|
5
|
Michell RH. The reliability of biomedical science: A case history of a maturing experimental field. Bioessays 2022; 44:e2200020. [PMID: 35393713 DOI: 10.1002/bies.202200020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022]
Abstract
There is much discussion in the media and some of the scientific literature of how many of the conclusions from scientific research should be doubted. These critiques often focus on studies, typically in non-experimental spheres of biomedical and social sciences - that search large datasets for novel correlations, with a risk that inappropriate statistical evaluations might yield dubious conclusions. By contrast, results from experimental biological research can often be interpreted largely without statistical analysis. Typically: novel observation(s) are reported, and an explanatory hypothesis is offered; multiple labs undertake experiments to test the hypothesis; interpretation of the results may refute the hypothesis, support it or provoke its modification; the test/revise sequence is reiterated many times; and the field moves forward. I illustrate this experimental/non-experimental dichotomy by examining the contrasting recent histories of: (a) our remarkable and growing understanding of how several inositol-containing phospholipids contribute to the lives of eukaryote cells; and (b) the difficulty of achieving any agreed mechanistic understanding of why consuming dietary supplements of inositol is clinically beneficial in some metabolic diseases.
Collapse
|
6
|
Bloot APM, Kalschne DL, Amaral JAS, Baraldi IJ, Canan C. A Review of Phytic Acid Sources, Obtention, and Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1906697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Paula Marinho Bloot
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil
| | - Daneysa Lahis Kalschne
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil
| | - Joana Andrêa Soares Amaral
- Centro de Investigacão de Montanha, Instituto Politecnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ilton José Baraldi
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil
| | - Cristiane Canan
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil
| |
Collapse
|
7
|
Vucenik I, Druzijanic A, Druzijanic N. Inositol Hexaphosphate (IP6) and Colon Cancer: From Concepts and First Experiments to Clinical Application. Molecules 2020; 25:E5931. [PMID: 33333775 PMCID: PMC7765177 DOI: 10.3390/molecules25245931] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple human health-beneficial effects have been related to highly phosphorylated inositol hexaphosphate (IP6). This naturally occurring carbohydrate and its parent compound, myo-inositol (Ins), are abundantly present in plants, particularly in certain high-fiber diets, but also in mammalian cells, where they regulate important cellular functions. However, the striking and broad-spectrum anticancer activity of IP6, consistently demonstrated in different experimental models, has been in a spotlight of the scientific community dealing with the nutrition and cancer during the last several decades. First experiments were performed in colon cancer 30 years ago. Since then, it has been shown that IP6 reduces cell proliferation, induces apoptosis and differentiation of malignant cells with reversion to normal phenotype, affecting several critical molecular targets. Enhanced immunity and antioxidant properties also contribute to the tumor cell destruction. Although Ins possesses a modest anticancer potential, the best anticancer results were obtained from the combination of IP6 + Ins. Here we review the first experimental steps in colon cancer, when concepts and hypotheses were put together almost without real knowledge and present clinical studies, that were initiated in colon cancer patients. Available as a dietary supplement, IP6 + Ins has been shown to enhance the anticancer effect of conventional chemotherapy, controls cancer metastases, and improves quality of life in cancer patients. Emerging clinical and still vast amount of experimental data suggest its role either as an adjuvant or as an "alternative" to current chemotherapy for cancer.
Collapse
Affiliation(s)
- Ivana Vucenik
- Department of Medical and Research Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Ana Druzijanic
- Department of Oral Medicine and Periodontology, School of Medicine, Dental Medicine, University of Split, 21000 Split, Croatia;
| | - Nikica Druzijanic
- Department of Surgery, University Hospital Split, School of Medicine, University of Split, 21000 Split, Croatia;
| |
Collapse
|
8
|
Wang C, Li L, Zhang S, Yan Y, Huang Q, Cai X, Xiao J, Cheng Y. Carrier-Free Platinum Nanomedicine for Targeted Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004829. [PMID: 33205610 DOI: 10.1002/smll.202004829] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/11/2020] [Indexed: 05/06/2023]
Abstract
Numerous nanomedicines have been developed to improve the efficiency and safety of conventional anticancer drugs; however, the complexities in carrier materials and functional integration make it challenging to promote these candidates for clinical translation. In this study, a facile method to prepare carrier-free anticancer nanodrug with inherent bone targeting and osteoclastogenesis inhibition capabilities is reported. Phytic acid, a naturally occurring and nontoxic product, is reacted with cisplatin to form uniform nanoparticles of different sizes. The prepared nanoparticles possess high drug loading and pH-responsive drug release behaviors. Phytic acid in the nanomedicine ensures high bone targeting and osteoclastogenesis inhibition, and the released platinum drugs triggered by tumor extracellular acidity eradicate tumor cells. The nanomedicine around 100 nm shows high anticancer activity and much reduced side effects in a subcutaneous breast cancer model when compared with cisplatin. In addition, it shows high accumulation at osteolytic lesions, and efficiently inhibits tumor growth and tumor-associated osteolysis in a bone metastatic breast cancer model. Here, a facile and efficient strategy to prepare carrier-free nanomedicines with high anticancer drug loading, inherent bone targeting, and osteoclast inhibitory activities for cancer therapy is provided.
Collapse
Affiliation(s)
- Changping Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Lin Li
- Department of Orthopedics Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, P. R. China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yang Yan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Quan Huang
- Department of Orthopedics Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, P. R. China
| | - Xiaopan Cai
- Department of Orthopedics Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, P. R. China
| | - Jianru Xiao
- Department of Orthopedics Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, P. R. China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
9
|
Ucuncu E, Rajamani K, Wilson MSC, Medina-Cano D, Altin N, David P, Barcia G, Lefort N, Banal C, Vasilache-Dangles MT, Pitelet G, Lorino E, Rabasse N, Bieth E, Zaki MS, Topcu M, Sonmez FM, Musaev D, Stanley V, Bole-Feysot C, Nitschké P, Munnich A, Bahi-Buisson N, Fossoud C, Giuliano F, Colleaux L, Burglen L, Gleeson JG, Boddaert N, Saiardi A, Cantagrel V. MINPP1 prevents intracellular accumulation of the chelator inositol hexakisphosphate and is mutated in Pontocerebellar Hypoplasia. Nat Commun 2020; 11:6087. [PMID: 33257696 PMCID: PMC7705663 DOI: 10.1038/s41467-020-19919-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1−/− induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis. Tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, the authors describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the MINPP1 gene, characterised by intracellular imbalance of inositol polyphosphate metabolism.
Collapse
Affiliation(s)
- Ekin Ucuncu
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Karthyayani Rajamani
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Miranda S C Wilson
- MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
| | - Daniel Medina-Cano
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Nami Altin
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Pierre David
- Transgenesis Platform, Laboratoire d'Expérimentation Animale et Transgenèse (LEAT), Imagine Institute, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, 75015, Paris, France
| | - Giulia Barcia
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France.,Département de Génétique Médicale, AP-HP, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Nathalie Lefort
- Université de Paris, iPSC Core Facility, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Céline Banal
- Université de Paris, iPSC Core Facility, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | | | - Gaële Pitelet
- Service de Neuropédiatrie, CHU Nice, 06200, Nice, France
| | - Elsa Lorino
- ESEAN, 44200 Nantes, Service de maladies chroniques de l'enfant, CHU Nantes, 44093, Nantes, France
| | - Nathalie Rabasse
- Service de pédiatrie, hôpital d'Antibes-Juan-les-Pins, 06600, Antibes-Juan-les-Pins, France
| | - Eric Bieth
- Service de Génétique Médicale, CHU Toulouse, 31059, Toulouse, France
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Meral Topcu
- Department of Child Neurology, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Fatma Mujgan Sonmez
- Guven Hospital, Child Neurology Department, Ankara, Turkey.,Department of Child Neurology, Faculty of Medicine, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Damir Musaev
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christine Bole-Feysot
- Université de Paris, Genomics Platform, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Patrick Nitschké
- Université de Paris, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Arnold Munnich
- Université de Paris, Translational Genetics Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Nadia Bahi-Buisson
- Université de Paris, Genetics and Development of the Cerebral Cortex Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Catherine Fossoud
- Centre de Référence des Troubles des Apprentissages, Hôpitaux Pédiatriques de Nice CHU-Lenval, 06200, Nice, France
| | - Fabienne Giuliano
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nice, 06202, Nice, France
| | - Laurence Colleaux
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Lydie Burglen
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France.,Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, 75012, Paris, France
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Diseases, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nathalie Boddaert
- Département de radiologie pédiatrique, INSERM UMR 1163 and INSERM U1000, AP-HP, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK.
| | - Vincent Cantagrel
- Université de Paris, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France.
| |
Collapse
|
10
|
Zhang X, Shi S, Su Y, Yang X, He S, Yang X, Wu J, Zhang J, Rao F. Suramin and NF449 are IP5K inhibitors that disrupt inositol hexakisphosphate-mediated regulation of cullin-RING ligase and sensitize cancer cells to MLN4924/pevonedistat. J Biol Chem 2020; 295:10281-10292. [PMID: 32493769 DOI: 10.1074/jbc.ra120.014375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
Inositol hexakisphosphate (IP6) is an abundant metabolite synthesized from inositol 1,3,4,5,6-pentakisphosphate (IP5) by the single IP5 2-kinase (IP5K). Genetic and biochemical studies have shown that IP6 usually functions as a structural cofactor in protein(s) mediating mRNA export, DNA repair, necroptosis, 3D genome organization, HIV infection, and cullin-RING ligase (CRL) deneddylation. However, it remains unknown whether pharmacological perturbation of cellular IP6 levels affects any of these processes. Here, we performed screening for small molecules that regulate human IP5K activity, revealing that the antiparasitic drug and polysulfonic compound suramin efficiently inhibits IP5K in vitro and in vivo The results from docking experiments and biochemical validations suggested that the suramin targets IP5K in a distinct bidentate manner by concurrently binding to the ATP- and IP5-binding pockets, thereby inhibiting both IP5 phosphorylation and ATP hydrolysis. NF449, a suramin analog with additional sulfonate moieties, more potently inhibited IP5K. Both suramin and NF449 disrupted IP6-dependent sequestration of CRL by the deneddylase COP9 signalosome, thereby affecting CRL activity cycle and component dynamics in an IP5K-dependent manner. Finally, nontoxic doses of suramin, NF449, or NF110 exacerbate the loss of cell viability elicited by the neddylation inhibitor and clinical trial drug MLN4924/pevonedistat, suggesting synergistic ef-fects. Suramin and its analogs provide structural templates for designing potent and specific IP5K inhibitors, which could be used in combination therapy along with MLN4924/pevonedistat. IP5K is a potential mechanistic target of suramin, accounting for suramin's therapeutic effects.
Collapse
Affiliation(s)
- Xiaozhe Zhang
- College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shaodong Shi
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Su
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoli Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Sining He
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiuyan Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jing Wu
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Feng Rao
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|