1
|
Hu B, Gong M, Xiang Y, Qu S, Zhu H, Ye D. Mechanism and treatment of olfactory dysfunction caused by coronavirus disease 2019. J Transl Med 2023; 21:829. [PMID: 37978386 PMCID: PMC10657033 DOI: 10.1186/s12967-023-04719-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the start of the pandemic, olfactory dysfunction (OD) has been reported as a common symptom of COVID-19. In some asymptomatic carriers, OD is often the first and even the only symptom. At the same time, persistent OD is also a long-term sequela seen after COVID-19 that can have a serious impact on the quality of life of patients. However, the pathogenesis of post-COVID-19 OD is still unclear, and there is no specific treatment for its patients. The aim of this paper was to review the research on OD caused by SARS-CoV-2 infection and to summarize the mechanism of action, the pathogenesis, and current treatments.
Collapse
Affiliation(s)
- Bian Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Ninghai First Hospital, Ningbo, 315600, Zhejiang, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Siyuan Qu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Hai Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
2
|
Kondo M, Ikenaka Y, Nakayama SMM, Kawai YK, Ishizuka M. Duplication, Loss, and Evolutionary Features of Specific UDP-Glucuronosyltransferase Genes in Carnivora (Mammalia, Laurasiatheria). Animals (Basel) 2022; 12:2954. [PMID: 36359081 PMCID: PMC9658400 DOI: 10.3390/ani12212954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 12/26/2024] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are one of the most important enzymes for xenobiotic metabolism or detoxification. Through duplication and loss of genes, mammals evolved the species-specific variety of UGT isoforms. Among mammals, Carnivora is one of the orders that includes various carnivorous species, yet there is huge variation of food habitat. Recently, lower activity of UGT1A and 2B were shown in Felidae and pinnipeds, suggesting evolutional loss of these isoforms. However, comprehensive analysis for genetic or evolutional features are still missing. This study was conducted to reveal evolutional history of UGTs in Carnivoran species. We found specific gene expansion of UGT1As in Canidae, brown bear and black bear. We also found similar genetic duplication in UGT2Bs in Canidae, and some Mustelidae and Ursidae. In addition, we discovered contraction or complete loss of UGT1A7-12 in phocids, some otariids, felids, and some Mustelids. These studies indicate that even closely related species have completely different evolution of UGTs and further imply the difficulty of extrapolation of the pharmacokinetics and toxicokinetic result of experimental animals into wildlife carnivorans.
Collapse
Affiliation(s)
- Mitsuki Kondo
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
- Biomedical Sciences Department, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Yusuke K. Kawai
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
3
|
Uno Y, Uehara S, Yamazaki H. Drug-oxidizing and conjugating non-cytochrome P450 (non-P450) enzymes in cynomolgus monkeys and common marmosets as preclinical models for humans. Biochem Pharmacol 2021; 197:114887. [PMID: 34968483 DOI: 10.1016/j.bcp.2021.114887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Many drug oxidations and conjugations are mediated by a variety of cytochromes P450 (P450) and non-P450 enzymes in humans and non-human primates. These non-P450 enzymes include aldehyde oxidases (AOX), carboxylesterases (CES), flavin-containing monooxygenases (FMO), glutathione S-transferases (GST), arylamine N-acetyltransferases (NAT),sulfotransferases (SULT), and uridine 5'-diphospho-glucuronosyltransferases (UGT) and their substrates include both endobiotics and xenobiotics. Cynomolgus macaques (Macaca fascicularis, an Old-World monkey) are widely used in preclinical studies because of their genetic and physiological similarities to humans. However, many reports have indicated the usefulness of common marmosets (Callithrix jacchus, a New World monkey) as an alternative non-human primate model. Although knowledge of the drug-metabolizing properties of non-P450 enzymes in non-human primates is relatively limited, new research has started to provide an insight into the molecular characteristics of these enzymes in cynomolgus macaques and common marmosets. This mini-review provides collective information on the isoforms of non-P450 enzymes AOX, CES, FMO, GST, NAT, SULT, and UGT and their enzymatic profiles in cynomolgus macaques and common marmosets. In general, these non-P450 cynomolgus macaque and marmoset enzymes have high sequence identities and similar substrate recognitions to their human counterparts. However, these enzymes also exhibit some limited differences in function between species, just as P450 enzymes do, possibly due to small structural differences in amino acid residues. The findings summarized here provide a foundation for understanding the molecular mechanisms of polymorphic non-P450 enzymes and should contribute to the successful application of non-human primates as model animals for humans.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Shotaro Uehara
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
4
|
Zhou QH, Lv X, Tian ZH, Finel M, Feng L, Huo PC, Zhu YD, Lu Y, Hou J, Ge GB. A fluorescence-based microplate assay for high-throughput screening and evaluation of human UGT inhibitors. Anal Chim Acta 2021; 1153:338305. [PMID: 33714444 DOI: 10.1016/j.aca.2021.338305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 01/13/2023]
Abstract
Human UDP-glucuronosyltransferase enzymes (hUGTs), one of the most important classes of conjugative enzymes, are responsible for the glucuronidation and detoxification of a variety of endogenous substances and xenobiotics. Inhibition of hUGTs may cause undesirable effects or adverse drug-drug interactions (DDI) via modulating the glucuronidation rates of endogenous toxins or the drugs that are primarily conjugated by the inhibited hUGTs. Herein, to screen hUGTs inhibitors in a more efficient way, a novel fluorescence-based microplate assay has been developed by utilizing a fluorogenic substrate. Following screening of series of 4-hydroxy-1,8-naphthalimide derivatives, we found that 4-HN-335 is a particularly good substrate for a panel of hUGTs. Under physiological conditions, 4-HN-335 can be readily O-glucuronidated by ten hUGTs, such reactions generate a single O-glucuronide with a high quantum yield (Ф = 0.79) and bring remarkable changes in fluorescence emission. Subsequently, a fluorescence-based microplate assay is developed to simultaneously measure the inhibitory effects of selected compound(s) on ten hUGTs. The newly developed fluorescence-based microplate assay is time- and cost-saving, easy to manage and can be adapted for 96-well microplate format with the Z-factor of 0.92. We further demonstrate the utility of the fluorescence-based assay for high-throughput screening of two compound libraries, resulting in the identification of several potent UGT inhibitors, including natural products and FDA-approved drugs. Collectively, this study reports a novel fluorescence-based microplate assay for simultaneously sensing the residual activities of ten hUGTs, which strongly facilitates the identification and characterization of UGT inhibitors from drugs or herbal constituents and the investigations on UGT-mediated DDI.
Collapse
Affiliation(s)
- Qi-Hang Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Lv
- Dalian Medical University, Dalian, China
| | - Zhen-Hao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Lei Feng
- Dalian Medical University, Dalian, China
| | - Peng-Chao Huo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Di Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Hou
- Dalian Medical University, Dalian, China.
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Neiers F, Jarriault D, Menetrier F, Faure P, Briand L, Heydel JM. The odorant metabolizing enzyme UGT2A1: Immunolocalization and impact of the modulation of its activity on the olfactory response. PLoS One 2021; 16:e0249029. [PMID: 33765098 PMCID: PMC7993815 DOI: 10.1371/journal.pone.0249029] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Odorant metabolizing enzymes (OMEs) are expressed in the olfactory epithelium (OE) where they play a significant role in the peripheral olfactory process by catalyzing the fast biotransformation of odorants leading either to their elimination or to the synthesis of new odorant stimuli. The large family of OMEs gathers different classes which interact with a myriad of odorants alike and complementary to olfactory receptors. Thus, it is necessary to increase our knowledge on OMEs to better understand their function in the physiological process of olfaction. This study focused on a major olfactory UDP-glucuronosyltransferase (UGT): UGT2A1. Immunohistochemistry and immunogold electronic microscopy allowed to localize its expression in the apical part of the sustentacular cells and originally at the plasma membrane of the olfactory cilia of the olfactory sensory neurons, both locations in close vicinity with olfactory receptors. Moreover, using electroolfactogram, we showed that a treatment of the OE with beta-glucuronidase, an enzyme which counterbalance the UGTs activity, increased the response to eugenol which is a strong odorant UGT substrate. Altogether, the results supported the function of the olfactory UGTs in the vertebrate olfactory perireceptor process.
Collapse
Affiliation(s)
- Fabrice Neiers
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - David Jarriault
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Franck Menetrier
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Philippe Faure
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
6
|
Matsumoto S, Uehara S, Kamimura H, Ikeda H, Maeda S, Hattori M, Nishiwaki M, Kato K, Yamazaki H. Human total clearance values and volumes of distribution of typical human cytochrome P450 2C9/19 substrates predicted by single-species allometric scaling using pharmacokinetic data sets from common marmosets genotyped for P450 2C19. Xenobiotica 2021; 51:479-493. [PMID: 33455494 DOI: 10.1080/00498254.2020.1871113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Common marmosets (Callithrix jacchus) are small non-human primates that genetically lack cytochrome P450 2C9 (CYP2C9). Polymorphic marmoset CYP2C19 compensates by mediating oxidations of typical human CYP2C9/19 substrates.Twenty-four probe substrates were intravenously administered in combinations to marmosets assigned to extensive or poor metaboliser (PM) groups by CYP2C19 genotyping. Eliminations from plasma of cilomilast, phenytoin, repaglinide, tolbutamide, and S-warfarin in the CYP2C19 PM group were significantly slow; these drugs are known substrates of human CYP2C8/9/19.Human total clearance values and volumes of distribution of the 24 test compounds were extrapolated using single-species allometric scaling with experimental data from marmosets and found to be mostly comparable with the reported values.Human total clearance values and volumes of distribution of 15 of the 24 test compounds similarly extrapolated using reported data sets from cynomolgus or rhesus monkeys were comparable to the present predicted results, especially to those based on data from PM marmosets.These results suggest that single-species allometric scaling using marmosets, being small, has advantages over multiple-species-based allometry and could be applicable for pharmacokinetic predictions at the discovery stage of drug development.
Collapse
Affiliation(s)
- Shogo Matsumoto
- Pharmaceutical Research Labs., Meiji Seika Pharma Co., Ltd., Yokohama, Japan
| | - Shotaro Uehara
- Central Institute for Experimental Animals, Kawasaki, Japan.,Pharmaceutical University, Machida, Tokyo, Japan
| | - Hidetaka Kamimura
- Central Institute for Experimental Animals, Kawasaki, Japan.,Business Promotion Dept., CLEA Japan, Inc., Tokyo, Japan
| | - Hiroshi Ikeda
- Tokyo Animal & Diet Dept., CLEA Japan, Inc., Tokyo, Japan
| | - Satoshi Maeda
- Yaotsu Breeding Center, CLEA Japan, Inc., Gifu, Japan
| | | | - Megumi Nishiwaki
- Fuji Technical Service Center, CLEA Japan, Inc.., Shizuoka, Japan
| | - Kazuhiko Kato
- Pharmaceutical Research Labs., Meiji Seika Pharma Co., Ltd., Yokohama, Japan
| | | |
Collapse
|
7
|
Uno Y, Mikami T, Tsukazaki Y, Nakanishi Y, Murayama N, Ikushiro S, Tsusaki H, Yamazaki H. Genetic variants of UDP-glucuronosyltransferases 1A1, 1A6, and 1A9 in cynomolgus and rhesus macaques. Xenobiotica 2020; 51:115-121. [PMID: 32811258 DOI: 10.1080/00498254.2020.1810367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. In the cynomolgus macaque, UDP-glucuronosyltransferases (UGTs) 1As have similar molecular and enzymatic characteristics to those of their human orthologs. However, genetic polymorphisms in major cynomolgus UGT1A1/6/9 have not been investigated. 2. We re-sequenced UGT1A1, UGT1A6, and UGT1A9 in 186 cynomolgus macaques (bred in Cambodia, China, or Indonesia) and 54 rhesus macaques and found 15, 13, and 26 non-synonymous variants, respectively. 3. Of these UGT1A1, UGT1A6, and UGT1A9 variants, respectively, 10, 9, and 12 were unique to cynomolgus macaques; 4, 1, and 2 were unique to rhesus macaques; and 1, 2, and 5 were found in both cynomolgus and rhesus macaques. The frequency of the UGT1A1 mutation G69R was 23%, 28%, and 63% in cynomolgus macaques bred in Cambodia, China, and Indonesia, respectively, and 97% in rhesus macaques. 4. The O-glucuronidation activities of liver microsomes from cynomolgus and rhesus macaques with respect to estradiol, serotonin, and propofol were measured. Among these activities, liver microsomes from cynomolgus macaques heterozygous for UGT1A1 G69R (n = 11) showed significantly reduced estradiol 3-O-glucuronidation activities compared with those from wild-type animals (n = 38). 5. These results suggest genetic variants such as UGT1A1 G69R could influence the UGT1A1-mediated glucuronidation of drugs in cynomolgus and rhesus macaques.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-City, Japan.,Shin Nippon Biomedical Laboratories, Ltd, Tokyo, Japan
| | | | | | | | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | - Shinichi Ikushiro
- Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | | | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
8
|
Uno Y, Yamazaki H. Molecular characterization of UDP-glucuronosyltransferases 3A and 8A in cynomolgus macaques. Drug Metab Pharmacokinet 2020; 35:397-400. [PMID: 32646660 DOI: 10.1016/j.dmpk.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 11/26/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are drug-metabolizing enzymes essential for the metabolism of endogenous substrates and xenobiotics. The cynomolgus macaque is a nonhuman primate species widely used in drug metabolism studies. The molecular characteristics of UGTs have been extensively investigated in humans, but they remain to be elucidated in cynomolgus macaques. In this study, cynomolgus macaque UGT3A1, UGT3A2, and UGT8A1 cDNAs were isolated and characterized. Amino acid sequences deduced from cynomolgus UGT3A1, UGT3A2, and UGT8A1 cDNAs were highly identical with their human orthologs (93, 96, and 99%, respectively) and were closely clustered in a phylogenetic tree. In the genome, cynomolgus UGT3A and UGT8A genes were located in the regions corresponding to those of their human orthologs. Among the 10 tissue types analyzed, expression of cynomolgus UGT3A1 and UGT3A2 mRNAs was detected in liver, kidney, and testis; the UGT3A1 and UGT3A2 mRNAs were most abundant in liver and testis, respectively. Cynomolgus UGT8A1 was most abundantly expressed in kidney, followed by brain, jejunum, and testis. These results suggest that cynomolgus UGT3As and UGT8A1 have molecular similarities to their human orthologs.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, 890-8580, Japan; Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, 642-0017, Japan.
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
9
|
Nakanishi Y, Uno Y, Yamazaki H. Regional distributions of UDP-glucuronosyltransferase activities toward estradiol and serotonin in the liver and small intestine of cynomolgus macaques. Drug Metab Pharmacokinet 2020; 35:401-404. [PMID: 32651149 DOI: 10.1016/j.dmpk.2020.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/18/2022]
Abstract
The cynomolgus macaque is a nonhuman primate species that is often used in drug metabolism studies during drug development. However, the localization of UDP-glucuronosyltransferases (UGTs), essential drug-metabolizing enzymes, has not been fully investigated in the liver and small intestine of cynomolgus macaques. In this study, UGT activities were analyzed in liver (five lobes) and small intestine (the duodenum and six sections from the proximal jejunum to the distal ileum) using typical probe substrates of human UGTs: 7-hydroxycoumarin, estradiol, serotonin, propofol, and zidovudine. In liver, UGT activities with respect to all substrates were detected, and the activity levels were similar in all liver lobes of the cynomolgus macaques tested. In contrast, in the small intestine, UGT activities toward all substrates were detected, but their levels generally decreased from jejunum to ileum in cynomolgus macaques. The localization of estradiol 3-O-glucuronosyltransferases and serotonin O-glucuronosyltransferases (which are mainly UGT1A enzymes) appear to be different in liver and small intestine. These results collectively suggest that, in cynomolgus macaques, UGT1As are differentially localized in the small intestine but are relatively homogeneously distributed in the liver.
Collapse
Affiliation(s)
- Yasuharu Nakanishi
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, 642-0017, Japan
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, 642-0017, Japan; Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, 890-8580, Japan.
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
10
|
Uno Y, Yamazaki H. mRNA levels of drug-metabolizing enzymes in 11 brain regions of cynomolgus macaques. Drug Metab Pharmacokinet 2019; 35:248-252. [PMID: 31964621 DOI: 10.1016/j.dmpk.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/08/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
The cynomolgus macaque is an important nonhuman primate species in drug metabolism studies, in part because of its evolutionary closeness to humans. Cytochromes P450 (P450s) have been investigated in the major drug-metabolizing organs, i.e., the liver and small intestine, but have not been fully investigated in the brain. However, recent investigations have indicated possible important roles for P450s in the brain. In this study, by using the quantitative polymerase chain reaction, we measured the mRNA levels of 38 cynomolgus drug-metabolizing enzymes, including 19 P450s, 10 UDP-glycosyltransferases, and 9 other enzymes, in 11 brain regions. Among these drug-metabolizing enzymes, expression of 32 enzyme mRNAs were detected in one or more brain regions, indicating their possible roles in the brain. Further investigation of metabolic activities would facilitate better understanding of the importance of these enzymes in the brain.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan; Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan.
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan.
| |
Collapse
|
11
|
Uno Y, Uehara S, Inoue T, Kawamura S, Murayama N, Nishikawa M, Ikushiro S, Sasaki E, Yamazaki H. Molecular characterization of functional UDP-glucuronosyltransferases 1A and 2B in common marmosets. Biochem Pharmacol 2019; 172:113748. [PMID: 31830470 DOI: 10.1016/j.bcp.2019.113748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/05/2019] [Indexed: 11/27/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are essential drug-conjugation enzymes that metabolize a variety of endobiotic and xenobiotic substrates. The molecular characteristics of UGTs have been extensively investigated in humans, but remain to be investigated in common marmosets, a nonhuman primate species widely used in drug metabolism studies. In this study, 11 UGT cDNAs (UGT1A1, 1A3, 1A4, 1A6, 1A7, and 1A9; and UGT2B49, 2B50, 2B51, 2B52, and 2B53) were isolated and characterized in marmosets. Marmoset UGT1As had high sequence identities (89-93%) with human UGT1As, but the sequence identities of marmoset UGT2Bs were lower (82-86%). Marmoset UGTs were found to be phylogenetically close to human UGTs. Just as human UGT1As do, marmoset UGT1A genes shared exons 2-5 and contained a variable exon 1 unique to each gene; in contrast, marmoset UGT2B genes contained six unique exons. Moreover, marmoset and human UGT1A and UGT2B gene clusters were located in corresponding regions in their respective genomes. Among the five tissue types tested, marmoset UGT mRNAs were most abundantly expressed in liver, jejunum, and/or kidney, i.e., in tissues important for drug metabolism, just as human UGTs are. Among the 11 marmoset UGT mRNAs investigated, marmoset UGT1A9, 1A4, and 1A6 mRNAs were the most abundantly expressed in liver, small intestine, and kidney, respectively. Marmoset liver microsomes and recombinant UGT1A proteins catalyzed the glucuronidation of the same substrates that human UGT1As catalyze, including estradiol, trifluoperazine, 4-methylumbelliferone, serotonin, 4-nitrophenol, and propofol. Trifluoperazine was glucuronidated by marmoset liver microsomes, but not by any of the UGT1A isoforms examined under the present conditions. These results collectively suggest that functional marmoset UGTs have generally similar molecular characteristics to human UGTs.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan; Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama 642 0017, Japan.
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Takashi Inoue
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kawasaki-ku, Japan
| | - Shu Kawamura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939 0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939 0398, Japan
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kawasaki-ku, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
12
|
Ota M, Shimizu M, Kamiya Y, Emoto C, Fukuda T, Yamazaki H. Adult and infant pharmacokinetic profiling of dihydrocodeine using physiologically based pharmacokinetic modeling. Biopharm Drug Dispos 2019; 40:350-357. [PMID: 31691978 DOI: 10.1002/bdd.2209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 01/11/2023]
Abstract
We previously analysed the serum concentrations of dihydrocodeine in a 1-month-old infant with respiratory depression after being prescribed dihydrocodeine phosphate 2.0 mg/day divided t.i.d. for 2 days. The purpose was to develop a full physiologically based pharmacokinetic (PBPK) model that could account for these and other drug monitoring results. Based on experiments in Caco-2 cell monolayers, the effective permeability of dihydrocodeine in human jejunum was established as 1.28 × 10-4 cm/s. The in vitro Vmax /Km values for dihydrocodeine demethylation mediated by recombinant cytochrome P450 2D6 and 3A4 were 0.19 and 0.066 μl/min/pmol, respectively, and for dihydrocodeine 6-O-glucuronidation mediated by recombinant UGT2B4 and 2B7, the Vmax /Km values were 0.14 and 0.22 μl/min/mg protein, respectively. Renal clearance was calculated as 5.37 L/h on the total clearance value multiplied by the fraction recovered in urine. The reported plasma concentration-time profiles of dihydrocodeine after intravenous administration in healthy volunteers were used to adjust the tissue partitioning ratios. The developed model simulated the pharmacokinetic profiles of dihydrocodeine after single and multiple oral administrations reasonably well in the same population. Subsequently, the validated model was used to simulate pharmacokinetic profiles for five pediatric cases, including the 1-month-old Japanese boy and a 14-year-old Japanese girl who took an overdose of dihydrocodeine phosphate (37 mg). The simulated pharmacokinetic profiles for five virtual pediatric subjects matching the age, gender, and P450 2D6 phenotype of each case approximately reflected the observed values. These results suggested that our dihydrocodeine PBPK model reproduced the results of clinical cases reasonably well for subjects.
Collapse
Affiliation(s)
- Miki Ota
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yusuke Kamiya
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Chie Emoto
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tsuyoshi Fukuda
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| |
Collapse
|