1
|
Yang M, Bai M, Zhuang Y, Lu S, Ge Q, Li H, Deng Y, Wu H, Xu X, Niu F, Dong X, Zhang B, Liu B. High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury. Neural Regen Res 2025; 20:2611-2623. [PMID: 39314167 DOI: 10.4103/nrr.nrr-d-23-01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00023/figure1/v/2024-11-05T132919Z/r/image-tiff Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury, the fundamental regulatory and functional mechanisms remain insufficiently understood. As potent anti-inflammatory agents, the use of glucocorticoids in traumatic brain injury is still controversial, and their regulatory effects on microglial polarization are not yet known. In the present study, we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action. In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization. Lipopolysaccharide, dexamethasone, RU486 (a glucocorticoid receptor antagonist), and ruxolitinib (a Janus kinase 1 antagonist) were administered. RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone. The Morris water maze, quantitative reverse transcription-polymerase chain reaction, western blotting, immunofluorescence and confocal microscopy analysis, and TUNEL, Nissl, and Golgi staining were performed to investigate our hypothesis. High-throughput sequencing results showed that arginase 1, a marker of M2 microglia, was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at 3 days post-traumatic brain injury. Thus dexamethasone inhibited M1 and M2 microglia, with a more pronounced inhibitory effect on M2 microglia in vitro and in vivo . Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury. Additionally, glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death, and also decreased the density of dendritic spines. A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway. Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia, which plays an anti-inflammatory role. In contrast, inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury. Dexamethasone may exert its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Mengshi Yang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Miao Bai
- Department of Neurology, The First Hospital of Tsinghua University, Beijing, China
| | - Yuan Zhuang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenghua Lu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Ge
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Deng
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongbin Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaojian Xu
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fei Niu
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xinlong Dong
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baiyun Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Center for Nerve Injury and Repair, Beijing Institute of Brain Disorders, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
2
|
Pommerolle L, Beltramo G, Biziorek L, Truchi M, Dias AMM, Dondaine L, Tanguy J, Pernet N, Goncalves V, Bouchard A, Monterrat M, Savary G, Pottier N, Ask K, Kolb MRJ, Mari B, Garrido C, Collin B, Bonniaud P, Burgy O, Goirand F, Bellaye PS. CD206 + macrophages are relevant non-invasive imaging biomarkers and therapeutic targets in experimental lung fibrosis. Thorax 2024; 79:1124-1135. [PMID: 39033028 DOI: 10.1136/thorax-2023-221168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Interstitial lung diseases (ILDs) include a large number of diseases associated with progressive pulmonary fibrosis (PPF), including idiopathic pulmonary fibrosis (IPF). Despite the rarity of each of the fibrotic ILDs individually, they cumulatively affect a considerable number of patients. PPF is characterised by an excessive collagen deposition leading to functional decline. OBJECTIVES Therapeutic options are limited to nintedanib and pirfenidone which are only able to reduce fibrosis progression. CD206-expressing M2 macrophages are involved in fibrosis progression, and whether they may be relevant therapeutic targets or biomarkers remains an open question. RESULTS In our study, CD206+ lung macrophages were monitored in bleomycin-induced lung fibrosis in mice by combining flow cytometry, scRNAseq and in vivo molecular imaging using a single photon emission computed tomography (SPECT) radiopharmaceutical, 99mTc-tilmanocept. The antifibrotic effect of the inhibition of M2 macrophage polarisation with a JAK inhibitor, tofacitinib, was assessed in vivo. We demonstrate that CD206-targeted in vivo SPECT imaging with 99mTc-tilmanocept was able to accurately detect and quantify the increase in CD206+ macrophages from early to advanced stages of experimental fibrosis and ex vivo in lung biopsies from patients with IPF. CD206-targeted imaging also specifically detected a decrease in CD206+ lung macrophages on nintedanib and tofacitinib treatment. Importantly, early in vivo imaging of CD206+ macrophages allowed the prediction of experimental lung fibrosis progression as well as nintedanib and tofacitinib efficacy. CONCLUSIONS These findings indicate that M2 macrophages may be relevant theranostic targets for personalised medicine for patients with PPF.
Collapse
Affiliation(s)
- Lenny Pommerolle
- HSP-pathies Team, INSERM U1231 CTM Labex LIPSTIC and Label of Excellence from la Ligue National Contre le Cancer, Dijon, France
| | - Guillaume Beltramo
- HSP-pathies Team, INSERM U1231 CTM Labex LIPSTIC and Label of Excellence from la Ligue National Contre le Cancer, Dijon, France
- Pneumology and Respiratory Intensive Care, CHU Dijon, Dijon, France
- Reference Center for Rare Pulmonary Diseases, OrphaLung Network, RespiFil, CHU Dijon Bourgogne, Dijon, France, Valbonne, France
- Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France, Dijon, France
| | - Leo Biziorek
- HSP-pathies Team, INSERM U1231 CTM Labex LIPSTIC and Label of Excellence from la Ligue National Contre le Cancer, Dijon, France
| | - Marin Truchi
- Université Côte d'Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | | | - Lucile Dondaine
- HSP-pathies Team, INSERM U1231 CTM Labex LIPSTIC and Label of Excellence from la Ligue National Contre le Cancer, Dijon, France
- Reference Center for Rare Pulmonary Diseases, OrphaLung Network, RespiFil, CHU Dijon Bourgogne, Dijon, France, Valbonne, France
| | - Julie Tanguy
- HSP-pathies Team, INSERM U1231 CTM Labex LIPSTIC and Label of Excellence from la Ligue National Contre le Cancer, Dijon, France
| | - Nicolas Pernet
- Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France, Dijon, France
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, Dijon, France
| | | | - Marie Monterrat
- Team IMATHERA, Centre Georges François Leclerc, Dijon, France
| | - Grégoire Savary
- FHU-OncoAge, CNRS, IPMC, Université Côte d'Azur, Valbonne, France
| | - Nicolas Pottier
- FHU-OncoAge, CNRS, IPMC, Université Côte d'Azur, Valbonne, France
| | - Kjetil Ask
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Dijon, Ontario, Canada
| | - Martin R J Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Dijon, Ontario, Canada
| | - Bernard Mari
- Université Côte d'Azur, IPMC, UMR CNRS 7275 Inserm 1323, IHU RespiERA, Valbonne, France
| | - Carmen Garrido
- HSP-pathies Team, INSERM U1231 CTM Labex LIPSTIC and Label of Excellence from la Ligue National Contre le Cancer, Dijon, France
- Reference Center for Rare Pulmonary Diseases, OrphaLung Network, RespiFil, CHU Dijon Bourgogne, Dijon, France, Valbonne, France
- Team IMATHERA, Centre Georges François Leclerc, Dijon, France
| | - Bertrand Collin
- Team IMATHERA, Centre Georges François Leclerc, Dijon, France
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, Dijon, France
| | - Philippe Bonniaud
- HSP-pathies Team, INSERM U1231 CTM Labex LIPSTIC and Label of Excellence from la Ligue National Contre le Cancer, Dijon, France
- Pneumology and Respiratory Intensive Care, CHU Dijon, Dijon, France
- Reference Center for Rare Pulmonary Diseases, OrphaLung Network, RespiFil, CHU Dijon Bourgogne, Dijon, France, Valbonne, France
- Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France, Dijon, France
| | - Olivier Burgy
- HSP-pathies Team, INSERM U1231 CTM Labex LIPSTIC and Label of Excellence from la Ligue National Contre le Cancer, Dijon, France
- Reference Center for Rare Pulmonary Diseases, OrphaLung Network, RespiFil, CHU Dijon Bourgogne, Dijon, France, Valbonne, France
- Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France, Dijon, France
| | - Françoise Goirand
- HSP-pathies Team, INSERM U1231 CTM Labex LIPSTIC and Label of Excellence from la Ligue National Contre le Cancer, Dijon, France
- Reference Center for Rare Pulmonary Diseases, OrphaLung Network, RespiFil, CHU Dijon Bourgogne, Dijon, France, Valbonne, France
- Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France, Dijon, France
| | - Pierre-Simon Bellaye
- HSP-pathies Team, INSERM U1231 CTM Labex LIPSTIC and Label of Excellence from la Ligue National Contre le Cancer, Dijon, France
- Reference Center for Rare Pulmonary Diseases, OrphaLung Network, RespiFil, CHU Dijon Bourgogne, Dijon, France, Valbonne, France
- Team IMATHERA, Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
3
|
Zhou KY, Ye Q, Fang S. Nodular scleroderma partially controlled with tofacitinib. An Bras Dermatol 2024; 99:989-991. [PMID: 39107196 PMCID: PMC11551256 DOI: 10.1016/j.abd.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 08/09/2024] Open
Affiliation(s)
- Kai-Yi Zhou
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Ye
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Sheng Fang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Liu Y, Liu Z, Li X, Li W, Yang Z, Jiao R, Wang Q, Meng L, Zhang T, Liu J, Chai D, Zhang N, Peng S, Zhou H, Yang C. Nerandomilast Improves Bleomycin-Induced Systemic Sclerosis-Associated Interstitial Lung Disease in Mice by Regulating the TGF-β1 Pathway. Inflammation 2024:10.1007/s10753-024-02153-9. [PMID: 39438343 DOI: 10.1007/s10753-024-02153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease with a heterogeneous clinical course. Interstitial lung disease (ILD) is a common complication of SSc and a major contributor to SSc-related deaths. Besides nintedanib and tocilizumab, there are currently no clinically approved drugs for SSc-ILD, highlighting the urgent need for new treatment strategies. Previous studies have shown that cyclic adenosine monophosphate (cAMP) plays a crucial role in the pathogenesis of SSc and lung fibrosis. Phosphodiesterases (PDEs) are enzymes that specifically hydrolyze cAMP, making PDE inhibitors promising candidates for SSc-ILD treatment. Nerandomilast, a preferential phosphodiesterase 4B (PDE4B) inhibitor currently undergoing phase III clinical trials for idiopathic pulmonary fibrosis and progressive fibrosing interstitial lung diseases (PF-ILD), has good preference for PDE4B but lacks studies for SSc-ILD. Our research demonstrates that nerandomilast effectively inhibits skin and lung fibrosis in a bleomycin-induced mouse model of SSc-ILD. For lung fibrosis, we found that nerandomilast could improve bleomycin-induced SSc-ILD through inhibiting PDE4B and the TGF-β1-Smads/non-Smads signaling pathways, which provides a theoretical basis for potential therapeutic drug development for SSc-ILD.
Collapse
Affiliation(s)
- Yuming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Zhigang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Wenqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Zhongyi Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Ran Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Qing Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Lingxin Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Tiantian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Jing Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Dan Chai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Na Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Shouchun Peng
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, 300350, China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| |
Collapse
|
5
|
Le Tallec E, Bellamri N, Lelong M, Morzadec C, Frenger Q, Ballerie A, Cazalets C, Lescoat A, Gros F, Lecureur V. Efferocytosis dysfunction in CXCL4-induced M4 macrophages: phenotypic insights in systemic sclerosis in vitro and in vivo. Front Immunol 2024; 15:1468821. [PMID: 39464886 PMCID: PMC11512447 DOI: 10.3389/fimmu.2024.1468821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Systemic sclerosis (SSc) is an autoimmune disease characterized by antinuclear antibody production, which has been linked to an excess of apoptotic cells, normally eliminated by macrophages through efferocytosis. Additionally, circulating levels of CXCL4, a novel SSc biomarker, correlate with more severe fibrotic manifestations of the disease. Considering the defective efferocytosis of macrophages in SSc and the CXCL4-related M4 macrophage phenotype, we hypothesized that CXCL4 could be involved in the alteration of phagocytic functions of macrophages in SSc, including LC3-associated phagocytosis (LAP), another phagocytic process requiring autophagy proteins and contributing to immune silencing. Methods In this study, CXCL4 levels were measured by ELISA in vitro in the serum of SSc patients, and also in vivo in the serum and lungs of C57BL/6J SSc mice induced by intradermal injections of hypochloric acid (HOCl) or Bleomycin (BLM), with evaluation of M4 markers. Circulating monocytes from healthy donors were also differentiated in vitro into M4 monocytes-derived macrophages (MDMs) in the presence of recombinant CXCL4. In M4-MDMs, phagocytosis of fluorescent beads and expression level of efferocytic receptors were evaluated by flow cytometry in vitro, while efferocytosis of pHrodo-stained apoptotic Jurkat cells was evaluated by real-time fluorescence microscopy. LAP quantification was made by fluorescence microscopy in M4-MDMs exposed to IgG-coated beads as well as apoptotic Jurkat cells. Results Our results demonstrated that efferocytosis was significantly reduced in M0-MDMs from healthy donors exposed to the CXCL4-rich plasma of SSc patients. In vivo, CXCL4 expression was increased in the lungs of both SSc-mouse models, along with elevated M4 markers, while efferocytosis of BLM-mice alveolar macrophages was decreased. In vitro, M4-MDMs exhibited reduced efferocytosis compared to M0-MDMs, notably attributable to lower CD36 receptor expression and impaired phagocytosis capacities, despite enhanced LAP. Autophagic gene expression was increased both in vitro in SSc MDMs and in vivo in BLM mice, thus acting as a potential compensatory mechanism. Discussion Altogether, our results support the role of CXCL4 on the impaired efferocytosis capacities of human macrophages from SSc patients and in SSc mice.
Collapse
Affiliation(s)
- Erwan Le Tallec
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
| | - Nessrine Bellamri
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
| | - Marie Lelong
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
| | - Claudie Morzadec
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
| | - Quentin Frenger
- INSERM UMR - S1109, Université de Strasbourg, Strasbourg, France
- Faculty of Life Sciences, Université de Strasbourg, Strasbourg, France
| | - Alice Ballerie
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
| | - Claire Cazalets
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
| | - Alain Lescoat
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
- Department of Internal Medicine and Clinical Immunology, Pontchaillou Hospital, Rennes, France
| | - Frédéric Gros
- INSERM UMR - S1109, Université de Strasbourg, Strasbourg, France
- Faculty of Life Sciences, Université de Strasbourg, Strasbourg, France
| | - Valérie Lecureur
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) – UMR_S 1085, Univ Rennes, Rennes, France
| |
Collapse
|
6
|
Campitiello R, Soldano S, Gotelli E, Hysa E, Montagna P, Casabella A, Paolino S, Pizzorni C, Sulli A, Smith V, Cutolo M. The intervention of macrophages in progressive fibrosis characterizing systemic sclerosis: A systematic review. Autoimmun Rev 2024; 23:103637. [PMID: 39255852 DOI: 10.1016/j.autrev.2024.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND AIM Systemic sclerosis (SSc) is an immune mediated connective tissue disease characterized by microvascular dysfunction, aberrant immune response, and progressive fibrosis. Although the immuno-pathophysiological mechanisms underlying SSc are not fully clarified, they are often associated with a dysfunctional macrophage activation toward an alternative (M2) phenotype induced by cytokines [i.e., IL-4, IL-10, IL-13, and transforming growth factor (TGF-β)] involved in the fibrotic and anti-inflammatory process. A spectrum of macrophage activation state has been identified ranging from M1 to M2 phenotype, gene expression of phenotype markers, and functional aspects. This systematic review aims to analyze the importance of M2 macrophage polatization during the immune mediated process and the identification of specific pathways, cytokines, and chemokines involved in SSc pathogenesis. Moreover, this review provides an overview on the in vitro and in vivo studies aiming to test therapeutic strategies targeting M2 macrophages. METHODS A systematic literature review was performed according to the preferred Reported Items for Systematic Reviews and Meta-Analyses (PRISMA). The search encompassed the online medical databases PubMed and Embase up to the 30th of June 2024. Original research manuscripts (in vitro study, in vivo study), animal model and human cohort, were considered for the review. Exclusion criteria encompassed reviews, case reports, correspondences, and conference abstracts/posters. The eligible manuscripts main findings were critically analyzed, discussed, and summarized in the correspondent tables. RESULTS Out of the 77 screened abstracts, 49 papers were deemed eligible. Following a critical analysis, they were categorized according to the primary (29 original articles) and secondary (20 original articles) research objectives of this systematic review. The data from the present systematic review suggest the pivotal role of M2 macrophages differentiation and activation together with the dysregulation of the immune system in the SSc pathogenesis. Strong correlations have been found between M2 macrophage presence and clinical manifestations in both murine and human tissue samples. Interestingly, the presence of M2 cell surface markers on peripheral blood monocytes has been highlighted, suggesting a potential biomarker role for this finding. Therapeutic effects reducing M2 macrophage activities have been observed and/or tested for existing and for new drugs, demonstrating potential efficacy in modulating the pro-fibrotic immune response for treatment of SSc. CONCLUSIONS The increased M2 macrophage activation in course of SSc seems to offer new insights on the self-amplifying inflammatory and fibrotic response by the immune system on such disease. Therefore, the revaluation of immunomodulatory and ongoing antifibrotic therapies, as well as novel therapeutical approaches in SSc that contribute to limit the M2 macrophage activation are matter of intense investigations.
Collapse
Affiliation(s)
- Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy
| | - Elvis Hysa
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Paola Montagna
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy.
| | - Andrea Casabella
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, University of Ghent, Ghent, Belgium; Department of Internal Medicine, Ghent University Hospital, University of Ghent, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, Flemish Institute for Biotechnology, Inflammation Research Center, Ghent, Belgium.
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
7
|
Lescoat A, Ghosh M, Kadauke S, Khanna D. Innovative cell therapies for systemic sclerosis: available evidence and new perspectives. Expert Rev Clin Immunol 2024:1-15. [PMID: 39279565 DOI: 10.1080/1744666x.2024.2402494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is the rheumatic disease with the highest individual mortality rate with a detrimental impact on quality of life. Cell-based therapies may offer new perspectives for this disease as recent phase I trials support the safety of IV infusion of allogeneic mesenchymal stromal cells in SSc and case reports highlight the potential use of Chimeric Antigen Receptor (CAR)-T cells targeting CD19 in active SSc patients who have not responded to conventional immunosuppressive therapies. AREAS COVERED This narrative review highlights the most recent evidence supporting the use of cellular therapies in SSc as well as their potential mechanisms of action and discusses future perspectives for cell-based therapies in SSc. Medline/PubMed was used to identify the articles of interest, using the keywords 'Cellular therapies,' 'Mesenchymal stromal cells,' 'Chimeric Antigen Receptor' AND 'systemic sclerosis.' Milestones articles reported by the authors were also used. EXPERT OPINION Cellular therapies may represent an opportunity for long-term remission/cure in patients with different autoimmune diseases, including SSc who have not responded to conventional therapies. Multiple ongoing phase I/II trials will provide greater insights into the efficacy and toxicity of cellular therapies.
Collapse
Affiliation(s)
- Alain Lescoat
- Inserm, EHESP, Irset -Institut de Recherche en Santé, Environnement et Travail-UMRS, University of Rennes CHU Rennes, Rennes, France
- Department of Internal Medicine and Clinical Immunology, CHU Rennes, Rennes, France
| | - Monalisa Ghosh
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI, USA
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephan Kadauke
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Poto R, Cristinziano L, Criscuolo G, Strisciuglio C, Palestra F, Lagnese G, Di Salvatore A, Marone G, Spadaro G, Loffredo S, Varricchi G. The JAK1/JAK2 inhibitor ruxolitinib inhibits mediator release from human basophils and mast cells. Front Immunol 2024; 15:1443704. [PMID: 39188724 PMCID: PMC11345246 DOI: 10.3389/fimmu.2024.1443704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction The Janus kinase (JAK) family includes four cytoplasmic tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) constitutively bound to several cytokine receptors. JAKs phosphorylate downstream signal transducers and activators of transcription (STAT). JAK-STAT5 pathways play a critical role in basophil and mast cell activation. Previous studies have demonstrated that inhibitors of JAK-STAT pathway blocked the activation of mast cells and basophils. Methods In this study, we investigated the in vitro effects of ruxolitinib, a JAK1/2 inhibitor, on IgE- and IL-3-mediated release of mediators from human basophils, as well as substance P-induced mediator release from skin mast cells (HSMCs). Results Ruxolitinib concentration-dependently inhibited IgE-mediated release of preformed (histamine) and de novo synthesized mediators (leukotriene C4) from human basophils. Ruxolitinib also inhibited anti-IgE- and IL-3-mediated cytokine (IL-4 and IL-13) release from basophils, as well as the secretion of preformed mediators (histamine, tryptase, and chymase) from substance P-activated HSMCs. Discussion These results indicate that ruxolitinib, inhibiting the release of several mediators from human basophils and mast cells, is a potential candidate for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
9
|
Kiełbowski K, Plewa P, Bratborska AW, Bakinowska E, Pawlik A. JAK Inhibitors in Rheumatoid Arthritis: Immunomodulatory Properties and Clinical Efficacy. Int J Mol Sci 2024; 25:8327. [PMID: 39125897 PMCID: PMC11311960 DOI: 10.3390/ijms25158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent autoimmune disorder. The pathogenesis of the disease is complex and involves various cellular populations, including fibroblast-like synoviocytes, macrophages, and T cells, among others. Identification of signalling pathways and molecules that actively contribute to the development of the disease is crucial to understanding the mechanisms involved in the chronic inflammatory environment present in affected joints. Recent studies have demonstrated that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the behaviour of immune cells and contributes to the progression of RA. Several JAK inhibitors, such as tofacitinib, baricitinib, upadacitinib, and filgocitinib, have been developed, and their efficacy and safety in patients with RA have been comprehensively investigated in a number of clinical trials. Consequently, JAK inhibitors have been approved and registered as a treatment for patients with RA. In this review, we discuss the involvement of JAK/STAT signalling in the pathogenesis of RA and summarise the potential beneficial effects of JAK inhibitors in cells implicated in the pathogenesis of the disease. Moreover, we present the most important phase 3 clinical trials that evaluated the use of these agents in patients.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| |
Collapse
|
10
|
Shen S, Hu M, Peng Y, Zheng Y, Zhang R. Research Progress in pathogenesis of connective tissue disease-associated interstitial lung disease from the perspective of pulmonary cells. Autoimmun Rev 2024; 23:103600. [PMID: 39151642 DOI: 10.1016/j.autrev.2024.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The lungs are a principal factor in the increased morbidity and mortality observed in patients with Connective Tissue Disease (CTD), frequently presenting as CTD-associated Interstitial Lung Disease (ILD). Currently, there is a lack of comprehensive descriptions of the pulmonary cells implicated in the development of CTD-ILD. This review leverages the Human Lung Cell Atlas (HLCA) and spatial multi-omics atlases to discuss the advancements in research on the pathogenesis of CTD-ILD from a pulmonary cell perspective. This facilitates a more precise localization of disease sites and a more systematic consideration of disease progression, supporting further mechanistic studies and targeted therapies.
Collapse
Affiliation(s)
- Shuyi Shen
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ming Hu
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Peng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Zheng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Rong Zhang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
11
|
Dahdah N, Tercero-Alcázar C, Malagón MM, Garcia-Roves PM, Guzmán-Ruiz R. Interrelation of adipose tissue macrophages and fibrosis in obesity. Biochem Pharmacol 2024; 225:116324. [PMID: 38815633 DOI: 10.1016/j.bcp.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Obesity is characterized by adipose tissue expansion, extracellular matrix remodelling and unresolved inflammation that contribute to insulin resistance and fibrosis. Adipose tissue macrophages represent the most abundant class of immune cells in adipose tissue inflammation and could be key mediators of adipocyte dysfunction and fibrosis in obesity. Although macrophage activation states are classically defined by the M1/M2 polarization nomenclature, novel studies have revealed a more complex range of macrophage phenotypes in response to external condition or the surrounding microenvironment. Here, we discuss the plasticity of adipose tissue macrophages (ATMs) in response to their microenvironment in obesity, with special focus on macrophage infiltration and polarization, and their contribution to adipose tissue fibrosis. A better understanding of the role of ATMs as regulators of adipose tissue remodelling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carmen Tercero-Alcázar
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Pablo Miguel Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocío Guzmán-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain.
| |
Collapse
|
12
|
Wang X, Zhou J, Li X, Liu C, Liu L, Cui H. The Role of Macrophages in Lung Fibrosis and the Signaling Pathway. Cell Biochem Biophys 2024; 82:479-488. [PMID: 38536578 DOI: 10.1007/s12013-024-01253-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 08/25/2024]
Abstract
Lung fibrosis is a dysregulated repair process caused by excessive deposition of extracellular matrix that can severely affect respiratory function. Macrophages are a group of immune cells that have multiple functions and can perform a variety of roles. Lung fibrosis develops with the involvement of pro-inflammatory and pro-fibrotic factors secreted by macrophages. The balance between M1 and M2 macrophages has been proposed to play a role in determining the trend and severity of lung fibrosis. New avenues and concepts for preventing and treating lung fibrosis have emerged in recent years through research on mitochondria, Gab proteins, and exosomes. The main topic of this essay is the impact that mitochondria, Gab proteins, and exosomes have on macrophage polarization. In addition, the potential of these factors as targets to enhance lung fibrosis is also explored. We have also collated the functions and mechanisms of signaling pathways associated with the regulation of macrophage polarization such as Notch, TGF-β/Smad, JAK-STAT and cGAS-STING. The goal of this article is to explain the potential benefits of focusing on macrophage polarization as a way to relieve lung fibrosis. We aspire to provide valuable insights that could lead to enhancements in the treatment of this condition.
Collapse
Affiliation(s)
- Xingmei Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Jiaxu Zhou
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Xinrui Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Chang Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, 133002, Jilin, China.
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, Jilin, China.
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji, 133002, Jilin, China.
| |
Collapse
|
13
|
Wang T, Zhao W, Qi Z, Lv S, Xiao Y, Wang Y, Guo Q, Wang L, Peng X. Unmasking the dynamics of Mycoplasma gallisepticum: deciphering HD11 macrophage polarization for innovative infection control strategies. Poult Sci 2024; 103:103652. [PMID: 38537405 PMCID: PMC10987924 DOI: 10.1016/j.psj.2024.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024] Open
Abstract
Mycoplasma gallisepticum (MG) is a highly contagious avian respiratory pathogen characterized by rapid spread, widespread distribution, and long-term persistence of infection. Previous studies have shown that chicken macrophage HD11 cells play a critical role in the replication and immunomodulation of MG. Macrophages are multifunctional immunomodulatory cells that polarize into different functions and morphologies in response to exogenous stimuli. However, the effect of MG infection on HD11 polarization is not well understood. In this study, we observed a time-dependent increase in both the expression of the MG-related virulence protein pMGA1.2 and the copy number of MG upon MG infection. Polarization studies revealed an upregulation of M1-type marker genes in MG-infected HD11 cells, suggesting that MG mainly induces HD11 macrophages towards M1-type polarization. Furthermore, MG activated the inflammatory vesicle NLRP3 signaling pathway, and NLRP3 inhibitors affected the expression of M1 and M2 marker genes, indicating the crucial regulatory role of the NLRP3 signaling pathway in MG-induced polarization of HD11 macrophages. Our findings reveal a novel mechanism of MG infection, namely the polarization of MG-infected HD11 macrophages. This discovery suggests that altering the macrophage phenotype to inhibit MG infection may be an effective control strategy. These findings provide new perspectives on the pathogenic mechanism and control measures of MG.
Collapse
Affiliation(s)
- Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqing Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenping Qi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufei Xiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiao Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Wei Y, Wang D, Wu J, Zhang J. JAK2 inhibitors improve RA combined with pulmonary fibrosis in rats by downregulating SMAD3 phosphorylation. Int J Rheum Dis 2024; 27:e15164. [PMID: 38706209 DOI: 10.1111/1756-185x.15164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/01/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-β1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFβ-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1β and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFβ-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-β1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.
Collapse
Affiliation(s)
- Yimei Wei
- Department of Geriatrics, Chongqing Medical University, Chongqing, China
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Dandan Wang
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
- Department of Pulmonary Department of Respiratory and Critical Care Medicine, Southwest Medical University, Luzhou, China
| | - Juan Wu
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| | - Jie Zhang
- Department Geriatrics, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
15
|
Zhao D, Wang Y, Wu S, Ji X, Gong K, Zheng H, Zhu M. Research progress on the role of macrophages in acne and regulation by natural plant products. Front Immunol 2024; 15:1383263. [PMID: 38736879 PMCID: PMC11082307 DOI: 10.3389/fimmu.2024.1383263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Acne vulgaris is one of the most common skin diseases. The current understanding of acne primarily revolves around inflammatory responses, sebum metabolism disorders, aberrant hormone and receptor expression, colonization by Cutibacterium acnes, and abnormal keratinization of follicular sebaceous glands. Although the precise mechanism of action remains incompletely understood, it is plausible that macrophages exert an influence on these pathological features. Macrophages, as a constituent of the human innate immune system, typically manifest distinct phenotypes across various diseases. It has been observed that the polarization of macrophages toward the M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years, extensive research on acne has revealed an increasing number of natural remedies exhibiting therapeutic efficacy through the modulation of macrophage polarization. This review investigates the role of cutaneous macrophages, elucidates their potential significance in the pathogenesis of acne, a prevalent chronic inflammatory skin disorder, and explores the therapeutic mechanisms of natural plant products targeting macrophages. Despite these insights, the precise role of macrophages in the pathogenesis of acne remains poorly elucidated. Subsequent investigations in this domain will further illuminate the pathogenesis of acne and potentially offer guidance for identifying novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yun Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuhui Wu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotian Ji
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke Gong
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Huie Zheng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Mingfang Zhu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Zhang R, Jiang Q, Gao S, Zhang H, Xia Q, Liu B, Zhu J, Jiang H, Zhao R, Dong H, Li X, Zhang Y, Yang C, Gu X, Sun L, Zhou H. Favipiravir ameliorates bleomycin-induced pulmonary fibrosis by reprogramming M1/M2 macrophage polarization. Int Immunopharmacol 2024; 131:111774. [PMID: 38489971 DOI: 10.1016/j.intimp.2024.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Corona Virus Disease 2019 (COVID-19) is an infectious disease that seriously endangers human life and health. The pathological anatomy results of patients who died of the COVID-19 showed that there was an excessive inflammatory response in the lungs. It is also known that most of the COVID-19 infected patients will cause different degrees of lung damage after infection, and may have pulmonary fibrosis remaining after cure. Macrophages are a type of immune cell population with pluripotency and plasticity. In the early and late stages of infection, the dynamic changes of the balance and function of M1/M2 alveolar macrophages have a significant impact on the inflammatory response of the lungs. In the early stage of pulmonary fibrosis inflammation, the increase in the proportion of M1 type is beneficial to clear pathogenic microorganisms and promote the progress of inflammation; in the later stage of fibrosis, the increase in the number of M2 type macrophages can inhibit the inflammatory response and promote the degradation of fibrosis. As a potential treatment drug for new coronavirus pneumonia, favipiravir is in the process of continuously carried out relevant clinical trials. This study aims to discuss whether the antiviral drug favipiravir can suppress inflammation and immune response by regulating the M1/M2 type of macrophages, thereby alleviating fibrosis. We established a bleomycin-induced pulmonary fibrosis model, using IL-4/13 and LPS/IFN-γ cell stimulating factor to induce macrophage M1 and M2 polarization models, respectively. Our study shows that favipiravir exerts anti-fibrotic effects mainly by reprogramming M1/M2 macrophages polarization, that is, enhancing the expression of anti-fibrotic M1 type, reducing the expression of M2 type pro-fibrotic factors and reprogramming it to anti-fibrotic phenotype. Aspects of pharmacological mechanisms, favipiravir inhibits the activation of JAK2-STAT6 and JAK2-PI3K-AKT signaling by targeting JAK2 protein, thereby inhibiting pro-fibrotic M2 macrophages polarization and M2-induced myofibroblast activation. In summary, favipiravir can reduce the progression of pulmonary fibrosis, we hope to provide a certain reference for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ruiqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Huizhe Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Qin Xia
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Bowen Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Jingyan Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Haixia Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Ruixi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Huixuan Dong
- College of Life Science, Tianjin Normal University, 30087 Tianjin, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Yanping Zhang
- The second department of respiratory and critical care medicine, the second hospital of Hebei Medical University, 050000 Shijiazhuang, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Liang Sun
- Characteristic medical center of the Chinese people's Armed police Force, 300162 Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China.
| |
Collapse
|
17
|
Abraham D, Lescoat A, Stratton R. Emerging diagnostic and therapeutic challenges for skin fibrosis in systemic sclerosis. Mol Aspects Med 2024; 96:101252. [PMID: 38325132 DOI: 10.1016/j.mam.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Systemic sclerosis (also called scleroderma, SSc) is a chronic autoimmune disorder characterized by excessive collagen deposition leading to skin fibrosis and various internal organ manifestations. The emergent diagnostics and therapeutic strategies for scleroderma focus on early detection and targeted interventions to improve patient outcomes and quality of life. Diagnostics for SSc have evolved significantly in recent years, driven by advancements in serological markers and imaging techniques. Autoantibody profiling, especially antinuclear antibodies (ANA) and specific scleroderma-associated autoantibodies, aids in identifying subsets of scleroderma and predicting disease progression. Furthermore, novel imaging modalities, such as high-frequency ultrasonography and optical coherence tomography, enable early detection of skin fibrosis and internal organ involvement, enhancing the diagnostic precision and allowing for tailored management. Therapeutic strategies for SSc are multifaceted, targeting immune dysregulation, vascular abnormalities, and fibrotic processes. Emerging biologic agents have shown promise in clinical trials, including monoclonal antibodies directed against key cytokines involved in fibrosis, such as transforming growth factor-β (TGF-β) and interleukin-6 (IL-6). Additionally, small-molecule inhibitors that disrupt fibrotic pathways, like tyrosine kinase inhibitors, have exhibited potential in limiting collagen deposition and preventing disease progression. Stem cell therapy, cell ablation and gene editing techniques hold great potential in regenerating damaged tissue and halting fibrotic processes. Early intervention remains crucial in managing SSc, as irreversible tissue damage often occurs in advanced stages. Novel diagnostic methods, such as biomarkers and gene expression profiling, are being explored to identify individuals at high risk for developing progressive severe disease and intervene proactively. Furthermore, patient-tailored therapeutic approaches, employing a combination of immunosuppressive agents and targeted anti-fibrotic therapies, are being investigated to improve treatment efficacy while minimizing adverse effects. The emergent diagnostics and therapeutic strategies in scleroderma are transforming the management of this challenging disease. Nevertheless, ongoing research and clinical trials are needed to optimize the efficacy and safety of these novel approaches in the complex and diverse spectrum of SSc manifestations.
Collapse
Affiliation(s)
- David Abraham
- UCL Centre for Rheumatology, Royal Free Hospital, UCL Division of Medicine, Department of Inflammation, London, UK
| | - Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - Richard Stratton
- UCL Centre for Rheumatology, Royal Free Hospital, UCL Division of Medicine, Department of Inflammation, London, UK.
| |
Collapse
|
18
|
O'Reilly S. Emerging therapeutic targets in systemic sclerosis. J Mol Med (Berl) 2024; 102:465-478. [PMID: 38386070 DOI: 10.1007/s00109-024-02424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
Systemic sclerosis is an autoimmune connective tissue disease which is characterised by vascular perturbations, inflammation, and fibrosis. Although huge progress recently into the underlying molecular pathways that are perturbed in the disease, currently no therapy exists that targets the fibrosis element of the disease and consequently there is a huge unmet medical need. Emerging studies reveal new dimensions of complexity, and multiple aberrant pathways have been uncovered that have shed light on disturbed signalling in the disease, primarily in inflammatory pathways that can be targeted with repurposed drugs. Pre-clinical animal models using these inhibitors have yielded proof of concept for targeting these signalling systems and progressing to clinical trials. This review will examine the recent evidence of new perturbed pathways in SSc and how these can be targeted with new or repurposed drugs to target a currently intractable disease.
Collapse
Affiliation(s)
- Steven O'Reilly
- Department of Biosciences, Durham University, South Road, Durham, UK.
| |
Collapse
|
19
|
Zhou BW, Liu HM, Xu F, Jia XH. The role of macrophage polarization and cellular crosstalk in the pulmonary fibrotic microenvironment: a review. Cell Commun Signal 2024; 22:172. [PMID: 38461312 PMCID: PMC10924385 DOI: 10.1186/s12964-024-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/03/2024] [Indexed: 03/11/2024] Open
Abstract
Pulmonary fibrosis (PF) is a progressive interstitial inflammatory disease with a high mortality rate. Patients with PF commonly experience a chronic dry cough and progressive dyspnoea for years without effective mitigation. The pathogenesis of PF is believed to be associated with dysfunctional macrophage polarization, fibroblast proliferation, and the loss of epithelial cells. Thus, it is of great importance and necessity to explore the interactions among macrophages, fibroblasts, and alveolar epithelial cells in lung fibrosis, as well as in the pro-fibrotic microenvironment. In this review, we discuss the latest studies that have investigated macrophage polarization and activation of non-immune cells in the context of PF pathogenesis and progression. Next, we discuss how profibrotic cellular crosstalk is promoted in the PF microenvironment by multiple cytokines, chemokines, and signalling pathways. And finally, we discuss the potential mechanisms of fibrogenesis development and efficient therapeutic strategies for the disease. Herein, we provide a comprehensive summary of the vital role of macrophage polarization in PF and its profibrotic crosstalk with fibroblasts and alveolar epithelial cells and suggest potential treatment strategies to target their cellular communication in the microenvironment.
Collapse
Affiliation(s)
- Bo-Wen Zhou
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hua-Man Liu
- Department of General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Fei Xu
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xin-Hua Jia
- Department of Pneumology and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
20
|
Künzel SR, Günther C. [Radiation-induced morphea-an overview]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:214-217. [PMID: 38240813 DOI: 10.1007/s00105-023-05292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Radiation-induced morphea is a fibro-inflammatory remodelling process of the subcutaneous connective tissue caused by ionising radiation, most commonly in the context of breast cancer treatment. The underlying pathomechanisms and putative risk factors are unknown. Therefore, misdiagnosis and inappropriate treatment pose a significant problem in the care of those patients. OBJECTIVES The aim of the study was to provide an overview as well as guidance for the diagnosis and treatment of radiation-induced morphea based on current case reports and review articles. RESULTS AND CONCLUSIONS Radiation-induced morphea is a rare condition that represents an interdisciplinary challenge for (gynaecological) oncology, radiotherapy and dermatology. Frequent misdiagnoses include infection (erysipelas), cancer recurrence or radiation dermatitis. Early histological diagnosis and the initiation of anti-inflammatory therapy using topical glucocorticoids or calcineurin inhibitors in combination with phototherapy and/or methotrexate are the most relevant success factors for an adequate clinical response.
Collapse
Affiliation(s)
- Stephan R Künzel
- Klinik und Poliklinik für Dermatologie, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstr. 74, Dresden, Deutschland.
- Institut für Transfusionsmedizin, Medizinische Fakultät Carl Gustav Carus, Blasewitzerstr. 68/70, 01307, Dresden, Deutschland.
- DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Deutschland.
| | - Claudia Günther
- Klinik und Poliklinik für Dermatologie, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus Dresden, Fetscherstr. 74, Dresden, Deutschland
| |
Collapse
|
21
|
Jeong E, Hong H, Lee YA, Kim KS. Potential Rheumatoid Arthritis-Associated Interstitial Lung Disease Treatment and Computational Approach for Future Drug Development. Int J Mol Sci 2024; 25:2682. [PMID: 38473928 PMCID: PMC11154459 DOI: 10.3390/ijms25052682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by swelling in at least one joint. Owing to an overactive immune response, extra-articular manifestations are observed in certain cases, with interstitial lung disease (ILD) being the most common. Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is characterized by chronic inflammation of the interstitial space, which causes fibrosis and the scarring of lung tissue. Controlling inflammation and pulmonary fibrosis in RA-ILD is important because they are associated with high morbidity and mortality. Pirfenidone and nintedanib are specific drugs against idiopathic pulmonary fibrosis and showed efficacy against RA-ILD in several clinical trials. Immunosuppressants and disease-modifying antirheumatic drugs (DMARDs) with anti-fibrotic effects have also been used to treat RA-ILD. Immunosuppressants moderate the overexpression of cytokines and immune cells to reduce pulmonary damage and slow the progression of fibrosis. DMARDs with mild anti-fibrotic effects target specific fibrotic pathways to regulate fibrogenic cellular activity, extracellular matrix homeostasis, and oxidative stress levels. Therefore, specific medications are required to effectively treat RA-ILD. In this review, the commonly used RA-ILD treatments are discussed based on their molecular mechanisms and clinical trial results. In addition, a computational approach is proposed to develop specific drugs for RA-ILD.
Collapse
Affiliation(s)
- Eunji Jeong
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Hyunseok Hong
- Yale College, Yale University, New Haven, CT 06520, USA;
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon-Ah Lee
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital, Seoul 02447, Republic of Korea;
| | - Kyoung-Soo Kim
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| |
Collapse
|
22
|
Daza Zapata AM, Álvarez K, Vásquez Duque G, Palacio J, Rojas López M. Janus kinase inhibitors modify the fatty acid profile of extracellular vesicles and modulate the immune response. Heliyon 2024; 10:e24710. [PMID: 38314280 PMCID: PMC10837569 DOI: 10.1016/j.heliyon.2024.e24710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Background Janus kinase inhibitors (jakinibs) are immunomodulators used for treating malignancies, autoimmune diseases, and immunodeficiencies. However, they induce adverse effects such as thrombosis, lymphocytosis, and neutropenia that could be mediated by extracellular vesicles (EVs). These particles are cell membrane-derived structures that transport cellular and environmental molecules and participate in intercellular communication. Jakinibs can modify the content of EVs and enable them to modulate the activity of different components of the immune response. Objective to evaluate the interactions between immune system components of healthy individuals and EVs derived from monocytic and lymphoid lineage cells generated in the presence of baricitinib (BARI) and itacitinib (ITA) and their possible effects. Methods EVs were isolated from monocytes (M) and lymphocytes (L) of healthy individuals, as well as from U937 (U) and Jurkat (J) cells exposed to non-cytotoxic concentrations of BARI, ITA, and dimethyl sulfoxide (DMSO; vehicle control). The binding to and engulfment of EVs by peripheral blood leukocytes of healthy individuals were analyzed by flow cytometry using CFSE-stained EVs and anti-CD45-PeCy7 mAb-labeled whole blood. The effect of EVs on respiratory burst, T-cell activation and proliferation, cytokine synthesis, and platelet aggregation was evaluated. Respiratory burst was assessed in PMA-stimulated neutrophils by the dihydrorhodamine (DHR) test and flow cytometry. T-cell activation and proliferation and cytokine production were assessed in CFSE-stained PBMC cultures stimulated with PHA; expression of the T-cell activation markers CD25 and CD69 and T-cell proliferation were analyzed by flow cytometry, and the cytokine levels were quantified in culture supernatants by Luminex assays. Platelet aggregation was analyzed in platelet-rich plasma (PRP) samples by light transmission aggregometry. The EVs' fatty acid (FA) profile was analyzed using methyl ester derivatization followed by gas chromatography. Results ITA exposure during the generation of EVs modified the size of the EVs released; however, treatment with DMSO and BARI did not alter the size of EVs generated from U937 and Jurkat cells. Circulating neutrophils, lymphocytes, and monocytes showed a 2-fold greater tendency to internalize ITA-U-EVs than their respective DMSO control. The neutrophil respiratory burst was attenuated in greater extent by M-EVs than by L-EVs. Autologous ITA-M-EVs reduced T-cell proliferation by decreasing IL-2 levels and CD25 expression independently of CD69. A higher accumulation of pro-inflammatory cytokines was observed in PHA-stimulated PBMC cultures exposed to M-EVs than to L-EVs; this difference may be related to the higher myristate content of M-EVs. Platelet aggregation increased in the presence of ITA-L/M-EVs by a mechanism presumably dependent on the high arachidonic acid content of the vesicles. Conclusions Cellular origin and jakinib exposure modify the FA profile of EVs, enabling them, in turn, to modulate neutrophil respiratory burst, T-cell proliferation, and platelet aggregation. The increased T-cell proliferation induced by BARI-L/M-EVs could explain the lymphocytosis observed in patients treated with BARI. The higher proportion of arachidonic acid in the FA content of ITA-L/M-EVs could be related to the thrombosis described in patients treated with ITA. EVs also induced a decrease in the respiratory burst of neutrophils.
Collapse
Affiliation(s)
- Ana María Daza Zapata
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Karen Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Gloria Vásquez Duque
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| | - Juliana Palacio
- Grupo De Investigación Ciencia de Los Materiales, Instituto de Química, Facultad de Ciencias Exactas Y Naturales, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Colombia
- Universidad Nacional de Colombia,SedeMedellín, Escuela de Química- Carrera 65 A No 59A-110, Medellín, 4309000, Colombia
| | - Mauricio Rojas López
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellín, Colombia
| |
Collapse
|
23
|
Shi R, Liu Z, Yue H, Li M, Liu S, De D, Li R, Chen Y, Cheng S, Gu X, Jia M, Li J, Li J, Zhang S, Feng N, Fan R, Fu F, Liu Y, Ding M, Pei J. IP 3R1-mediated MAMs formation contributes to mechanical trauma-induced hepatic injury and the protective effect of melatonin. Cell Mol Biol Lett 2024; 29:22. [PMID: 38308199 PMCID: PMC10836028 DOI: 10.1186/s11658-023-00509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/02/2023] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION There is a high morbidity and mortality rate in mechanical trauma (MT)-induced hepatic injury. Currently, the molecular mechanisms underlying liver MT are largely unclear. Exploring the underlying mechanisms and developing safe and effective medicines to alleviate MT-induced hepatic injury is an urgent requirement. The aim of this study was to reveal the role of mitochondria-associated ER membranes (MAMs) in post-traumatic liver injury, and ascertain whether melatonin protects against MT-induced hepatic injury by regulating MAMs. METHODS Hepatic mechanical injury was established in Sprague-Dawley rats and primary hepatocytes. A variety of experimental methods were employed to assess the effects of melatonin on hepatic injury, apoptosis, MAMs formation, mitochondrial function and signaling pathways. RESULTS Significant increase of IP3R1 expression and MAMs formation were observed in MT-induced hepatic injury. Melatonin treatment at the dose of 30 mg/kg inhibited IP3R1-mediated MAMs and attenuated MT-induced liver injury in vivo. In vitro, primary hepatocytes cultured in 20% trauma serum (TS) for 12 h showed upregulated IP3R1 expression, increased MAMs formation and cell injury, which were suppressed by melatonin (100 μmol/L) treatment. Consequently, melatonin suppressed mitochondrial calcium overload, increased mitochondrial membrane potential and improved mitochondrial function under traumatic condition. Melatonin's inhibitory effects on MAMs formation and mitochondrial calcium overload were blunted when IP3R1 was overexpressed. Mechanistically, melatonin bound to its receptor (MR) and increased the expression of phosphorylated ERK1/2, which interacted with FoxO1 and inhibited the activation of FoxO1 that bound to the IP3R1 promoter to inhibit MAMs formation. CONCLUSION Melatonin prevents the formation of MAMs via the MR-ERK1/2-FoxO1-IP3R1 pathway, thereby alleviating the development of MT-induced liver injury. Melatonin-modulated MAMs may be a promising therapeutic therapy for traumatic hepatic injury.
Collapse
Affiliation(s)
- Rui Shi
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Zhenhua Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Huan Yue
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- School of Life Science, Northwest University, Xi'an, China
| | - Man Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- School of Life Science, Northwest University, Xi'an, China
| | - Simin Liu
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dema De
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Runjing Li
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Yunan Chen
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Shuli Cheng
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Min Jia
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jun Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Rong Fan
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China.
| | - Mingge Ding
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
24
|
Sun LJ, Chen X, Zhu S, Xu JJ, Li XF, Diao SX, Yang YL, Liu JY, Wang JN, Sun YY, Huang C, Meng XM, Wang H, Lv XW, Li J. Hesperetin derivative 2a inhibits lipopolysaccharide-induced acute liver injury in mice via downregulation of circDcbld2. Acta Pharmacol Sin 2024; 45:354-365. [PMID: 37845343 PMCID: PMC10789727 DOI: 10.1038/s41401-023-01171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023] Open
Abstract
Acute liver injury (ALI) is a complex, life-threatening inflammatory liver disease, and persistent liver damage leads to rapid decline and even failure of liver function. However, the pathogenesis of ALI is still not fully understood, and no effective treatment has been discovered. Recent evidence shows that many circular RNAs (circRNAs) are associated with the occurrence of liver diseases. In this study we investigated the mechanisms of occurrence and development of ALI in lipopolysaccharide (LPS)-induced ALI mice. We found that expression of the circular RNA circDcbld2 was significantly elevated in the liver tissues of ALI mice and LPS-treated RAW264.7 cells. Knockdown of circDcbld2 markedly alleviates LPS-induced inflammatory responses in ALI mice and RAW264.7 cells. We designed and synthesized a series of hesperidin derivatives for circDcbld2, and found that hesperetin derivative 2a (HD-2a) at the concentrations of 2, 4, 8 μM effectively inhibited circDcbld2 expression in RAW264.7 cells. Administration of HD-2a (50, 100, 200 mg/kg. i.g., once 24 h in advance) effectively relieved LPS-induced liver dysfunction and inflammatory responses. RNA sequencing analysis revealed that the anti-inflammatory and hepatoprotective effects of HD-2a were mediated through downregulating circDcbld2 and suppressing the JAK2/STAT3 pathway. We conclude that HD-2a downregulates circDcbld2 to inhibit the JAK2/STAT3 pathway, thereby inhibiting the inflammatory responses in ALI. The results suggest that circDcbld2 may be a potential target for the prevention and treatment of ALI, and HD-2a may have potential as a drug for the treatment of ALI.
Collapse
Affiliation(s)
- Li-Jiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jin-Jin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Shao-Xi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Ying-Li Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Jin-Yu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Ying-Yin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
25
|
Lescoat A, Leinardi R, Pouxvielh K, Yakoub Y, Lelong M, Pochet A, Dumontet E, Bellamri N, Le Tallec E, Pavan C, Turci F, Paris C, Huaux F, Lecureur V. Effects of different amosite preparations on macrophages, lung damages, and autoimmunity. J Mol Med (Berl) 2024; 102:197-211. [PMID: 38015242 DOI: 10.1007/s00109-023-02401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
The underlying mechanisms of asbestos-related autoimmunity are poorly understood. As the size, surface reactivity, and free radical activity of asbestos particles are considered crucial regarding the health effects, this study aims to compare the effects of exposure to pristine amosite (pAmo) or milled amosite (mAmo) particles on lung damage, autoimmunity, and macrophage phenotype. Four months after lung exposure to 0.1 mg of amosite, BAL levels of lactate dehydrogenase, protein, free DNA, CCL2, TGF-β1, TIMP-1, and immunoglobulin A of pAmo-exposed C57Bl/6 mice were increased when compared to fluids from control- and mAmo-exposed mice. Effects in pAmo-exposed mice were associated with lung fibrosis and autoimmunity including anti-double-strand DNA autoantibody production. mAmo or pAmo at 20 µg/cm2 induced a pro-inflammatory phenotype characterized by a significant increase in TNFα and IL-6 secretion on human monocyte-derived macrophages (MDMs). mAmo and pAmo exposure induced a decrease in the efferocytosis capacities of MDMs, whereas macrophage abilities to phagocyte fluorescent beads were unchanged when compared to control MDMs. mAmo induced IL-6 secretion and reduced the percentage of MDMs expressing MHCII and CD86 markers involved in antigen and T-lymphocyte stimulation. By contrast, pAmo but not mAmo activated the NLRP3 inflammasome, as evaluated through quantification of caspase-1 activity and IL-1β secretion. Our results demonstrated that long-term exposure to pAmo may induce significant lung damage and autoimmune effects, probably through an alteration of macrophage phenotype, supporting in vivo the higher toxicity of entire amosite (pAmo) with respect to grinded amosite. However, considering their impact on efferocytosis and co-stimulation markers, mAmo effects should not be neglected. KEY MESSAGES: Lung fibrosis and autoimmunity induced by amosite particles depend on their physicochemical characteristics (size and surface) Inhalation exposure of mice to pristine amosite fibers is associated with lung fibrosis and autoimmunity Anti-dsDNA antibody is a marker of autoimmunity in mice exposed to pristine amosite fibers Activation of lung mucosa-associated lymphoid tissue, characterized by IgA production, after exposure to pristine amosite fibers Pristine and milled amosite particle exposure reduced the efferocytosis capacity of human-derived macrophages.
Collapse
Affiliation(s)
- Alain Lescoat
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, environnement et travail)-UMR_S 1085, 35000, Rennes, France
- Department of Internal Medicine & Clinical Immunology, Rennes University Hospital, 35000, Rennes, France
| | - Riccardo Leinardi
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale Et Clinique (IREC), Université Catholique de Louvain (UCL), Avenue Hippocrate 57, Bte B-1.57.06, 1200, Brussels, Belgium
| | - Kévin Pouxvielh
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, environnement et travail)-UMR_S 1085, 35000, Rennes, France
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale Et Clinique (IREC), Université Catholique de Louvain (UCL), Avenue Hippocrate 57, Bte B-1.57.06, 1200, Brussels, Belgium
| | - Marie Lelong
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, environnement et travail)-UMR_S 1085, 35000, Rennes, France
| | - Amandine Pochet
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale Et Clinique (IREC), Université Catholique de Louvain (UCL), Avenue Hippocrate 57, Bte B-1.57.06, 1200, Brussels, Belgium
| | | | - Nessrine Bellamri
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, environnement et travail)-UMR_S 1085, 35000, Rennes, France
| | - Erwan Le Tallec
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, environnement et travail)-UMR_S 1085, 35000, Rennes, France
- Department of Internal Medicine & Clinical Immunology, Rennes University Hospital, 35000, Rennes, France
| | - Cristina Pavan
- "G. Scansetti" Interdepartmental Center for Studies On Asbestos and Other Toxic Particulates, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Francesco Turci
- "G. Scansetti" Interdepartmental Center for Studies On Asbestos and Other Toxic Particulates, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Christophe Paris
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, environnement et travail)-UMR_S 1085, 35000, Rennes, France
- Service de Santé Au Travail Et Pathologie Professionnelle, CHU Rennes, 35000, Rennes, France
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale Et Clinique (IREC), Université Catholique de Louvain (UCL), Avenue Hippocrate 57, Bte B-1.57.06, 1200, Brussels, Belgium
| | - Valérie Lecureur
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, environnement et travail)-UMR_S 1085, 35000, Rennes, France.
- UMR-INSERM 1085, Campus Santé, 2 Avenue du Pr Léon Bernard, 35043, Rennes Cedex, France.
| |
Collapse
|
26
|
Al-Adwi Y, Atzeni IM, Doornbos-van der Meer B, van der Leij MJ, Varkevisser RDM, Kroesen BJ, Stel A, Timens W, Gan CT, van Goor H, Westra J, Mulder DJ. High serum C-X-C motif chemokine ligand 10 (CXCL10) levels may be associated with new onset interstitial lung disease in patients with systemic sclerosis: evidence from observational, clinical, transcriptomic and in vitro studies. EBioMedicine 2023; 98:104883. [PMID: 37995465 PMCID: PMC10708993 DOI: 10.1016/j.ebiom.2023.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Systemic sclerosis-interstitial lung disease (SSc-ILD) is the leading cause of death in patients with SSc. There is an unmet need for predictive biomarkers to identify patients with SSc at risk of ILD. Previous studies have shown that interferon (IFN) pathways may play a role in SSc. We assessed the use of C-X-C motif chemokine ligand 10 (CXCL10) as a predictive biomarker for new onset of ILD in patients with SSc. METHODS One-hundred-sixty-five (Female, N = 130) patients with SSc (SSc-ILD, N = 41) and 13 (Female, N = 8) healthy controls were investigated retrospectively. CXCL10 protein levels were measured by ELISA. We performed log rank analysis with baseline CXCL10 serum levels. CXCL10 nanoString data from lung tissues obtained from transplanted patients with SSc-ILD were extracted. Fifteen (Female, N = 10) patients with SSc (SSc-ILD, N = 7) were recruited for bronchoalveolar lavage (BAL) procedure. Lung fibroblasts were treated with BAL-fluid or serum from patients with SSc with or without ILD. Inflammatory/fibrotic genes were assessed. FINDINGS Serum CXCL10 levels were higher in patients with SSc-ILD compared to SSc patients without ILD [Median (IQR):126 pg/ml (66-282.5) vs. 78.5 pg/ml (50-122), P = 0.029, 95% CI: 1.5 × 10-6 to 0.4284]. Survival analysis showed that baseline CXCL10 levels >78.5 pg/ml have a 2.74-fold increased risk of developing new onset of ILD (Log-rank: P = 0.119) on follow-up. CXCL10 levels in BAL supernatant were not different in patients with SSc-ILD compared to SSc without ILD [76.1 pg/ml (7.2-120.8) vs. 22.3 pg/ml (12.1-43.7), P = 0.24, 95% CI: -19.5 to 100]. NanoString showed that CXCL10 mRNA expression was higher in inflammatory compared to fibrotic lung tissues [4.7 (4.2-5.6) vs. 4.3 (3.6-4.7), P = 0.029]. Fibroblasts treated with SSc-ILD serum or BAL fluids overexpressed CXCL10. INTERPRETATIONS Clinical, transcriptomic, and in vitro data showed that CXCL10 is potentially involved in early SSc-ILD. More research is needed to confirm whether CXCL10 can be classified as a prospective biomarker to detect patients with SSc at higher risk of developing new onset ILD. FUNDING This collaborative project is co-financed by the Ministry of Economic Affairs and Climate Policy of the Netherlands utilizing the PPP-allowance made available by the Top Sector Life Sciences & Health to stimulate public-private partnerships (PPP-2019_007). Part of this study is financially supported by Sanofi Genzyme (NL8921).
Collapse
Affiliation(s)
- Yehya Al-Adwi
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine, Groningen, the Netherlands.
| | - Isabella Maria Atzeni
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine, Groningen, the Netherlands
| | - Berber Doornbos-van der Meer
- University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Marcel John van der Leij
- University of Groningen, University Medical Centre Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | | | - Bart-Jan Kroesen
- University of Groningen, University Medical Centre Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | - Alja Stel
- University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Wim Timens
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Christiaan Tji Gan
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, the Netherlands
| | - Harry van Goor
- Department of Endocrinology, University Medical Centre Groningen, Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Douwe Johannes Mulder
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine, Groningen, the Netherlands
| |
Collapse
|
27
|
Gao R, Pu J, Wang Y, Wu Z, Liang Y, Song J, Pan S, Han F, Yang L, Xu X, Tang J, Wang X. Tofacitinib in the treatment of primary Sjögren's syndrome-associated interstitial lung disease: study protocol for a prospective, randomized, controlled and open-label trial. BMC Pulm Med 2023; 23:473. [PMID: 38007449 PMCID: PMC10676577 DOI: 10.1186/s12890-023-02774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023] Open
Abstract
INTRODUCTION Tofacitinib, a selective inhibitor of JAK1 and/or JAK3, is considered to alleviate the pulmonary condition of primary Sjögren's syndrome (pSS)-associated interstitial lung disease (ILD) through its anti-inflammatory and antifibrotic effects. METHODS AND ANALYSIS This is a single-center, prospective, randomized, open-label trial. The trial will compare a 52-week course of oral tofacitinib with traditional therapy cyclophosphamide (CYC) combined with azathioprine (AZA) in the treatment of pSS-ILD. A total of 120 patients will be randomly assigned into two treatment groups with a 1:1 ratio and followed for 52 weeks from the first dose. The primary endpoint of the study is the increase of forced vital capacity (FVC) at 52 weeks. Secondary endpoints include high-resolution computed tomography (HRCT), diffusion capacity for carbon monoxide of the lung (DLCO), the Mahler dyspnea index, the health-related quality of life (HARQoL) score, the cough symptom score, EULAR Sjögren's syndrome disease activity index (ESSDAI), and safety. DISCUSSION This study will be the first randomized controlled trial to investigate tofacitinib compared to the traditional regimen of CYC in combination with AZA in the treatment of pSS-ILD, which will provide data on efficacy and safety and further elucidate the role of the JAK-STAT signaling pathway in the development of pSS-ILD. ETHICS AND DISSEMINATION Before starting the experiment, the research proposal, informed consent (ICF) and relevant documents in accordance with the ethical principles of the Helsinki Declaration and the relevant requirements of the local GCP rules for ethical approval shall be submitted to the ethics committee of the hospital. The ethical approval of this study is reviewed by the Ethics Committee of Tongji Hospital and the ethical approval number is 2021-LCYJ-007. When the experiment is completed, the results will also be disseminated to patients and the public through publishing papers in international medical journals. TRIAL REGISTRATION The study was registered on the Chinese Clinical Trial Registry, www.chictr.org.cn ; ID ChiCTR2000031389.
Collapse
Affiliation(s)
- Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
28
|
Lescoat A, Kato H, Varga J. Emerging cellular and immunotherapies for systemic sclerosis: from mesenchymal stromal cells to CAR-T cells and vaccine-based approaches. Curr Opin Rheumatol 2023; 35:356-363. [PMID: 37650691 DOI: 10.1097/bor.0000000000000970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW Although two targeted therapies have received recent approval for systemic sclerosis (SSc)-associated interstitial lung disease, they do not show major disease-modifying activity, highlighting the need for novel therapies and innovative paradigms. To that end, cellular therapies may represent a new opportunity for the treatment of SSc. The purpose of this review is to provide an up-to-date overview of emerging cell-based disease-modifying therapies in SSc. RECENT FINDINGS Initial small studies in patients with severe refractory systemic lupus erythematosus (SLE) using engineered regulatory cells show promising results. CD19-directed CAR-T have shown promising results in one case report of refractory diffuse cutaneous SSc patients. T cells engineered to express a chimeric autoantibody receptor (CAAR-T cells) may be even more relevant via the specific elimination of auto-reactive B cells. Targeting pro-fibrotic or senescence-related pathways may also constitute promising approaches in SSc. SUMMARY Building on the classification of the clinical phenotype and prediction of clinical trajectory based on individual patients' autoantigen and/or autoantibody profile, cellular therapies targeting the same autoantigen or related autoreactive cells may represent an unprecedented opportunity to implement personalized medicine in SSc.
Collapse
Affiliation(s)
- Alain Lescoat
- University of Rennes CHU Rennes, Inserm, EHESP, Irset -Institut de Recherche en Santé, Environnement et Travail-UMRS
- Department of Internal Medicine and Clinical Immunology, CHU Rennes, Rennes, France
| | - Hiroshi Kato
- University of Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- University of Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
He T, Bai X, Li Y, Zhang D, Xu Z, Yang X, Hu D, Han J. Insufficient SIRT1 in macrophages promotes oxidative stress and inflammation during scarring. J Mol Med (Berl) 2023; 101:1397-1407. [PMID: 37707556 DOI: 10.1007/s00109-023-02364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Macrophage is a critical regulator in wound healing and scar formation, and SIRT1 is related to macrophage activation and polarization, while the specific mechanism is still unclear. To explore the specific effects of SIRT1 in scarring, we established a skin incision mouse model and LPS-induced inflammation cell model. The expression of SIRT1 in tissue and macrophage was detected, and the level of SIRT1 was changed to observe the downstream effects. LPS-induced macrophages with or without SIRT1 deficiency were used for TMT-based quantitative proteomic analysis. SIRT1 was suppressed in scar while increased in macrophages of scar tissue. And macrophages were proven to be necessary for wound healing. In the early stage of wound healing, knockout of SIRT1 in macrophage could greatly strengthen inflammation and finally promote scarring. NADH-related activities and oxidoreductase activities were differentially expressed in TMT-based quantitative proteomic analysis. We confirmed that ROS production and NOX2 level were elevated after LPS stimulation while the Nrf2 pathway and the downstream proteins, such as Nqo-1 and HO-1, were suppressed. In contrast, the suppression of SIRT1 strengthened this trend. The NF-κB pathway was remarkably activated compared with the control group. Insufficient increase of SIRT1 in macrophage leads to over activated oxidative stress and activates NF-κB pathways, which then promotes inflammation in wound healing and scarring. Further increasing SIRT1 in macrophages could be a promising method to alleviate scarring. KEY MESSAGES: SIRT1 was suppressed in scar while increased in macrophages of scar tissue. Inhibition of SIRT1 in macrophage leads to further activated oxidative stress. SIRT1 is negatively related to oxidative stress in macrophage. The elevation of SIRT1 in macrophage is insufficient during scarring.
Collapse
Affiliation(s)
- Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Dongliang Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Zhigang Xu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
30
|
Chen M, Ren M, Shi Y, Liu X, Wei H. State-of-the-art polyetheretherketone three-dimensional printing and multifunctional modification for dental implants. Front Bioeng Biotechnol 2023; 11:1271629. [PMID: 37929192 PMCID: PMC10621213 DOI: 10.3389/fbioe.2023.1271629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer with an elastic modulus close to that of the jawbone. PEEK has the potential to become a new dental implant material for special patients due to its radiolucency, chemical stability, color similarity to teeth, and low allergy rate. However, the aromatic main chain and lack of surface charge and chemical functional groups make PEEK hydrophobic and biologically inert, which hinders subsequent protein adsorption and osteoblast adhesion and differentiation. This will be detrimental to the deposition and mineralization of apatite on the surface of PEEK and limit its clinical application. Researchers have explored different modification methods to effectively improve the biomechanical, antibacterial, immunomodulatory, angiogenic, antioxidative, osteogenic and anti-osteoclastogenic, and soft tissue adhesion properties. This review comprehensively summarizes the latest research progress in material property advantages, three-dimensional printing synthesis, and functional modification of PEEK in the fields of implant dentistry and provides solutions for existing difficulties. We confirm the broad prospects of PEEK as a dental implant material to promote the clinical conversion of PEEK-based dental implants.
Collapse
Affiliation(s)
- Meiqing Chen
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mei Ren
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingqi Shi
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiuyu Liu
- Hospital of Stomatogy, Jilin University, Changchun, China
| | - Hongtao Wei
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Richardson PJ, Smith DP, de Giorgio A, Snetkov X, Almond-Thynne J, Cronin S, Mead RJ, McDermott CJ, Shaw PJ. Janus kinase inhibitors are potential therapeutics for amyotrophic lateral sclerosis. Transl Neurodegener 2023; 12:47. [PMID: 37828541 PMCID: PMC10568794 DOI: 10.1186/s40035-023-00380-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a poorly treated multifactorial neurodegenerative disease associated with multiple cell types and subcellular organelles. As with other multifactorial diseases, it is likely that drugs will need to target multiple disease processes and cell types to be effective. We review here the role of Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) signalling in ALS, confirm the association of this signalling with fundamental ALS disease processes using the BenevolentAI Knowledge Graph, and demonstrate that inhibitors of this pathway could reduce the ALS pathophysiology in neurons, glia, muscle fibres, and blood cells. Specifically, we suggest that inhibition of the JAK enzymes by approved inhibitors known as Jakinibs could reduce STAT3 activation and modify the progress of this disease. Analysis of the Jakinibs highlights baricitinib as a suitable candidate due to its ability to penetrate the central nervous system and exert beneficial effects on the immune system. Therefore, we recommend that this drug be tested in appropriately designed clinical trials for ALS.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara Cronin
- BenevolentAI, 15 MetroTech Centre, 8th FL, Brooklyn, NY, 11201, USA
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
32
|
Pope JE. Reply to: Is classifying SSc-ILD drugs as either immunosuppressive or anti-fibrotic misleading? Nat Rev Rheumatol 2023; 19:676. [PMID: 37605004 DOI: 10.1038/s41584-023-01014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Affiliation(s)
- Janet E Pope
- Division of Rheumatology, St Joseph's Health Care, London, Ontario, Canada.
- Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
33
|
Liu L, Xue Y, Chen J, Li Y, Chen T, Pan X, Zhong J, Shao X, Chen Y, Chen J. DNA methylation profiling and integrative multi-omics analysis of skin samples reveal important contribution of epigenetics and immune response in the pathogenesis of acne vulgaris. Clin Immunol 2023; 255:109773. [PMID: 37717673 DOI: 10.1016/j.clim.2023.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/25/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
The regulatory effect of DNA methylation on the pathogenesis of acne vulgaris is completely unknown. Herein we analyzed the DNA methylation profile in skin samples of acne vulgaris and further integrated it with gene expression profiles and single-cell RNA-sequencing data. Finally, 31,134 differentially methylated sites and 770 differentially methylated and expressed genes (DMEGs) were identified. The multi-omics analysis suggested the importance of DNA methylation in inflammation and immunity in acne. And DMEGs were verified in an external dataset and were closely related to early inflammatory acne. Additionally, we conducted experiments to verify the mRNA expression and DNA methylation level of DMEGs. This study supports the significant contribution of epigenetics to the pathogenesis of acne vulgaris and may provide new ideas for the molecular mechanisms of and potential therapeutic strategies for acne vulgaris.
Collapse
Affiliation(s)
- Lin Liu
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhou Xue
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Jiayi Chen
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxin Li
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingqiao Chen
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Pan
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Judan Zhong
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyi Shao
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jin Chen
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
34
|
Junfei Z, Meihua G, Shuai Z, Xiangting L, Zhidan L, Tianming C, Yajing L, Chu T, Lipu S. Retrospective comparative study of the efficacy of JAK inhibitor (tofacitinib) in the treatment of systemic sclerosis-associated interstitial lung disease. Clin Rheumatol 2023; 42:2823-2832. [PMID: 37335409 DOI: 10.1007/s10067-023-06660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
The oral Janus kinases inhibitor (JAKi) has improved the management of skin manifestations in systemic sclerosis (SSc), and our study aimed to explore the efficacy of non-selective JAKi tofacitinib in ameliorating interstitial lung disease (ILD) in the patients with SSc. The hospitalization data of the SSc-ILD patients from April 2019 to April 2021 were collected, and the changes of pulmonary function and the radiological findings in pulmonary high-resolution CT (HRCT) from the 9 patients who received tofacitinib for at least 6 months and a matched group of 35 SSc-ILD patients treated with conventional immunosuppressants or glucocorticoids, were compared and analyzed. There were no significant differences in demographic data and clinical characteristics between the tofacitinib-treated group (tofa-group) and the matched group. However, in the tofa-group, the changes in serum lactate dehydrogenase (LDH) concentration and serum interleukin-6 levels were significantly lower than those in the matched group. Moreover, the tofa-group showed amelioration in decreased diffusing capacity of the lung for carbon monoxide (DLCO) (62.05 ± 9.47 vs. 66.61 ± 12.39, p = 0.046), reductions in ground-glass attenuation involvement (1.00 ± 0.86 vs. 0.33 ± 0.50, p = 0.024) and irregular pleural thickening (1.33 ± 0.50 vs. 0.67 ± 0.51, p = 0.004) in pulmonary HRCTs, alleviated modified Rodnan skin score (mRSS) of skin sclerosis (9.22 ± 3.81 vs. 7.11 ± 3.92, p = 0.048), and reduced HRCT scores of pulmonary fibrosis (15.00 ± 3.87 vs. 12.66 ± 4.92, p = 0.009). Logistic regression analysis showed that the involvement of ground-glass attenuation (OR 11.43) and the add-on therapy of tofacitinib (OR 9.98) were the relevant factors in the amelioration of HRCT. Our results indicate that the use of JAKi (tofacitinib) may be relevant to significant improvement of the sclerosis and early radiological abnormalities in SSc-ILD patients. Further studies are needed to confirm these findings and to explore its efficacy more precisely. Key Points • The currently available therapies for SSc-ILD have limited therapeutic benefits. • The add-on therapy of the oral JAK inhibitor is available in the real world. • The tofacitinib was promising in the improvement of the sclerosis and early radiological abnormalities in SSc-ILD patients.
Collapse
Affiliation(s)
- Zhou Junfei
- Department of Rheumatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7, Weiwu Road, Zhengzhou, 450000, China.
| | - Gao Meihua
- Department of Geriatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhang Shuai
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Lu Xiangting
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Lei Zhidan
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Cheng Tianming
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Liu Yajing
- Department of Respiratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Tianshu Chu
- Department of Rheumatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7, Weiwu Road, Zhengzhou, 450000, China.
| | - Shi Lipu
- Department of Rheumatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7, Weiwu Road, Zhengzhou, 450000, China
| |
Collapse
|
35
|
Lin H, Liu J, Li N, Zhang B, Nguyen VD, Yao P, Feng J, Liu Q, Chen Y, Li G, Zhou Y, Zhou L. NETosis promotes chronic inflammation and fibrosis in systemic lupus erythematosus and COVID-19. Clin Immunol 2023; 254:109687. [PMID: 37419296 DOI: 10.1016/j.clim.2023.109687] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
Pulmonary fibrosis, a serious complication of systemic lupus erythematosus (SLE) and coronavirus disease 2019 (COVID-19), leads to irreversible lung damage. However, the underlying mechanism of this condition remains unclear. In this study, we revealed the landscape of transcriptional changes in lung biopsies from individuals with SLE, COVID-19-induced pulmonary fibrosis, and idiopathic pulmonary fibrosis (IPF) using histopathology and RNA sequencing, respectively. Despite the diverse etiologies of these diseases, lung expression of matrix metalloproteinase genes in these diseases showed similar patterns. Particularly, the differentially expressed genes were significantly enriched in the pathway of neutrophil extracellular trap formation, showing similar enrichment signature between SLE and COVID-19. The abundance of Neutrophil extracellular traps (NETs) was much higher in the lungs of individuals with SLE and COVID-19 compared to those with IPF. In-depth transcriptome analyses revealed that NETs formation pathway promotes epithelial-mesenchymal transition (EMT). Furthermore, stimulation with NETs significantly up-regulated α-SMA, Twist, Snail protein expression, while decreasing the expression of E-cadherin protein in vitro. This indicates that NETosis promotes EMT in lung epithelial cells. Given drugs that are efficacious in degrading damaged NETs or inhibiting NETs production, we identified a few drug targets that were aberrantly expressed in both SLE and COVID-19. Among these targets, the JAK2 inhibitor Tofacitinib could effectively disrupted the process of NETs and reversed NET-induced EMT in lung epithelial cells. These findings support that the NETs/EMT axis, activated by SLE and COVID-19, contributes to the progression of pulmonary fibrosis. Our study also highlights that JAK2 as a potential target for the treatment of fibrosis in these diseases.
Collapse
Affiliation(s)
- Huiqing Lin
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ning Li
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Van Dien Nguyen
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Peipei Yao
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan 430071, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qianyun Liu
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan 430071, China.
| |
Collapse
|
36
|
Wang S, Li Y, Tang Y, Xie W, Zhang Y, Liu Q. A prospective observational cohort study of the efficacy of tofacitinib plus iguratimod on rheumatoid arthritis with usual interstitial pneumonia. Front Immunol 2023; 14:1215450. [PMID: 37680626 PMCID: PMC10482028 DOI: 10.3389/fimmu.2023.1215450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Objectives This study aims to assess the efficacy of tofacitinib (TOF) plus iguratimod (IGU) in rheumatoid arthritis (RA) with usual interstitial pneumonia (UIP) (RA-UIP). Methods This was a prospective observational cohort, single-center study. Data from 78 RA-UIP patients treated with TOF plus IGU, IGU plus conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs), and csDMARDs were analyzed. Clinically relevant responses in RA activity assessment, pulmonary function tests (PFTs), and high-resolution computed tomography (HRCT) assessment at baseline and follow-up were compared between groups to evaluate the efficacy of TOF plus IGU. Results A total of 78 patients were followed up for at least 6 months after treatment. There were significant changes in sedimentation rate (ESR), C reactive protein (CRP), and disease activity score (DAS) 28-CRP during the follow-up within each treatment group, but there was no statistically significant difference between the two groups. After 6 months of TOF plus IGU treatment, forced vital capacity (FVC)% (84.7 ± 14.7 vs. 90.7 ± 15.4) and HRCT fibrosis score (7.3 ± 3.4 vs. 7.0 ± 5.6) showed a significant improvement compared to the csDMARDs group (P = 0.031, P = 0.015). The TOF plus IGU-treated patients had a significantly higher regression and lower deterioration than the csDMARDs-treated patients (P = 0.026, P = 0.026) and had a significantly higher response (regression + stability), with overall response rates of 66.7% (16/24) vs. 35.7% (10/28) (P = 0.027), respectively. Conclusion Our results indicate that TOF plus IGU can simultaneously relieve RA and RA-UIP and be better than the csDMARDs with a higher response rate in RA-UIP, which may be a potential choice for "dual treat-to-target".
Collapse
Affiliation(s)
| | | | | | - Weilin Xie
- Department of Rheumatology, the Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Yue Zhang
- Department of Rheumatology, the Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | | |
Collapse
|
37
|
Tseng CC, Sung YW, Chen KY, Wang PY, Yen CY, Sung WY, Wu CC, Ou TT, Tsai WC, Liao WT, Chen CJ, Lee SC, Chang SJ, Yen JH. The Role of Macrophages in Connective Tissue Disease-Associated Interstitial Lung Disease: Focusing on Molecular Mechanisms and Potential Treatment Strategies. Int J Mol Sci 2023; 24:11995. [PMID: 37569370 PMCID: PMC10419312 DOI: 10.3390/ijms241511995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a severe manifestation of CTD that leads to significant morbidity and mortality. Clinically, ILD can occur in diverse CTDs. Pathologically, CTD-ILD is characterized by various histologic patterns, such as nonspecific interstitial pneumonia, organizing pneumonia, and usual interstitial pneumonia. Abnormal immune system responses have traditionally been instrumental in its pathophysiology, and various changes in immune cells have been described, especially in macrophages. This article first briefly overviews the epidemiology, clinical characteristics, impacts, and histopathologic changes associated with CTD-ILD. Next, it summarizes the roles of various signaling pathways in macrophages or products of macrophages in ILD, helped by insights gained from animal models. In the following sections, this review returns to studies of macrophages in CTD-ILD in humans for an overall picture of the current understanding. Finally, we direct attention to potential therapies targeting macrophages in CTD-ILD in investigation or in clinical trials, as well as the future directions regarding macrophages in the context of CTD-ILD. Although the field of macrophages in CTD-ILD is still in its infancy, several lines of evidence suggest the potential of this area.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ya-Wen Sung
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kuan-Yu Chen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Pin-Yi Wang
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chang-Yi Yen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Su-Chen Lee
- Laboratory Diagnosis of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
38
|
Peng Y, Zhou M, Yang H, Qu R, Qiu Y, Hao J, Bi H, Guo D. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases. Mediators Inflamm 2023; 2023:8821610. [PMID: 37332618 PMCID: PMC10270764 DOI: 10.1155/2023/8821610] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Macrophages are innate immune cells in the organism and can be found in almost tissues and organs. They are highly plastic and heterogeneous cells and can participate in the immune response, thereby playing a crucial role in maintaining the immune homeostasis of the body. It is well known that undifferentiated macrophages can polarize into classically activated macrophages (M1 macrophages) and alternatively activated macrophages (M2 macrophages) under different microenvironmental conditions. The directions of macrophage polarization can be regulated by a series of factors, including interferon, lipopolysaccharide, interleukin, and noncoding RNAs. To elucidate the role of macrophages in various autoimmune diseases, we searched the literature on macrophages with the PubMed database. Search terms are as follows: macrophages, polarization, signaling pathways, noncoding RNA, inflammation, autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, lupus nephritis, Sjogren's syndrome, Guillain-Barré syndrome, and multiple sclerosis. In the present study, we summarize the role of macrophage polarization in common autoimmune diseases. In addition, we also summarize the features and recent advances with a particular focus on the immunotherapeutic potential of macrophage polarization in autoimmune diseases and the potentially effective therapeutic targets.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hong Yang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Yan Qiu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| |
Collapse
|
39
|
Lescoat A, Roofeh D, Kuwana M, Lafyatis R, Allanore Y, Khanna D. Therapeutic Approaches to Systemic Sclerosis: Recent Approvals and Future Candidate Therapies. Clin Rev Allergy Immunol 2023; 64:239-261. [PMID: 34468946 PMCID: PMC9034469 DOI: 10.1007/s12016-021-08891-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis is the rheumatic disease with the highest individual mortality. The severity of the disease is determined by the extent of fibrotic changes to cutaneous and internal organ tissues, the most life-threatening visceral manifestations being interstitial lung disease, SSc-associated-pulmonary arterial hypertension and myocardial involvement. The heterogeneity of the disease has initially hindered the design of successful clinical trials, but considerations on classification criteria have improved patient selection in trials, allowing the identification of more homogeneous groups of patients based on progressive visceral manifestations or the extent of skin involvement with a focus of patients with early disease. Two major subsets of systemic sclerosis are classically described: limited cutaneous systemic sclerosis characterized by distal skin fibrosis and the diffuse subset with distal and proximal skin thickening. Beyond this dichotomic subgrouping of systemic sclerosis, new phenotypic considerations based on antibody subtypes have provided a better understanding of the heterogeneity of the disease, anti-Scl70 antibodies being associated with progressive interstitial lung disease regardless of cutaneous involvement. Two targeted therapies, tocilizumab (a monoclonal antibody targeting interleukin-6 receptors (IL-6R)) and nintedanib (a tyrosine kinase inhibitor), have recently been approved by the American Food & Drug Administration to limit the decline of lung function in patients with SSc-associated interstitial lung disease, demonstrating that such better understanding of the disease pathogenesis with the identification of key targets can lead to therapeutic advances in the management of some visceral manifestations of the disease. This review will provide a brief overview of the pathogenesis of SSc and will present a selection of therapies recently approved or evaluated in this context. Therapies evaluated and approved in SSc-ILD will be emphasized and a review of recent phase II trials in diffuse cutaneous systemic sclerosis will be proposed. We will also discuss selected therapeutic pathways currently under investigation in systemic sclerosis that still lack clinical data in this context but that may show promising results in the future based on preclinical data.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - David Roofeh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yannick Allanore
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université de Paris, Université Paris Descartes, Paris, France
- Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
41
|
Sun Q, Hu S, Lou Z, Gao J. The macrophage polarization in inflammatory dermatosis and its potential drug candidates. Biomed Pharmacother 2023; 161:114469. [PMID: 37002572 DOI: 10.1016/j.biopha.2023.114469] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Inflammatory dermatosis is characterized by persistent inflammatory infiltration and hard repair of diseased skin. As a member of the human innate immune cells, macrophages usually show different phenotypes in different diseases. The macrophage phenotype (M1/M2) imbalance caused by the increase of M1 macrophages or the decrease of M2 macrophages is common in inflammatory dermatosis. In recent years, with the deepening research on inflammatory skin diseases, more and more natural medicines/traditional Chinese medicines (TCMs), represented by Shikonin and Angelica Dahurica, have shown their therapeutic effects by affecting the polarization of macrophages. This review introduced macrophage polarization in different inflammatory dermatosis, such as psoriasis. Then summarized the natural medicines/TCMs that have potential therapeutic effects so far and introduced their mechanisms of action and the proteins/signal pathways involved. We found that the TCMs with therapeutic effects listed in this review are closely related to the theory of five flavors and four properties of Chinese medicinal, and most of them are bitter, acrid and sweet. Bitter TCMs have antipyretic, anti-inflammatory and antibacterial effects, which may improve the persistent inflammation of M1 macrophage infiltration. Acrid TCMs have the effect of promoting blood circulation, while sweet TCMs have the effect of nourishing. These 2 flavors may accelerate the repair of skin lesions of inflammatory dermatosis by affecting M2 macrophages. In conclusion, we hope to provide sufficient knowledge for natural medicine research and the development of inflammatory dermatosis related to macrophage phenotype imbalance.
Collapse
Affiliation(s)
- Qingru Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Shiyu Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China.
| |
Collapse
|
42
|
Huo R, Huang X, Yang Y, Yang Y, Lin J. Potential of resveratrol in the treatment of interstitial lung disease. Front Pharmacol 2023; 14:1139460. [PMID: 37089962 PMCID: PMC10117935 DOI: 10.3389/fphar.2023.1139460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Interstitial lung disease (ILD) is a heterogeneous group of diseases characterized by lung injury caused by lung fibroblast proliferation, interstitial inflammation, and fibrosis. Different cell signal transduction pathways are activated in response to various proinflammatory or fibrotic cytokines, such as IL-6, and these cytokines are increased in different ILDs. The overexpressed cytokines and growth factors in ILD can activate TGF-β/Smad2/3/4, NF-κB, and JAK/STAT signal transduction pathways, promote the activation of immune cells, increase the release of pro-inflammatory and pro-fibrotic factors, differentiate fibroblasts into myofibroblasts, and promote the occurrence and development of ILD. This finding suggests the importance of signal transduction pathways in patients with ILD. Recent evidence suggests that resveratrol (RSV) attenuates excessive inflammation and pulmonary fibrosis by inhibiting the TGF-β/Smad2/3/4, NF-κB, and JAK/STAT signal transduction pathways and overactivation of immune cells. In this review, advances in lung protection and the underlying mechanisms of RSV are summarized, and the potential efficacy of RSV as a promising treatment option for ILD is highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Jinying Lin
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
43
|
Sweis JJG, Sweis NWG, Alnaimat F, Jansz J, Liao TWE, Alsakaty A, Azam A, Elmergawy H, Hanson HA, Ascoli C, Rubinstein I, Sweiss N. Immune-mediated lung diseases: A narrative review. Front Med (Lausanne) 2023; 10:1160755. [PMID: 37089604 PMCID: PMC10117988 DOI: 10.3389/fmed.2023.1160755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
The role of immunity in the pathogenesis of various pulmonary diseases, particularly interstitial lung diseases (ILDs), is being increasingly appreciated as mechanistic discoveries advance our knowledge in the field. Immune-mediated lung diseases demonstrate clinical and immunological heterogeneity and can be etiologically categorized into connective tissue disease (CTD)-associated, exposure-related, idiopathic, and other miscellaneous lung diseases including sarcoidosis, and post-lung transplant ILD. The immunopathogenesis of many of these diseases remains poorly defined and possibly involves either immune dysregulation, abnormal healing, chronic inflammation, or a combination of these, often in a background of genetic susceptibility. The heterogeneity and complex immunopathogenesis of ILDs complicate management, and thus a collaborative treatment team should work toward an individualized approach to address the unique needs of each patient. Current management of immune-mediated lung diseases is challenging; the choice of therapy is etiology-driven and includes corticosteroids, immunomodulatory drugs such as methotrexate, cyclophosphamide and mycophenolate mofetil, rituximab, or other measures such as discontinuation or avoidance of the inciting agent in exposure-related ILDs. Antifibrotic therapy is approved for some of the ILDs (e.g., idiopathic pulmonary fibrosis) and is being investigated for many others and has shown promising preliminary results. A dire need for advances in the management of immune-mediated lung disease persists in the absence of standardized management guidelines.
Collapse
Affiliation(s)
| | | | - Fatima Alnaimat
- Division of Rheumatology, Department of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Jacqueline Jansz
- Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Ting-Wei Ernie Liao
- School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Alaa Alsakaty
- Division of Rheumatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Abeera Azam
- Department of Internal Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Hesham Elmergawy
- Division of Rheumatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Hali A. Hanson
- UIC College of Pharmacy, University of Illinois Chicago, Chicago, IL, United States
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Israel Rubinstein
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
- Research Service, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Nadera Sweiss
- Division of Rheumatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
44
|
Therapeutic strategies targeting pro-fibrotic macrophages in interstitial lung disease. Biochem Pharmacol 2023; 211:115501. [PMID: 36921632 DOI: 10.1016/j.bcp.2023.115501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the representative phenotype of interstitial lung disease where severe scarring develops in the lung interstitium. Although antifibrotic treatments are available and have been shown to slow the progression of IPF, improved therapeutic options are still needed. Recent data indicate that macrophages play essential pro-fibrotic roles in the pathogenesis of pulmonary fibrosis. Historically, macrophages have been classified into two functional subtypes, "M1" and "M2," and it is well described that "M2" or "alternatively activated" macrophages contribute to fibrosis via the production of fibrotic mediators, such as TGF-β, CTGF, and CCL18. However, highly plastic macrophages may possess distinct functions and phenotypes in the fibrotic lung environment. Thus, M2-like macrophages in vitro and pro-fibrotic macrophages in vivo are not completely identical cell populations. Recent developments in transcriptome analysis, including single-cell RNA sequencing, have attempted to depict more detailed phenotypic characteristics of pro-fibrotic macrophages. This review will outline the role and characterization of pro-fibrotic macrophages in fibrotic lung diseases and discuss the possibility of treating lung fibrosis by preventing or reprogramming the polarity of macrophages. We also utilized a systematic approach to review the literature and identify novel and promising therapeutic agents that follow this treatment strategy.
Collapse
|
45
|
Primary Cardiac Involvement in Systemic Sclerosis. Rheum Dis Clin North Am 2023; 49:483-488. [PMID: 37028848 DOI: 10.1016/j.rdc.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Primary cardiac involvement in systemic sclerosis (SSc) is an important cause of morbidity and mortality. Abnormalities of cardiac structure and function can be detected on routine cardiopulmonary screening that is the standard of care for SSc monitoring. Cardiovascular magnetic resonance-extracellular volume (indicating diffuse fibrosis) and cardiac biomarkers may identify at-risk patients who would benefit from further evaluation including screening for atrial and ventricular arrhythmias with implantable loop recorders. The role of algorithm-based cardiac evaluation both before and after therapeutic initiation is one of the many unmet needs for SSc clinical care.
Collapse
|
46
|
Effects of Ruxolitinib on fibrosis in preclinical models of systemic sclerosis. Int Immunopharmacol 2023; 116:109723. [PMID: 36696855 DOI: 10.1016/j.intimp.2023.109723] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disorder notably characterized by the production of antinuclear autoantibodies, which have been linked to an excess of apoptotic cells, normally eliminated by a macrophagic efferocytosis. As interferon (IFN) signature and phosphorylation of JAK-STAT proteins are hallmarks of SSc tissues, we tested the hypothesis that a JAK inhibitor, ruxolitinib, targeting the IFN signaling, could improve efferocytosis of IFN-exposed human macrophages in vitro as well as skin and lung fibrosis. In vivo, BLM- and HOCl-induced skin thickness and fibrosis is associated with an increase of caspase-3 positive dermal cells and a significant increase of IFN-stimulated genes expression. In BLM-SSc model, ruxolitinib prevented dermal thickness, fibrosis and significantly decreased the number of cleaved caspase-3 cells in the dermis. Ruxolitinib also improved lung architecture and fibrosis although IFN signature was not entirely decreased by ruxolitinib. In vitro, ruxolitinib improves efferocytosis capacity of human monocyte-differentiated macrophages exposed to IFN-γ or IFN-β. In human fibroblasts derived from lung (HLF) biopsies isolated from patients with idiopathic pulmonary fibrosis, the reduced mRNA expression of typical TGF-β-activated markers by ruxolitinib was associated with a decrease of the phosphorylation of SMAD2 /3 and STAT3. Our finding supports the anti-fibrotic properties of ruxolitinib in a systemic SSc mouse model and in vitro in human lung fibroblasts.
Collapse
|
47
|
Liu C, Tang J, Luo W, Liu S, Sun X, Hong W, Zhou X, Lu J, Li M, Zhu L. DNA from macrophages induces fibrosis and vasculopathy through POLR3A/STING/type I interferon axis in systemic sclerosis. Rheumatology (Oxford) 2023; 62:934-945. [PMID: 35686918 DOI: 10.1093/rheumatology/keac324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To clarify the role of RNA polymerase III A (POLR3A)/type I IFN in the pathogenesis of SSc. METHODS Cytosolic DNA and stimulator of IFN genes (STING) pathway in skin or serum of SSc patients were detected by immunofluorescence, immunohistochemistry and western blotting. DNA from human macrophages was transfected to SSc fibroblasts or human umbilical vein endothelial cells (HUVECs) and then markers of POLR3A/STING pathway were detected by real-time qPCR, western blotting and confocal microscopy. After H151 treatment or knocking down POLR3A/STING, type I IFN response, monocytes adhesion and activation of fibroblasts and HUVECs were evaluated. Regulation of IFN regulatory factor 3 (IRF3) on monocyte chemoattractant protein-1 (MCP-1) was determined by chromatin immunoprecipitation. In bleomycin (BLM)-induced SSc mice, the effect of STING knockout or H151 on vasculopathy and fibrosis was assessed. RESULTS Cytosolic DNA, colocalization of STING with alpha-smooth muscle actin (α-SMA) or CD31 in the skin, and STING pathway in the serum of SSc patients were increased. Macrophage-derived DNA stimulated the translocation of POLR3A from nucleus to the perinuclear region near STING and activated POLR3A/STING/type I IFN response, monocytes adhesion and MCP-1 expression in fibroblasts/HUVECs and collagen overproduction of fibroblasts. The activated IRF3 bound to the promoter of MCP-1. STING deficiency or H151 administration ameliorated fibrosis and vasculopathy both in vitro and in BLM-induced SSc mice. CONCLUSIONS SSc presented increased DNA leakage and STING pathway activation. DNA from macrophages induced type I IFN signature of fibroblasts and ECs through POLR3A/STING pathway. Blocking POLR3A/STING axis provides a new therapeutic target for SSc.
Collapse
Affiliation(s)
| | | | - Wei Luo
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Xiaolei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenxuan Hong
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
48
|
Cerro Chiang G, Parimon T. Understanding Interstitial Lung Diseases Associated with Connective Tissue Disease (CTD-ILD): Genetics, Cellular Pathophysiology, and Biologic Drivers. Int J Mol Sci 2023; 24:ijms24032405. [PMID: 36768729 PMCID: PMC9917355 DOI: 10.3390/ijms24032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a collection of systemic autoimmune disorders resulting in lung interstitial abnormalities or lung fibrosis. CTD-ILD pathogenesis is not well characterized because of disease heterogeneity and lack of pre-clinical models. Some common risk factors are inter-related with idiopathic pulmonary fibrosis, an extensively studied fibrotic lung disease, which includes genetic abnormalities and environmental risk factors. The primary pathogenic mechanism is that these risk factors promote alveolar type II cell dysfunction triggering many downstream profibrotic pathways, including inflammatory cascades, leading to lung fibroblast proliferation and activation, causing abnormal lung remodeling and repairs that result in interstitial pathology and lung fibrosis. In CTD-ILD, dysregulation of regulator pathways in inflammation is a primary culprit. However, confirmatory studies are required. Understanding these pathogenetic mechanisms is necessary for developing and tailoring more targeted therapy and provides newly discovered disease biomarkers for early diagnosis, clinical monitoring, and disease prognostication. This review highlights the central CTD-ILD pathogenesis and biological drivers that facilitate the discovery of disease biomarkers.
Collapse
Affiliation(s)
- Giuliana Cerro Chiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| | - Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
49
|
|
50
|
Fiorentini E, Bonomi F, Peretti S, Orlandi M, Lepri G, Matucci Cerinic M, Bellando Randone S, Guiducci S. Potential Role of JAK Inhibitors in the Treatment of Systemic Sclerosis-Associated Interstitial Lung Disease: A Narrative Review from Pathogenesis to Real-Life Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122101. [PMID: 36556466 PMCID: PMC9785277 DOI: 10.3390/life12122101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Systemic sclerosis-associated interstitial lung disease (SSc-ILD) is one of the most relevant complications of SSc and the major cause of death. The pathogenesis of SSc-ILD involves a complex interplay of multiple cell types and different molecular pathways, with both inflammation and fibrosis as pathological hallmarks. To date, there are no treatments able to target both components of the disease. Janus kinase inhibitors (JAKinibs) represent an interesting therapeutic option because they exert both anti-inflammatory and anti-fibrotic properties. METHODS Here, we performed a narrative review concerning the potential role of JAKinibs in SSc-ILD to define the state of art and to evaluate the pathogenetic rationale behind this type of treatment. RESULTS Currently, few studies investigated SSc-ILD response to JAKinibs treatment. Data were analyzed from three clinical studies and four case reports and progression of SSc-ILD was not evident in 93.5% of patients treated with JAKinibs. CONCLUSIONS Available evidence of efficacy of JAKinibs in SSc-ILD is sparse but promising. JAKinibs could be an interesting treatment in SSc-ILD because of their potential inhibition of the fibrotic processes combined with their anti-inflammatory action. Moreover, JAKinibs were also shown in some studies to have a potential effect on pulmonary arterial hypertension (PAH), another threatening complication in SSc. More data are necessary to define JAKinibs role in SSc-ILD treatment.
Collapse
Affiliation(s)
- Elisa Fiorentini
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Francesco Bonomi
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Correspondence:
| | - Silvia Peretti
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Martina Orlandi
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Gemma Lepri
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Matucci Cerinic
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Silvia Bellando Randone
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Serena Guiducci
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|