1
|
Lardaro A, Quarta L, Pagnotta S, Sodero G, Mariani S, Del Ben M, Desideri G, Ettorre E, Baratta F. Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline. Biomedicines 2024; 12:1750. [PMID: 39200215 PMCID: PMC11351143 DOI: 10.3390/biomedicines12081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Dementia is an age-related syndrome characterized by the progressive deterioration of cognition and capacity for independent living. Diabetes is often associated with cognitive decline and shares similar pathophysiological mechanisms with dementia, such as systemic inflammation, oxidative stress, insulin resistance, and advanced glycation end-products formation. Therefore, adequate diabetes management may reduce the risk of cognitive decline, especially in patients with other comorbidities and risk factors. The sodium glucose cotransporter inhibitors (SGLT2i) regulate renal glucose reabsorption by blocking the SGLT2 cotransporters located in the proximal tubules, causing glycosuria and intraglomerular pressure reduction. Their use helps to lower blood pressure by modifying sodium and water homeostasis; these drugs are also commonly used in the treatment of heart failure and chronic kidney disease, while recently, a potential neuroprotective role in the central nervous system has been suggested. The aim of our scoping review is to analyze current evidence about the potential neuroprotective effects of SGLT2i in adult patients. We performed a scoping literature review to evaluate the effect of SGLT2i on dementia, mild cognitive impairment (MCI) and Alzheimer's disease incidence and progression. The screening process was performed through different searches on PubMed and EMBASE, evaluating original works published up to January 2024. In conclusion, the use of SGLT2i could be associated with a neuroprotective effect in patients with diabetes, reducing the incidence or the progression of MCI and dementia. Further prospective studies are needed to validate this hypothesis and to evaluate the effectiveness of this class of drugs in normal glycemic profile patients.
Collapse
Affiliation(s)
- Antonio Lardaro
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.L.); (L.Q.); (S.P.); (M.D.B.); (G.D.); (E.E.)
| | - Ludovica Quarta
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.L.); (L.Q.); (S.P.); (M.D.B.); (G.D.); (E.E.)
| | - Stefania Pagnotta
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.L.); (L.Q.); (S.P.); (M.D.B.); (G.D.); (E.E.)
| | - Giorgio Sodero
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00136 Rome, Italy
| | - Sandro Mariani
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I University Hospital, 00161 Rome, Italy;
| | - Maria Del Ben
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.L.); (L.Q.); (S.P.); (M.D.B.); (G.D.); (E.E.)
| | - Giovambattista Desideri
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.L.); (L.Q.); (S.P.); (M.D.B.); (G.D.); (E.E.)
| | - Evaristo Ettorre
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.L.); (L.Q.); (S.P.); (M.D.B.); (G.D.); (E.E.)
| | - Francesco Baratta
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.L.); (L.Q.); (S.P.); (M.D.B.); (G.D.); (E.E.)
| |
Collapse
|
2
|
O'Hara DV, Lam CSP, McMurray JJV, Yi TW, Hocking S, Dawson J, Raichand S, Januszewski AS, Jardine MJ. Applications of SGLT2 inhibitors beyond glycaemic control. Nat Rev Nephrol 2024; 20:513-529. [PMID: 38671190 DOI: 10.1038/s41581-024-00836-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors were initially developed for their glucose-lowering effects and have shown a modest glycaemic benefit in people with type 2 diabetes mellitus (T2DM). In the past decade, a series of large, robust clinical trials of these therapies have demonstrated striking beneficial effects for various care goals, transforming the chronic disease therapeutic landscape. Cardiovascular safety studies in people with T2DM demonstrated that SGLT2 inhibitors reduce cardiovascular death and hospitalization for heart failure. Subsequent trials in participants with heart failure with reduced or preserved left ventricular ejection fraction demonstrated that SGLT2 inhibitors have beneficial effects on heart failure outcomes. In dedicated kidney outcome studies, SGLT2 inhibitors reduced the incidence of kidney failure among participants with or without diabetes. Post hoc analyses have suggested a range of other benefits of these drugs in conditions as diverse as metabolic dysfunction-associated steatotic liver disease, kidney stone prevention and anaemia. SGLT2 inhibitors have a generally favourable adverse effect profile, although patient selection and medication counselling remain important. Concerted efforts are needed to better integrate these agents into routine care and support long-term medication adherence to close the gap between clinical trial outcomes and those achieved in the real world.
Collapse
Affiliation(s)
- Daniel V O'Hara
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
- Baim Institute for Clinical Research, Boston, MA, USA
| | - John J V McMurray
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Tae Won Yi
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- The George Institute for Global Health, University of New South Wales, Newtown, New South Wales, Australia
| | - Samantha Hocking
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Boden Initiative, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Jessica Dawson
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Nutrition and Dietetics, St George Hospital, Kogarah, New South Wales, Australia
| | - Smriti Raichand
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Centre for the Health Economy (MUCHE), Macquarie University, Macquarie Park, New South Wales, Australia
| | - Andrzej S Januszewski
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Medicine (St. Vincent's Hospital), The University of Melbourne, Fitzroy, Victoria, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Meg J Jardine
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia.
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia.
| |
Collapse
|
3
|
Gong S, Zhang S, Ye Y, Wu M. Dapagliflozin-induced abnormal uterine bleeding in a patient with dilated cardiomyopathy and chronic heart failure: a case report. J Int Med Res 2024; 52:3000605241271750. [PMID: 39180294 PMCID: PMC11344891 DOI: 10.1177/03000605241271750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are extensively used in the management of heart failure because of their cardiovascular benefits. Adverse drug reactions associated with dapagliflozin include diabetic ketoacidosis, fungal infections, and increased blood glucose concentrations. However, abnormal uterine bleeding is not a known side effect of dapagliflozin. We report a 75-year-old Chinese woman with dilated cardiomyopathy and chronic heart failure who experienced abnormal uterine bleeding while taking dapagliflozin. Notably, cessation of dapagliflozin administration resulted in the disappearance of uterine bleeding. These findings suggest that dapagliflozin possesses additional potential mechanisms, but these mechanisms require further investigation. Furthermore, healthcare professionals should remain vigilant regarding the occurrence of uterine bleeding when prescribing dapagliflozin.
Collapse
Affiliation(s)
- Shikun Gong
- Department of Cardiovascular, Beilun District People’s Hospital (Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch), Ningbo, Zhejiang 315800, China
| | - Shunan Zhang
- Department of Cardiovascular, Beilun District People’s Hospital (Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch), Ningbo, Zhejiang 315800, China
| | - Yun Ye
- Department of Pharmacy, Beilun District People’s Hospital (Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch), Ningbo, Zhejiang 315800, China
| | - Meiling Wu
- Department of Pharmacy, Beilun District People’s Hospital (Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch), Ningbo, Zhejiang 315800, China
| |
Collapse
|
4
|
Omari MB, Naseri S, Hassan AJ. Drug Safety Evaluation of Sodium-Glucose Cotransporter 2 Inhibitors in Diabetic Comorbid Patients by Review of Systemic Extraglycemic Effects. Diabetes Metab Syndr Obes 2024; 17:1131-1141. [PMID: 38465348 PMCID: PMC10924842 DOI: 10.2147/dmso.s448670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Purpose The aim of this study is to evaluate the safety of this drug in diabetic patients with comorbidities of all systems. Method In this review, the beneficial effects of this drug and its mechanism on the disorders of every system of humans in relation to diabetes have been studied, and finally, its adverse effects have also been discussed. The search for relevant information is carried out in the PubMed and Google Scholar databases by using the following terms: diabetes mellitus type 2, SGLT, SGLT2 inhibitors, (SGLT2 inhibitors) AND (Pleiotropic effects). All English-published articles from 2016 to 2023 have been used in this study. It should be noted that a small number of articles published before 2016 have been used in the introduction and general informations. Results Its beneficial effects on improving cardiovascular disease risk factors and reducing adverse events caused by cardiovascular and renal diseases have proven in most large clinical studies that these effects are almost certain. It also has beneficial effects on other human systems such as the respiratory system, the gastrointestinal system, the circulatory system, and the nervous system; more of them are at the level of clinical and pre-clinical trials but have not been proven in large clinical trials or meta-analyses. Conclusion With the exception of a few adverse effects, this drug is considered a good choice and safe for all diabetic patients with comorbidities of all systems.
Collapse
Affiliation(s)
- Mohammad Belal Omari
- Department of Endocrinology, Hematology and Rheumatology, Ali Abad Teaching Hospital, Kabul University of Medical Sciences "Abu Ali Ibn Sina", Kabul, Afghanistan
| | - Shafiqullah Naseri
- Cardio-Pulmonary Department, Ali Abad Teaching Hospital, Kabul University of Medical Sciences "Abu Ali Ibn Sina", Kabul, Afghanistan
| | - Abdul Jalil Hassan
- Department of Infectious Disease and Tuberculosis, Ali Abad Teaching Hospital, Kabul University of Medical Sciences "Abu Ali Ibn Sina", Kabul, Afghanistan
| |
Collapse
|
5
|
Tarun T, Ghanta SN, Ong V, Kore R, Menon L, Kovesdy C, Mehta JL, Jain N. Updates on New Therapies for Patients with CKD. Kidney Int Rep 2024; 9:16-28. [PMID: 38312786 PMCID: PMC10831355 DOI: 10.1016/j.ekir.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024] Open
Abstract
Individuals diagnosed with chronic kidney disease (CKD) continue to increase globally. This group of patients experience a disproportionately higher risk of cardiovascular (CV) events compared to the general population. Despite multiple guidelines-based medical management, patients with CKD continue to experience residual cardiorenal risk. Several potential mechanisms explain this excessive CV risk observed in individuals with CKD. Several new drugs have become available that could potentially transform CKD care, given their efficacy in this patient population. Nevertheless, use of these drugs presents certain benefits and challenges that are often underrecognized by prescribing these drugs. In this review, we aim to provide a brief discussion about CKD pathophysiology, limiting our discussion to recent published studies. We also explore benefits and limitations of newer drugs, including angiotensin receptor/neprilysin inhibitors (ARNI), sodium glucose transporter 2 inhibitors (SGLT2i), glucagon-like peptides-1 (GLP-1) agonists and finerenone in patients with CKD. Despite several articles covering this topic, our review provides an algorithm where subgroups of patients with CKD might benefit the most from such drugs based on the selection criteria of the landmark trials. Patients with CKD who have nephrotic range proteinuria beyond 5000 mg/g, or those with poorly controlled blood pressure (systolic ≥160 mm Hg or diastolic ≥100 mm Hg) remain understudied.
Collapse
Affiliation(s)
- Tushar Tarun
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sai Nikhila Ghanta
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Vincz Ong
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rajshekhar Kore
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lakshmi Menon
- Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Csaba Kovesdy
- Renal section, Memphis Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Jawahar L. Mehta
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Cardiology Section, Central Arkansas Veterans Affairs Medical Center, Little Rock, Arkansas, USA
| | - Nishank Jain
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
6
|
Yang L, Steiger S, Shi C, Gudermann T, Mammadova-Bach E, Braun A, Anders HJ. Both hyperglycemia and hyperuricemia aggravate acute kidney injury during cholesterol embolism syndrome despite opposite effects on kidney infarct size. Kidney Int 2023; 104:139-150. [PMID: 37001603 DOI: 10.1016/j.kint.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Kidney cholesterol crystal embolism (CCE) occurs in advanced atherosclerosis and induces a thrombotic (micro)angiopathy, a drop in the glomerular filtration rate (GFR), and an ischemic kidney infarction with necroinflammation. We speculated that common metabolic comorbidities such as diabetes or hyperuricemia would independently modulate each of these distinct pathophysiological processes. To test this, experimental CCE was induced by injecting cholesterol crystals into the left kidney artery of mice and thrombotic angiopathy, GFR drop, and infarct size were analyzed after 24 hours in the presence of hyperglycemia (about 500 mg/dL) or hyperuricemia (about 8 mg/dL) or their absence. In healthy mice, unilateral CCE caused diffuse thrombotic angiopathy in interlobar, arcuate and interlobular arteries, followed by a 50% or less drop in GFR compared to baseline and a variable degree of ischemic kidney necrosis. Hyperglycemia but not hyperuricemia aggravated thrombotic angiopathy although both caused a GFR decline, albeit via different mechanisms. Hyperglycemia aggravated GFR loss by increasing necroinflammation and infarct size, while the antioxidative effects of hyperuricemia reasonably attenuated necroinflammation and infarct size but induced a diffuse vasoconstriction in affected and unaffected kidney tissue. Thus, both hyperglycemia or hyperuricemia aggravate CCE-induced acute kidney failure despite having opposite effects on ischemic necroinflammation and infarction.
Collapse
Affiliation(s)
- Luying Yang
- Department of Medicine IV, Hospital of Ludwig-Maximilian-University, Munich, Germany
| | - Stefanie Steiger
- Department of Medicine IV, Hospital of Ludwig-Maximilian-University, Munich, Germany
| | - Chongxu Shi
- Department of Medicine IV, Hospital of Ludwig-Maximilian-University, Munich, Germany; School of Life Sciences, Nantong Laboratory of Development and Diseases, Medical College, Nantong University, Nantong, China
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig Maximilian University, Munich, Germany
| | - Elmina Mammadova-Bach
- Department of Medicine IV, Hospital of Ludwig-Maximilian-University, Munich, Germany; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig Maximilian University, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig Maximilian University, Munich, Germany
| | - Hans-Joachim Anders
- Department of Medicine IV, Hospital of Ludwig-Maximilian-University, Munich, Germany.
| |
Collapse
|
7
|
Vicente JM, Lescano CH, Bordin S, Mónica FZ, Gobbi G, Anhê GF. Agomelatine inhibits platelet aggregation through melatonin receptor-dependent and independent mechanisms. Life Sci 2023:121906. [PMID: 37394096 DOI: 10.1016/j.lfs.2023.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
AIMS Melatonin is known to inhibit platelet aggregation induced by arachidonic acid (AA). In the present study we investigated whether agomelatine (Ago), an antidepressant with agonist activity at melatonin receptor 1 (MT1) and MT2 could reduce platelets aggregation and adhesion. MAIN METHODS Human platelets from healthy donors were used to test the in vitro effects of Ago in the presence of different platelet activators. We performed aggregation and adhesion assays, thromboxane B2 (TxB2), cAMP and cGMP measurements, intra-platelet calcium registration and flow cytometry assays. KEY FINDINGS Our data revealed that different concentrations of Ago reduced AA- and collagen-induced human platelet aggregation in vitro. Ago also reduced AA-induced increase in thromboxane B2 (TxB2) production, intracellular calcium levels and P-selectin expression at plasma membrane. The effects of Ago in AA-activated platelets were likely dependent on MT1 as they were blocked by luzindole (a MT1/MT2 antagonist) and mimicked by the MT1 agonist UCM871 in a luzindole-sensitive manner. The MT2 agonist UCM924 was also able to inhibit platelet aggregation, but this response was not affected by luzindole. On the other hand, although UCM871 and UCM924 reduced collagen-induced platelet aggregation and adhesion, inhibition of collagen-induced platelet aggregation by Ago was not mediated by melatonin receptors because it was not affected by luzindole. SIGNIFICANCE The present data show that Ago suppresses human platelet aggregation and suggest that this antidepressant may have the potential to prevent atherothrombotic ischemic events by reducing thrombus formation and vessel occlusion.
Collapse
Affiliation(s)
- Julia Modesto Vicente
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Caroline Honaiser Lescano
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| |
Collapse
|
8
|
Sex-dependent effects of canagliflozin and dapagliflozin on hemostasis in normoglycemic and hyperglycemic mice. Sci Rep 2023; 13:932. [PMID: 36650229 PMCID: PMC9845220 DOI: 10.1038/s41598-023-28225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are antihyperglycemic drugs that decrease mortality from cardiovascular diseases. However, their effects on hemostasis in the cardioprotective effects have not been evaluated. Therefore, the effects of canagliflozin (CANA, 100 mg/kg, p.o.) and dapagliflozin (DAPA, 10 mg/kg, p.o.) on the parameters of hemostasis were investigated in female and male normoglycemic and streptozotocin (180 mg/kg, i.p.)-induced diabetic mice. CANA and DAPA reduced platelet activity in thrombus in male and female mice both normoglycemic and diabetic. CANA decreased thrombus formation in diabetic male mice, and platelet activation to ADP in diabetic female and male mice. Activation of fibrinolysis was observed in female mice, both normoglycemic and diabetic. DAPA reduced thrombus formation in diabetic male and female mice, and decreased platelet activation to ADP and fibrin formation in diabetic male mice. DAPA increased fibrin formation in normoglycemic female mice and activated fibrinolysis in diabetic female mice. CANA and DAPA exerted sex-specific effects, which were more pronounced in hyperglycemia. The antithrombotic effect of CANA and DAPA was more noticeable in male mice and could be due to platelet inhibition. The effect on coagulation and fibrinolysis was not clear since an increased coagulation and fibrinolysis were observed only in female mice.
Collapse
|
9
|
Haeberle HA, Calov S, Martus P, Serna-Higuita LM, Koeppen M, Goll A, Bernard A, Zarbock A, Meersch M, Weiss R, Mehrländer M, Marx G, Putensen C, Bakchoul T, Magunia H, Nieswandt B, Mirakaj V, Rosenberger P. Inhaled prostacyclin therapy in the acute respiratory distress syndrome: a randomized controlled multicenter trial. Respir Res 2023; 24:58. [PMID: 36805707 PMCID: PMC9938510 DOI: 10.1186/s12931-023-02346-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/26/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) results in significant hypoxia, and ARDS is the central pathology of COVID-19. Inhaled prostacyclin has been proposed as a therapy for ARDS, but data regarding its role in this syndrome are unavailable. Therefore, we investigated whether inhaled prostacyclin would affect the oxygenation and survival of patients suffering from ARDS. METHODS We performed a prospective randomized controlled single-blind multicenter trial across Germany. The trial was conducted from March 2019 with final follow-up on 12th of August 2021. Patients with moderate to severe ARDS were included and randomized to receive either inhaled prostacyclin (3 times/day for 5 days) or sodium chloride (Placebo). The primary outcome was the oxygenation index in the intervention and control groups on Day 5 of therapy. Secondary outcomes were mortality, secondary organ failure, disease severity and adverse events. RESULTS Of 707 patients approached 150 patients were randomized to receive inhaled prostacyclin (n = 73) or sodium chloride (n = 77). Data from 144 patients were analyzed. The baseline PaO2/FiO2 ratio did not differ between groups. The primary analysis of the study was negative, and prostacyclin improved oxygenation by 20 mmHg more than Placebo (p = 0.17). Secondary analysis showed that the oxygenation was significantly improved in patients with ARDS who were COVID-19-positive (34 mmHg, p = 0.04). Mortality did not differ between groups. Secondary organ failure and adverse events were similar in the intervention and control groups. CONCLUSIONS The primary result of our study was negative. Our data suggest that inhaled prostacyclin might be beneficial treatment in patients with COVID-19 induced ARDS. TRIAL REGISTRATION The study was approved by the Institutional Review Board of the Research Ethics Committee of the University of Tübingen (899/2018AMG1) and the corresponding ethical review boards of all participating centers. The trial was also approved by the Federal Institute for Drugs and Medical Devices (BfArM, EudraCT No. 2016003168-37) and registered at clinicaltrials.gov (NCT03111212) on April 6th 2017.
Collapse
Affiliation(s)
- Helene A. Haeberle
- grid.411544.10000 0001 0196 8249Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Stefanie Calov
- grid.411544.10000 0001 0196 8249Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Peter Martus
- grid.10392.390000 0001 2190 1447Institute for Clinical Epidemiology and Applied Biometry, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Lina Maria Serna-Higuita
- grid.10392.390000 0001 2190 1447Institute for Clinical Epidemiology and Applied Biometry, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Michael Koeppen
- grid.411544.10000 0001 0196 8249Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Almuth Goll
- grid.411544.10000 0001 0196 8249Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Alice Bernard
- grid.411544.10000 0001 0196 8249Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Alexander Zarbock
- grid.5949.10000 0001 2172 9288Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Melanie Meersch
- grid.5949.10000 0001 2172 9288Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Raphael Weiss
- grid.5949.10000 0001 2172 9288Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Martin Mehrländer
- grid.411544.10000 0001 0196 8249Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Gernot Marx
- grid.412301.50000 0000 8653 1507Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Putensen
- grid.15090.3d0000 0000 8786 803XDepartment of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Tamam Bakchoul
- grid.411544.10000 0001 0196 8249Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, Tübingen, Germany
| | - Harry Magunia
- grid.411544.10000 0001 0196 8249Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Bernhard Nieswandt
- grid.411760.50000 0001 1378 7891Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany
| | - Valbona Mirakaj
- grid.411544.10000 0001 0196 8249Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| |
Collapse
|
10
|
Gohari S, Reshadmanesh T, Khodabandehloo H, Karbalaee-Hasani A, Ahangar H, Arsang-Jang S, Ismail-Beigi F, Dadashi M, Ghanbari S, Taheri H, Fathi M, Muhammadi MJ, Mahmoodian R, Asgari A, Tayaranian M, Moharrami M, Mahjani M, Ghobadian B, Chiti H, Gohari S. The effect of EMPAgliflozin on markers of inflammation in patients with concomitant type 2 diabetes mellitus and Coronary ARtery Disease: the EMPA-CARD randomized controlled trial. Diabetol Metab Syndr 2022; 14:170. [PMID: 36397128 PMCID: PMC9669535 DOI: 10.1186/s13098-022-00951-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Systemic inflammation and oxidative burden in patients with type 2 diabetes mellitus (T2DM) causes deleterious cardiovascular outcomes. We sought to investigate the clinical antioxidative and anti-inflammatory effects of empagliflozin. Platelet function, oxidant and antioxidant biomarkers and pro-inflammatory agents at baseline and at 26 weeks were measured. A total of 95 patients (41.05% male, mean age 62.85 ± 7.91 years, mean HbA1c 7.89 ± 0.96%) with concomitant T2DM and coronary artery disease (CAD) were randomized (1:1) to receive empagliflozin (10 mg/daily) or placebo. Patients treated with empagliflozin had lower levels of interleukin 6 (IL-6) (adjusted difference (adiff): - 1.06 pg/mL, 95% CI - 1.80; - 0.32, P = 0.006), interleukin 1β (IL-1β) and high-sensitive C-reactive protein (Hs-CRP) (adiff: - 4.58 pg/mL and - 2.86 mg/L; P = 0.32 and 0.003, respectively) compared to placebo. There were elevations in super oxidase dismutase (SOD) activity, glutathione (GSHr), and total antioxidant capacity (TAC) with empagliflozin (adiff: 3.7 U/mL, 0.57 muM, and 124.08 mmol/L, 95% CI 1.36; 6.05, 0.19; 0.95, and 47.98; 200.18, P = 0.002, 0.004, and 0.002, respectively). While reactive oxygen species (ROS) improved significantly (adiff: - 342.51, 95% CI - 474.23; - 210.79, P < 0.001), the changes in catalase activity (CAT), malondialdehyde (MDA), or protein carbonyl groups (PCG) were not significant. Moreover, the P-selectin antigen expression on platelet surface was significantly reduced (adiff: - 8.81, 95% CI - 14.87; - 2.75, P = 0.005). Markers of glycemic status (fasting blood glucose, HbA1c, and HOMA-IR (homeostatic model assessment for insulin resistance) significantly improved (P < 0.001). Among patients with T2DM and CAD, 6-month treatment with empagliflozin can mitigate inflammation, platelet activity and oxidative stress and is associated with clinical cardiovascular benefits.Trial Registration Iranian Registry of Clinical Trials. www.IRCT.ir , Identifier: IRCT20190412043247N2. Registration Date: 6/13/2020. Registration timing: prospective.
Collapse
Affiliation(s)
- Sepehr Gohari
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Family Medicine, Alborz University of Medical Science, Karaj, Alborz, Iran
| | - Tara Reshadmanesh
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hadi Khodabandehloo
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Karbalaee-Hasani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hassan Ahangar
- Department of Cardiology, School of Medicine, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Shahram Arsang-Jang
- Department of Biostatistics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mohsen Dadashi
- Department of Cardiology, School of Medicine, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samin Ghanbari
- Department of Cardiology, School of Medicine, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Homa Taheri
- Department of Cardiology, School of Medicine, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mojtaba Fathi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Muhammad Javad Muhammadi
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reyhaneh Mahmoodian
- Endocrinology and Metabolism Center, Department of Internal Medicine, Imam Ali Hospital, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Atieh Asgari
- Department of Cardiology, School of Medicine, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammadreza Tayaranian
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Moharrami
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahsa Mahjani
- Department of Family Medicine, Alborz University of Medical Science, Karaj, Alborz, Iran
- General Practitioner, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bijan Ghobadian
- Endocrinology and Metabolism Research Centre, School of Medicine, Vali-e-Asr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Chiti
- Endocrinology and Metabolism Research Centre, School of Medicine, Vali-e-Asr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sheida Gohari
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
11
|
Endothelial and Vascular Smooth Muscle Dysfunction in Hypertension. Biochem Pharmacol 2022; 205:115263. [PMID: 36174768 DOI: 10.1016/j.bcp.2022.115263] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/11/2022]
Abstract
The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.
Collapse
|
12
|
The Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitors Reduce Platelet Activation and Thrombus Formation by Lowering NOX2-Related Oxidative Stress: A Pilot Study. Antioxidants (Basel) 2022; 11:antiox11101878. [PMID: 36290601 PMCID: PMC9598474 DOI: 10.3390/antiox11101878] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Sodium−glucose co-transporter-2 inhibitors or gliflozins, the newest anti-hyperglycemic class, induce cardioprotective benefits in patients with type 2 diabetes (T2D). As platelet activation and oxidative stress play a key role in atherothrombotic-related complications, we hypothesized that gliflozins might modulate oxidative stress, platelet activation and thrombus formation. We performed an interventional open-label single-arm before-after study in 32 T2D patients on top of their ongoing metformin therapy. The population was divided into two groups: treatment with GLP-1 receptor agonists (GLP-1RA, Group A) and gliflozins (Group B). Oxidative stress, platelet activation and thrombus growth were assessed before and after 15 days of treatment. Compared to the baseline, gliflozins treatment significantly decreased sNOX2-dp (−45.2%, p < 0.001), H2O2 production (−53.4%, p < 0.001), TxB2 (−33.1%, p < 0.001), sP-selectin (−49.3%, p < 0.001) and sCD40L levels (−62.3%, p < 0.001) as well as thrombus formation (−32%, p < 0.001), whereas it potentiated anti-oxidant power (HBA, +30.8%, p < 0.001). Moreover, a significant difference in oxidative stress, platelet activation and thrombus formation across groups A and B was found. In addition, an in vitro study on stimulated platelets treated with gliflozins (10−30 μM) showed a reduction in oxidative stress, platelet activation and thrombus growth. Our results showed that gliflozins have antiplatelet and antithrombic activity related to an NOX2 down-regulation, suggesting a new mechanism responsible for cardiovascular protection.
Collapse
|
13
|
Quentin V, Singh M, Nguyen LS. A review of potential mechanisms and uses of SGLT2 inhibitors in ischemia-reperfusion phenomena. World J Diabetes 2022; 13:683-695. [PMID: 36188147 PMCID: PMC9521445 DOI: 10.4239/wjd.v13.i9.683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Recently added to the therapeutic arsenal against chronic heart failure as a first intention drug, the antidiabetic drug-class sodium-glucose cotransporter-2 inhibitors (SGLT2i) showed efficacy in decreasing overall mortality, hospitalization, and sudden death in patients of this very population, in whom chronic or acute ischemia count among the first cause. Remarkably, this benefit was observed independently from diabetic status, and benefited both preserved and altered ventricular ejection fraction. This feature, observed in several large randomized controlled trials, suggests additional effects from SGLT2i beyond isolated glycemia control. Indeed, both in-vitro and animal models suggest that inhibiting the Na+/H+ exchanger (NHE) may be key to preventing ischemia/ reperfusion injuries, and by extension may hold a similar role in ischemic damage control and ischemic preconditioning. Yet, several other mechanisms may be explored which may help better target those who may benefit most from SGLT2i molecules. Because of a large therapeutic margin with few adverse events, ease of prescription and potential pharmacological efficacity, SGLT2i could be candidate for wider indications. In this review, we aim to summarize all evidence which link SGLT2i and ischemia/reperfusion injuries modulation, by first listing known mechanisms, including metabolic switch, prevention of lethal arrythmias and others, which portend the latter, and second, hypothesize how the former may interact with these mechanisms.
Collapse
Affiliation(s)
- Victor Quentin
- Intensive Care Medicine, CMC Ambroise Paré, Neuilly-sur-Seine 92200, France
| | - Manveer Singh
- Intensive Care Medicine, CMC Ambroise Paré, Neuilly-sur-Seine 92200, France
| | - Lee S Nguyen
- Research and Innovation, CMC Ambroise Paré, Neuilly-sur-Seine 92200, France
| |
Collapse
|
14
|
Liberale L, Kraler S, Puspitasari YM, Bonetti NR, Akhmedov A, Ministrini S, Montecucco F, Marx N, Lehrke M, Hartmann NUK, Beer JH, Wenzl FA, Paneni F, Lüscher TF, Camici GG. SGLT-2 inhibition by empagliflozin has no effect on experimental arterial thrombosis in a murine model of low-grade inflammation. Cardiovasc Res 2022; 119:843-856. [PMID: 35993135 DOI: 10.1093/cvr/cvac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Low-grade inflammation couples dysmetabolic states to insulin resistance and atherosclerotic cardiovascular (CV) disease (ASCVD). Selective sodium-glucose co-transporter 2 (SGLT-2) inhibition by empagliflozin improves clinical outcomes in patients with ASCVD independently of its glucose lowering effects. Yet, its mechanism of action remains largely undetermined. Here, we aimed to test whether empagliflozin affects arterial thrombus formation in baseline (BSL) conditions or low-grade inflammatory states, a systemic milieu shared among patients with ASCVD. METHODS AND RESULTS Sixteen-week-old C57BL/6 mice were randomly assigned to acute administration of empagliflozin (25 mg/kg body weight) or vehicle, of which a subgroup was pre-treated biweekly over 4 weeks with super-low-dose lipopolysaccharide (LPS; 5 ng/kg body weight), before carotid thrombosis was induced by photochemical injury. The between-group difference in Doppler-flow probe detected time-to-occlusion remained within the predefined equivalence margin (Δ = |10.50|), irrespective of low-grade inflammation (95% confidence interval, -9.82 to 8.85 and -9.20 to 9.69), while glucose dropped by 1.64 and 4.84 mmoL/L, respectively. Ex vivo platelet aggregometry suggested similar activation status, corroborated by unchanged circulating platelet-factor 4 plasma levels. In concert, carotid PAI-1 expression and tissue factor (TF) activity remained unaltered upon SGLT-2 inhibition, and no difference in plasma d-dimer levels was detected, suggesting comparable coagulation cascade activation and fibrinolytic activity. In human aortic endothelial cells pre-treated with LPS, empagliflozin neither changed TF activity nor PAI-1 expression. Accordingly, among patients with established ASCVD or at high CV risk randomized to a daily dose of 10 mg empagliflozin signatures of thrombotic (i.e. TF) and fibrinolytic activity (i.e. PAI-1) remained unchanged, while plasma glucose declined significantly during 3 months of follow-up. CONCLUSION SGLT-2 inhibition by empagliflozin does not impact experimental arterial thrombus formation, neither under BSL conditions nor during sustained low-grade inflammation, and has no impact on proxies of thrombotic/fibrinolytic activity in patients with ASCVD. The beneficial pleiotropic effects of empagliflozin are likely independent of pathways mediating arterial thrombosis.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Yustina M Puspitasari
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Nicole R Bonetti
- University Heart Center, Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 16132 Genoa, Italy
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, RWTH, 52074 Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, RWTH, 52074 Aachen, Germany
| | - Niels Ulrik K Hartmann
- Department of Internal Medicine I, University Hospital Aachen, RWTH, 52074 Aachen, Germany
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, 5404 Baden, Switzerland
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Royal Brompton and Harefield Hospitals and Imperial College, SW3 6NP London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
15
|
Chen S, Coronel R, Hollmann MW, Weber NC, Zuurbier CJ. Direct cardiac effects of SGLT2 inhibitors. Cardiovasc Diabetol 2022; 21:45. [PMID: 35303888 PMCID: PMC8933888 DOI: 10.1186/s12933-022-01480-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Sodium-glucose-cotransporter 2 inhibitors (SGLT2is) demonstrate large cardiovascular benefit in both diabetic and non-diabetic, acute and chronic heart failure patients. These inhibitors have on-target (SGLT2 inhibition in the kidney) and off-target effects that likely both contribute to the reported cardiovascular benefit. Here we review the literature on direct effects of SGLT2is on various cardiac cells and derive at an unifying working hypothesis. SGLT2is acutely and directly (1) inhibit cardiac sodium transporters and alter ion homeostasis, (2) reduce inflammation and oxidative stress, (3) influence metabolism, and (4) improve cardiac function. We postulate that cardiac benefit modulated by SGLT2i’s can be commonly attributed to their inhibition of sodium-loaders in the plasma membrane (NHE-1, Nav1.5, SGLT) affecting intracellular sodium-homeostasis (the sodium-interactome), thereby providing a unifying view on the various effects reported in separate studies. The SGLT2is effects are most apparent when cells or hearts are subjected to pathological conditions (reactive oxygen species, inflammation, acidosis, hypoxia, high saturated fatty acids, hypertension, hyperglycemia, and heart failure sympathetic stimulation) that are known to prime these plasmalemmal sodium-loaders. In conclusion, the cardiac sodium-interactome provides a unifying testable working hypothesis and a possible, at least partly, explanation to the clinical benefits of SGLT2is observed in the diseased patient.
Collapse
Affiliation(s)
- Sha Chen
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Amsterdam UMC, Location Academic Medical Centre (AMC), Amsterdam, University of Amsterdam, Cardiovascular Sciences, Meibergdreef 11, Room M0-129, Amsterdam, Noord-Holland, 1105 AZ, The Netherlands
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam UMC, Location Academic Medical Centre (AMC), Amsterdam,, University of Amsterdam, Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Markus W Hollmann
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Amsterdam UMC, Location Academic Medical Centre (AMC), Amsterdam, University of Amsterdam, Cardiovascular Sciences, Meibergdreef 11, Room M0-129, Amsterdam, Noord-Holland, 1105 AZ, The Netherlands
| | - Nina C Weber
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Amsterdam UMC, Location Academic Medical Centre (AMC), Amsterdam, University of Amsterdam, Cardiovascular Sciences, Meibergdreef 11, Room M0-129, Amsterdam, Noord-Holland, 1105 AZ, The Netherlands
| | - Coert J Zuurbier
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A.), Amsterdam UMC, Location Academic Medical Centre (AMC), Amsterdam, University of Amsterdam, Cardiovascular Sciences, Meibergdreef 11, Room M0-129, Amsterdam, Noord-Holland, 1105 AZ, The Netherlands.
| |
Collapse
|
16
|
Janjusevic M, Fluca AL, Gagno G, Pierri A, Padoan L, Sorrentino A, Beltrami AP, Sinagra G, Aleksova A. Old and Novel Therapeutic Approaches in the Management of Hyperglycemia, an Important Risk Factor for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23042336. [PMID: 35216451 PMCID: PMC8878509 DOI: 10.3390/ijms23042336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperglycemia is considered one of the main risk factors for atherosclerosis, since high glucose levels trigger multiple pathological processes, such as oxidative stress and hyperproduction of pro-inflammatory mediators, leading to endothelial dysfunction. In this context, recently approved drugs, such as glucagon-like-peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2i), could be considered a powerful tool for to reduce glucose concentration and cardiovascular risk. Interestingly, many patients with type 2 diabetes mellitus (T2DM) and insulin resistance have been found to be deficient in vitamin D. Recent studies pointed out the unfavorable prognostic values of T2DM and vitamin D deficiency in patients with cardiac dysfunction, either when considered individually or together, which shed light on the role of vitamin D in general health status. New evidence suggests that SGLT2i could adversely affect the production of vitamin D, thereby increasing the risk of fractures, which are common in patients with T2DM. Therefore, given the biological effects of vitamin D as an anti-inflammatory mediator and a regulator of endothelial function and calcium equilibrium, these new findings should be taken into consideration as well. The aim of this review is to gather the latest advancements regarding the use of antidiabetic and antiplatelet drugs coupled with vitamin D supplementation to control glucose levels, therefore reducing the risk of coronary artery disease (CAD).
Collapse
Affiliation(s)
- Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Alessandro Pierri
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Laura Padoan
- Cardiology and Cardiovascular Physiopathology, Azienda Ospedaliero-Universitaria S. Maria Della Misericordia, 06156 Perugia, Italy;
| | - Annamaria Sorrentino
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | | | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
- Correspondence: or ; Tel.: +39-3405507762; Fax: +39-040-3994878
| |
Collapse
|
17
|
Wichaiyo S, Saengklub N. Alterations of sodium-hydrogen exchanger 1 function in response to SGLT2 inhibitors: what is the evidence? Heart Fail Rev 2022; 27:1973-1990. [PMID: 35179683 DOI: 10.1007/s10741-022-10220-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
This review summarizes and describes the current evidence addressing how sodium-glucose cotransporter 2 (SGLT2) inhibitors alter the function of sodium-hydrogen exchanger 1 (NHE-1), in association with their protective effects against adverse cardiovascular events. In the heart, SGLT2 inhibitors modulate the function of NHE-1 (either by direct inhibition or indirect attenuation of protein expression), which promotes cardiac contraction and an enhanced energy supply, in association with improved mitochondrial function, reduced inflammation/oxidative/endoplasmic reticulum stress, and attenuated fibrosis and apoptotic/autophagic cell death. The vasodilating effect of SGLT2 inhibitors has also been proposed due to NHE-1 inhibition. Moreover, platelet-expressed NHE-1 might serve as a target for SGLT2 inhibitors, since these drugs and selective NHE-1 inhibitors produce comparable activity against adenosine diphosphate-stimulated platelet activation. Overall, it is promising that the modulation of the functions of NHE-1 on the heart, blood vessels, and platelets may act as a contributing pathway for the cardiovascular benefits of SGLT2 inhibitors in diabetes and heart failure.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand. .,Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Nakkawee Saengklub
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Marketou M, Kontaraki J, Maragkoudakis S, Danelatos C, Papadaki S, Zervakis S, Plevritaki A, Vardas P, Parthenakis F, Kochiadakis G. Effects of sodium-glucose cotransporter-2 inhibitors on cardiac structural and electrical remodeling: from myocardial cytology to cardiodiabetology. Curr Vasc Pharmacol 2021; 20:178-188. [PMID: 34961447 DOI: 10.2174/1570161120666211227125033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have changed the clinical landscape of diabetes mellitus (DM) therapy through their favourable effects on cardiovascular outcomes. Notably, the use of SGLT2i has been linked to cardiovascular benefits regardless of DM status, while their pleiotropic actions remain to be fully elucidated. What we do know is that SGLT2i exert beneficial effects even at the level of the myocardial cell, and that these are linked to an improvement in the energy substrate, resulting in less inflammation and fibrosis. SGLT2i ameliorate myocardial extracellular matrix remodeling, cardiomyocyte stiffness and concentric hypertrophy, achieving beneficial remodeling of the left ventricle with significant implications for the pathogenesis and outcome of heart failure. Most studies show a significant improvement in markers of diastolic dysfunction along with a reduction in left ventricular hypertrophy. In addition to these effects there is electrophysiological remodeling, which explains initial data suggesting that SGLT2i have an antiarrhythmic action against both atrial and ventricular arrhythmias. However, future studies need to clarify not only the exact mechanisms of this beneficial functional, structural, and electrophysiological cardiac remodeling, but also its magnitude, and to determine whether this is a class or a drug effect.
Collapse
Affiliation(s)
- Maria Marketou
- Cardiology Department, Heraklion University Hospital, Crete Greece
| | - Joanna Kontaraki
- Laboratory of Molecular Cardiology, University of Crete, School of Medicine, Crete, Greece
| | | | | | - Sofia Papadaki
- Cardiology Department, Heraklion University Hospital, Crete Greece
| | - Stelios Zervakis
- Cardiology Department, Heraklion University Hospital, Crete Greece
| | | | - Panos Vardas
- Cardiovascular Section, Mitera Hospital, Hygeia Group, Athens Greece
| | | | | |
Collapse
|
19
|
Nusca A, Tuccinardi D, Pieralice S, Giannone S, Carpenito M, Monte L, Watanabe M, Cavallari I, Maddaloni E, Ussia GP, Manfrini S, Grigioni F. Platelet Effects of Anti-diabetic Therapies: New Perspectives in the Management of Patients with Diabetes and Cardiovascular Disease. Front Pharmacol 2021; 12:670155. [PMID: 34054542 PMCID: PMC8149960 DOI: 10.3389/fphar.2021.670155] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
In type 2 diabetes, anti-thrombotic management is challenging, and current anti-platelet agents have demonstrated reduced efficacy. Old and new anti-diabetic drugs exhibited—besides lowering blood glucose levels—direct and indirect effects on platelet function and on thrombotic milieu, eventually conditioning cardiovascular outcomes. The present review summarizes existing evidence on the effects of glucose-lowering agents on platelet properties, addressing pre-clinical and clinical research, as well as drug–drug interactions with anti-platelet agents. We aimed at expanding clinicians’ understanding by highlighting new opportunities for an optimal management of patients with diabetes and cardiovascular disease. We suggest how an improvement of the thrombotic risk in this large population of patients may be achieved by a careful and tailored combination of anti-diabetic and anti-platelet therapies.
Collapse
Affiliation(s)
- Annunziata Nusca
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Dario Tuccinardi
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Silvia Pieralice
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Sara Giannone
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Myriam Carpenito
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Lavinia Monte
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Ilaria Cavallari
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Ernesto Maddaloni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gian Paolo Ussia
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Silvia Manfrini
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Francesco Grigioni
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
20
|
Deficiency of ARHGAP21 alters megakaryocytic cell lineage responses and enhances platelet hemostatic function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119012. [PMID: 33727037 DOI: 10.1016/j.bbamcr.2021.119012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
|