1
|
Gorvin CM, Howles SA. Monitoring Calcium-Sensing Receptor (CaSR)-Induced Intracellular Calcium Flux Using an Indo-1 Flow Cytometry Assay. Methods Mol Biol 2025; 2861:43-55. [PMID: 39395096 DOI: 10.1007/978-1-0716-4164-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
The calcium-sensing receptor (CaSR) has a critical role in maintaining serum calcium concentrations within the normal physiological range, and mutations in the receptor, or components of its signaling and trafficking pathway, cause disorders of calcium homeostasis. Inactivating mutations cause neonatal severe hyperparathyroidism or familial hypocalciuric hypercalcemia (FHH), while gain-of-function mutations cause autosomal dominant hypocalcemia (ADH). Characterizing the functional impact of mutations of the CaSR, and components of the CaSR-signaling pathway, is clinically important to enable correct diagnoses of FHH and ADH, optimize management, and prevent inappropriate parathyroidectomy or vitamin D supplementation. CaSR signals predominantly by activating the G-alpha subunit-11 to mobilize calcium release from intracellular stores. Thus, measurement of CaSR-induced intracellular calcium (Ca2+i) signaling is the gold standard method to investigate the pathogenicity of CaSR genetic variants. This protocol describes a method to assess CaSR-induced Ca2+I signaling using the Indo-1 calcium indicator dye and flow cytometry. This method has been used to assess multiple genetic variants in CaSR and components of its signaling and trafficking pathway in HEK293 cells.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Metabolism and Systems Science and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Sarah A Howles
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
Qi L, Duan R, Zhou J, Guo Y, Zhang C. Novel osteogenic peptide from bovine bone collagen hydrolysate: Targeted screening, molecular mechanism, and stability analysis. Food Chem 2024; 459:140359. [PMID: 38996641 DOI: 10.1016/j.foodchem.2024.140359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
This study aimed to screen for a novel osteogenic peptide based on the calcium-sensing receptor (CaSR) and explore its molecular mechanism and gastrointestinal stability. In this study, a novel osteogenic peptide (Phe-Ser-Gly-Leu, FSGL) derived from bovine bone collagen hydrolysate was successfully screened by molecular docking and synthesised by solid phase peptide synthesis for further analysis. Cell experiments showed that FSGL significantly enhanced the osteogenic activity of MC3T3-E1 cells by acting on CaSR, including proliferation (152.53%), differentiation, and mineralization. Molecular docking and molecular dynamics further demonstrated that FSGL was a potential allosteric activator of CaSR, that turned on the activation switch of CaSR by closing the Venus flytrap (VFT) domain and driving the two protein chains in the VFT domain to easily form dimers. In addition, 96.03% of the novel osteogenic peptide FSGL was stable during gastrointestinal digestion. Therefore, FSGL showed substantial potential for enhancing the osteogenic activity of osteoblasts. This study provided new insights for the application of CaSR in the targeted screening of osteogenic peptides to improve bone health.
Collapse
Affiliation(s)
- Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruipei Duan
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaojiao Zhou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Zaimi M, Grapsa E. Current therapeutic approach of chronic kidney disease-mineral and bone disorder. Ther Apher Dial 2024; 28:671-689. [PMID: 38898685 DOI: 10.1111/1744-9987.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Chronic kidney disease (CKD) has emerged as one of the leading noncommunicable diseases affecting >10% of the population worldwide. Bone and mineral disorders are a common complication among patients with CKD resulting in a poor life quality, high fracture risk, increased morbidity and cardiovascular mortality. According to Kidney Disease: Improving Global Outcomes, renal osteodystrophy refers to changes in bone morphology found in bone biopsy, whereas CKD-mineral and bone disorder (CKD-MBD) defines a complex of disturbances including biochemical and hormonal alterations, disorders of bone and mineral metabolism and extraskeletal calcification. As a result, the management of CKD-MBD should focus on the aforementioned parameters, including the treatment of hyperphosphatemia, hypocalcemia, abnormal PTH and vitamin D levels. Regarding the bone fragility fractures, osteoporosis and renal osteodystrophy, which constitute the bone component of CKD-MBD, anti-osteoporotic agents constitute the mainstay of treatment. However, a thorough elucidation of the CKD-MBD pathogenesis is crucial for the ideal personalized treatment approach. In this paper, we review the pathology and management of CKD-MBD based on the current literature with special attention to recent advances.
Collapse
Affiliation(s)
- Maria Zaimi
- National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Eirini Grapsa
- National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| |
Collapse
|
4
|
Wu KC, Leong IL, Leung YM. Ca 2+-sensing receptor-TRP channel-mediated Ca 2+ signaling: Functional diversity and pharmacological complexity. Eur J Pharmacol 2024; 977:176717. [PMID: 38857682 DOI: 10.1016/j.ejphar.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The Ca2+-sensing receptor (CaSR) is a G-protein-coupled receptor activated by elevated concentrations of extracellular Ca2+, and was initially known for its regulation of parathyroid hormone (PTH) release. Ubiquitous expression of CaSR in different tissues and organs was later noted and CaSR participation in various physiological functions was demonstrated. Accumulating evidence has suggested that CaSR functionally interacts with transient receptor potential (TRP) channels, which are mostly non-selective cation channels involved in sensing temperature, pain and stress. This review describes the interactions of CaSR with TRP channels in diverse cell types to trigger a variety of biological responses. CaSR has been known to interact with different types of G proteins. Possible involvements of G proteins, other signaling and scaffolding protein intermediates in CaSR-TRP interaction are discussed. In addition, an attempt will be made to extend the current understanding of biased agonism of CaSR.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology, Chiayi, Taiwan; Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Iat-Lon Leong
- Division of Cardiology, University Hospital, Macau University of Science and Technology, Macau
| | - Yuk-Man Leung
- Department of Physiology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Thompson MD, Percy ME, Cole DEC, Bichet DG, Hauser AS, Gorvin CM. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit Rev Clin Lab Sci 2024; 61:317-346. [PMID: 38497103 DOI: 10.1080/10408363.2023.2286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Maire E Percy
- Departments of Physiology and Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel G Bichet
- Department of Physiology and Medicine, Hôpital du Sacré-Coeur, Université de Montréal, QC, Canada
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
6
|
Lotfizadeh F, Masoudi AA, Vaez Torshizi R, Emrani H. Genome-wide association study of copy number variations with shank traits in a F 2 crossbred chicken population. Anim Genet 2024; 55:559-574. [PMID: 38764135 DOI: 10.1111/age.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
Copy number variations (CNVs) are large-scale changes in the DNA sequence that can affect the genetic structure and phenotype of an organism. The purpose of this study was to investigate the existing CNVs and their associations with the shank diameter (ShD) and shank length (ShL) traits using data from an F2 crossbred chicken population. To carry out the study, 312 chickens were genotyped using the Illumina 60k SNP Beadchip. The shank traits of the birds were measured from day 1 to 12 weeks of age. penncnv and cnvruler tools were used to find copy numbers and regions with copy number changes (CNVR), respectively. The CNVRanger package was used to perform a genome-wide association study between shank traits and CNVs. Gene ontology research in CNVRs was carried out using the david database. In this investigation, 966 CNVs and 606 regions with copy number changes were discovered. The copy number states and variations were randomly distributed along the length of the autosomal chromosomes. Weeks 1-4, 9 and 12 of growth revealed a significant association of copy number variations with shank traits, false discovery rate (FDR-corrected p-value < 0.01), and the majority of CNVs that were statistically significant were found on chromosomes 1-3. These CNV segments are nearby genes such as KCNJ12, FGF6 and MYF5, which are fundamental to growth and development. In addition, gene set analyses revealed terms related to muscle physiology, regulation of cellular processes and potassium channels.
Collapse
Affiliation(s)
- Fateme Lotfizadeh
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Rasoul Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hossein Emrani
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
7
|
Höppner J, Jüppner H. Rare genetic disorders that impair parathyroid hormone synthesis, secretion, or bioactivity provide insights into the diagnostic utility of different parathyroid hormone assays. Curr Opin Nephrol Hypertens 2024; 33:375-382. [PMID: 38701324 DOI: 10.1097/mnh.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
PURPOSE OF REVIEW Parathyroid hormone (PTH) is the major peptide hormone regulator of blood calcium homeostasis. Abnormal PTH levels can be observed in patients with various congenital and acquired disorders, including chronic kidney disease (CKD). This review will focus on rare human diseases caused by PTH mutations that have provided insights into the regulation of PTH synthesis and secretion as well as the diagnostic utility of different PTH assays. RECENT FINDINGS Over the past years, numerous diseases affecting calcium and phosphate homeostasis have been defined at the molecular level that are responsible for reduced or increased serum PTH levels. The underlying genetic mutations impair parathyroid gland development, involve the PTH gene itself, or alter function of the calcium-sensing receptor (CaSR) or its downstream signaling partners that contribute to regulation of PTH synthesis or secretion. Mutations in the pre sequence of the mature PTH peptide can, for instance, impair hormone synthesis or intracellular processing, while amino acid substitutions affecting the secreted PTH(1-84) impair PTH receptor (PTH1R) activation, or cause defective cleavage of the pro-sequence and thus secretion of a pro- PTH with much reduced biological activity. Mutations affecting the secreted hormone can alter detection by different PTH assays, thus requiring detailed knowledge of the utilized diagnostic test. SUMMARY Rare diseases affecting PTH synthesis and secretion have offered helpful insights into parathyroid biology and the diagnostic utility of commonly used PTH assays, which may have implications for the interpretation of PTH measurements in more common disorders such as CKD.
Collapse
Affiliation(s)
| | - Harald Jüppner
- Endocrine Unit
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Bartkiewicz P, Kunachowicz D, Filipski M, Stebel A, Ligoda J, Rembiałkowska N. Hypercalcemia in Cancer: Causes, Effects, and Treatment Strategies. Cells 2024; 13:1051. [PMID: 38920679 PMCID: PMC11202131 DOI: 10.3390/cells13121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Calcium plays central roles in numerous biological processes, thereby, its levels in the blood are under strict control to maintain homeostatic balance and enable the proper functioning of living organisms. The regulatory mechanisms ensuring this balance can be affected by pathologies such as cancer, and as a result, hyper- or hypocalcemia can occur. These states, characterized by elevated or decreased calcium blood levels, respectively, have a significant effect on general homeostasis. This article focuses on a particular form of calcium metabolism disorder, which is hypercalcemia in neoplasms. It also constitutes a summary of the current knowledge regarding the diagnosis of hypercalcemia and its management. Hypercalcemia of malignancy is estimated to affect over 40% of cancer patients and can be associated with both solid and blood cancers. Elevated calcium levels can be an indicator of developing cancer. The main mechanism of hypercalcemia development in tumors appears to be excessive production of parathyroid hormone-related peptides. Among the known treatment methods, bisphosphonates, calcitonin, steroids, and denosumab should be mentioned, but ongoing research promotes progress in pharmacotherapy. Given the rising global cancer prevalence, the problem of hypercalcemia is of high importance and requires attention.
Collapse
Affiliation(s)
- Patrycja Bartkiewicz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.B.); (M.F.); (A.S.); (J.L.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| | - Michał Filipski
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.B.); (M.F.); (A.S.); (J.L.)
| | - Agata Stebel
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.B.); (M.F.); (A.S.); (J.L.)
| | - Julia Ligoda
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (P.B.); (M.F.); (A.S.); (J.L.)
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Kirstein E, Schaudien D, Wagner M, Diebolt CM, Bozzato A, Tschernig T, Englisch CN. TRPC3 Is Downregulated in Primary Hyperparathyroidism. Int J Mol Sci 2024; 25:4392. [PMID: 38673977 PMCID: PMC11049814 DOI: 10.3390/ijms25084392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Transient receptor potential canonical sub-family channel 3 (TRPC3) is considered to play a critical role in calcium homeostasis. However, there are no established findings in this respect with regard to TRPC6. Although the parathyroid gland is a crucial organ in calcium household regulation, little is known about the protein distribution of TRPC channels-especially TRPC3 and TRPC6-in this organ. Our aim was therefore to investigate the protein expression profile of TRPC3 and TRPC6 in healthy and diseased human parathyroid glands. Surgery samples from patients with healthy parathyroid glands and from patients suffering from primary hyperparathyroidism (pHPT) were investigated by immunohistochemistry using knockout-validated antibodies against TRPC3 and TRPC6. A software-based analysis similar to an H-score was performed. For the first time, to our knowledge, TRPC3 and TRPC6 protein expression is described here in the parathyroid glands. It is found in both chief and oxyphilic cells. Furthermore, the TRPC3 staining score in diseased tissue (pHPT) was statistically significantly lower than that in healthy tissue. In conclusion, TRPC3 and TRPC6 proteins are expressed in the human parathyroid gland. Furthermore, there is strong evidence indicating that TRPC3 plays a role in pHPT and subsequently in parathyroid hormone secretion regulation. These findings ultimately require further research in order to not only confirm our results but also to further investigate the relevance of these channels and, in particular, that of TRPC3 in the aforementioned physiological functions and pathophysiological conditions.
Collapse
Affiliation(s)
- Emilie Kirstein
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany (C.N.E.)
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hanover, Germany
| | - Mathias Wagner
- Department of Pathology, Saarland University, 66421 Homburg, Germany
| | - Coline M. Diebolt
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany (C.N.E.)
| | - Alessandro Bozzato
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany;
| | - Thomas Tschernig
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany (C.N.E.)
| | - Colya N. Englisch
- Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany (C.N.E.)
| |
Collapse
|
10
|
García-Castaño A, Madariaga L, Gómez-Conde S, González P, Grau G, Rica I, de Nanclares GP, De la Hoz AB, Aguayo A, Martínez R, Urrutia I, Gaztambide S, Castaño L. Genetic profile of a large Spanish cohort with hypercalcemia. Front Endocrinol (Lausanne) 2024; 15:1297614. [PMID: 38586466 PMCID: PMC10998451 DOI: 10.3389/fendo.2024.1297614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction The disorders in the metabolism of calcium can present with manifestations that strongly suggest their diagnosis; however, most of the time, the symptoms with which they are expressed are nonspecific or present only as a laboratory finding, usually hypercalcemia. Because many of these disorders have a genetic etiology, in the present study, we sequenced a selection of 55 genes encoding the principal proteins involved in the regulation of calcium metabolism. Methods A cohort of 79 patients with hypercalcemia were analyzed by next-generation sequencing. Results The 30% of our cohort presented one pathogenic or likely pathogenic variant in genes associated with hypercalcemia. We confirmed the clinical diagnosis of 17 patients with hypocalciuric hypercalcemia (pathogenic or likely pathogenic variants in the CASR and AP2S1 genes), one patient with neonatal hyperparathyroidism (homozygous pathogenic variant in the CASR gene), and another patient with infantile hypercalcemia (two pathogenic variants in compound heterozygous state in the CYP24A1 gene). However, we also found variants in genes associated with primary hyperparathyroidism (GCM2), renal hypophosphatemia with or without rickets (SLC34A1, SLC34A3, SLC9A3R1, VDR, and CYP27B1), DiGeorge syndrome (TBX1 and NEBL), and hypophosphatasia (ALPL). Our genetic study revealed 11 novel variants. Conclusions Our study demonstrates the importance of genetic analysis through massive sequencing to obtain a clinical diagnosis of certainty. The identification of patients with a genetic cause is important for the appropriate treatment and identification of family members at risk of the disease.
Collapse
Affiliation(s)
- Alejandro García-Castaño
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Leire Madariaga
- Pediatric Nephrology Department, Biobizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country (UPV/EHU), CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Sara Gómez-Conde
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country (UPV/EHU), CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Pedro González
- Endocrinology and Nutrition Department, Biobizkaia Health Research Institute, Hospital Universitario Cruces, EndoERN, Barakaldo, Bizkaia, Spain
| | - Gema Grau
- Pediatric Endocrinology Department, Biobizkaia Health Research Institute, Hospital Universitario Cruces, EndoERN, Barakaldo, Bizkaia, Spain
| | - Itxaso Rica
- Pediatric Endocrinology Department, Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Gustavo Pérez de Nanclares
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Ana Belén De la Hoz
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Aníbal Aguayo
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Rosa Martínez
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Inés Urrutia
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | - Sonia Gaztambide
- Endocrinology and Nutrition Department, Biobizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country (UPV/EHU), CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| | | | - Luis Castaño
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country (UPV/EHU), CIBERDEM, CIBERER, EndoERN, Barakaldo, Bizkaia, Spain
| |
Collapse
|
11
|
Harahap IA, Kuligowski M, Cieslak A, Kołodziejski PA, Suliburska J. Effect of Tempeh and Daidzein on Calcium Status, Calcium Transporters, and Bone Metabolism Biomarkers in Ovariectomized Rats. Nutrients 2024; 16:651. [PMID: 38474779 DOI: 10.3390/nu16050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Menopause marks a critical life stage characterized by hormonal changes that significantly impact bone health, leading to a heightened susceptibility to bone fractures. This research seeks to elucidate the impact of daidzein and tempeh on calcium status, calcium transporters, and bone metabolism in an ovariectomized rat model. Forty female Wistar rats, aged 3 months, participated in a two-phase experiment. The initial phase involved inducing a calcium deficit, while the second phase comprised dietary interventions across five groups: Sham (S) and Ovariectomy (O) with a standard diet, O with bisphosphonate (OB), O with pure daidzein (OD), and O with tempeh (OT). Multiple parameters, encompassing calcium levels, calcium transporters, bone histopathology, and serum bone metabolism markers, were evaluated. The findings revealed that the OT group showcased heightened levels of bone turnover markers, such as pyridinoline, C-telopeptide of type I collagen, bone alkaline phosphatase, and procollagen type I N-terminal propeptide, in contrast to S and O groups, with statistical significance (p < 0.05). Histopathologically, both the OD and OT groups exhibited effects akin to the OB group, indicating a decrease in the surface area occupied by adipocytes in the femoral bone structure, although statistically non-equivalent, supporting the directionally similar trends. Although TRPV5 and TRPV6 mRNA expression levels in the jejunum and duodenum did not display statistically significant differences (p > 0.05), the OD and OT groups exhibited increased expression compared to the O group. We hypothesized that obtained results may be related to the effect of isoflavones on estrogen pathways because of their structurally similar to endogenous estrogen and weak estrogenic properties. In conclusion, the daily consumption of pure daidzein and tempeh could potentially improve and reinstate calcium status, calcium transport, and bone metabolism in ovariectomized rats. Additionally, isoflavone products demonstrate effects similar to bisphosphonate drugs on these parameters in ovariectomized rats.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| | - Maciej Kuligowski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| | - Adam Cieslak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Paweł A Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-624 Poznan, Poland
| |
Collapse
|
12
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
13
|
Sauvé B, Guay F, Létourneau Montminy MP. Impact of deoxynivalenol in a calcium depletion and repletion nutritional strategy in piglets. J Anim Sci 2024; 102:skae099. [PMID: 38613476 PMCID: PMC11056887 DOI: 10.1093/jas/skae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/12/2024] [Indexed: 04/15/2024] Open
Abstract
This study evaluated the effect of dietary calcium (Ca) levels and deoxynivalenol (DON) contamination on Ca and phosphorus (P) utilization and bone mineralization in piglets. During an initial 13-d depletion phase, 64 piglets (15.7 ± 0.7 kg) received a control (DON-) or DON-contaminated treatment (DON+, 2.7 mg DON/kg) with either a low Ca (Ca-, 0.39%) or normal Ca level (Ca+, 0.65%) with a constant digestible P level (0.40%). A second group of 16 piglets received DON- or DON+ treatments for 9 d for gene expression analysis. During the subsequent 14-d repletion phase, all piglets were fed a Ca+ DON- diet containing 0.65% Ca and 0.35% digestible P without DON. After 5 d of the depletion phase, the absorption of P (DON × Ca; P < 0.05) and Ca was increased by the Ca- (P < 0.01) and DON+ (P < 0.01) diet. After 13 d, feed conversion ratio (P < 0.01) and average daily feed intake (P = 0.06) tended to decrease with the Ca- diet. The bone mineral content (BMC) gain was decreased by Ca, especially with Ca- DON + (DON × Ca, P < 0.05). The P absorption was increased by Ca- DON + (DON × Ca, P < 0.01), although the P retention efficiency was only increased by Ca+ DON + (DON × Ca, P < 0.001). The absorption of Ca was increased by DON+ (P < 0.001), and the Ca efficiency was increased by Ca- DON- (DON × Ca, P < 0.01). After 9 d, the gene expression of intestinal claudin 12 (P < 0.01) and CYP24A1 (P < 0.05), femur cortical RANKL (P < 0.05) and OPG (P = 0.06), and renal calbindin D9K (P < 0.05) and Klotho (P = 0.07) were decreased by DON+. The Ca (P = 0.06) and magnesium (P < 0.01) concentrations were decreased by DON+, and the Ca (P = 0.06) and P digestibility (P < 0.01) were increased. After the repletion phase, Ca- piglets recovered their BMC deficit, but not those receiving DON+ (DON × Ca; P = 0.06). The Ca (P < 0.05) and P (P = 0.06) retention efficiency tended to increase with Ca-. The absorption of Ca and P was increased by Ca- and DON+ (DON × Ca, P < 0.05). The results show that piglets increased their Ca and P utilization efficiency, allowing them to recover the BMC deficit caused by Ca-, but not when the piglets were exposed to DON. Pigs previously receiving Ca-deficient diet with DON still have lower body Ca and P, leading to elevated calcitriol concentrations and enhanced Ca and P intestinal absorption. The fact that DON decreased the expression of genes implicated in Ca intestinal and renal transport and P excretion after 9 d can potentially explain the reduced plasma Ca concentration.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | - Frédéric Guay
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | | |
Collapse
|
14
|
Goto M, Nishimura G, Sato H, Yamaguchi Y, Morimoto N, Hashimoto H, Takahashi N. Pharmacological profile of upacicalcet, a novel positive allosteric modulator of calcium-sensing receptor, in vitro and in vivo. Eur J Pharmacol 2023; 956:175936. [PMID: 37541363 DOI: 10.1016/j.ejphar.2023.175936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Upacicalcet (formerly SK-1403/AJT240) is a novel non-peptide calcimimetic agent that acts as a calcium-sensing receptor (CaSR) agonist for the treatment of secondary hyperparathyroidism (SHPT) in chronic kidney disease (CKD). We compared upacicalcet with other calcimimetics (etelcalcetide or cinacalcet) and examined its in vitro and in vivo characteristics in terms of its human CaSR agonistic activity, its efficacy in normal and CKD rats after a single administration, and its effect on gastric emptying in rats. Upacicalcet activated human CaSR depending on the extracellular calcium (Ca2+) concentration without exhibiting an agonistic action when the extracellular Ca2+ level was below the physiological level. On the other hand, etelcalcetide had an agonistic activity even in the absence of physiological levels of extracellular Ca2+. The intravenous administration of upacicalcet to normal and double-nephrectomized rats dose-dependently (0.03-3mg/kg and 0.3-30mg/kg, respectively) decreased the serum intact parathyroid hormone (iPTH) and serum Ca2+ levels; however, the effect of upacicalcet on the reduction in serum Ca2+ disappeared at extracellular Ca2+ levels below the physiologically range, even when administered at a dose higher (100-fold) than the effective dose. Furthermore, upacicalcet did not affect gastric emptying in normal rats when administered up to a dose of 10mg/kg (300-fold higher than the dose affecting serum iPTH levels), while the administration of cinacalcet significantly slowed gastric emptying by approximately 50%. These findings suggest that upacicalcet has potential as an alternative calcimimetic agent with good pharmacological properties and a lower risk of hypocalcemia and gastrointestinal complications.
Collapse
Affiliation(s)
- Moritaka Goto
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe, Mie, 511-0406, Japan.
| | - Go Nishimura
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe, Mie, 511-0406, Japan
| | - Hirofumi Sato
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe, Mie, 511-0406, Japan
| | - Yu Yamaguchi
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe, Mie, 511-0406, Japan
| | - Nobutaka Morimoto
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe, Mie, 511-0406, Japan
| | - Hiroyuki Hashimoto
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe, Mie, 511-0406, Japan
| | - Naoki Takahashi
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe, Mie, 511-0406, Japan
| |
Collapse
|
15
|
Chang M, Montagne K, Furukawa KS, Ushida T. Intracellular calcium ion transients evoked by cell poking independently of released autocrine ATP in Madin-Darby canine kidney cells. Cell Biochem Funct 2023; 41:845-856. [PMID: 37515551 DOI: 10.1002/cbf.3834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
The mechanical stimulation induced by poking cells with a glass needle activates Piezo1 receptors and the adenosine triphosphate (ATP) autocrine pathway, thus increasing intracellular Ca2+ concentration. The differences between the increase in intracellular Ca2+ concentration induced by cell poking and by ATP-only stimulation have not been investigated. In this study, we investigated the Ca2+ signaling mechanism induced by autocrine ATP release during Madin-Darby Canine Kidney cell membrane deformation by cell poking. The results suggest that the pathways for supplying Ca2+ into the cytoplasm were not identical between cell poking and conventional ATP stimulation. The functions of the G protein-coupled receptor (GPCR) subunits (Gα $\alpha $ q, Gβ γ $\beta \gamma $ ), ATP-activated receptor and the upstream Ca2+ release signal from the intracellular endoplasmic reticulum Ca2+ store, were investigated. The results show that Gα $\alpha $ q plays a major role in the Ca2+ response evoked by ATP-only stimulation, while cell poking induces a Ca2+ response requiring the involvement of both Gα $\alpha $ q and Gβ γ $\beta \gamma $ units simultaneously. These results suggest that GPCR are not only activated by ATP-only stimulation or autocrine ATP release during Ca2+ signaling, but also activated by the mechanical effects of cell poking.
Collapse
Affiliation(s)
- Minki Chang
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Kevin Montagne
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Katsuko S Furukawa
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Takashi Ushida
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Kameda Y. Cellular and molecular mechanisms of the organogenesis and development, and function of the mammalian parathyroid gland. Cell Tissue Res 2023; 393:425-442. [PMID: 37410127 DOI: 10.1007/s00441-023-03785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/12/2023] [Indexed: 07/07/2023]
Abstract
Serum calcium homeostasis is mainly regulated by parathormone (PTH) secreted by the parathyroid gland. Besides PTH and Gcm2, a master gene for parathyroid differentiation, many genes are expressed in the gland. Especially, calcium-sensing receptor (CaSR), vitamin D receptor (VDR), and Klotho function to prevent increased secretion of PTH and hyperplasia of the parathyroid gland under chronic hypocalcemia. Parathyroid-specific dual deletion of Klotho and CaSR induces a marked enlargement of the glandular size. The parathyroid develops from the third and fourth pharyngeal pouches except murine species in which the gland is derived from the third pouch only. The development of the murine parathyroid gland is categorized as follows: (1) formation and differentiation of the pharyngeal pouches, (2) appearance of parathyroid domain in the third pharyngeal pouch together with thymus domain, (3) migration of parathyroid primordium attached to the top of thymus, and (4) contact with the thyroid lobe and separation from the thymus. The transcription factors and signaling molecules involved in each of these developmental stages are elaborated. In addition, mesenchymal neural crest cells surrounding the pharyngeal pouches and parathyroid primordium and invading the parathyroid parenchyma participate in the development of the gland.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
17
|
Ekşi MŞ, Orhun Ö, Demir YN, Kara M, Berikol G, Özcan-Ekşi EE. Are serum thyroid hormone, parathormone, calcium, and vitamin D levels associated with lumbar spine degeneration? A cross-sectional observational clinical study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1561-1574. [PMID: 36976340 DOI: 10.1007/s00586-023-07673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Low back pain (LBP) impairs the quality of life and rises healthcare costs. The association of spine degeneration and LBP with metabolic disorders have been reported, previously. However, metabolic processes related with spine degeneration remained unclear. We aimed to analyze whether serum thyroid hormones, parathormone, calcium, and vitamin D levels were associated with lumbar intervertebral disc degeneration (IVDD), Modic changes, and fatty infiltration in the paraspinal muscles. METHODS We cross-sectionally analyzed a retrospective database. Patients who visited internal medicine outpatient clinics with suspect of endocrine disorders and chronic LBP were searched. Patients with biochemistry results within 1 week before lumbar spine magnetic resonance imaging (MRI) were included. Age- and gender-matched cohorts were made-up and analyzed. RESULTS Patients with higher serum free thyroxine levels were more likely to have severe IVDD. They were also more likely to have fattier multifidus and erector spinae at upper lumbar levels, less fatty psoas and less Modic changes at lower lumbar levels. Higher PTH levels were observed in patients with severe IVDD at L4-L5 level. Patients with lower serum vitamin D and calcium levels had more Modic changes and fattier paraspinal muscles at upper lumbar levels. CONCLUSION Serum hormone, vitamin D, and calcium levels were associated with not only IVDD and Modic changes but also with fatty infiltration in the paraspinal muscles, mainly at upper lumbar levels in patients with symptomatic backache presenting to a tertiary care center. Complex inflammatory, metabolic, and mechanical factors present in the backstage of spine degeneration.
Collapse
Affiliation(s)
- Murat Şakir Ekşi
- Associate Professor of Neurosurgery, FSM Training and Research Hospital, Neurosurgery Clinic, Göztepe Mah. Mesire Sok. Tütüncü Mehmet Efendi Cad. No: 3/34 Kadıkoy, Istanbul, Turkey.
| | - Ömer Orhun
- School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Yaren Nur Demir
- School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Müjdat Kara
- Endocrinology Unit, Department of Internal Medicine, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Gürkan Berikol
- Neurosurgery Clinic, Taksim Training and Research Hospital, Istanbul, Turkey
| | - Emel Ece Özcan-Ekşi
- Department of Physical Medicine and Rehabilitation, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
18
|
Minasi A, Andreadi A, Maiorino A, Giudice L, De Taddeo S, D'Ippolito I, de Guido I, Laitano R, Romano M, Ruotolo V, Magrini A, Di Daniele N, Rogliani P, Bellia A, Lauro D. Hypocalcemia is associated with adverse outcomes in patients hospitalized with COVID-19. Endocrine 2023; 79:577-586. [PMID: 36350462 PMCID: PMC9643940 DOI: 10.1007/s12020-022-03239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Calcium ions are involved in the regulation of several cellular processes and may also influence viral replication. Hypocalcemia has been frequently reported during infectious diseases and in critically ill patients, including also COVID-19 patients, significantly related with the pro-inflammatory state and mortality. The aim of this study is to investigate the prevalence of hypocalcemia at admission in patients hospitalized for COVID-19 (Coronavirus disease 2019) and to evaluate association of hypocalcemia with in-hospital COVID-19 outcomes. METHODS Retrospective analysis on 118 consecutive patients, hospitalized for COVID-19 between March and May 2020. Clinical characteristics, inflammation markers, biochemical routine and mineral metabolism parameters at admission were collected. Hypocalcemia was defined as total serum calcium <2.2 mmol/L. Population was stratified by tertiles of total serum calcium. Primary outcome was the composite of in-hospital death or admission to intensive care unit (ICU). Secondary outcomes included in-hospital death, admission to ICU and need for non-invasive ventilation as separate events. Associations were tested by logistic regression and Cox-regression analysis with survival curves. RESULTS Overall prevalence of hypocalcemia was 76.6%, with just 6.7% of patients reporting levels of 25-(OH)-vitamin D > 30 ng/ml. Total serum calcium was inversely related with selected inflammatory biomarkers (p < 0.05) and poorer outcome of COVID-19 during hospitalization. Lower tertile of total calcium (≤2.02 mmol/L) had increased risk of in-hospital mortality (HR 2.77; 1.28-6.03, p = 0.01) compared with other groups. CONCLUSION Total serum calcium detected on admission is inversely related with proinflammatory biomarkers of severe COVID-19 and is useful to better define risk stratification for adverse in-hospital outcome.
Collapse
Affiliation(s)
- Alessandro Minasi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Endocrinology and Diabetes, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Aikaterini Andreadi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Endocrinology and Diabetes, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alessio Maiorino
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Endocrinology and Diabetes, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Luca Giudice
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Endocrinology and Diabetes, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Sofia De Taddeo
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Endocrinology and Diabetes, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Ilenia D'Ippolito
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Endocrinology and Diabetes, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Ilaria de Guido
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Respiratory Medicine, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Rossella Laitano
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Respiratory Medicine, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Maria Romano
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Endocrinology and Diabetes, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Valeria Ruotolo
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Endocrinology and Diabetes, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Respiratory Medicine, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Endocrinology and Diabetes, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
- Division of Endocrinology and Diabetes, University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
19
|
Werner LE, Wagner U. Calcium-sensing receptor-mediated NLRP3 inflammasome activation in rheumatoid arthritis and autoinflammation. Front Physiol 2023; 13:1078569. [PMID: 36685206 PMCID: PMC9854345 DOI: 10.3389/fphys.2022.1078569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is expressed in many cell types - including immune cells and in particular circulating monocytes. Here, the receptor plays an important physiological role as a regulator of constitutive macropinocytosis. This review article provides an overview of the literature on the role of the calcium sensing receptor in the context of inflammatory processes. Special emphasis is laid upon the importance for monocytes in the context of rheumatoid arthritis. We have shown previously, that stimulation of the receptor by increased extracellular Ca2+ ([Ca2+]ex) triggers a pro-inflammatory response due to NLRP3 inflammasome assembly and interleukin (IL)-1β release. The underlying mechanism includes macropinocytosis of calciprotein particles (CPPs), which are taken up in a [Ca2+]ex-induced, CaSR dependent manner, and leads to strong IL-1β release. In rheumatoid arthritis (RA), this uptake and the resulting IL-1β release is significantly increased due to increased expression of the receptor. Moreover, increased [Ca2+]ex-induced CPP uptake and IL-1β release is associated with more active disease, while CaSR overexpression has been reported to be associated with cardiovascular complications of RA. Most importantly, however, in animal experiments with arthritic mice, increased local calcium concentrations are present, which in combination with release of fetuin-A from eroded bone could contribute to formation of CPPs. We propose, that increased [Ca2+]ex, CPPs and pro-inflammatory cytokines drive a vicious cycle of inflammation and bone destruction which in turn offers new potential therapeutic approaches.
Collapse
|
20
|
Yang Q, Zhao Z, Zhao W, Chen Y, Chen Y, Shi J, Ni Q, Cao Y, Sun X, Wang H, Yuan H, Wang R, Sun W. A rescue diet raises the plasma calcium concentration and ameliorates rheumatoid arthritis in mice: Role of CaSR-mediated inhibition of osteoclastogenesis. FASEB J 2023; 37:e22673. [PMID: 36468692 DOI: 10.1096/fj.202200761rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Calcium modulates bone cell recruitment, differentiation, and function by binding to the calcium-sensing receptor (CaSR). However, the function of CaSR induced by high extracellular calcium (Ca2+ e ) in the regulation of osteoclast formation in rheumatoid arthritis (RA) remains unknown. Here, we used TNFα-transgenic (TNFTG ) RA mice and their wildtype (WT) littermates fed a normal or a rescue diet (high calcium, high phosphorus, and high lactose diet, termed rescue diet) to compare their joint bone phenotypes. In comparison to TNFTG mice fed the normal diet, articular bone volume and cartilage area are increased, whereas inflamed area, eroded surface, TRAP+ surface, and osteoclast-related genes expression are decreased in TNFTG mice fed the rescue diet. Besides, TNFTG mice fed the rescue diet were found to exhibit more CaSR+ area and less NFATc1+ /TRAP+ area. Furthermore, at normal Ca2+ e concentrations, osteoclast precursors (OCPs) from TNFTG mice formed more osteoclasts than OCPs from WT mice, but the number of osteoclasts gradually decreased when the Ca2+ e concentration increased. Meanwhile, the expression of CaSR increased responding to a high level of Ca2+ e , whereas the expression of NF-κB/NFATc1 signaling molecules decreased. At last, the knockdown of CaSR blocked the inhibition of osteoclast differentiation attributed to high Ca2+ e . Taken together, our findings indicate that high Ca2+ e inhibits osteoclast differentiation in RA mice partially through the CaSR/NF-κB/NFATc1 pathway.
Collapse
Affiliation(s)
- Qiudong Yang
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.,Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ziwei Zhao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.,Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wenhua Zhao
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yuyi Chen
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jiali Shi
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Qiaoqi Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yanan Cao
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xu Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.,Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hua Yuan
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ruixia Wang
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
21
|
Minisola S, Arnold A, Belaya Z, Brandi ML, Clarke BL, Hannan FM, Hofbauer LC, Insogna KL, Lacroix A, Liberman U, Palermo A, Pepe J, Rizzoli R, Wermers R, Thakker RV. Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. J Bone Miner Res 2022; 37:2315-2329. [PMID: 36245271 PMCID: PMC10092691 DOI: 10.1002/jbmr.4665] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
In this narrative review, we present data gathered over four decades (1980-2020) on the epidemiology, pathophysiology and genetics of primary hyperparathyroidism (PHPT). PHPT is typically a disease of postmenopausal women, but its prevalence and incidence vary globally and depend on a number of factors, the most important being the availability to measure serum calcium and parathyroid hormone levels for screening. In the Western world, the change in presentation to asymptomatic PHPT is likely to occur, over time also, in Eastern regions. The selection of the population to be screened will, of course, affect the epidemiological data (ie, general practice as opposed to tertiary center). Parathyroid hormone has a pivotal role in regulating calcium homeostasis; small changes in extracellular Ca++ concentrations are detected by parathyroid cells, which express calcium-sensing receptors (CaSRs). Clonally dysregulated overgrowth of one or more parathyroid glands together with reduced expression of CaSRs is the most important pathophysiologic basis of PHPT. The spectrum of skeletal disease reflects different degrees of dysregulated bone remodeling. Intestinal calcium hyperabsorption together with increased bone resorption lead to increased filtered load of calcium that, in addition to other metabolic factors, predispose to the appearance of calcium-containing kidney stones. A genetic basis of PHPT can be identified in about 10% of all cases. These may occur as a part of multiple endocrine neoplasia syndromes (MEN1-MEN4), or the hyperparathyroidism jaw-tumor syndrome, or it may be caused by nonsyndromic isolated endocrinopathy, such as familial isolated PHPT and neonatal severe hyperparathyroidism. DNA testing may have value in: confirming the clinical diagnosis in a proband; eg, by distinguishing PHPT from familial hypocalciuric hypercalcemia (FHH). Mutation-specific carrier testing can be performed on a proband's relatives and identify where the proband is a mutation carrier, ruling out phenocopies that may confound the diagnosis; and potentially prevention via prenatal/preimplantation diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
| | - Andrew Arnold
- Center for Molecular Oncology and Division of Endocrinology & Metabolism, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Zhanna Belaya
- Department of Neuroendocrinology and Bone Disease, The National Medical Research Centre for Endocrinology, Moscow, Russia
| | - Maria Luisa Brandi
- F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
| | - Bart L Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Fadil M Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford, UK.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Karl L Insogna
- Yale Bone Center Yale School of Medicine, Yale University, New Haven, CT, USA
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada
| | - Uri Liberman
- Department of Physiology and Pharmacology, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Andrea Palermo
- Unit of Metabolic Bone and Thyroid Disorders, Fondazione Policlinico Universitario Campus Bio-Medico and Unit of Endocrinology and Diabetes, Campus Bio-Medico University, Rome, Italy
| | - Jessica Pepe
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Robert Wermers
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition and Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
22
|
Bilezikian JP, Khan AA, Silverberg SJ, Fuleihan GEH, Marcocci C, Minisola S, Perrier N, Sitges-Serra A, Thakker RV, Guyatt G, Mannstadt M, Potts JT, Clarke BL, Brandi ML, Balaya Z, Hofbauer L, Insogna K, Lacroix A, Liberman UA, Palermo A, Rizzoli R, Wermers R, Hannan FM, Pepe J, Cipriani C, Eastell R, Liu J, Mithal A, Moreira CA, Peacock M, Silva B, Walker M, Chakhtoura M, Schini M, Zein OE, Almquist M, Farias LCB, Duh Q, Lang BH, LiVolsi V, Swayk M, Vriens MR, Vu T, Yeh MW, Yeh R, Shariq O, Poch LL, Bandeira F, Cetani F, Chandran M, Cusano NE, Ebeling PR, Gosnell J, Lewiecki EM, Singer FR, Frost M, Formenti AM, Karonova T, Gittoes N, Rejnmark L. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J Bone Miner Res 2022; 37:2293-2314. [PMID: 36245251 DOI: 10.1002/jbmr.4677] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022]
Abstract
The last international guidelines on the evaluation and management of primary hyperparathyroidism (PHPT) were published in 2014. Research since that time has led to new insights into epidemiology, pathophysiology, diagnosis, measurements, genetics, outcomes, presentations, new imaging modalities, target and other organ systems, pregnancy, evaluation, and management. Advances in all these areas are demonstrated by the reference list in which the majority of listings were published after the last set of guidelines. It was thus, timely to convene an international group of over 50 experts to review these advances in our knowledge. Four Task Forces considered: 1. Epidemiology, Pathophysiology, and Genetics; 2. Classical and Nonclassical Features; 3. Surgical Aspects; and 4. Management. For Task Force 4 on the Management of PHPT, Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) methodology addressed surgical management of asymptomatic PHPT and non-surgical medical management of PHPT. The findings of this systematic review that applied GRADE methods to randomized trials are published as part of this series. Task Force 4 also reviewed a much larger body of new knowledge from observations studies that did not specifically fit the criteria of GRADE methodology. The full reports of these 4 Task Forces immediately follow this summary statement. Distilling the essence of all deliberations of all Task Force reports and Methodological reviews, we offer, in this summary statement, evidence-based recommendations and guidelines for the evaluation and management of PHPT. Different from the conclusions of the last workshop, these deliberations have led to revisions of renal guidelines and more evidence for the other recommendations. The accompanying papers present an in-depth discussion of topics summarized in this report. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- John P Bilezikian
- Division of Endocrinology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Aliya A Khan
- Division of Endocrinology and Metabolism, McMaster University, Hamilton, ON, Canada
| | - Shonni J Silverberg
- Division of Endocrinology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ghada El-Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program, WHO CC for Metabolic Bone Disorders, Division of Endocrinology, American University of Beirut, Beirut, Lebanon
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
| | - Nancy Perrier
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Oxford, UK
| | - Gordon Guyatt
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Michael Mannstadt
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John T Potts
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart L Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Maria Luisa Brandi
- Fondazione Italiana sulla Ricerca sulle Malattie dell'Osso (F.I.R.M.O. Foundation), Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hu L, Napoletano A, Provenzano M, Garofalo C, Bini C, Comai G, La Manna G. Mineral Bone Disorders in Kidney Disease Patients: The Ever-Current Topic. Int J Mol Sci 2022; 23:12223. [PMID: 36293076 PMCID: PMC9603742 DOI: 10.3390/ijms232012223] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 02/08/2023] Open
Abstract
Chronic kidney disease (CKD) is a complex and multifactorial disease, and one of the most prevalent worldwide. Chronic kidney disease-mineral bone disorders (CKD-MBD) with biochemical and hormonal alterations are part of the complications associated with the progression of CKD. Pathophysiology of CKD-MBD focused on abnormalities in serum levels of several biomarkers (such as FGF-23, klotho, phosphate, calcium, vitamin D, and PTH) which are discussed in this review. We therefore examine the prognostic association between CKD-MBD and the increased risk for cardiovascular events, mortality, and CKD progression to end-stage kidney disease (ESKD). Lastly, we present specific treatments acting on CKD to prevent and treat the complications associated with secondary hyperparathyroidism (SHPT): control of hyperphosphatemia (with dietary restriction, intestinal phosphate binders, and adequate dialysis), the use of calcimimetic agents, vitamin D, and analogues, and the use of bisphosphonates or denosumab in patients with osteoporosis.
Collapse
Affiliation(s)
- Lilio Hu
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Angelodaniele Napoletano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Carlo Garofalo
- Renal Unit, University of Campania “L. Vanvitelli’’, 80138 Naples, Italy
| | - Claudia Bini
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Giorgia Comai
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
24
|
Xiang Z, Wang M, Miao C, Jin D, Wang H. Mechanism of calcitriol regulating parathyroid cells in secondary hyperparathyroidism. Front Pharmacol 2022; 13:1020858. [PMID: 36267284 PMCID: PMC9577402 DOI: 10.3389/fphar.2022.1020858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
A common consequence of chronic renal disease is secondary hyperparathyroidism (SHPT) and is closely related to the mortality and morbidity of uremia patients. Secondary hyperparathyroidism (SHPT) is caused by excessive PTH production and release, as well as parathyroid enlargement. At present, the mechanism of cell proliferation in secondary hyperparathyroidism (SHPT) is not completely clear. Decreased expression of the vitamin D receptor (VDR) and calcium-sensing receptor (CaSR), and 1,25(OH)2D3 insufficiency all lead to a decrease in cell proliferation suppression, and activation of multiple pathways is also involved in cell proliferation in renal hyperparathyroidism. The interaction between the parathormone (PTH) and parathyroid hyperplasia and 1,25(OH)2D3 has received considerable attention. 1,25(OH)2D3 is commonly applied in the therapy of renal hyperparathyroidism. It regulates the production of parathormone (PTH) and parathyroid cell proliferation through transcription and post-transcription mechanisms. This article reviews the role of 1,25(OH)2D3 in parathyroid cells in secondary hyperparathyroidism and its current understanding and potential molecular mechanism.
Collapse
|
25
|
Roszko KL, Stapleton Smith LM, Sridhar AV, Roberts MS, Hartley IR, Gafni RI, Collins MT, Fox JC, Nemeth EF. Autosomal Dominant Hypocalcemia Type 1: A Systematic Review. J Bone Miner Res 2022; 37:1926-1935. [PMID: 35879818 PMCID: PMC9805030 DOI: 10.1002/jbmr.4659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 01/07/2023]
Abstract
Autosomal dominant hypocalcemia type 1 (ADH1) is a rare form of hypoparathyroidism due to activating variants of the calcium-sensing receptor gene (CASR). Inherited or de novo activating variants of the CASR alter the set point for extracellular calcium, resulting in inadequate parathyroid hormone (PTH) secretion and inappropriate renal calcium excretion leading to hypocalcemia and hypercalciuria. Conventional therapy includes calcium and activated vitamin D, which can worsen hypercalciuria, resulting in renal complications. A systematic literature review, using published reports from 1994 to 2021, was conducted to catalog CASR variants, to define the ADH1 clinical spectrum, and to determine the effect of treatment on patients with ADH1. There were 113 unique CASR variants reported, with a general lack of genotype/phenotype correlation. Clinical data were available in 191 patients; 27% lacked symptoms, 32% had mild/moderate symptoms, and 41% had severe symptoms. Seizures, the most frequent clinical presentation, occurred in 39% of patients. In patients with blood and urine chemistries available at the time of diagnosis (n = 91), hypocalcemia (99%), hyperphosphatemia (59%), low PTH levels (57%), and hypercalciuria (34%) were observed. Blood calcium levels were significantly lower in patients with severe symptoms compared with asymptomatic patients (6.8 ± 0.7 versus 7.6 ± 0.7 mg/dL [mean ± SD]; p < 0.0001), and the age of presentation was significantly lower in severely symptomatic patients (9.1 ± 15.0 versus 19.3 ± 19.4 years; p < 0.01). Assessments for complications including nephrocalcinosis, nephrolithiasis, renal impairment, and brain calcifications in 57 patients on conventional therapy showed that 75% had at least one complication. Hypercalciuria was associated with nephrocalcinosis, nephrolithiasis, renal impairment, or brain calcifications (odds ratio [OR] = 9.3; 95% confidence interval [CI] 2.4-37.2; p < 0.01). In 27 patients with urine calcium measures before and after starting conventional therapy, the incidence of hypercalciuria increased by 91% (p < 0.05) after therapy initiation. ADH1 is a condition often associated with severe symptomatology at presentation with an increase in the risk of renal complications after initiation of conventional therapy. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kelly L Roszko
- Skeletal Disorders & Mineral Homeostasis Section, NIDCR, NIH, Bethesda, MD, USA
| | | | | | | | - Iris R Hartley
- Skeletal Disorders & Mineral Homeostasis Section, NIDCR, NIH, Bethesda, MD, USA
| | - Rachel I Gafni
- Skeletal Disorders & Mineral Homeostasis Section, NIDCR, NIH, Bethesda, MD, USA
| | - Michael T Collins
- Skeletal Disorders & Mineral Homeostasis Section, NIDCR, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
26
|
Megalin and Vitamin D Metabolism—Implications in Non-Renal Tissues and Kidney Disease. Nutrients 2022; 14:nu14183690. [PMID: 36145066 PMCID: PMC9506339 DOI: 10.3390/nu14183690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Megalin is an endocytic receptor abundantly expressed in proximal tubular epithelial cells and other calciotropic extrarenal cells expressing vitamin D metabolizing enzymes, such as bone and parathyroid cells. The receptor functions in the uptake of the vitamin D-binding protein (DBP) complexed to 25 hydroxyvitamin D3 (25(OH)D3), facilitating the intracellular conversion of precursor 25(OH)D3 to the active 1,25 dihydroxyvitamin D3 (1,25(OH)2D3). The significance of renal megalin-mediated reabsorption of 25(OH)D3 and 1,25(OH)2D3 has been well established experimentally, and other studies have demonstrated relevant roles of extrarenal megalin in regulating vitamin D homeostasis in mammary cells, fat, muscle, bone, and mesenchymal stem cells. Parathyroid gland megalin may regulate calcium signaling, suggesting intriguing possibilities for megalin-mediated cross-talk between calcium and vitamin D regulation in the parathyroid; however, parathyroid megalin functionality has not been assessed in the context of vitamin D. Within various models of chronic kidney disease (CKD), megalin expression appears to be downregulated; however, contradictory results have been observed between human and rodent models. This review aims to provide an overview of the current knowledge of megalin function in the context of vitamin D metabolism, with an emphasis on extrarenal megalin, an area that clearly requires further investigation.
Collapse
|
27
|
Goolam MA, Brown AP, Edwards KT, Gregory KJ, Leach K, Conigrave AD. Cell Surface Calcium-Sensing Receptor Heterodimers: Mutant Gene Dosage Affects Ca 2+ Sensing but Not G Protein Interaction. J Bone Miner Res 2022; 37:1787-1807. [PMID: 35848051 PMCID: PMC9545990 DOI: 10.1002/jbmr.4651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
Abstract
The calcium-sensing receptor is a homodimeric class C G protein-coupled receptor (GPCR) that senses extracellular Ca2+ (Ca2+ o ) via a dimeric extracellular Venus flytrap (VFT) unit that activates G protein-dependent signaling via twin Cysteine-rich domains linked to transmembrane heptahelical (HH) bundles. It plays a key role in the regulation of human calcium and thus mineral metabolism. However, the nature of interactions between VFT units and HH bundles, and the impacts of heterozygous or homozygous inactivating mutations, which have implications for disorders of calcium metabolism are not yet clearly defined. Herein we generated CaSR-GABAB1 and CaSR-GABAB2 chimeras subject to GABAB -dependent endoplasmic reticulum sorting to traffic mutant heterodimers to the cell surface. Transfected HEK-293 cells were assessed for Ca2+ o -stimulated Ca2+ i mobilization using mutations in either the VFT domains and/or HH bundle intraloop-2 or intraloop-3. When the same mutation was present in both VFT domains of receptor dimers, analogous to homozygous neonatal severe hyperparathyroidism (NSHPT), receptor function was markedly impaired. Mutant heterodimers containing one wild-type (WT) and one mutant VFT domain, however, corresponding to heterozygous familial hypocalciuric hypercalcemia type-1 (FHH-1), supported maximal signaling with reduced Ca2+ o potency. Thus two WT VFT domains were required for normal Ca2+ o potency and there was a pronounced gene-dosage effect. In contrast, a single WT HH bundle was insufficient for maximal signaling and there was no functional difference between heterodimers in which the mutation was present in one or both intraloops; ie, no gene-dosage effect. Finally, we observed that the Ca2+ o -stimulated CaSR operated exclusively via signaling in-trans and not via combined in-trans and in-cis signaling. We consider how receptor asymmetry may support the underlying mechanisms. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Mahvash A Goolam
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| | - Alice P Brown
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| | - Kimberly T Edwards
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| | - Karen J Gregory
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Katie Leach
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW, Australia
| |
Collapse
|
28
|
Xu R, Cheng P, Meng K, Li L, Jiao M, Zhao X, Jia P, Zheng X, Xiao C. Extracellular domain of human calcium sensing receptor immobilized to silica beads as biomaterial: a rapid chromatographic method for recognizing ligands from complex matrix ‘Shuangdan’. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123409. [DOI: 10.1016/j.jchromb.2022.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
|
29
|
Young K, Beggs MR, Grimbly C, Alexander RT. Regulation of 1 and 24 hydroxylation of vitamin D metabolites in the proximal tubule. Exp Biol Med (Maywood) 2022; 247:1103-1111. [PMID: 35482362 PMCID: PMC9335508 DOI: 10.1177/15353702221091982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Calcium and phosphate are critical for numerous physiological processes. Consequently, the plasma concentration of these ions are tightly regulated. Calcitriol, the active form of vitamin D, is a positive modulator of mineralization as well as calcium and phosphate metabolism. The molecular and physiological effects of calcitriol are well documented. Calcitriol increases blood calcium and phosphate levels by increasing absorption from the intestine, and resorption of bone. Calcitriol synthesis is a multistep process. A precursor is first made via skin exposure to UV, it is then 25-hydroxylated in the liver to form 25-hydroxyitamin D. The next hydroxylation step occurs in the renal proximal tubule via the 1-αhydroxylase enzyme (encoded by CYP27B1) thereby generating 1,25-dihydroxyvitamin D, that is, calcitriol. At the same site, the 25-hydroxyvitamin D 24-hydroxlase enzyme encoded by CYP24A1 can hydroxylate 25-hydroxyvitamin D or calcitriol to deactivate the hormone. Plasma calcitriol levels are primarily determined by the regulated expression of CYP27B1 and CYP24A1. This occurs in response to parathyroid hormone (increases CYP27B1), calcitriol itself (decreases CYP27B1 and increases CYP24A1), calcitonin (increases or decreases CYP24A1 and increases CYP27B1), FGF23 (decreases CYP27B1 and increases CYP24A1) and potentially plasma calcium and phosphate levels themselves (mixed effects). Herein, we review the regulation of CYP27B1 and CYP24A1 transcription in response to the action of classic phophocalciotropic hormones and explore the possibility of direct regulation by plasma calcium.
Collapse
Affiliation(s)
- Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada
| | - Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada
| | - Chelsey Grimbly
- Department of Paediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada,Department of Paediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada,R Todd Alexander.
| |
Collapse
|
30
|
Bohner M, Maazouz Y, Ginebra MP, Habibovic P, Schoenecker JG, Seeherman H, van den Beucken JJ, Witte F. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater 2022; 145:1-24. [PMID: 35398267 DOI: 10.1016/j.actbio.2022.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction. STATEMENT OF SIGNIFICANCE: The ability to regenerate bone in a spatially controlled and reproducible manner is an essential prerequisite for the treatment of large bone defects. As such, understanding the mechanism leading to heterotopic ossification (HO), a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues, would be very useful. Unfortunately, the mechanism(s) behind HO is(are) poorly understood. The present study reviews the literature on HO and based on it, proposes that HO can be caused by a combination of inflammation and calcification. This mechanism helps to better understand current strategies to prevent and treat HO. It also shows new opportunities to improve the treatment of bone defects in orthopedic and dental procedures.
Collapse
|
31
|
Zehra U, Tryfonidou M, Iatridis JC, Illien-Jünger S, Mwale F, Samartzis D. Mechanisms and clinical implications of intervertebral disc calcification. Nat Rev Rheumatol 2022; 18:352-362. [PMID: 35534553 PMCID: PMC9210932 DOI: 10.1038/s41584-022-00783-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
Low back pain is a leading cause of disability worldwide. Intervertebral disc (IVD) degeneration is often associated with low back pain but is sometimes asymptomatic. IVD calcification is an often overlooked disc phenotype that might have considerable clinical impact. IVD calcification is not a rare finding in ageing or in degenerative and scoliotic spinal conditions, but is often ignored and under-reported. IVD calcification may lead to stiffer IVDs and altered segmental biomechanics, more severe IVD degeneration, inflammation and low back pain. Calcification is not restricted to the IVD but is also observed in the degeneration of other cartilaginous tissues, such as joint cartilage, and is involved in the tissue inflammatory process. Furthermore, IVD calcification may also affect the vertebral endplate, leading to Modic changes (non-neoplastic subchondral vertebral bone marrow lesions) and the generation of pain. Such effects in the spine might develop in similar ways to the development of subchondral marrow lesions of the knee, which are associated with osteoarthritis-related pain. We propose that IVD calcification is a phenotypic biomarker of clinically relevant disc degeneration and endplate changes. As IVD calcification has implications for the management and prognosis of degenerative spinal changes and could affect targeted therapeutics and regenerative approaches for the spine, awareness of IVD calcification should be raised in the spine community.
Collapse
Affiliation(s)
- Uruj Zehra
- Department of Anatomy, University of Health Sciences, Lahore, Pakistan
| | - Marianna Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Fackson Mwale
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital and Department of Surgery, McGill University, Montreal, QC, Canada
| | - Dino Samartzis
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA.
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
32
|
Khattar V, Wang L, Peng JB. Calcium selective channel TRPV6: Structure, function, and implications in health and disease. Gene 2022; 817:146192. [PMID: 35031425 PMCID: PMC8950124 DOI: 10.1016/j.gene.2022.146192] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Calcium-selective channel TRPV6 (Transient Receptor Potential channel family, Vanilloid subfamily member 6) belongs to the TRP family of cation channels and plays critical roles in transcellular calcium (Ca2+) transport, reuptake of Ca2+ into cells, and maintaining a local low Ca2+ environment for certain biological processes. Recent crystal and cryo-electron microscopy-based structures of TRPV6 have revealed mechanistic insights on how the protein achieves Ca2+ selectivity, permeation, and inactivation by calmodulin. The TRPV6 protein is expressed in a range of epithelial tissues such as the intestine, kidney, placenta, epididymis, and exocrine glands such as the pancreas, prostate and salivary, sweat, and mammary glands. The TRPV6 gene is a direct transcriptional target of the active form of vitamin D and is efficiently regulated to meet the body's need for Ca2+ demand. In addition, TRPV6 is also regulated by the level of dietary Ca2+ and under physiological conditions such as pregnancy and lactation. Genetic models of loss of function in TRPV6 display hypercalciuria, decreased bone marrow density, deficient weight gain, reduced fertility, and in some cases alopecia. The models also reveal that the channel plays an indispensable role in maintaining maternal-fetal Ca2+ transport and low Ca2+ environment in the epididymal lumen that is critical for male fertility. Most recently, loss of function mutations in TRPV6 gene is linked to transient neonatal hyperparathyroidism and early onset chronic pancreatitis. TRPV6 is overexpressed in a wide range of human malignancies and its upregulation is strongly correlated to tumor aggressiveness, metastasis, and poor survival in selected cancers. This review summarizes the current state of knowledge on the expression, structure, biophysical properties, function, polymorphisms, and regulation of TRPV6. The aberrant expression, polymorphisms, and dysfunction of this protein linked to human diseases are also discussed.
Collapse
Affiliation(s)
- Vinayak Khattar
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
33
|
Stimulation of Metabolic Activity and Cell Differentiation in Osteoblastic and Human Mesenchymal Stem Cells by a Nanohydroxyapatite Paste Bone Graft Substitute. MATERIALS 2022; 15:ma15041570. [PMID: 35208112 PMCID: PMC8877199 DOI: 10.3390/ma15041570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023]
Abstract
Advances in nanotechnology have been exploited to develop new biomaterials including nanocrystalline hydroxyapatite (nHA) with physical properties close to those of natural bone mineral. While clinical data are encouraging, relatively little is understood regarding bone cells’ interactions with synthetic graft substitutes based on this technology. The aim of this research was therefore to investigate the in vitro response of both osteoblast cell lines and primary osteoblasts to an nHA paste. Cellular metabolic activity was assessed using the cell viability reagent PrestoBlue and quantitative, real-time PCR was used to determine gene expression related to osteogenic differentiation. A potential role of calcium-sensing receptor (CaSR) in the response of osteoblastic cells to nHA was also investigated. Indirect contact of the nHA paste with human osteoblastic cells (Saos-2, MG63, primary osteoblasts) and human bone marrow-derived mesenchymal stem cells enhanced the cell metabolic activity. The nHA paste also stimulated gene expression of runt-related transcription factor 2, collagen 1, alkaline phosphatase, and osteocalcin, thereby indicating an osteogenic response. CaSR was not involved in nHA paste-induced increases in cellular metabolic activity. This investigation demonstrated that the nHA paste has osteogenic properties that contribute to clinical efficacy when employed as an injectable bone graft substitute.
Collapse
|
34
|
Mullin BH, Pavlos NJ, Brown SJ, Walsh JP, McKellar RA, Wilson SG, Ward BK. Functional Assessment of Calcium-Sensing Receptor Variants Confirms Familial Hypocalciuric Hypercalcaemia. J Endocr Soc 2022; 6:bvac025. [PMID: 35356007 PMCID: PMC8962451 DOI: 10.1210/jendso/bvac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 11/26/2022] Open
Abstract
Context In the clinic it is important to differentiate primary hyperparathyroidism (PHPT) from the more benign, inherited disorder, familial hypocalciuric hypercalcemia (FHH). Since the conditions may sometimes overlap biochemically, identification of calcium-sensing receptor (CASR) gene variants causative of FHH (but not PHPT) is the most decisive diagnostic aid. When novel variants are identified, bioinformatics and functional assessment are required to establish pathogenicity. Objective We identified 3 novel CASR transmembrane domain missense variants, Thr699Asn, Arg701Gly, and Thr808Pro, in 3 probands provisionally diagnosed with FHH and examined the variants using bioinformatics and functional analysis. Methods Bioinformatics assessment utilized wANNOVAR software. For functional characterization, each variant was cloned into a mammalian expression vector; wild-type and variant receptors were transfected into HEK293 cells, and their expression and cellular localization were assessed by Western blotting and confocal immunofluorescence, respectively. Receptor activation in HEK293 cells was determined using an IP-One ELISA assay following stimulation with Ca++ ions. Results Bioinformatics analysis of the variants was unable to definitively assign pathogenicity. Compared with wild-type receptor, all variants demonstrated impaired expression of mature receptor reaching the cell surface and diminished activation at physiologically relevant Ca++ concentrations. Conclusion Three CASR missense variants identified in probands provisionally diagnosed with FHH result in receptor inactivation and are therefore likely causative of FHH. Inactivation may be due to inadequate processing/trafficking of mature receptor and/or conformational changes induced by the variants affecting receptor signaling. This study demonstrates the value of functional studies in assessing genetic variants identified in hypercalcemic patients.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Nathan J Pavlos
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Suzanne J Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - John P Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Ross A McKellar
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Bryan K Ward
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
35
|
Matikainen N, Pekkarinen T, Ryhänen EM, Schalin-Jäntti C. Physiology of Calcium Homeostasis: An Overview. Endocrinol Metab Clin North Am 2021; 50:575-590. [PMID: 34774235 DOI: 10.1016/j.ecl.2021.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium plays a key role in skeletal mineralization and several intracellular and extracellular homeostatic networks. It is an essential element that is only available to the body through dietary sources. Daily acquisition of calcium depends, in addition to the actual intake, on the hormonally regulated state of calcium homeostasis through three main mechanisms: bone turnover, intestinal absorption, and renal reabsorption. These procedures are regulated by a group of interacting circulating hormones and their key receptors. This includes parathyroid hormone (PTH), PTH-related peptide, 1,25-dihydroxyvitamin D, calcitonin, fibroblast growth factor 23, the prevailing calcium concentration itself, the calcium-sensing receptor, as well as local processes in the bones, gut, and kidneys.
Collapse
Affiliation(s)
- Niina Matikainen
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland
| | - Tuula Pekkarinen
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland
| | - Eeva M Ryhänen
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, PB 340, 00029 HUS, Helsinki, Finland.
| |
Collapse
|
36
|
Dinh LV, DeBono A, Keller AN, Josephs TM, Gregory KJ, Leach K, Capuano B. Development of AC265347-Inspired Calcium-Sensing Receptor Ago-Positive Allosteric Modulators. ChemMedChem 2021; 16:3451-3462. [PMID: 34216111 DOI: 10.1002/cmdc.202100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/07/2022]
Abstract
The calcium-sensing receptor (CaSR) is a clinical target in the treatment of hyperparathyroidism and related diseases. However, clinical use of approved CaSR-targeting drugs such as cinacalcet is limited due to adverse side effects including hypocalcaemia, nausea and vomiting, and in some instances, a lack of efficacy. The CaSR agonist and positive allosteric modulator (ago-PAM), AC265347, is chemically distinct from clinically-approved CaSR PAMs. AC265347 potently suppressed parathyroid hormone (PTH) release in rats with a lower propensity to cause hypocalcaemia compared to cinacalcet and may therefore offer benefits over current CaSR PAMs. Here we report a structure activity relationship (SAR) study seeking to optimise AC265347 as a drug candidate and disclose the discovery of AC265347-like compounds with diverse pharmacology and improved physicochemical and drug-like properties.
Collapse
Affiliation(s)
- Le Vi Dinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Aaron DeBono
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
- Department of Pharmacology, Monash University, 9 Ancora Imparo Way, Clayton, VIC 3800, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
- Department of Pharmacology, Monash University, 9 Ancora Imparo Way, Clayton, VIC 3800, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University), 381 Royal Parade, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
37
|
Lee JJ, Alzamil J, Rehman S, Pan W, Dimke H, Alexander RT. Activation of the calcium sensing receptor increases claudin-14 expression via a PLC -p38-Sp1 pathway. FASEB J 2021; 35:e21982. [PMID: 34694654 PMCID: PMC9297942 DOI: 10.1096/fj.202002137rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022]
Abstract
Activation of the basolateral calcium sensing receptor (CaSR) in the renal tubular thick ascending limb (TAL) increases claudin‐14 expression, which reduces paracellular calcium (Ca2+) permeability, thus increasing urinary Ca2+ excretion. However, the upstream signaling pathway contributing to altered CLDN14 gene expression is unknown. To delineate this pathway, we identified and then cloned the CaSR responsive region including the promoter of mouse Cldn14 into a luciferase reporter vector. This 1500 bp sequence upstream of the 5′ UTR of Cldn14 variant 1, conferred increased reporter activity in the presence of high extracellular Ca2+ (5 mM) relative to a lower (0.5 mM) concentration. Assessment of Cldn14 reporter activity in response to increased extracellular Ca2+ in the presence or absence of specific inhibitors confirmed signaling through PLC and p38, but not JNK. Overexpression of SP1 attenuated Cldn14 reporter activity in response to CasR signaling. SP1 is expressed in the TAL and phosphorylation was attenuated by CaSR signaling. Finally, activating mutations in the CaSR increased Cldn14 reporter activity while a dominant negative mutation in the CaSR inhibited it. Together, these studies suggest that basolateral activation of the CASR leads to increased Cldn14 expression via a PLC‐ stimulated p38 pathway that prevents Sp1 mediated repression.
Collapse
Affiliation(s)
- Justin J Lee
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,The Women's & Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Jawad Alzamil
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Saba Rehman
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Wanling Pan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,The Women's & Children's Health Research Institute, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Li C, Zhang J, Zhu Y. Acute cardiac damage and acute kidney injury associated with hypercalcemia crisis in hyperparathyroidism: a case report. J Int Med Res 2021; 49:3000605211050614. [PMID: 34686090 PMCID: PMC8544773 DOI: 10.1177/03000605211050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hyperparathyroidism-induced hypercalcemic crisis is a rare presentation of primary hyperparathyroidism. Primary hyperparathyroidism is caused by uncontrolled and immoderate secretion of parathyroid hormone. The most common presentation in primary hyperparathyroidism is renal stones, soft tissue calcification, cystic bone disease, and even hypercalcemic crisis. We report a patient who presented with multiple organ dysfunction syndrome due to extreme hypercalcemia (serum calcium concentration, 4.79 mmol/L [2.15–2.25 mmol/L]) resulting from primary hyperparathyroidism (serum parathyroid hormone concentration, 2215 pg/mL). The complications in this patient were complete cardiac damage and acute kidney injury. On the basis of the hypercalcemic crisis, the patient subsequently underwent surgical resection of parathyroid adenoma. Two days after surgery, her serum calcium and parathyroid hormone concentrations were normal. The patient had a good recovery after a series of other relevant therapies. In conclusion, surgery should be taken into consideration for hyperparathyroidism.
Collapse
Affiliation(s)
- Chunlian Li
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Jiaxin Zhang
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Yuxiang Zhu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|
39
|
Cheshmedzhieva D, Ilieva S, Permyakov EA, Permyakov SE, Dudev T. Ca 2+/Sr 2+ Selectivity in Calcium-Sensing Receptor (CaSR): Implications for Strontium's Anti-Osteoporosis Effect. Biomolecules 2021; 11:1576. [PMID: 34827574 PMCID: PMC8615369 DOI: 10.3390/biom11111576] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) controls vital bone cell functions such as cell growth, differentiation and apoptosis. The binding of the native agonist (Ca2+) to CaSR activates the receptor, which undergoes structural changes that trigger a cascade of events along the cellular signaling pathways. Strontium (in the form of soluble salts) has been found to also be a CaSR agonist. The activation of the receptor by Sr2+ is considered to be the major mechanism through which strontium exerts its anti-osteoporosis effect, mostly in postmenopausal women. Strontium-activated CaSR initiates a series of signal transduction events resulting in both osteoclast apoptosis and osteoblast differentiation, thus strengthening the bone tissue. The intimate mechanism of Sr2+ activation of CaSR is still enigmatic. Herewith, by employing a combination of density functional theory (DFT) calculations and polarizable continuum model (PCM) computations, we have found that the Ca2+ binding sites 1, 3, and 4 in the activated CaSR, although possessing a different number and type of protein ligands, overall structure and charge state, are all selective for Ca2+ over Sr2+. The three binding sites, regardless of their structural differences, exhibit almost equal metal selectivity if they are flexible and have no geometrical constraints on the incoming Sr2+. In contrast to Ca2+ and Sr2+, Mg2+ constructs, when allowed to fully relax during the optimization process, adopt their stringent six-coordinated octahedral structure at the expense of detaching a one-backbone carbonyl ligand and shifting it to the second coordination layer of the metal. The binding of Mg2+ and Sr2+ to a rigid/inflexible calcium-designed binding pocket requires an additional energy penalty for the binding ion; however, the price for doing so (to be paid by Sr2+) is much less than that of Mg2+. The results obtained delineate the key factors controlling the competition between metal cations for the receptor and shed light on some aspects of strontium's therapeutic effects.
Collapse
Affiliation(s)
- Diana Cheshmedzhieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (D.C.); (S.I.)
| | - Sonia Ilieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (D.C.); (S.I.)
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, 142290 Pushchino, Russia;
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, 142290 Pushchino, Russia;
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (D.C.); (S.I.)
| |
Collapse
|
40
|
Koh J, Zhang R, Roman S, Duh QY, Gosnell J, Shen W, Suh I, Sosa JA. Ex Vivo Intact Tissue Analysis Reveals Alternative Calcium-sensing Behaviors in Parathyroid Adenomas. J Clin Endocrinol Metab 2021; 106:3168-3183. [PMID: 34272844 PMCID: PMC8530711 DOI: 10.1210/clinem/dgab524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The biochemical basis for clinical variability in primary hyperparathyroidism (PHPT) is poorly understood. OBJECTIVE This study aimed to define parathyroid tumor biochemical properties associated with calcium-sensing failure in PHPT patients, and to relate differences in these profiles to variations in clinical presentation. METHODS Preoperative clinical data from a sequential series of 39 patients undergoing surgery for PHPT at an endocrine surgery referral center in a large, public university hospital were evaluated for correlation to parathyroid tumor biochemical behavior. An intact tissue, ex vivo interrogative assay was employed to evaluate the calcium-sensing capacity of parathyroid adenomas relative to normal donor glands. Tumors were functionally classified based on calcium dose-response curve profiles, and clinical parameters were compared among the respective classes. Changes in the relative expression of 3 key components in the calcium/parathyroid hormone (PTH) signaling axis-CASR, RGS5, and RCAN1-were evaluated as potential mechanisms for calcium-sensing failure. RESULTS Parathyroid adenomas grouped into 3 distinct functional classes. Tumors with diminished calcium sensitivity were the most common (18 of 39) and were strongly associated with reduced bone mineral density (P = 0.0009). Tumors with no calcium-sensing deficit (11 of 39) were associated with higher preoperative PTH (P = 0.036). A third group (6/39) displayed a nonsigmoid calcium/PTH response curve; 4 of these 6 tumors expressed elevated RCAN1. CONCLUSION Calcium-sensing capacity varies among parathyroid tumors but downregulation of the calcium-sensing receptor (CASR) is not an obligate underlying mechanism. Differences in tumor calcium responsiveness may contribute to variations in PHPT clinical presentation.
Collapse
Affiliation(s)
- James Koh
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California
at San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| | - Run Zhang
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California
at San Francisco, San Francisco, CA, USA
| | - Sanziana Roman
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| | - Quan-Yang Duh
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| | - Jessica Gosnell
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| | - Wen Shen
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| | - Insoo Suh
- Department of Surgery, NYU Langone Health, New York,
NY, USA
| | - Julie A Sosa
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California
at San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California at San Francisco,
San Francisco, CA, USA
| |
Collapse
|
41
|
Schepelmann M, Kupper N, Sladczyk M, Mansfield B, Manhardt T, Piatek K, Iamartino L, Riccardi D, Kariuki BM, Bassetto M, Kallay E. Stereo-Specific Modulation of the Extracellular Calcium-Sensing Receptor in Colon Cancer Cells. Int J Mol Sci 2021; 22:ijms221810124. [PMID: 34576291 PMCID: PMC8464956 DOI: 10.3390/ijms221810124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 01/19/2023] Open
Abstract
Pharmacological allosteric agonists (calcimimetics) of the extracellular calcium-sensing receptor (CaSR) have substantial gastro-intestinal side effects and induce the expression of inflammatory markers in colon cancer cells. Here, we compared the effects of both CaSR-specific (R enantiomers) and -unspecific (S enantiomers) enantiomers of a calcimimetic (NPS 568) and a calcilytic (allosteric CaSR antagonists; NPS 2143) to prove that these effects are indeed mediated via the CaSR, rather than via off-target effects, e.g., on β-adrenoceptors or calcium channels, of these drugs. The unspecific S enantiomer of NPS 2143 and NPS S-2143 was prepared using synthetic chemistry and characterized using crystallography. NPS S-2143 was then tested in HEK-293 cells stably transfected with the human CaSR (HEK-CaSR), where it did not inhibit CaSR-mediated intracellular Ca2+ signals, as expected. HT29 colon cancer cells transfected with the CaSR were treated with both enantiomers of NPS 568 and NPS 2143 alone or in combination, and the expression of CaSR and the pro-inflammatory cytokine interleukin 8 (IL-8) was measured by RT-qPCR and ELISA. Only the CaSR-selective enantiomers of the calcimimetic NPS 568 and NPS 2143 were able to modulate CaSR and IL-8 expression. We proved that pro-inflammatory effects in colon cancer cells are indeed mediated through CaSR activation. The non-CaSR selective enantiomer NPS S-2143 will be a valuable tool for investigations in CaSR-mediated processes.
Collapse
Affiliation(s)
- Martin Schepelmann
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
- Correspondence: (M.S.); (E.K.); Tel.: +43-1-40400-51230 (M.S. & E.K.)
| | - Nadja Kupper
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Marta Sladczyk
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Bethan Mansfield
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; (B.M.); (D.R.)
| | - Teresa Manhardt
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Karina Piatek
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Luca Iamartino
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 18, 50139 Florence, Italy
| | - Daniela Riccardi
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; (B.M.); (D.R.)
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK;
| | - Marcella Bassetto
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Singleton Park Campus, Swansea SA2 8PP, UK;
| | - Enikö Kallay
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
- Correspondence: (M.S.); (E.K.); Tel.: +43-1-40400-51230 (M.S. & E.K.)
| |
Collapse
|
42
|
Connelly MK, Cheng AA, Hernandez LL. Graduate Student Literature Review: Serotonin and calcium metabolism: A story unfolding. J Dairy Sci 2021; 104:13008-13019. [PMID: 34531048 DOI: 10.3168/jds.2021-20610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
The peripartum period is characterized by dynamic shifts in metabolic, mineral, and immune metabolism as the dairy cow adapts to the demands of lactation. Emphasis over the past decade has been placed on understanding the biology of the large shift in calcium metabolism in particular. Moreover, research has also focused on exploring the role of serotonin during the transition period and lactation and further unraveling its relationship with calcium. This review aimed to demonstrate the integration of calcium physiology during the peripartal period and throughout lactation. More specifically, we sought to discuss the knowledge gained in recent years on calcium metabolism, mammary calcium transport, serotonin metabolism, and the serotonin-calcium axis. Herein we also discuss the challenges and limitations of current research and where that leaves the present understanding of the serotonin-calcium axis as we seek to move forward and continue exploring this interesting relationship.
Collapse
Affiliation(s)
- M K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706.
| | - A A Cheng
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| | - L L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| |
Collapse
|
43
|
Ngamkam J, Vadcharavivad S, Areepium N, Auamnoy T, Takkavatakarn K, Katavetin P, Tiranathanagul K, Praditpornsilpa K, Eiam-Ong S, Susantitaphong P. The impact of CASR A990G polymorphism in response to cinacalcet treatment in hemodialysis patients with secondary hyperparathyroidism. Sci Rep 2021; 11:18006. [PMID: 34504264 PMCID: PMC8429569 DOI: 10.1038/s41598-021-97587-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to determine the impact of calcium sensing receptor (CASR) A990G genetic polymorphism on parathyroid hormone (PTH) lowering response to cinacalcet treatment when controlling for significant influencing clinical factors. This retrospective study was conducted on 135 Thai hemodialysis (HD) patients with secondary hyperparathyroidism (SHPT). CASR A990G genotypes were determined. The patients were identified as either G carriers (heterozygous or homozygous CASR 990G allele carriers) or noncarriers (homozygous CASR 990A carriers). Tested covariates were baseline PTH level (bPTH), baseline serum phosphate (bPhos), baseline serum calcium (bCa), baseline calcitriol equivalent dose (bCtriol), baseline ergocalciferol dose (bErgo), and age. The ANCOVA showed that intact PTH levels after 12 weeks of cinacalcet treatment (PTHw12) was significantly lower among G carriers compared with noncarriers after controlling for bPTH, bPhos, bCtriol, and bErgo (F(1, 127) = 15.472, p < 0.001), with the adjusted mean difference of 253.7 pg/mL. The logistic regression analysis revealed that the odds of a G carrier achieving 30% PTH reduction after 12-week cinacalcet treatment were 3.968 times greater than the odds for a noncarrier after adjusting for bPhos, bCtriol, and age. In conclusion, the CASR A990G polymorphism significantly influences cinacalcet response in HD patients with SHPT.
Collapse
MESH Headings
- Age Factors
- Aged
- Alleles
- Calcitriol/blood
- Calcium/blood
- Calcium-Regulating Hormones and Agents/therapeutic use
- Cinacalcet/therapeutic use
- Ergocalciferols/blood
- Female
- Gene Expression
- Genotype
- Heterozygote
- Homozygote
- Humans
- Hyperparathyroidism, Secondary/blood
- Hyperparathyroidism, Secondary/genetics
- Hyperparathyroidism, Secondary/pathology
- Hyperparathyroidism, Secondary/therapy
- Logistic Models
- Male
- Middle Aged
- Parathyroid Hormone/blood
- Parathyroid Hormone/genetics
- Phosphates/blood
- Polymorphism, Single Nucleotide
- Receptors, Calcium-Sensing/blood
- Receptors, Calcium-Sensing/genetics
- Renal Dialysis/methods
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/therapy
- Retrospective Studies
Collapse
Affiliation(s)
- Jaruwan Ngamkam
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somratai Vadcharavivad
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nutthada Areepium
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Titinun Auamnoy
- Faculty of Pharmaceutical Sciences, Burapha University, Chon Buri, 20131, Thailand
| | - Kullaya Takkavatakarn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pisut Katavetin
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khajohn Tiranathanagul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellent Center of Geriatrics, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Paweena Susantitaphong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
44
|
Chen X, Wang L, Cui Q, Ding Z, Han L, Kou Y, Zhang W, Wang H, Jia X, Dai M, Shi Z, Li Y, Li X, Geng Y. Structural insights into the activation of human calcium-sensing receptor. eLife 2021; 10:68578. [PMID: 34467854 PMCID: PMC8476121 DOI: 10.7554/elife.68578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that maintains Ca2+ homeostasis in serum. Here, we present the cryo-electron microscopy structures of the CaSR in the inactive and agonist+PAM bound states. Complemented with previously reported structures of CaSR, we show that in addition to the full inactive and active states, there are multiple intermediate states during the activation of CaSR. We used a negative allosteric nanobody to stabilize the CaSR in the fully inactive state and found a new binding site for Ca2+ ion that acts as a composite agonist with L-amino acid to stabilize the closure of active Venus flytraps. Our data show that agonist binding leads to compaction of the dimer, proximity of the cysteine-rich domains, large-scale transitions of seven-transmembrane domains, and inter- and intrasubunit conformational changes of seven-transmembrane domains to accommodate downstream transducers. Our results reveal the structural basis for activation mechanisms of CaSR and clarify the mode of action of Ca2+ ions and L-amino acid leading to the activation of the receptor.
Collapse
Affiliation(s)
- Xiaochen Chen
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lu Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Cui
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhanyu Ding
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Han
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongjun Kou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Zhang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haonan Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Jia
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mei Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhong Shi
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuying Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiyang Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yong Geng
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Timmons JG, Manners R, Bailey M, McDougall C. Cognitive impairment reversed by cinacalcet administration in primary hyperparathyroidism. Hormones (Athens) 2021; 20:587-589. [PMID: 33881757 PMCID: PMC8357729 DOI: 10.1007/s42000-021-00292-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Primary hyperparathyroidism (pHPT) is a common endocrine disorder. Often serum calcium is minimally elevated with few symptoms. In elderly patients with multiple co-morbidities, the decision to "watch and wait" is often most clinically appropriate as operative intervention is associated with high peri-operative risk. We present an elderly patient with mild hypercalcemia secondary to primary hyperparathyroidism. The clinical decision was initially to watch and wait. The patient subsequently developed cognitive impairment and was diagnosed with mixed Alzheimer's disease/vascular dementia. She became dependent for all care and housebound. A therapeutic trial of cinacalcet was commenced following a further acute rise in serum calcium. Significant reversal of her functional and cognitive deficit occurred. She was no longer fully dependent. Mini mental state examination (MMSE) improved from 8/30 to 21/30. In vulnerable neural systems, even mild elevation in serum calcium may have a profound effect on cognition and function. We propose a therapeutic trial of cinacalcet in such patients.
Collapse
Affiliation(s)
- J G Timmons
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
- Department of Diabetes, Endocrinology and Clinical Pharmacology, Glasgow Royal Infirmary, Glasgow, UK.
| | - R Manners
- Department of Care of the Elderly, University Hospital Hairmyres, East Kilbride, UK
| | - M Bailey
- Department of Care of the Elderly, University Hospital Hairmyres, East Kilbride, UK
| | - C McDougall
- Department of Diabetes and Endocrinology, University Hospital Hairmyres, East Kilbride, UK
| |
Collapse
|
46
|
Alharazy S, Naseer MI, Alissa E, Robertson MD, Lanham-New S, Chaudhary AG. Whole-Exome Sequencing for Identification of Genetic Variants Involved in Vitamin D Metabolic Pathways in Families With Vitamin D Deficiency in Saudi Arabia. Front Genet 2021; 12:677780. [PMID: 34168679 PMCID: PMC8219054 DOI: 10.3389/fgene.2021.677780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Background Numerous research studies have found an association between vitamin D (vitD) status and single-nucleotide polymorphisms (SNPs) in genes involved in vitD metabolism. It is notable that the influence of these SNPs on 25-hydroxyvitamin D [25(OH)D] levels might vary in different populations. In this study, we aimed to explore for genetic variants in genes related to vitD metabolism in families with vitD deficiency in Saudi Arabia using whole-exome sequencing (WES). Methods This family-based WES study was conducted for 21 families with vitD deficiency (n = 39) in Saudi Arabia. WES was performed for DNA samples, then resulting WES data was filtered and a number of variants were prioritized and validated by Sanger DNA sequencing. Results Several missense variants in vitD-related genes were detected in families. We determined two variants in low-density lipoprotein 2 gene (LRP2) with one variant (rs2075252) observed in six individuals, while the other LRP2 variant (rs4667591) was detected in 13 subjects. Single variants in 7-dehydrocholesterol reductase (DHCR7) (rs143587828) and melanocortin-1 receptor (MC1R) (rs1805005) genes were observed in two subjects from two different families. Other variants in group-specific component (GC), cubilin (CUBN), and calcium-sensing receptor (CASR) gene were found in index cases and controls. Polymorphisms in GC (rs9016) and CASR (rs1801726) were found in the majority of family cases (94 and 88%), respectively. Conclusion In vitD-deficient families in Saudi Arabia, we were able to detect a number of missense exonic variants including variants in GC (rs9016), CUBN (rs1801222), CASR (rs1801726), and LRP2 (rs4667591). However, the existence of these variants was not different between affected family members and non-affected controls. Additionally, we were able to find a mutation in DHCR7 (rs143587828) and a polymorphism in LRP2 (rs2075252), which may affect vitD levels and influence vitD status. Further studies are now required to confirm the association of these variants with vitD deficiency.
Collapse
Affiliation(s)
- Shatha Alharazy
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eman Alissa
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Margaret Denise Robertson
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Susan Lanham-New
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
Liu H, Zhou D, Liu C, Zhuan Q, Luo Y, Mo X, Fu X, Hou Y. The Calcium-Sensing Receptor Is Involved in Follicle-Stimulating Hormone-Induced Cumulus Expansion in in vitro Cultured Porcine Cumulus-Oocyte Complexes. Front Cell Dev Biol 2021; 9:625036. [PMID: 34095106 PMCID: PMC8173154 DOI: 10.3389/fcell.2021.625036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
The Calcium-Sensing Receptor (CASR) is a G protein-coupled receptor of the C family that reportedly promotes maturation of porcine oocytes. However, its role in cumulus expansion of cumulus-oocyte complexes (COCs) is not well known. This study was conducted to determine the role of CASR and potential mechanisms involved during in vitro maturation (IVM) of porcine COCs. After culture of COCs in follicle-stimulating hormone (FSH)-supplement maturation medium for 24 h, the time of breakdown of the germinal vesicle (GVBD), indicative of initiation of meiotic maturation, resulted in an increased (p < 0.05) CASR mRNA expression level in cumulus cells. Moreover, IVM of COCs in 10 μM of the CASR agonist NPS R-568 promoted (p < 0.05) cumulus expansion but only in FSH-containing medium. Conversely, 20 μM of the CASR inhibitor NPS2390 precluded cumulus expansion. We next tested the effect of the CASR agonist/inhibitor on the expression of cumulus expansion-related genes. The CASR agonist significantly upregulated the expression of hyaluronan acid synthase 2 (HAS2), whereas the CASR inhibitor downregulated the expression of all HAS2, prostaglandin-endoperoxide synthase 2 (PTGS2), and tumor necrosis factor a-induced protein 6 (TNFAIP6). Altogether, these results suggest that CASR activity is involved in FSH-stimulated porcine cumulus expansion.
Collapse
Affiliation(s)
- Huage Liu
- Institute of Reproductive Medicine, Nantong University, Nantong, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dan Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianhong Mo
- College of Life Sciences, Chifeng University, Chifeng, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Tan RSG, Lee CHL, Dimke H, Todd Alexander R. The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport. Exp Biol Med (Maywood) 2021; 246:2407-2419. [PMID: 33926258 DOI: 10.1177/15353702211010415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The calcium-sensing receptor (CaSR) plays a critical role in sensing extracellular calcium (Ca2+) and signaling to maintain Ca2+ homeostasis. In the parathyroid, the CaSR regulates secretion of parathyroid hormone, which functions to increase extracellular Ca2+ levels. The CaSR is also located in other organs imperative to Ca2+ homeostasis including the kidney and intestine, where it modulates Ca2+ reabsorption and absorption, respectively. In this review, we describe CaSR expression and its function in transepithelial Ca2+ transport in the kidney and intestine. Activation of the CaSR leads to G protein dependent and independent signaling cascades. The known CaSR signal transduction pathways involved in modulating paracellular and transcellular epithelial Ca2+ transport are discussed. Mutations in the CaSR cause a range of diseases that manifest in altered serum Ca2+ levels. Gain-of-function mutations in the CaSR result in autosomal dominant hypocalcemia type 1, while loss-of-function mutations cause familial hypocalciuric hypercalcemia. Additionally, the putative serine protease, FAM111A, is discussed as a potential regulator of the CaSR because mutations in FAM111A cause Kenny Caffey syndrome type 2, gracile bone dysplasia, and osteocraniostenosis, diseases that are characterized by hypocalcemia, hypoparathyroidism, and bony abnormalities, i.e. share phenotypic features of autosomal dominant hypocalcemia. Recent work has helped to elucidate the effect of CaSR signaling cascades on downstream proteins involved in Ca2+ transport across renal and intestinal epithelia; however, much remains to be discovered.
Collapse
Affiliation(s)
- Rebecca Siu Ga Tan
- Department of Physiology, University of Alberta, Edmonton T6G 1C9, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 1C9, Canada
| | | | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark.,Department of Nephrology, Odense University Hospital, Odense 5000, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton T6G 1C9, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 1C9, Canada.,Department of Pediatrics, University of Alberta, Edmonton T6G 1C9, Canada
| |
Collapse
|
49
|
Oster M, Reyer H, Gerlinger C, Trakooljul N, Siengdee P, Keiler J, Ponsuksili S, Wolf P, Wimmers K. mRNA Profiles of Porcine Parathyroid Glands Following Variable Phosphorus Supplies throughout Fetal and Postnatal Life. Biomedicines 2021; 9:biomedicines9050454. [PMID: 33922173 PMCID: PMC8146947 DOI: 10.3390/biomedicines9050454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge of gene expression profiles reflecting functional features and specific responsiveness of parathyroid glands (PTGs) contributes to understanding mineral homeostasis and parathyroid function in healthy and diseased conditions. The study aims to reveal effector molecules driving the maintenance of phosphorus (P) homeostasis and parathyroid hormone (PTH) responsiveness to variable P supply throughout fetal and postnatal life. In this study, a long-term dietary intervention was performed by keeping pig offspring on distinct mineral P levels throughout fetal and postnatal life. Respective adaptation processes of P homeostasis were assessed in mRNA profiles of PTGs and serum minerals. RNA sequencing data and resulting molecular pathways of PTGs showed that the PTH abundance is very strictly controlled via e.g., PIN1, CaSR, MAfB, PLC and PKA signaling to regulate PTH expression, stability, and secretion. Additionally, the observed dietary effects on collagen expression indicate shifts in the ratio between connective tissue and parenchyma, thereby affecting cell-cell contacts as another line of PTH regulation. Taken together, the mRNA profiles of porcine PTGs reflect physiological responses in-vivo following variable dietary P supplies during fetal and postnatal life. The results serve to evaluate a long-term nutrition strategy with implications for improving the mineral balance in individuals with pathological disorders.
Collapse
Affiliation(s)
- Michael Oster
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Christian Gerlinger
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Nares Trakooljul
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Puntita Siengdee
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Jonas Keiler
- Department of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Petra Wolf
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany;
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany;
- Correspondence: ; Tel.: +49-382-086-8600
| |
Collapse
|
50
|
Zavala-Barrera C, Del-Río-Robles JE, García-Jiménez I, Egusquiza-Alvarez CA, Hernández-Maldonado JP, Vázquez-Prado J, Reyes-Cruz G. The calcium sensing receptor (CaSR) promotes Rab27B expression and activity to control secretion in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119026. [PMID: 33845096 DOI: 10.1016/j.bbamcr.2021.119026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Chemotactic and angiogenic factors secreted within the tumor microenvironment eventually facilitate the metastatic dissemination of cancer cells. Calcium-sensing receptor (CaSR) activates secretory pathways in breast cancer cells via a mechanism driven by vesicular trafficking of this receptor. However, it remains to be elucidated how endosomal proteins in secretory vesicles are controlled by CaSR. In the present study, we demonstrate that CaSR promotes expression of Rab27B and activates this secretory small GTPase via PI3K, PKA, mTOR and MADD, a guanine nucleotide exchange factor, also known as DENN/Rab3GEP. Active Rab27B leads secretion of various cytokines and chemokines, including IL-6, IL-1β, IL-8, IP-10 and RANTES. Expression of Rab27B is stimulated by CaSR in MDA-MB-231 and MCF-7 breast epithelial cancer cells, but not in non-cancerous MCF-10A cells. This regulatory mechanism also occurs in HeLa and PC3 cells. Our findings provide insightful information regarding how CaSR activates a Rab27B-dependent mechanism to control secretion of factors known to intervene in paracrine communication circuits within the tumor microenvironment.
Collapse
Affiliation(s)
- Cesar Zavala-Barrera
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Jorge Eduardo Del-Río-Robles
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Irving García-Jiménez
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | | | | | - José Vázquez-Prado
- Departments of Pharmacology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico.
| |
Collapse
|