1
|
Kim J, Bang H, Seong C, Kim ES, Kim SY. Transcription factors and hormone receptors: Sex‑specific targets for cancer therapy (Review). Oncol Lett 2025; 29:93. [PMID: 39691589 PMCID: PMC11650965 DOI: 10.3892/ol.2024.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Despite advancements in diagnostic and therapeutic technologies, cancer continues to pose a challenge to disease-free longevity in humans. Numerous factors contribute to the onset and progression of cancer, among which sex differences, as an intrinsic biological condition, warrant further attention. The present review summarizes the roles of hormone receptors estrogen receptor α (ERα), estrogen receptor β (ERβ) and androgen receptor (AR) in seven types of cancer: Breast, prostate, ovarian, lung, gastric, colon and liver cancer. Key cancer-related transcription factors known to be activated through interactions with these hormone receptors have also been discussed. To assess the impact of sex hormone receptors on different cancer types, hormone-related transcription factors were analyzed using the SignaLink 3.0 database. Further analysis focused on six key transcription factors: CCCTC-binding factor, forkhead box A1, retinoic acid receptor α, PBX homeobox 1, GATA binding protein 2 and CDK inhibitor 1A. The present review demonstrates that these transcription factors significantly influence hormone receptor activity across various types of cancer, and elucidates the complex interactions between these transcription factors and hormone receptors, offering new insights into their roles in cancer progression. The findings suggest that targeting these common transcription factors could improve the efficacy of hormone therapy and provide a unified approach to treating various types of cancer. Understanding the dual and context-dependent roles of these transcription factors deepens the current understanding of the molecular mechanisms underlying hormone-driven tumor progression and could lead to more effective targeted therapeutic strategies.
Collapse
Affiliation(s)
- Juyeon Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyobin Bang
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Cheyun Seong
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
2
|
Shulha AS, Shyshenko V, Schibalski RS, Jones AC, Faulkner JL, Stadler K, Ilatovskaya DV. An update on the role of sex hormones in the function of the cardiorenal mitochondria. Biochem Soc Trans 2024; 52:2307-2319. [PMID: 39601292 DOI: 10.1042/bst20240046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/08/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Multiple studies have highlighted the crucial role of mitochondrial bioenergetics in understanding the progression of cardiorenal diseases, revealing new potential treatment targets related to mitochondrial metabolism. There are well-established sexual dimorphisms in cardiac and renal physiology, with premenopausal females being generally protected from pathology compared with males. The mechanisms of this protection remain to be fully elucidated, however, they clearly depend, at least in part, on sex hormones. Sex hormones contribute to regulating mitochondrial function, and vice versa, highlighting the existence of a bidirectional relationship pivotal for cellular energy metabolism; however, there are still large gaps in knowledge when the sex differences in mitochondrial bioenergetics in health and disease are concerned. This manuscript provides an overview of the new evidence that has been accumulated regarding the role of sex hormones in renal and cardiac mitochondria-dependent cellular energetics, metabolism, and signaling, mainly focusing on the data obtained within the last 3-5 years. We briefly discuss mitochondrial function and different types of sex hormones for the reader and then focus on novel research underscoring the emerging mitochondrial pathways regulated by sex hormones, which might be of interest for the development of novel therapeutic strategies for cardiorenal conditions.
Collapse
Affiliation(s)
- Anastasia S Shulha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| | - Vita Shyshenko
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| | - Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| | - Adam C Jones
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA
| | | | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| |
Collapse
|
3
|
Zhang H, Liu TT, Ricke EA, Ricke WA. Prostatic androgen receptor signaling shows an age-related and lobe-specific alteration in mice. Sci Rep 2024; 14:30302. [PMID: 39638850 PMCID: PMC11621416 DOI: 10.1038/s41598-024-79879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is an age-related disease that affects millions of aging males globally. While the pathogenesis of BPH remains incompletely understood, emerging evidence suggests a pivotal role for the androgen receptor (AR) in mediating prostate growth and function. Understanding age-related AR signaling alteration may inform novel BPH treatments. Here, we analyzed the prostatic protein expressions of AR, NKX3.1, and Ki-67 in young (2 months) and aged (24 months) mice. We also examined the potential mechanism of AR protein expression. Compared to young mice, decreased AR and NKX3.1 protein expression was observed in the anterior prostate (AP) and ventral prostate (VP) of aged mice, indicating reduced AR signaling in these prostate lobes. Additionally, we observed decreased protein expression of proliferation maker Ki-67 in aged AP, VP, and dorsal-lateral prostate (DLP), with no difference in apoptosis as compared to young counterparts. We conclude that prostatic androgen receptor signaling shows an age-related and lobe-specific alteration in mice.
Collapse
Affiliation(s)
- Han Zhang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Teresa T Liu
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Emily A Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - William A Ricke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- George M. O'Brien Urology Research Center of Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Zheng Z, Pan J, Liu M, Chen Z, Zhang L, Gao J, Gao P, Zhang X. Anemia and testosterone deficiency risk: insights from NHANES data analysis and a Mendelian randomization analysis. Aging Male 2024; 27:2346312. [PMID: 38685728 DOI: 10.1080/13685538.2024.2346312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Previous research has shown that testosterone deficiency (TD) increases the risk of anemia, but it is unclear whether anemia affects testosterone levels. This study investigated the influence of anemia on testosterone levels. METHODS Utilizing data from six NHANES cycles, including demographic, testosterone levels, and hemoglobin concentrations, we employed multivariable-adjusted logistic regression to investigate the relationship between anemia and testosterone levels. Moreover, a two-sample Mendelian randomization (MR) study employing genome-wide association study (GWAS) data examined the causal relationship. Kaplan-Meier survival estimation was used to compared the overall survival (OS) of anemic and nonanemic patients with low testosterone and normal testosterone levels. RESULTS The inclusion of 21,786 participants (2318 with anemia and19,468 without anemia) revealed that nonanemic patients exhibited higher testosterone levels than did anemic patients (β = 22.616, 95% CI: 3.873-41.359, p = 0.01807). MR analysis confirmed anemia as a cause of TD (OR = 1.045, 95% CI: 1.020-1.071, p < 0.001). Anemic males with low testosterone had reduced OS compared to those with normal levels (p < 0.001). CONCLUSIONS Anemia emerged as a potential risk factor for TD, highlighting a bidirectional relationship between these conditions. Additional prospective investigations are essential for the validation and reinforcement of our findings.
Collapse
Affiliation(s)
- Zhenming Zheng
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, PR China
- Institute of Urology, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, PR China
| | - Jiashan Pan
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, PR China
- Institute of Urology, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, PR China
| | - Ming Liu
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, PR China
- Institute of Urology, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, PR China
| | - Zhimin Chen
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, PR China
- Institute of Urology, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, PR China
| | - Lvwen Zhang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, PR China
- Institute of Urology, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, PR China
| | - Jingjing Gao
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, PR China
- Institute of Urology, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, PR China
| | - Pan Gao
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, PR China
- Institute of Urology, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, PR China
| | - Xiansheng Zhang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, PR China
- Institute of Urology, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, PR China
| |
Collapse
|
5
|
Nowotny HF, Braun L, Reisch N. The Landscape of Androgens in Cushing's Syndrome. Exp Clin Endocrinol Diabetes 2024; 132:670-677. [PMID: 38788777 DOI: 10.1055/a-2333-1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Hyperandrogenemia in patients with Cushing's syndrome (CS) presents a diagnostic pitfall due to its rare occurrence and overlapping symptoms with more common conditions like polycystic ovary syndrome (PCOS). This review explores the significance of androgen dysregulation in CS, focusing on both classical and 11-oxygenated androgens. While classical androgens contribute to hyperandrogenism in CS, their levels alone do not fully account for clinical symptoms. Recent research highlights the overlooked role of 11oxC19 androgens, particularly 11OHA4 and 11KT, in driving hyperandrogenic manifestations across all CS subtypes. These adrenal-specific and highly potent androgens offer stable expression throughout the lifespan of a woman, serving as valuable diagnostic biomarkers. Understanding their prominence not only aids in subtype differentiation but also provides insights into the complex nature of androgen dysregulation in CS. Recognizing the diagnostic potential of 11oxC19 androgens promises to refine diagnostic approaches and improve clinical management strategies for patients with CS.
Collapse
Affiliation(s)
- Hanna F Nowotny
- Department of Medicine IV, LMU University Hospital, LMU Munich
| | - Leah Braun
- Department of Medicine IV, LMU University Hospital, LMU Munich
| | - Nicole Reisch
- Department of Medicine IV, LMU University Hospital, LMU Munich
| |
Collapse
|
6
|
Lawrence BM, O'Donnell L, Gannon AL, Smith S, Curley MK, Darbey A, Mackay R, O'Shaughnessy PJ, Smith LB, Rebourcet D. Compensatory mechanisms that maintain androgen production in mice lacking key androgen biosynthetic enzymes. FASEB J 2024; 38:e70177. [PMID: 39556387 DOI: 10.1096/fj.202402093r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Testosterone and dihydrotestosterone (DHT) are essential for male development and fertility. In the canonical androgen production pathway, testosterone is produced in the testis by HSD17B3; however, adult male Hsd17b3 knockout (KO) mice continue to produce androgens and are fertile, indicating compensatory mechanisms exist. A second, alternate pathway produces DHT from precursors other than testosterone via 5α-reductase (SRD5A) activity. We hypothesized that the alternate pathway contributes to androgen bioactivity in Hsd17b3 KO mice. To investigate contributions arising from and interactions between the canonical and alternate pathways, we pharmacologically inhibited SRD5A and ablated Srd5a1 (the predominant SRD5A in the testis) on the background of Hsd17b3 KO mice. Mice with perturbation of either the canonical or both pathways exhibited increased LH, testicular steroidogenic enzyme expression, and normal reproductive tracts and fertility. In the circulation, alternate pathway steroids were increased in the absence of HSD17B3 but were reduced by co-inhibition of SRD5A1. Mice with perturbations of both pathways produced normal basal levels of intratesticular testosterone, suggesting the action of other unidentified hydroxysteroid dehydrogenase(s). Strikingly, testicular expression of another SRD5A enzyme, Srd5a2, was markedly increased in the absence of Hsd17b3, suggesting a compensatory increase in SRD5A2 to maintain androgen bioactivity during HSD17B3 deficiency. Finally, we observed elevated circulating concentrations of the 11-keto-derivative of DHT, suggesting compensatory extra-gonadal induction of bioactive 11-keto androgen production. Taken together, we conclude that, in the absence of the canonical pathway of androgen production, multiple intra- and extra-gonadal mechanisms cooperate to maintain testosterone and DHT production, supporting male development and fertility.
Collapse
Affiliation(s)
- Ben M Lawrence
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Liza O'Donnell
- Office of the Deputy Vice Chancellor (Research), Griffith University, Southport, Queensland, Australia
| | - Anne-Louise Gannon
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Sarah Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Michael K Curley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Rosa Mackay
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Peter J O'Shaughnessy
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, UK
| | - Lee B Smith
- Office of the Deputy Vice Chancellor (Research), Griffith University, Southport, Queensland, Australia
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Univ Rennes, Rennes, France
| |
Collapse
|
7
|
Li L, Li H, Chen B. Chronobiological and neuroendocrine insights into dry eye. Trends Mol Med 2024:S1471-4914(24)00279-X. [PMID: 39551666 DOI: 10.1016/j.molmed.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Dry eye, a prevalent ocular surface disease, is significantly influenced by modern lifestyle factors such as night-shift work and extended screen time. Emerging evidence suggests a strong correlation between disturbances in circadian rhythm, sleep disorders, and dry eye. However, the precise underlying mechanisms remain unclear. Recent studies have underscored the crucial role of circadian rhythms and neuroendocrine regulation in maintaining ocular surface health. Advances in treatment strategies targeting neuroendocrine pathways have shown promising developments. This review explores the interplay between circadian rhythms, neuroendocrine regulation, and the ocular surface, examines the impact of circadian disruption on the pathophysiology of dry eye, and proposes intervention strategies to alleviate dry eye associated with disturbances in circadian rhythms.
Collapse
Affiliation(s)
- Licheng Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China.
| |
Collapse
|
8
|
Taieb A, Feryel A. Deciphering the Role of Androgen in the Dermatologic Manifestations of Polycystic Ovary Syndrome Patients: A State-of-the-Art Review. Diagnostics (Basel) 2024; 14:2578. [PMID: 39594244 PMCID: PMC11592971 DOI: 10.3390/diagnostics14222578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Polycystic ovary syndrome is a presvalent endocrine disorder affecting women globally, characterized by hormonal imbalance, metabolic disturbances, and reproductive dysfunction. Diagnosis relies on clinical evaluation, medical history assessment, physical examination, and laboratory tests, with the Rotterdam criteria being widely used. The pathophysiology of PCOS involves genetic predisposition, environmental factors, and lifestyle influences, with hormonal dysregulation, particularly elevated androgens, insulin resistance, and chronic inflammation, playing a pivotal role. These mechanisms not only contribute to reproductive and metabolic disturbances but also to the various cutaneous manifestations, such as acne, hirsutism, and alopecia. This review aims to analyze the role of androgens in the dermatological manifestations in patients with polycystic ovary syndrome, providing insights into underlying mechanisms and guiding the development of effective therapeutic strategies. By synthesizing available evidence, this review aims to deepen understanding of related dermatological manifestations and improve outcomes for affected individuals.
Collapse
Affiliation(s)
- Ach Taieb
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4000, Tunisia;
- Department of Endocrinology, University Hospital of Farhat Hached Sousse, Sousse 4031, Tunisia
- Laboratory of Exercise Physiology and Pathophysiology, L.R.19ES09, Sousse 4054, Tunisia
| | - Amri Feryel
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4000, Tunisia;
- Department of Dermatology, University Hospital of La Rabta, Tunis 1007, Tunisia
| |
Collapse
|
9
|
Chernykh V, Solovova O, Sorokina T, Shtaut M, Sedova A, Bliznetz E, Ismagilova O, Beskorovainaya T, Shchagina O, Polyakov A. CAG n Polymorphic Locus of Androgen Receptor ( AR) Gene in Russian Infertile and Fertile Men. Int J Mol Sci 2024; 25:12183. [PMID: 39596257 PMCID: PMC11594939 DOI: 10.3390/ijms252212183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The androgen receptor (AR) is critical for mediating the effects of androgens. The polymorphic CAGn locus in exon 1 of the AR gene is associated with several diseases, including spinal and bulbar muscular atrophy (SBMA), prostate cancer, and male infertility. This study evaluated the CAGn locus in 9000 infertile Russian men and 286 fertile men (control group). The CAGn locus was analyzed using the amplified fragment length polymorphism method. In the infertile cohort, the number of CAG repeats ranged from 6 to 46, with a unimodal distribution. The number of CAG repeats in infertile and fertile men was 22.15 ± 0.93 and 22.02 ± 1.36, respectively. In infertile men, variants with 16 to 29 repeats were present in 97% of the alleles. A complete mutation (≥42 CAG repeats) was found in three patients, while three others had 39-41 repeats. The incidence of SBMA was 1:3000 infertile men. Significant differences (p < 0.05) were observed between infertile and fertile men in alleles with 21, 24 and 25 repeats. This study revealed certain differences in the CAGn polymorphic locus of the AR gene in Russian infertile and fertile men and determined the frequency of SBMA in infertile patients.
Collapse
Affiliation(s)
- Vyacheslav Chernykh
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.S.); (T.S.); (M.S.); (A.S.); (E.B.); (O.I.); (T.B.); (O.S.); (A.P.)
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia
| | - Olga Solovova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.S.); (T.S.); (M.S.); (A.S.); (E.B.); (O.I.); (T.B.); (O.S.); (A.P.)
| | - Tatyana Sorokina
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.S.); (T.S.); (M.S.); (A.S.); (E.B.); (O.I.); (T.B.); (O.S.); (A.P.)
| | - Maria Shtaut
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.S.); (T.S.); (M.S.); (A.S.); (E.B.); (O.I.); (T.B.); (O.S.); (A.P.)
| | - Anna Sedova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.S.); (T.S.); (M.S.); (A.S.); (E.B.); (O.I.); (T.B.); (O.S.); (A.P.)
| | - Elena Bliznetz
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.S.); (T.S.); (M.S.); (A.S.); (E.B.); (O.I.); (T.B.); (O.S.); (A.P.)
| | - Olga Ismagilova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.S.); (T.S.); (M.S.); (A.S.); (E.B.); (O.I.); (T.B.); (O.S.); (A.P.)
| | - Tatiana Beskorovainaya
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.S.); (T.S.); (M.S.); (A.S.); (E.B.); (O.I.); (T.B.); (O.S.); (A.P.)
| | - Olga Shchagina
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.S.); (T.S.); (M.S.); (A.S.); (E.B.); (O.I.); (T.B.); (O.S.); (A.P.)
| | - Aleksandr Polyakov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (O.S.); (T.S.); (M.S.); (A.S.); (E.B.); (O.I.); (T.B.); (O.S.); (A.P.)
| |
Collapse
|
10
|
Zhu BT, Liao QQ, Tian HY, Yu DJ, Xie T, Sun XL, Zhou XM, Han YX, Zhao YJ, El-Kassas M, Liu XX, Sun XD, Zhang YY. Estrogen: the forgotten player in metaflammation. Front Pharmacol 2024; 15:1478819. [PMID: 39575382 PMCID: PMC11578702 DOI: 10.3389/fphar.2024.1478819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Metaflammation is low-grade inflammation triggered by chronic metabolic imbalance and caused by dysregulated metabolites in metabolic inflammatory syndrome (MIS), which includes four diseases: obesity, type 2 diabetes mellitus (T2DM), atherosclerosis (AS), and nonalcoholic fatty liver diseases (NAFLD, recently proposed to be replaced by metabolic dysfunction-associated steatotic liver disease, MASLD). These diseases exhibit apparent sex dimorphism as regards MIS. Estrogen not only plays a crucial role in gender differences in adults but also possesses an anti-inflammatory effect on many metabolic diseases. In this study, we present a prediction of the differential proteins and signal transduction of estrogen in MIS through network pharmacology and review the validated studies on obesity, T2DM, AS, and NAFLD. Subsequently, we compared them to obtain valuable targets, identify current gaps, and provide perspectives for future research on the mechanisms of estrogen in metaflammation.
Collapse
Affiliation(s)
- Bao-Ting Zhu
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qing-Qing Liao
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hai-Ying Tian
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Dao-Jiang Yu
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Teng Xie
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xi-Lu Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xin-Meng Zhou
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ying-Xuan Han
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yu-Jie Zhao
- Medical College, Tibet University, Lasa, China
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
- Liver Disease Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Steatotic Liver Disease Study Foundation in Middle East and North Africa (SLMENA), Cairo, Egypt
| | - Xiu-Xiu Liu
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiao-Dong Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Medical College, Tibet University, Lasa, China
| | - Yuan-Yuan Zhang
- West China School of Pharmacy, West China School of Basic Medical Sciences and Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
11
|
Honour JW. The interpretation of immunometric, chromatographic and mass spectrometric data for steroids in diagnosis of endocrine disorders. Steroids 2024; 211:109502. [PMID: 39214232 DOI: 10.1016/j.steroids.2024.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The analysis of steroids for endocrine disorders is in transition from immunoassay of individual steroids to more specific chromatographic and mass spectrometric methods with simultaneous determination of several steroids. Gas chromatography (GC) and liquid chromatography (LC) coupled with mass spectrometry (MS) offer unrivalled analytical capability for steroid analysis. These specialist techniques were often judged to be valuable only in a research laboratory but this is no longer the case. In a urinary steroid profile up to 30 steroids are identified with concentrations and excretion rates reported in a number of ways. The assays must accommodate the wide range in steroid concentrations in biological fluids from micromolar for dehydroepiandrosterone sulphate (DHEAS) to picomolar for oestradiol and aldosterone. For plasma concentrations, panels of 5-20 steroids are reported. The profile results are complex and interpretation is a real challenge in order to inform clinicians of likely implications. Although artificial intelligence and machine learning will in time generate reports from the analysis this is a way off being adopted into clinical practice. This review offers guidance on current interpretation of the data from steroid determinations in clinical practice. Using this approach more laboratories can use the techniques to answer clinical questions and offer broader interpretation of the results so that the clinician can understand the conclusion for the steroid defect, and can be advised to program further tests if necessary and instigate treatment. The biochemistry is part of the patient workup and a clinician led multidisciplinary team discussion of the results will be required for challenging patients. The laboratory will have to consider cost implications, bearing in mind that staff costs are the highest component. GC-MS and LC-MS/MS analysis of steroids are the choices. Steroid profiling has enormous potential to improve diagnosis of adrenal disorders and should be adopted in more laboratories in favour of the cheap, non-specific immunological methods.
Collapse
Affiliation(s)
- John W Honour
- Institute for Women's Health, University College London, 74 Huntley Street, London WC1E 6AU, UK.
| |
Collapse
|
12
|
Xue Q, Zhang L, Wang R, Xu J, Wang C, Gao S, Fang X, Meng C, Lu R, Guo L. Hexavalent chromium reduces testosterone levels by impairing lipophagy and disrupting lipid metabolism homeostasis: Based on a metabolomic analysis. Toxicology 2024; 508:153908. [PMID: 39121936 DOI: 10.1016/j.tox.2024.153908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Hexavalent chromium (Cr(VI)) causes testicular damage and reduces testosterone secretion. Testosterone synthesis relies on cholesterol as a raw material, and its availability can be affected by lipophagy. However, the role of lipophagy in Cr(VI)-induced testicular damage and reduced testosterone secretion remains unclear. In this study, we investigated the effect of Cr(VI) on lipid metabolism and lipophagy in the testes of ICR mice. Forty mice were randomly divided into four groups and exposed to different doses of Cr(VI) (0, 75, 100, 125 mg/kg) for thirty days. Cr(VI) increased the rate of sperm abnormalities, decreased testosterone level, and decreased the levels of testosterone synthesis-related proteins, namely steroidogenic acute regulatory (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) proteins. Through metabolomic analysis, Oil Red O staining, and biochemical indicator (triglyceride and total cholesterol) analysis, Cr(VI) was found to disrupt testicular lipid metabolism. Further investigation revealed that Cr(VI) inhibited the AMP-activated protein kinase (AMPK)/sterol regulatory element-binding protein 1 (SREBP1) pathway, elevated levels of the autophagy-related proteins microtubule-associated protein 1 light chain 3B (LC3B) and sequestosome 1 (SQSTM1)/P62 and lipophagy-related proteins Rab7 and Rab10, while increasing colocalization of LC3B and Perilipin2. These findings suggest that Cr(VI) exposure leads to abnormal lipid metabolism in the testes by suppressing the AMPK/SREBP1 pathway and disrupting lipophagy, ultimately reducing testosterone level and inducing testicular damage.
Collapse
Affiliation(s)
- Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Le Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Jiayunzhu Xu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Chaofan Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Shidi Gao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Xin Fang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Rifeng Lu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
13
|
Draskau MK, Rosenmai AK, Bouftas N, Johansson HKL, Panagiotou EM, Holmer ML, Elmelund E, Zilliacus J, Beronius A, Damdimopoulou P, van Duursen M, Svingen T. AOP Report: An Upstream Network for Reduced Androgen Signaling Leading to Altered Gene Expression of Androgen Receptor-Responsive Genes in Target Tissues. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2329-2337. [PMID: 39206816 DOI: 10.1002/etc.5972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Adverse outcome pathways (AOPs) can aid with chemical risk assessment by providing plausible links between chemical activity at the molecular level and effect outcomes in intact organisms. Because AOPs can be used to infer causality between upstream and downstream events in toxicological pathways, the AOP framework can also facilitate increased uptake of alternative methods and new approach methodologies to help inform hazard identification. However, a prevailing challenge is the limited number of fully developed and endorsed AOPs, primarily due to the substantial amount of work required by AOP developers and reviewers. Consequently, a more pragmatic approach to AOP development has been proposed where smaller units of knowledge are developed and reviewed independent of full AOPs. In this context, we have developed an upstream network comprising key events (KEs) and KE relationships related to decreased androgen signaling, converging at a nodal KE that can branch out to numerous adverse outcomes (AOs) relevant to androgen-sensitive toxicological pathways. Androgen signaling represents an extensively studied pathway for endocrine disruption. It is linked to numerous disease outcomes and can be affected by many different endocrine-disrupting chemicals. Still, pathways related to disrupted androgen signaling remain underrepresented in the AOP-wiki, and endorsed AOPs are lacking. Given the pivotal role of androgen signaling in development and function across vertebrate taxa and life stages of both sexes, this upstream AOP network serves as a foundational element for developing numerous AOPs. By connecting the upstream network with various downstream AOs, encompassing different species, it can also facilitate cross-species extrapolations for hazard and risk assessment of chemicals. Environ Toxicol Chem 2024;43:2329-2337. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Monica K Draskau
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Anna K Rosenmai
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Nora Bouftas
- Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Eleftheria M Panagiotou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Marie L Holmer
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Emilie Elmelund
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Johanna Zilliacus
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Majorie van Duursen
- Environmental Health and Toxicology, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
14
|
Cao S, Meng L, Bai H, Yang W, Hu X, Li X. The association between ethylene oxide and testosterone in the United States population: a cross-sectional study based on the National Health and Nutrition Examination Survey (NHANES) 2013-2016. Endocrine 2024; 86:850-859. [PMID: 39080212 DOI: 10.1007/s12020-024-03979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/23/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Ethylene oxide (EO) is a prevalent industrial contaminant found in the environment and is related to various diseases such as cancers and hypertension. To the best of our knowledge, the association between EO and testosterone has not been explored. The aim of this article was to evaluate the relationship between EO and total testosterone (TT) in the United States population. METHODS In this study, hemoglobin ethylene oxide (HbEO) levels were utilized to evaluate the exposure to EO. The data of this study were collected from National Health and Nutrition Examination Survey (NHANES) 2013-2016. A total of 3300 participants were enrolled in this study and were separated into 5 groups based on the quintile of HbEO. Weighted multivariable logistic regression was used to assess the association between HbEO and TT. Subgroup analysis was conducted to investigate the connection between HbEO and TT in different stratifications. RESULTS In the results, there was a positive relationship between log10-transformed HbEO and TT in the fully adjusted model [β = 37.08, 95% confidence interval (CI): 18.15-56.01, p = 0.004]. After log10-transformed HbEO transferred into a categorical variable based on the quintiles (Q1-Q5), the positive association remained in the highest group (Q5) compared to the lowest group (Q1) [β = 46.09, 95%CI: 12.29-79.90, p = 0.013]. Moreover, subgroup analysis demonstrated that the positive connection between log10-transformed HbEO and TT was stronger in males than females. CONCLUSION The level of HbEO was positively related to TT in the U.S. population and the relation was more obvious in men compared to women.
Collapse
Affiliation(s)
- Shangqi Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Linghao Meng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hexiang Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Weixiao Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiang Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Kim S, Chaudhary PK, Kim S. Molecular and Genetics Perspectives on Primary Adrenocortical Hyperfunction Disorders. Int J Mol Sci 2024; 25:11341. [PMID: 39518893 PMCID: PMC11545009 DOI: 10.3390/ijms252111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Adrenocortical disorders encompass a broad spectrum of conditions ranging from benign hyperplasia to malignant tumors, significantly disrupting hormone balance and causing a variety of clinical manifestations. By leveraging next-generation sequencing and in silico analyses, recent studies have uncovered the genetic and molecular pathways implicated in these transitions. In this review, we explored the molecular and genetic alterations in adrenocortical disorders, with a particular focus on the transitions from normal adrenal function to hyperfunction. The insights gained are intended to enhance diagnostic and therapeutic strategies, offering up-to-date knowledge for managing these complex conditions effectively.
Collapse
Affiliation(s)
| | | | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (P.K.C.)
| |
Collapse
|
16
|
Rossi F, Trakoolwilaiwan T, Gigli V, Tortolini C, Lenzi A, Isidori AM, Thanh NTK, Antiochia R. Progress in nanoparticle-based electrochemical biosensors for hormone detection. NANOSCALE 2024; 16:18134-18164. [PMID: 39254475 DOI: 10.1039/d4nr02075h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Hormones are chemical messengers that regulate a wide range of physiological processes including metabolism, development, growth, reproduction and mood. The concentration of hormones that orchestrate the numerous bodily functions is very low (1 nM or less). Efforts have been made to develop highly sensitive tools to detect them. This review represents a critical comparison between different types of nanoparticle-based electrochemical biosensors for the detection of various hormones, namely cortisol, sex hormones (estradiol, progesterone, testosterone), insulin, thyroid-stimulating hormone (TSH) and growth hormone (GH). The electrochemical biosensors investigated for each hormone are first divided on the basis of the biological fluid tested for their detection, and successively on the basis of the electrochemical transducer utilized in the device (voltammetric or impedimetric). Focus is placed on the nanoparticles employed and the successive electrode modification developed in order to improve detection sensitivity and specificity and biosensor stability. Limit of detection (LOD), linear range, reproducibility and possibility of regeneration for continuous reuse are also investigated and compared. The review also addresses the recent trends in the development of wearable biosensors and point-of-care testing for hormone detection in clinical diagnostics useful for endocrinology research, and the future perspectives regarding the integration of nanomaterials, microfluidics, near field communication (NFC) technology and portable devices.
Collapse
Affiliation(s)
- Francesco Rossi
- ICCOM-CNR, Polo Scientifico, Via Madonna del piano 10, Sesto Fiorentino, FI, 50019, Italy
| | - Thithawat Trakoolwilaiwan
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Valeria Gigli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Tortolini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Pililis S, Lampsas S, Kountouri A, Pliouta L, Korakas E, Livadas S, Thymis J, Peppa M, Kalantaridou S, Oikonomou E, Ikonomidis I, Lambadiari V. The Cardiometabolic Risk in Women with Polycystic Ovarian Syndrome (PCOS): From Pathophysiology to Diagnosis and Treatment. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1656. [PMID: 39459443 PMCID: PMC11509436 DOI: 10.3390/medicina60101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Polycystic Ovarian Syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age, with significant variations in presentation characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. Beyond reproductive health, it may also pose crucial long-term cardiometabolic risks, especially for women with specific types of PCOS, contributing to early subclinical cardiovascular atherosclerotic alterations such as endothelial dysfunction, increased arterial stiffness, and coronary artery calcium levels, respectively. Moreover, the precise relationship between clinical cardiovascular disease (CVD) and PCOS remains debated, with studies demonstrating an elevated risk while others report no significant association. This review investigates the pathophysiology of PCOS, focusing on insulin resistance and its link to subclinical and clinical cardiovascular disease. Diagnostic challenges and novel management strategies, including lifestyle interventions, medications like metformin and glucagon-like peptide-1 receptor agonists (GLP-1RAs), hormonal contraceptives, and bariatric surgery, are further discussed. Recognizing the cardiometabolic risks associated with PCOS, a comprehensive approach and early intervention should address both the reproductive and cardiometabolic dimensions of the syndrome.
Collapse
Affiliation(s)
- Sotirios Pililis
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Stamatios Lampsas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
- 2nd Department of Ophthalmology, Attikon Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Aikaterini Kountouri
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Loukia Pliouta
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Emmanouil Korakas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | | | - John Thymis
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.)
| | - Melpomeni Peppa
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| | - Sophia Kalantaridou
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, “Sotiria” Chest Diseases Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon University Hospital, National & Kapodistrian University of Athens, 12462 Athens, Greece; (J.T.)
| | - Vaia Lambadiari
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.P.); (A.K.); (E.K.)
| |
Collapse
|
18
|
Valero-Ochando J, Cantó A, López-Pedrajas R, Almansa I, Miranda M. Role of Gonadal Steroid Hormones in the Eye: Therapeutic Implications. Biomolecules 2024; 14:1262. [PMID: 39456195 PMCID: PMC11506707 DOI: 10.3390/biom14101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Gonadal steroid hormones are critical regulatory substances involved in various developmental and physiological processes from fetal development through adulthood. These hormones, derived from cholesterol, are synthesized primarily by the gonads, adrenal cortex, and placenta. The synthesis of these hormones involves a series of enzymatic steps starting in the mitochondria and includes enzymes such as cytochrome P450 and aromatase. Beyond their genomic actions, which involve altering gene transcription over hours, gonadal steroids also exhibit rapid, nongenomic effects through receptors located on the cell membrane. Additionally, recent research has highlighted the role of these hormones in the central nervous system (CNS). However, the interactions between gonadal steroid hormones and the retina have received limited attention, though it has been suggested that they may play a protective role in retinal diseases. This review explores the synthesis of gonadal hormones, their mechanisms of action, and their potential implications in various retinal and optic nerve diseases, such as glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), or retinitis pigmentosa (RP), discussing both protective and risk factors associated with hormone levels and their therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - María Miranda
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115 Valencia, Spain; (J.V.-O.); (A.C.); (R.L.-P.); (I.A.)
| |
Collapse
|
19
|
Mathis D, du Toit T, Altinkilic EM, Stojkov D, Urzì C, Voegel CD, Wu V, Zamboni N, Simon HU, Nuoffer JM, Flück CE, Felser A. Mitochondrial dysfunction results in enhanced adrenal androgen production in H295R cells. J Steroid Biochem Mol Biol 2024; 243:106561. [PMID: 38866189 DOI: 10.1016/j.jsbmb.2024.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The role of mitochondria in steroidogenesis is well established. However, the specific effects of mitochondrial dysfunction on androgen synthesis are not fully understood. In this study, we investigate the effects of various mitochondrial and metabolic inhibitors in H295R adrenal cells and perform a comprehensive analysis of steroid and metabolite profiling. We report that mitochondrial complex I inhibition by rotenone shifts cells toward anaerobic metabolism with a concomitant hyperandrogenic phenotype characterized by rapid stimulation of dehydroepiandrosterone (DHEA, 2 h) and slower accumulation of androstenedione and testosterone (24 h). Screening of metabolic inhibitors confirmed DHEA stimulation, which included mitochondrial complex III and mitochondrial pyruvate carrier inhibition. Metabolomic studies revealed truncated tricarboxylic acid cycle with an inverse correlation between citric acid and DHEA production as a common metabolic marker of hyperandrogenic inhibitors. The current study sheds light on a direct interplay between energy metabolism and androgen biosynthesis that could be further explored to identify novel molecular targets for efficient treatment of androgen excess disorders.
Collapse
Affiliation(s)
- Déborah Mathis
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Therina du Toit
- Department for BioMedical Research, Bern University Hospital, University of Bern, Switzerland; Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Switzerland
| | - Emre Murat Altinkilic
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Bern University Hospital, University of Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Switzerland
| | - Christian Urzì
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland; Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Clarissa D Voegel
- Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Switzerland
| | - Vincen Wu
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland; PHRT Swiss Multi Omics Center, Zurich, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Jean-Marc Nuoffer
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Bern University Hospital, University of Bern, Switzerland; University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Bern University Hospital, University of Bern, Switzerland
| | - Andrea Felser
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
20
|
Endo S, Morikawa Y, Suenami K, Sakai Y, Abe N, Matsunaga T, Hara A, Takasu M. Involvement of porcine and human carbonyl reductases in the metabolism of epiandrosterone, 11-oxygenated steroids, neurosteroids, and corticosteroids. J Steroid Biochem Mol Biol 2024; 243:106574. [PMID: 38945307 DOI: 10.1016/j.jsbmb.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Porcine carbonyl reductases (pCBR1 and pCBR-N1) and aldo-keto reductases (pAKR1C1 and pAKR1C4) exhibit hydroxysteroid dehydrogenase (HSD) activity. However, their roles in the metabolism of porcine-specific androgens (19-nortestosterone and epiandrosterone), 11-oxygenated androgens, neurosteroids, and corticosteroids remain unclear. Here, we compared the steroid specificity of the four recombinant enzymes by kinetic and product analyses. In C18/C19-steroids,11-keto- and 11β-hydroxy-5α-androstane-3,17-diones were reduced by all the enzymes, whereas 5α-dihydronandrolone (19-nortestosterone metabolite) and 11-ketodihydrotestosterone were reduced by pCBR1, pCBR-N1, and pAKR1C1, of which pCBR1 exhibited the lowest (submicromolar) Km values. Product analysis showed that pCBR1 and pCBR-N1 function as 3α/β-HSDs, in contrast to pAKR1C1 and pAKR1C4 (acting as 3β-HSD and 3α-HSD, respectively). Additionally, 17β-HSD activity was observed in pCBR1 and pCBR-N1 (toward epiandrosterone and its 11-oxygenated derivatives) and in pAKR1C1 (toward androsterone, 4-androstene-3,17-dione and their 11-oxygenated derivatives). The four enzymes also showed different substrate specificity for 3-keto-5α/β-dihydro-C21-steroids, including GABAergic neurosteroid precursors and corticosteroid metabolites. 5β-Dihydroprogesterone was reduced by all the enzymes, whereas 5α-dihydroprogesterone was reduced only by pCBR1, and 5α/β-dihydrodeoxycorticosterones by pCBR1 and pCBR-N1. The two pCBRs also reduced the 5α/β-dihydro-metabolites of cortisol, 11-deoxycortisol, cortisone, and corticosterone. pCBR1 exhibited lower Km values (0.3-2.9 μM) for the 3-keto-C21-steroids than pCBR-N1 (Km=10-36 μM). The reduced products of the 3-keto-C21-steroids by pCBR1 and pCBR-N1 were their 3α-hydroxy-metabolites. Finally, we found that human CBR1 has similar substrate specificity for the C18/C19/C21-steroids to pCBR-N1. Based on these results, it was concluded that porcine and human CBRs can be involved in the metabolism of the aforementioned steroids as 3α/β,17β-HSDs.
Collapse
Affiliation(s)
- Satoshi Endo
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1194, Japan; Center for One Medicine Innovative Translational Research, Gifu University, Gifu 501-1193, Japan.
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Naohito Abe
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Masaki Takasu
- Center for One Medicine Innovative Translational Research, Gifu University, Gifu 501-1193, Japan; Institute for Advanced Study, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
21
|
Effah W, Khalil M, Hwang DJ, Miller DD, Narayanan R. Advances in the understanding of androgen receptor structure and function and in the development of next-generation AR-targeted therapeutics. Steroids 2024; 210:109486. [PMID: 39111362 PMCID: PMC11380798 DOI: 10.1016/j.steroids.2024.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Androgen receptor (AR) and its ligand androgens are important for development and physiology of various tissues. AR and its ligands also play critical role in the development of various diseases, making it a valuable therapeutic target. AR ligands, both agonists and antagonists, are being widely used to treat pathological conditions, including prostate cancer and hypogonadism. Despite AR being studied widely over the last five decades, the last decade has seen striking advances in the knowledge on AR and discoveries that have the potential to translate to the clinic. This review provides an overview of the advances in AR biology, AR molecular mechanisms of action, and next generation molecules that are currently in development. Several of the areas described in the review are just unraveling and the next decade will bring more clarity on these developments that will put AR at the forefront of both basic biology and drug development.
Collapse
Affiliation(s)
- Wendy Effah
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marjana Khalil
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
22
|
Grigio V, Silva SB, Ruiz TFR, Castro NFDC, Calmon MDF, Rahal P, Taboga SR, Vilamaior PSL. Effects of androgenic modulation on the morphophysiology of the adrenal cortex of male gerbils. Mol Cell Endocrinol 2024; 592:112332. [PMID: 39048028 DOI: 10.1016/j.mce.2024.112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The study aimed to investigate the repercussions of androgen modulation on the adrenal cortex of male gerbils, focusing on the morphophysiology, proliferation, and cell death, as well as the expression of hormone receptors and steroidogenic enzymes. Mongolian gerbils (Meriones unguiculatus) were divided into three experimental groups: Control (C), Testosterone (T), animals received injections of testosterone cypionate and Castrated (Ct), animals underwent orchiectomy. The results showed that castration increased the zona fasciculata and promoted cell hypertrophy in all zones. Testosterone supplementation increased cell proliferation and cell death. Androgen modulation promoted an increase in AR, Erα, and ERβ. Castration promoted an increase in the CYP19, while decreasing 17βHSD enzymes. Testosterone supplementation, on the other hand, reduced CYP17 and increased CYP19 and 3βHSD enzymes. By analyzing the effects of androgen supplementation and deprivation, it can be concluded that testosterone is responsible for tissue remodeling in the cortex, regulating the rate of cell proliferation and death, as well as cell hypertrophy. Testosterone also modulate steroid hormone receptors and steroidogenic enzymes, consequently affecting the regulation, hormone synthesis and homeostasis of this endocrine gland.
Collapse
Affiliation(s)
- Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Stella Bicalho Silva
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Nayara Fernanda da Costa Castro
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Marilia de Freitas Calmon
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Paula Rahal
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil; Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil.
| |
Collapse
|
23
|
Naamneh Elzenaty R, Kouri C, Martinez de Lapiscina I, Sauter KS, Moreno F, Camats-Tarruella N, Flück CE. NR5A1/SF-1 Collaborates with Inhibin α and the Androgen Receptor. Int J Mol Sci 2024; 25:10109. [PMID: 39337600 PMCID: PMC11432463 DOI: 10.3390/ijms251810109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Steroidogenic factor 1 (SF-1) is a nuclear receptor that regulates steroidogenesis and reproductive development. NR5A1/SF-1 variants are associated with a broad spectrum of phenotypes across individuals with disorders of sex development (DSDs). Oligogenic inheritance has been suggested as an explanation. SF-1 interacts with numerous partners. Here, we investigated a constellation of gene variants identified in a 46,XY severely undervirilized individual carrying an ACMG-categorized 'pathogenic' NR5A1/SF-1 variant in comparison to the healthy carrier father. Candidate genes were revealed by whole exome sequencing, and pathogenicity was predicted by different in silico tools. We found variants in NR1H2 and INHA associated with steroidogenesis, sex development, and reproduction. The identified variants were tested in cell models. Novel SF-1 and NR1H2 binding sites in the AR and INHA gene promoters were found. Transactivation studies showed that wild-type NR5A1/SF-1 regulates INHA and AR gene expression, while the NR5A1/SF-1 variant had decreased transcriptional activity. NR1H2 was found to regulate AR gene transcription; however, the NR1H2 variant showed normal activity. This study expands the NR5A1/SF-1 network of interacting partners, while not solving the exact interplay of different variants that might be involved in revealing the observed DSD phenotype. It also illustrates that understanding complex genetics in DSDs is challenging.
Collapse
Affiliation(s)
- Rawda Naamneh Elzenaty
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Chrysanthi Kouri
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Idoia Martinez de Lapiscina
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Biobizkaia Health Research Institute, Cruces University Hospital, University of the Basque, 48903 Barakaldo, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endo-ERN, 1081 HV Amsterdam, The Netherlands
| | - Kay-Sara Sauter
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Francisca Moreno
- Department of Pediatrics, Hospital Infantil La Fe, 46026 Valencia, Spain;
| | - Núria Camats-Tarruella
- Growth and Development Research Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Christa E. Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
24
|
Jia K, Luo X, Yi J, Zhang C. Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells. Biol Res 2024; 57:61. [PMID: 39227995 PMCID: PMC11373308 DOI: 10.1186/s40659-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
Collapse
Affiliation(s)
- Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
25
|
Oczkowski M, Dziendzikowska K, Gromadzka-Ostrowska J, Kruszewski M, Grzelak A. Intragastric exposure of rats to silver nanoparticles modulates the redox balance and expression of steroid receptors in testes. Food Chem Toxicol 2024; 191:114841. [PMID: 38944145 DOI: 10.1016/j.fct.2024.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Nanosilver (AgNPs) is popular nanomaterials used in food industry that makes gastrointestinal tract an essential route of its uptake. The aim of the presented study was to assess the effects of intragastric exposure to AgNPs on redox balance and steroid receptors in the testes of adult Fisher 344 rats. The animals were exposed to 20 nm AgNPs (30 mg/kg bw/day, by gavage) for 7 and 28 days compared to saline (control groups). It was demonstrated that 7-day AgNPs administration resulted in increased level of total antioxidant status (TAS), glutathione reductase (GR) activity, lower superoxide dismutase activity (SOD), decreased glutathione (GSH) level and GSH/GSSG ratio, as well as higher estrogen receptor (ESR2) and aromatase (Aro) protein expression in Leydig cells compared to the 28-day AgNPs esposure. The longer-time effects of AgNPs exposition were associated with increased lipid hydroperoxidation (LOOHs) and decreased SOD activity and androgen receptor protein level. In conclusion, the present study demonstrated the adverse gastrointestinally-mediated AgNPs effects in male gonads. In particular, the short-term AgNPs exposure impaired antioxidant defence with concurrent effects on the stimulation of estrogen signaling, while the sub-chronic AgNPs exposition revealed the increased testicle oxidative stress that attenuated androgens signaling.
Collapse
Affiliation(s)
- Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland.
| | - Agnieszka Grzelak
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
26
|
Yin J, Liu G, Zhang Y, Zhou Y, Pan Y, Zhang Q, Yu R, Gao S. Gender differences in gliomas: From epidemiological trends to changes at the hormonal and molecular levels. Cancer Lett 2024; 598:217114. [PMID: 38992488 DOI: 10.1016/j.canlet.2024.217114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Gender plays a crucial role in the occurrence and development of cancer, as well as in the metabolism of nutrients and energy. Men and women display significant differences in the incidence, prognosis, and treatment response across various types of cancer, including certain sex-specific tumors. It has been observed that male glioma patients have a higher incidence and worse prognosis than female patients, but there is currently a limited systematic evaluation of sex differences in gliomas. The purpose of this study is to provide an overview of the association between fluctuations in sex hormone levels and changes in their receptor expression with the incidence, progression, treatment, and prognosis of gliomas. Estrogen may have a protective effect on glioma patients, while exposure to androgens increases the risk of glioma. We also discussed the specific genetic and molecular differences between genders in terms of the malignant nature and prognosis of gliomas. Factors such as TP53, MGMT methylation status may play a crucial role. Therefore, it is essential to consider the gender of patients while treating glioma, particularly the differences at the hormonal and molecular levels. This approach can help in the adoption of an individualized treatment strategy.
Collapse
Affiliation(s)
- Jiale Yin
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Gai Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yue Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yu Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yuchun Pan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Qiaoshan Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
27
|
Gu Y, Mu Q, Cheng D. Androgens in cervical cancer: Their role in epidemiology and biology. iScience 2024; 27:110155. [PMID: 39021790 PMCID: PMC11253156 DOI: 10.1016/j.isci.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
This comprehensive review delves into the significance of androgens in cervical cancer, examining both epidemiological evidence and the underlying biological mechanisms. Cervical cancer ranks as the fourth most prevalent cancer among women globally, with disproportionately higher incidence and mortality rates in less developed regions where cervical human papillomavirus (HPV) screening remains limited. Recent research highlights the previously underexplored role of androgens in cervical cancer. Notably, cervical tissues house androgen receptors, and elevated levels of endogenous androgens have been linked to an increased risk of cervical cancer. Androgens exert their influence on the development and progression of cervical cancer by impacting key cellular processes, including proliferation, apoptosis, differentiation, and epithelial cell transformation. Furthermore, specific HPV subtypes may interact with androgens, potentially modulating HPV-related cellular degeneration and transformation. In light of these findings, it is evident that androgens assume a crucial role in cervical cancer's pathogenesis. Consequently, further investigations are warranted to deepen our understanding of the intricate relationship between androgens and cervical cancer. Such knowledge advancements can facilitate improved strategies for early prevention and treatment of cervical cancer, especially in regions with limited HPV screening access. This review underscores the importance of considering androgens as a vital component of the multifaceted landscape of cervical cancer etiology and progression, ultimately contributing to more effective clinical interventions.
Collapse
Affiliation(s)
- Yang Gu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Qing Mu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Dali Cheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| |
Collapse
|
28
|
Szczepanska-Sadowska E, Czarzasta K, Bogacki-Rychlik W, Kowara M. The Interaction of Vasopressin with Hormones of the Hypothalamo-Pituitary-Adrenal Axis: The Significance for Therapeutic Strategies in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:7394. [PMID: 39000501 PMCID: PMC11242374 DOI: 10.3390/ijms25137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water-electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of the hypothalamo-pituitary-adrenal axis (HPA) at several levels through regulation of the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and multiple steroid hormones, as well as through interactions with steroids in the target organs. These interactions are facilitated by positive and negative feedback between specific components of the HPA. Altogether, AVP and the HPA cooperate closely as a coordinated functional AVP-HPA system. It has been shown that cooperation between AVP and steroid hormones may be affected by cellular stress combined with hypoxia, and by metabolic, cardiovascular, and respiratory disorders; neurogenic stress; and inflammation. Growing evidence indicates that central and peripheral interactions between AVP and steroid hormones are reprogrammed in cardiovascular and metabolic diseases and that these rearrangements exert either beneficial or harmful effects. The present review highlights specific mechanisms of the interactions between AVP and steroids at cellular and systemic levels and analyses the consequences of the inappropriate cooperation of various components of the AVP-HPA system for the pathogenesis of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | | | | |
Collapse
|
29
|
Allaoui G, Rylander C, Fuskevåg OM, Grimnes G, Averina M, Wilsgaard T, Berg V. Longitudinal assessment of classic and 11-oxygenated androgen concentrations and their association with type 2 diabetes mellitus development: the Tromsø study. Acta Diabetol 2024; 61:847-857. [PMID: 38498076 PMCID: PMC11182793 DOI: 10.1007/s00592-024-02266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
AIM We aimed to investigate changes in pre-diagnostic concentrations of classic and 11-oxygenated androgens in type 2 diabetes (T2DM) cases and healthy controls, associations between androgen concentrations and T2DM, and the potential for androgens to improve the prediction of T2DM when considered in combination with established risk factors. METHODS Androgen concentrations were analysed in serum samples from 116 T2DM cases and 138 controls at 3, pre-diagnostic time-points: 1986/87 (T1), 1994/95 (T2), and 2001 (T3). Generalised estimating equations were used to longitudinally examine androgen concentrations, and logistic regression models were used to estimate the odds ratios (OR) of T2DM at each time-point. Logistic regression models were also used to calculate area under the receiver operating characteristics curve (AROC) from models including established risk factors alone (ERF model) and established risk factors plus each androgen, respectively, which were compared to identify improvements in predictive ability. RESULTS For women, no significant associations were observed between any of the investigated androgens and T2DM after adjusting for confounders. For men, after adjusting for confounders, concentrations of all investigated 11-oxygenated androgens were higher in cases than controls at one or several time-points. We observed associations between T2DM and concentrations of 11-ketoandrostenedione (OR: 1.59) and 11-ketotestosterone (OR: 1.62) at T1; and 11-hydroxyandrostenedione (OR: 2.00), 11-hydroxytestosterone (OR: 1.76), 11-ketoandrostenedione (OR: 1.84), 11-ketotestosterone (OR: 1.78) and testosterone (OR: 0.45) at T3 in men. The addition of these androgens (including 11-hydroxytestosterone at T2) to the ERF model resulted in an improved ability to predict T2DM in men (AROC: 0.79-0.82). We did not observe significant differences in changes in androgen concentrations over time between cases and controls in either sex. CONCLUSION Our results demonstrate that testosterone and 11-oxygenated androgens are associated with T2DM in men before diagnosis and may be potential biomarkers in T2DM risk assessment.
Collapse
Affiliation(s)
- Giovanni Allaoui
- Division of Diagnostic Services, Department of Laboratory Medicine, University Hospital of North-Norway, 9038, Tromsø, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Charlotta Rylander
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ole-Martin Fuskevåg
- Division of Diagnostic Services, Department of Laboratory Medicine, University Hospital of North-Norway, 9038, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Guri Grimnes
- Department of Clinical Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, 9037, Tromsø, Norway
- Division of Medicine, University Hospital of North-Norway, 9038, Tromsø, Norway
| | - Maria Averina
- Division of Diagnostic Services, Department of Laboratory Medicine, University Hospital of North-Norway, 9038, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, UIT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Vivian Berg
- Division of Diagnostic Services, Department of Laboratory Medicine, University Hospital of North-Norway, 9038, Tromsø, Norway.
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
30
|
Dourson AJ, Darken RS, Baranski TJ, Gereau RW, Ross WT, Nahman-Averbuch H. The role of androgens in migraine pathophysiology. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100171. [PMID: 39498299 PMCID: PMC11532460 DOI: 10.1016/j.ynpai.2024.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024]
Abstract
Migraine affects ∼12 % of the worldwide population and is more prevalent in females, which suggests a role of sex hormones in migraine pathophysiology. Most studies have focused on estrogen and progesterone, and the involvement of androgens has been less studied. However, due to the recent advances in androgen interventions, which could advance new androgen-based migraine treatments, it is critical to better understand the role of androgens in migraine. Testosterone, the most studied androgen, was found to have an antinociceptive effect in various animal and human pain studies. Thus, it could also have a protective effect related to lower migraine severity and prevalence. In this review, we discuss studies examining the role of androgens on migraine-related symptoms in migraine animal models. Additionally, we summarize the results of human studies comparing androgen levels between patients with migraine and healthy controls, studies assessing the relationships between androgen levels and migraine severity, and intervention studies examining the impact of testosterone treatment on migraine severity. Many of the studies have limitations, however, the results suggest that androgens may have a minor effect on migraine. Still, it is possible that androgens are involved in migraine pathophysiology in a sub-group of patients such as in adolescents or postmenopausal women. We discuss potential mechanisms in which testosterone, as the main androgen tested, can impact migraine. These mechanisms range from the cellular level to systems and behavior and include the effect of testosterone on sensory neurons, the immune and vascular systems, the stress response, brain function, and mood. Lastly, we suggest future directions to advance this line of research.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel S. Darken
- Department of Neurology, Washington University School of Medicine, St. Louis Missouri, USA
| | - Thomas J. Baranski
- Division of Endocrinology, Diabetes and Metabolism Washington University School of Medicine in St. Louis Missouri, USA
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Whitney Trotter Ross
- Division of Minimally Invasive Gynecologic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
31
|
Bassi M, Bilel S, Tirri M, Corli G, Di Rosa F, Gregori A, Alkilany AM, Rachid O, Roda E, De Luca F, Papa P, Buscaglia E, Zauli G, Locatelli CA, Marti M. The synthetic cathinones MDPHP and MDPV: Comparison of the acute effects in mice, in silico ADMET profiles and clinical reports. Neurotoxicology 2024; 103:230-255. [PMID: 38955288 DOI: 10.1016/j.neuro.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The 3,4-methylenedioxy-alpha-pyrrolidinohexanophenone (MDPHP) is a synthetic cathinone closely related to 3,4-methylenedioxypyrovalerone (MDPV), one of the most common synthetic cathinones present in the "bath salts". MDPHP has recently gained attention due to increasing seizures and involvement in human intoxications which occurred in Europe and Italy in the last years, but currently there is a lack of information about its pharmaco-toxicological effects. With the aim at filling this gap, the present study is endeavoured to (i) evaluate the effects of acute administration of MDPHP (0.01-20 mg/kg; i.p.) on behaviour, cardiorespiratory and cardiovascular parameters in CD-1 male mice, comparing them to those observed after administration of MDPV; (ii) predict the ADMET profile of the two analogues using the Plus ADMET Predictor®; (iii) present clinical data related to MDPHP and MDPV-induced intoxications recorded between 2011 and 2023 by the Pavia Poison Control Centre (PCC) - National Toxicology Information Centre (Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy). Our results substantiated that MDPHP and MDPV similarly affect sensorimotor and behavioural responses in mice, importantly increased locomotion and induced aggressive behaviour, and, at higher dosage, increased heart rate and blood pressure. These findings are in line with those observed in humans, revealing severe toxidromes typically characterized by Central Nervous System (CNS) alterations (behavioural/neuropsychiatric symptoms), including psychomotor agitation and aggressiveness, cardiovascular and respiratory disorders (e.g. tachycardia, hypertension, dyspnoea), and other peripheral symptoms (e.g. hyperthermia, acidosis, rhabdomyolysis).
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Pietro Papa
- Laboratory of Analytical Toxicology-Clinical Chemistry, IRCCS Fondazione Policlinico S. Matteo, Pavia, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
32
|
Wang Y, Jiang R. Androgens and erectile dysfunction: from androgen deficiency to treatment. Sex Med Rev 2024; 12:458-468. [PMID: 38719619 DOI: 10.1093/sxmrev/qeae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Androgens play important roles in regulating the growth and development of the male reproductive system and maintaining libido and erectile function. The specific mechanisms by which androgen deficiency leads to erectile dysfunction (ED) are not yet fully understood. OBJECTIVES To understand the mechanisms and treatment of androgen deficiency-related ED. METHODS A literature search in the past 10 years was conducted in PubMed and Google Scholar to determine the effects of androgen deficiency on erectile function and the treatment of androgen deficiency. RESULTS Androgen deficiency can be caused by hypothalamic-pituitary lesions and injuries, testicular-related diseases and injuries, endocrine and metabolic disorders, the side effects of medication, and age. Androgen deficiency can lead to ED by inhibiting the NOS/NO/cGMP pathway (nitric oxide synthase/nitric oxide/cyclic guanosine monophosphate) and altering the expression of ion channel proteins, as well as by inducing oxidative stress, death, and fibrosis in penile corpus cavernosum cells. Testosterone replacement therapy is effective at improving the serum testosterone levels and erectile function in patients with androgen deficiency. For patients who need to maintain a low androgenic state, erectile function can be improved by lifestyle changes, treatment with phosphodiesterase type 5 inhibitors, low-intensity extracorporeal shock wave therapy, and stem cell therapy. CONCLUSIONS Androgen deficiency can affect the structure and function of the penile corpus cavernosum, leading to ED. Areas of further study include how androgen replacement therapy can improve erectile function and how to improve the maintenance of erectile function in patients with hypoandrogenic status.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
33
|
Mu X, Liu S, Wang Z, Jiang K, McClintock T, Stromberg AJ, Tezanos AV, Lee ES, Curci JA, Gong MC, Guo Z. Androgen aggravates aortic aneurysms via suppression of PD-1 in mice. J Clin Invest 2024; 134:e169085. [PMID: 38900572 PMCID: PMC11290977 DOI: 10.1172/jci169085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Androgen has long been recognized for its pivotal role in the sexual dimorphism of cardiovascular diseases, including aortic aneurysms (AAs), a devastating vascular disease with a higher prevalence and fatality rate in men than in women. However, the mechanism by which androgen mediates AAs is largely unknown. Here, we found that male, not female, mice developed AAs when exposed to aldosterone and high salt (Aldo-salt). We revealed that androgen and androgen receptors (ARs) were crucial for this sexually dimorphic response to Aldo-salt. We identified programmed cell death protein 1 (PD-1), an immune checkpoint, as a key link between androgen and AAs. Furthermore, we demonstrated that administration of anti-PD-1 Ab and adoptive PD-1-deficient T cell transfer reinstated Aldo-salt-induced AAs in orchiectomized mice and that genetic deletion of PD-1 exacerbated AAs induced by a high-fat diet and angiotensin II (Ang II) in nonorchiectomized mice. Mechanistically, we discovered that the AR bound to the PD-1 promoter to suppress the expression of PD-1 in the spleen. Thus, our study unveils a mechanism by which androgen aggravates AAs by suppressing PD-1 expression in T cells. Moreover, our study suggests that some patients with cancer might benefit from screenings for AAs during immune checkpoint therapy.
Collapse
Affiliation(s)
- Xufang Mu
- Departments of Pharmacology and Nutritional Sciences
| | | | - Zhuoran Wang
- Departments of Pharmacology and Nutritional Sciences
| | | | | | | | | | - Eugene S. Lee
- Department of Research, Sacramento Veterans Affairs Medical Center, Mather, California, USA
| | - John A. Curci
- Department of Vascular Surgery, Vanderbilt University, Nashville, Tennessee, USA
| | - Ming C. Gong
- Physiology, and
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Zhenheng Guo
- Departments of Pharmacology and Nutritional Sciences
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Research, Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
| |
Collapse
|
34
|
Stener-Victorin E. Remedy hope for polycystic ovary syndrome. Science 2024; 384:1174-1175. [PMID: 38870311 DOI: 10.1126/science.adq0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Antimalarial suppresses ovarian androgen synthesis to relieve polycystic ovary syndrome.
Collapse
|
35
|
Satué K, Fazio E, Damiá E, Barbiera G, Medica P, Cravana C. Effect of age on androgens pattern in cyclic mares. Res Vet Sci 2024; 173:105276. [PMID: 38677075 DOI: 10.1016/j.rvsc.2024.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Androgens are produced in both sexes. In females produced by the adrenal gland and the ovaries they play a crucial role in regulating ovarian function, estrogen synthesis and follicular growth. Age leads to a reduction in androgen concentrations, although, at present, these mechanisms are not elucidated in mares. The objective of this study was to evaluate the concentrations of testosterone (T), androstenedione (A4) and dehydroepiandrosterone (DHEA) in mares of different ages. Blood samples were drawn from seventy cyclic Spanish Purebred mares belonging to five age groups: 3-5 years, 6-9 years, 10-13 years, 14-16 years and > 16 years. The concentrations of T, A4 and DHEA were determined by EIA, validated specifically for horses. Mares aged 3-5, 6-9 and 10-13 years had higher T concentrations (P < 0.05) than mares aged >16 years, and mares aged 6-9 years had also higher concentrations than those 14-16 years old (P < 0.05). A4 concentrations were lower (P < 0.05) in mares >16 years old when compared with those of other age groups. DHEA concentrations were lower (P < 0.05) in mares 14-16 years and > 16 years old when compared with those of other age groups. DHEA was positively correlated with T (r = 0.61; P < 0.05) and A4 (r = 0.51; P < 0.05). Age induces reduction in androgens' synthesis in physiologically cyclic Spanish Purebred mares. These physiological variations must be duly considered for a correct and objective interpretation of the analytical data.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115, Valencia, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168 Messina, Italy
| | - Elena Damiá
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115, Valencia, Spain
| | | | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168 Messina, Italy
| | - Cristina Cravana
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168 Messina, Italy
| |
Collapse
|
36
|
Zhang Y, Jiang Z, Shang G, Song Z, Mao K, Chen S, Liu H. Effects of Testosterone in Mediating the Relationship Between Daytime Napping and Osteoporosis in European Populations: A Mendelian Randomization Study. Calcif Tissue Int 2024; 114:559-567. [PMID: 38634881 DOI: 10.1007/s00223-024-01207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
We aimed to explore the causal effect of daytime napping on the risk of osteoporosis and the mediation role of testosterone in explaining this relationship. Summary data for Mendelian randomization (MR) analysis were obtained from the IEU OpenGWAS database. Univariable MR(UVMR) analysis and multiple sensitivity analyses were applied to explore the casual relationship between daytime napping and bone mineral density (BMD)/osteoporosis. We also conducted multivariable Mendelian randomization (MVMR) analysis to evaluate the correlation between testosterone-associated single-nucleotide variations and BMD/osteoporosis. Then, mediation analysis was performed to explore whether the association between daytime napping and BMD/osteoporosis was mediated via testosterone. Genetically predicted daytime napping was significantly associated with femoral neck BMD (β [95% CI]: 0.2573 [0.0487, 0.4660]; P = 0.0156), lumbar spine BMD (β [95% CI]: 0.2526 [0.0211, 0.4840]; P = 0.0324), and osteoporosis (OR [95% CI]: 0.5063 [0.2578, 0.9942]; P = 0.0481). β and 95%CIs indicate the standard deviation (SD) unit of BMD increase per category increase in daytime napping. OR and 95%CIs represent the change in the odds ratio of osteoporosis per category increase in daytime napping. We observed a potentially causal effect of more frequent daytime napping on higher BMD and a lower risk of osteoporosis. Daytime napping was causally associated with a higher level of bioavailable testosterone (β [95% CI]: 0.1397 [0.0619, 0.2175]; P = 0.0004). β and 95%CIs represent the change in the SD of testosterone per category increase in daytime napping. Furthermore, the causal effects of daytime napping on BMD/osteoporosis were partly mediated by bioavailable testosterone. Daytime napping can efficiently increase BMD and reduce the risk of osteoporosis, and testosterone plays a key mediating role in this process.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhengfa Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Keya Mao
- Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing, 100853, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
37
|
Xiang T, Shi C, Guo Y, Zhang J, Min W, Sun J, Liu J, Yan X, Liu Y, Yao L, Mao Y, Yang X, Shi J, Yan B, Qu G, Jiang G. Effect-directed analysis of androgenic compounds from sewage sludges in China. WATER RESEARCH 2024; 256:121652. [PMID: 38657313 DOI: 10.1016/j.watres.2024.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The safety of municipal sewage sludge has raised great concerns because of the accumulation of large-scale endocrine disrupting chemicals in the sludge during wastewater treatment. The presence of contaminants in sludge can cause secondary pollution owing to inappropriate disposal mechanisms, posing potential risks to the environment and human health. Effect-directed analysis (EDA), involving an androgen receptor (AR) reporter gene bioassay, fractionation, and suspect and nontarget chemical analysis, were applied to identify causal AR agonists in sludge; 20 of the 30 sludge extracts exhibited significant androgenic activity. Among these, the extracts from Yinchuan, Kunming, and Shijiazhuang, which held the most polluted AR agonistic activities were prepared for extensive EDA, with the dihydrotestosterone (DHT)-equivalency of 2.5 - 4.5 ng DHT/g of sludge. Seven androgens, namely boldione, androstenedione, testosterone, megestrol, progesterone, and testosterone isocaproate, were identified in these strongest sludges together, along with testosterone cypionate, first reported in sludge media. These identified androgens together accounted for 55 %, 87 %, and 52 % of the effects on the sludge from Yinchuan, Shijiazhuang, and Kunming, respectively. This study elucidates the causative androgenic compounds in sewage sludge and provides a valuable reference for monitoring and managing androgens in wastewater treatment.
Collapse
Affiliation(s)
- Tongtong Xiang
- College of Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Weicui Min
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiazheng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiliang Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxiang Mao
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- College of Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
38
|
Zhuang J, Wang S, Wang Y, Hu R, Wu Y. Association Between Triglyceride Glucose Index and Infertility in Reproductive-Aged Women: A Cross-Sectional Study. Int J Womens Health 2024; 16:937-946. [PMID: 38827929 PMCID: PMC11143446 DOI: 10.2147/ijwh.s461950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose In recent years, female infertility has become a research hotspot in the field of health management, and its cause may be related to insulin resistance (IR). We used a novel and practical IR indicator, the TyG index to explore its association with infertility. Patients and Methods We calculated the TyG index using data from adult women who participated in the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2018. Then, we used multivariate logistic regression, smooth curve fitting, and subgroup analysis to examine the association between the TyG index and infertility in women. Results Logistic regression models showed a positive correlation between the TyG index and infertility, which remained significant even after adjusting for all confounders (OR=1.51,95% CI:1.14-2.00, p=0.005). This association was consistent in all subgroups (age, education level, marital status, BMI, smoking, alcohol consumption, hypertension, diabetes, pelvic inflammatory disease/PID treatment, and menstrual regularity in the past 12 months) (p>0.05 for all interactions). However, the diagnostic power of the TyG index for infertility was limited (AUC=0.56, 95% CI: 0.52-0.61). Conclusion The TyG index is positively correlated with infertility, but its diagnostic value is limited. Further research is needed on the TyG index as an early predictor of infertility.
Collapse
Affiliation(s)
- Jiaru Zhuang
- Human Reproductive Medicine Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214026, People’s Republic of China
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Shan Wang
- Human Reproductive Medicine Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214026, People’s Republic of China
| | - Yuan Wang
- Human Reproductive Medicine Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214026, People’s Republic of China
| | - Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, 214000, People’s Republic of China
| | - Yibo Wu
- Human Reproductive Medicine Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214026, People’s Republic of China
| |
Collapse
|
39
|
Augsburger P, Liimatta J, Flück CE. Update on Adrenarche-Still a Mystery. J Clin Endocrinol Metab 2024; 109:1403-1422. [PMID: 38181424 DOI: 10.1210/clinem/dgae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
CONTEXT Adrenarche marks the timepoint of human adrenal development when the cortex starts secreting androgens in increasing amounts, in healthy children at age 8-9 years, with premature adrenarche (PA) earlier. Because the molecular regulation and significance of adrenarche are unknown, this prepubertal event is characterized descriptively, and PA is a diagnosis by exclusion with unclear long-term consequences. EVIDENCE ACQUISITION We searched the literature of the past 5 years, including original articles, reviews, and meta-analyses from PubMed, ScienceDirect, Web of Science, Embase, and Scopus, using search terms adrenarche, pubarche, DHEAS, steroidogenesis, adrenal, and zona reticularis. EVIDENCE SYNTHESIS Numerous studies addressed different topics of adrenarche and PA. Although basic studies on human adrenal development, zonation, and zona reticularis function enhanced our knowledge, the exact mechanism leading to adrenarche remains unsolved. Many regulators seem involved. A promising marker of adrenarche (11-ketotestosterone) was found in the 11-oxy androgen pathway. By current definition, the prevalence of PA can be as high as 9% to 23% in girls and 2% to 10% in boys, but only a subset of these children might face related adverse health outcomes. CONCLUSION New criteria for defining adrenarche and PA are needed to identify children at risk for later disease and to spare children with a normal variation. Further research is therefore required to understand adrenarche. Prospective, long-term studies should characterize prenatal or early postnatal developmental pathways that modulate trajectories of birth size, early postnatal growth, childhood overweight/obesity, adrenarche and puberty onset, and lead to abnormal sexual maturation, fertility, and other adverse outcomes.
Collapse
Affiliation(s)
- Philipp Augsburger
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Jani Liimatta
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland and Kuopio University Hospital, 70029 Kuopio, Finland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
40
|
Ren YL, Liang Q, Lian CY, Zhang W, Wang L. Melatonin alleviates glyphosate-induced testosterone synthesis inhibition via targeting mitochondrial function in roosters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123828. [PMID: 38522604 DOI: 10.1016/j.envpol.2024.123828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Glyphosate (GLY) is a widely used herbicide that has been revealed to inhibit testosterone synthesis in humans and animals. Melatonin (MET) is an endogenous hormone that has been demonstrated to promote mammalian testosterone synthesis via protecting mitochondrial function. However, it remains unclear whether MET targets mitochondria to alleviate GLY-inhibited testosterone synthesis in avian. In this study, an avian model using 7-day-old rooster upon chronic exposure to GLY with the treatment of MET was designed to clarify this issue. Data first showed that GLY-induced testicular Leydig cell damage, structural damage of the seminiferous tubule, and sperm quality decrease were mitigated by MET. Transcriptomic analyses of the testicular tissues revealed the potentially critical role of mitophagy and steroid hormone biosynthesis in the process of MET counteracting GLY-induced testicular damage. Also, validation data demonstrated that the inhibition of testosterone synthesis due to GLY-induced mitochondrial dynamic imbalance and concomitant Parkin-dependent mitophagy activation is alleviated by MET. Moreover, GLY-induced oxidative stress in serum and testicular tissue were significantly reversed by MET. In summary, these findings demonstrate that MET effectively ameliorates GLY-inhibited testosterone synthesis by inhibiting mitophagy activation, which provides a promising remedy for the application of MET as a potential therapeutic agent to antagonize reproductive toxicity induced by GLY and similar contaminants.
Collapse
Affiliation(s)
- Yu-Long Ren
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Qing Liang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Cai-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Wei Zhang
- Yantai Academy of Agricultural Sciences, Yan'tai City 265500, Shandong Province, China.
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
41
|
Li X, Xiong H, Mou X, Huang C, Thomas ER, Yu W, Jiang Y, Chen Y. Androgen receptor cofactors: A potential role in understanding prostate cancer. Biomed Pharmacother 2024; 173:116338. [PMID: 38417290 DOI: 10.1016/j.biopha.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70β, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Haojun Xiong
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingzhu Mou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Cancan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yu Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
42
|
Zhang X, Zhang X, Shi Y, Zhang Z, Wang J, Ru S, Tian H. Interacting with luteinizing hormone receptor provides a new elucidation of the mechanism of anti-androgenicity of bisphenol S. CHEMOSPHERE 2024; 350:141056. [PMID: 38158086 DOI: 10.1016/j.chemosphere.2023.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol S (BPS) exhibited inhibitory effects on androgen synthesis, but its target of action remains unclear. We investigated the effects of BPS exposure at environmentally relevant concentrations (1 μg/L, 10 μg/L and 100 μg/L) for 48 h on androgen synthesis in rat ovarian theca cells and explored the underlying mechanisms, target site and target molecule. The results showed that BPS exposure inhibited the transcript levels of steroidogenic genes and reduced the contents of androgen precursors, testosterone and dihydrotestosterone. BPS exposure decreased the phosphorylation levels of extracellular signal-related kinase 1/2 (ERK1/2), and the inhibitory effects of BPS on testosterone content and steroidogenic gene expression were blocked by ERK1/2 agonist LY2828360, suggesting that ERK1/2 signaling pathway mediates the inhibitory effects of BPS on androgen synthesis. BPS mainly accumulated on the cell membrane, impermeable BPS-bovine serum albumin exposure still inhibited androgen synthesis, BPS interacted with rat luteinizing hormone receptor (LHR) via formation of hydrogen bonds in the transmembrane region, and the inhibitory effects of BPS on ERK1/2 phosphorylation were blocked by luteinizing hormone (the natural agonist of LHR), indicating that LHR located on the cell membrane is the target of action of BPS. This paper provides a new elucidation of the mechanism of anti-androgenicity of BPS, especially for the non-genomic pathways.
Collapse
Affiliation(s)
- Xinda Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaorong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
43
|
Braun LT, Osswald A, Zopp S, Rubinstein G, Vogel F, Riester A, Honegger J, Eisenhofer G, Constantinescu G, Deutschbein T, Quinkler M, Elbelt U, Künzel H, Nowotny HF, Reisch N, Hartmann MF, Beuschlein F, Pons-Kühnemann J, Reincke M, Wudy SA. Delineating endogenous Cushing's syndrome by GC-MS urinary steroid metabotyping. EBioMedicine 2024; 99:104907. [PMID: 38128413 PMCID: PMC10776922 DOI: 10.1016/j.ebiom.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Diagnosing Cushing's syndrome (CS) is highly complex. As the diagnostic potential of urinary steroid metabolome analysis by gas chromatography-mass spectrometry (GC-MS) in combination with systems biology has not yet been fully exploited, we studied a large cohort of patients with CS. METHODS We quantified daily urinary excretion rates of 36 steroid hormone metabolites. Applying cluster analysis, we investigated a control group and 168 patients: 44 with Cushing's disease (CD) (70% female), 18 with unilateral cortisol-producing adrenal adenoma (83% female), 13 with primary bilateral macronodular adrenal hyperplasia (PBMAH) (77% female), and 93 ruled-out CS (73% female). FINDINGS Cluster-Analysis delineated five urinary steroid metabotypes in CS. Metabotypes 1, 2 and 3 revealing average levels of cortisol and adrenal androgen metabolites included patients with exclusion of CS or and healthy controls. Metabotype 4 reflecting moderately elevated cortisol metabolites but decreased DHEA metabolites characterized the patients with unilateral adrenal CS and PBMAH. Metabotype 5 showing strong increases both in cortisol and DHEA metabolites, as well as overloaded enzymes of cortisol inactivation, was characteristic of CD patients. 11-oxygenated androgens were elevated in all patients with CS. The biomarkers THS, F, THF/THE, and (An + Et)/(11β-OH-An + 11β-OH-Et) correctly classified 97% of patients with CS and 95% of those without CS. An inverse relationship between 11-deoxygenated and 11-oxygenated androgens was typical for the ACTH independent (adrenal) forms of CS with an accuracy of 95%. INTERPRETATION GC-MS based urinary steroid metabotyping allows excellent identification of patients with endogenous CS and differentiation of its subtypes. FUNDING The study was funded by the Else Kröner-Fresenius-Stiftung and the Eva-Luise-und-Horst-Köhler-Stiftung.
Collapse
Affiliation(s)
- Leah T Braun
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 5, München 80336, Germany
| | - Andrea Osswald
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 5, München 80336, Germany
| | - Stephanie Zopp
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 5, München 80336, Germany
| | - German Rubinstein
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 5, München 80336, Germany
| | - Frederick Vogel
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 5, München 80336, Germany
| | - Anna Riester
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 5, München 80336, Germany
| | - Jürgen Honegger
- Department for Neurosurgery, University Hospital Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Georgiana Constantinescu
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Timo Deutschbein
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Oberdürrbacher Str. 6, Würzburg 97080, Germany; Medicover Oldenburg MVZ, Elisenstr. 12, Oldenburg 26122, Germany
| | - Marcus Quinkler
- Endocrinology in Charlottenburg, Stuttgarter Platz 1, Berlin 10627, Germany
| | - Ulf Elbelt
- Division of Medicine B, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Fehrbelliner Str. 38, Neuruppin 16816, Germany; Endokrinologikum Berlin MVZ, Friedrichstraße 76, Berlin 10117, Germany; Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Heike Künzel
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 5, München 80336, Germany
| | - Hanna F Nowotny
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 5, München 80336, Germany
| | - Nicole Reisch
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 5, München 80336, Germany
| | - Michaela F Hartmann
- Division of Pediatric Endocrinology & Diabetology, Laboratory for Translational Hormone Analysis in Pediatric Endocrinology, Steroid Research & Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus-Liebig-University, Feulgenstr. 10-12, Giessen 35392, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 5, München 80336, Germany; Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitäts-Spital Zürich (USZ) und Universität Zürich (UZH), Raemistrasse 100, Zürich CH-8091, Switzerland
| | - Jörn Pons-Kühnemann
- Medical Statistics, Institute of Medical Informatics, Justus Liebig University Giessen, Rudolf-Buchheim-Str. 6, Giessen D-35392, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Ziemssenstraße 5, München 80336, Germany
| | - Stefan A Wudy
- Division of Pediatric Endocrinology & Diabetology, Laboratory for Translational Hormone Analysis in Pediatric Endocrinology, Steroid Research & Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus-Liebig-University, Feulgenstr. 10-12, Giessen 35392, Germany.
| |
Collapse
|
44
|
Gent R, Van Rooyen D, Atkin SL, Swart AC. C11-hydroxy and C11-oxo C 19 and C 21 Steroids: Pre-Receptor Regulation and Interaction with Androgen and Progesterone Steroid Receptors. Int J Mol Sci 2023; 25:101. [PMID: 38203272 PMCID: PMC10778819 DOI: 10.3390/ijms25010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
C11-oxy C19 and C11-oxy C21 steroids have been identified as novel steroids but their function remains unclear. This study aimed to investigate the pre-receptor regulation of C11-oxy steroids by 11β-hydroxysteroid dehydrogenase (11βHSD) interconversion and potential agonist and antagonist activity associated with the androgen (AR) and progesterone receptors (PRA and PRB). Steroid conversions were investigated in transiently transfected HEK293 cells expressing 11βHSD1 and 11βHSD2, while CV1 cells were utilised for agonist and antagonist assays. The conversion of C11-hydroxy steroids to C11-oxo steroids by 11βHSD2 occurred more readily than the reverse reaction catalysed by 11βHSD1, while the interconversion of C11-oxy C19 steroids was more efficient than C11-oxy C21 steroids. Furthermore, 11-ketodihydrotestosterone (11KDHT), 11-ketotestosterone (11KT) and 11β-hydroxydihydrotestosterone (11OHDHT) were AR agonists, while only progestogens, 11β-hydroxyprogesterone (11βOHP4), 11β-hydroxydihydroprogesterone (11βOHDHP4), 11α-hydroxyprogesterone (11αOHP4), 11α-hydroxydihydroprogesterone (11αOHDHP4), 11-ketoprogesterone (11KP4), 5α-pregnan-17α-diol-3,11,20-trione (11KPdione) and 21-deoxycortisone (21dE) exhibited antagonist activity. C11-hydroxy C21 steroids, 11βOHP4, 11βOHDHP4 and 11αOHP4 exhibited PRA and PRB agonistic activity, while only C11-oxo steroids, 11KP4 and 11-ketoandrostanediol (11K3αdiol) demonstrated PRB agonism. While no steroids antagonised the PRA, 11OHA4, 11β-hydroxytestosterone (11OHT), 11KT and 11KDHT exhibited PRB antagonism. The regulatory role of 11βHSD isozymes impacting receptor activation is clear-C11-oxo androgens exhibit AR agonist activity; only C11-hydroxy progestogens exhibit PRA and PRB agonist activity. Regulation by the downstream metabolites of active C11-oxy steroids at the receptor level is apparent-C11-hydroxy and C11-oxo metabolites antagonize the AR and PRB, progestogens the former, androgens the latter. The findings highlight the intricate interplay between receptors and active as well as "inactive" C11-oxy steroids, suggesting novel regulatory tiers.
Collapse
Affiliation(s)
- Rachelle Gent
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Desmaré Van Rooyen
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Stephen L. Atkin
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Amanda C. Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
45
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
46
|
Heijboer AC, Hannema SE. Androgen Excess and Deficiency: Analytical and Diagnostic Approaches. Clin Chem 2023; 69:1361-1373. [PMID: 37794651 DOI: 10.1093/clinchem/hvad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Androgens are synthesized from cholesterol through sequential conversions by enzymes in the adrenal glands and gonads. Serum levels of androgens change during the different phases of life and regulate important developmental and maturational processes. Androgen excess or deficiency can therefore present at various ages in various ways. CONTENT The diagnostic approach for atypical genitalia, premature pubarche, delayed pubertal onset or progression, and hirsutism or virilization, including measurement of androgens (testosterone, androstenedione, 17-OHprogesterone, dehydroepiandrosterone, and dihydrotestosterone) is discussed in the current review. Androgens can be measured in serum, saliva, urine, or dried blood spots. Techniques to measure androgens, including immunoassays and LC-MS, have their own advantages and pitfalls. In addition, pre- and postanalytical issues are important when measuring androgens. SUMMARY During clinical interpretation of androgen measurements, it is important to take preanalytical circumstances, such as time of blood withdrawal, into account. As immunoassays have major drawbacks, especially in samples from women and neonates, concentrations measured using these assays should be interpreted with care. Reference intervals can only be used in relation to the measurement technique and the standardization of the assay. In the near future, new androgens will probably be added to the current repertoire to further improve the diagnosis and follow-up of androgen excess or deficiency.
Collapse
Affiliation(s)
- Annemieke C Heijboer
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, the Netherlands
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Sabine E Hannema
- Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Amsterdam UMC location Vrije Universiteit, Emma Children's Hospital, Amsterdam, the Netherlands
| |
Collapse
|
47
|
Xu H, Pu J, Teng Y, Zhu Q, Guo L, Zhao J, Ding H, Fang Y, Ma X, Liu H, Guo J, Lu W, Wang J. Melatonin Inhibits Testosterone Synthesis in Rooster Leydig Cells by Targeting CXCL14 through miR-7481-3p. Int J Mol Sci 2023; 24:16552. [PMID: 38068875 PMCID: PMC10706588 DOI: 10.3390/ijms242316552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Melatonin has been proved to be involved in testosterone synthesis, but whether melatonin participates in testosterone synthesis by regulating miRNA in Leydig cells is still unclear. The purpose of this study is to clarify the mechanism of melatonin on Leydig cells testosterone synthesis from the perspective of miRNA. Our results showed that melatonin could significantly inhibit testosterone synthesis in rooster Leydig cells. miR-7481-3p and CXCL14 were selected as the target of melatonin based on RNA-seq and miRNA sequencing. The results of dual-luciferase reporter assays showed that miR-7481-3p targeted the 3'-UTR of CXCL14. The overexpression of miR-7481-3p significantly inhibited the expression of CXCL14 and restored the inhibitory role of melatonin testosterone synthesis and the expression of StAR, CYP11A1, and 3β-HSD in rooster Leydig cells. Similarly, interference with CXCL14 could reverse the inhibitory effect of melatonin on the level of testosterone synthesis and the expression of StAR, CYP11A1, and 3β-HSD in rooster Leydig cells. The RNA-seq results showed that melatonin could activate the PI3K/AKT signal pathway. Interference with CXCL14 significantly inhibited the phosphorylation level of PI3K and AKT, and the inhibited PI3K/AKT signal pathway could reverse the inhibitory effect of CXCL14 on testosterone synthesis and the expression of StAR, CYP11A1 and 3β-HSD in rooster Leydig cells. Our results indicated that melatonin inhibits testosterone synthesis by targeting miR-7481-3p/CXCL14 and inhibiting the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Haoran Xu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jingxin Pu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunkun Teng
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qingyu Zhu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lewei Guo
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - He Ding
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yi Fang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Ma
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Guo
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
48
|
Dong J, Rees DA. Polycystic ovary syndrome: pathophysiology and therapeutic opportunities. BMJ MEDICINE 2023; 2:e000548. [PMID: 37859784 PMCID: PMC10583117 DOI: 10.1136/bmjmed-2023-000548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Polycystic ovary syndrome is characterised by excessive levels of androgens and ovulatory dysfunction, and is a common endocrine disorder in women of reproductive age. Polycystic ovary syndrome arises as a result of polygenic susceptibility in combination with environmental influences that might include epigenetic alterations and in utero programming. In addition to the well recognised clinical manifestations of hyperandrogenism and ovulatory dysfunction, women with polycystic ovary syndrome have an increased risk of adverse mental health outcomes, pregnancy complications, and cardiometabolic disease. Unlicensed treatments have limited efficacy, mostly because drug development has been hampered by an incomplete understanding of the underlying pathophysiological processes. Advances in genetics, metabolomics, and adipocyte biology have improved our understanding of key changes in neuroendocrine, enteroendocrine, and steroidogenic pathways, including increased gonadotrophin releasing hormone pulsatility, androgen excess, insulin resistance, and changes in the gut microbiome. Many patients with polycystic ovary syndrome have high levels of 11-oxygenated androgens, with high androgenic potency, that might mediate metabolic risk. These advances have prompted the development of new treatments, including those that target the neurokinin-kisspeptin axis upstream of gonadotrophin releasing hormone, with the potential to lessen adverse clinical sequelae and improve patient outcomes.
Collapse
Affiliation(s)
- Jiawen Dong
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - D Aled Rees
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
49
|
Peña-Corona SI, Chávez-Corona JI, Pérez-Caltzontzin LE, Vargas-Estrada D, Mendoza-Rodríguez CA, Ramos-Martínez E, Cerbón-Gutiérrez JL, Herrera-Barragán JA, Quintanar-Guerrero D, Leyva-Gómez G. Melatonin and Vitamins as Protectors against the Reproductive Toxicity of Bisphenols: Which Is the Most Effective? A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:14930. [PMID: 37834378 PMCID: PMC10573514 DOI: 10.3390/ijms241914930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Bisphenols such as bisphenol A (BPA), S (BPS), C (BPC), F (BPF), AF (BPAF), tetrabromobisphenol, nonylphenol, and octylphenol are plasticizers used worldwide to manufacture daily-use articles. Exposure to these compounds is related to many pathologies of public health importance, such as infertility. Using a protector compound against the reproductive toxicological effects of bisphenols is of scientific interest. Melatonin and vitamins have been tested, but the results are not conclusive. To this end, this systematic review and meta-analysis compared the response of reproductive variables to melatonin and vitamin administration as protectors against damage caused by bisphenols. We search for controlled studies of male rats exposed to bisphenols to induce alterations in reproduction, with at least one intervention group receiving melatonin or vitamins (B, C, or E). Also, molecular docking simulations were performed between the androgen (AR) and estrogen receptors (ER), melatonin, and vitamins. About 1234 records were initially found; finally, 13 studies were qualified for review and meta-analysis. Melatonin plus bisphenol improves sperm concentration and viability of sperm and increases testosterone serum levels compared with control groups; however, groups receiving vitamins plus bisphenols had lower sperm concentration, total testis weight, and testosterone serum levels than the control. In the docking analysis, vitamin E had the highest negative MolDock score, representing the best binding affinity with AR and ER, compared with other vitamins and melatonin in the docking. Our findings suggest that vitamins could act as an endocrine disruptor, and melatonin is most effective in protecting against the toxic effects of bisphenols.
Collapse
Affiliation(s)
- Sheila I. Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| | - Juan I. Chávez-Corona
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico; (J.I.C.-C.); (D.Q.-G.)
| | - Luis E. Pérez-Caltzontzin
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - C. Adriana Mendoza-Rodríguez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.A.M.-R.); (E.R.-M.)
| | - Edgar Ramos-Martínez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (C.A.M.-R.); (E.R.-M.)
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 04510, Mexico
| | - Jose L. Cerbón-Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - José A. Herrera-Barragán
- Departamento de Producción Agricola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico;
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico; (J.I.C.-C.); (D.Q.-G.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.I.P.-C.); (L.E.P.-C.)
| |
Collapse
|
50
|
Xiao H, Yin T, Diao L, Zhang Y, Huang C. Association between immunity and different clinical symptoms in patients with polycystic ovary syndrome. Am J Reprod Immunol 2023; 90:e13780. [PMID: 37766399 DOI: 10.1111/aji.13780] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a disease with endocrine and metabolic disorders. The main symptoms are hyperandrogenemia (HA), insulin resistance (IR), and ovulation disorder. However, the pathogenesis and pathophysiological process of these major symptoms in PCOS are still not well defined. In recent studies, the chronic low-grade inflammatory state has become one of the factors affecting PCOS. Some alterable immune factors in PCOS, such as interleukin-15 and interleukin-1, have been identified to be related to androgen synthesis and insulin resistance in PCOS. In addition, a disturbed immune microenvironment in the ovary leads to impaired follicular growth and ovulation. Previous studies have roughly reviewed the relationship between immunity and PCOS. However, the link between the different clinical manifestations of PCOS and immunity has not been well explored and analyzed. The clinical presentation of each patient is diverse, and symptomatic treatment is mainly used. Therefore, this article reviews several representative immunological factors that affect these three symptoms to explore the underlying mechanism, which will be beneficial for developing new treatment strategies.
Collapse
Affiliation(s)
- Huan Xiao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| |
Collapse
|