1
|
Liu MH, Zhou X, Zhang MM, Wang YJ, Zhou B, Ding N, Wu QF, Lei CR, Dong ZY, Ren JL, Zhao JR, Jia CL, Liu J, Lu D, Zhong HY. Integration of food raw materials, food microbiology, and food additives: systematic research and comprehensive insights into sweet sorghum juice, Clostridium tyrobutyricum TGL-A236 and bio-butyric acid. Front Microbiol 2024; 15:1410968. [PMID: 38873149 PMCID: PMC11169884 DOI: 10.3389/fmicb.2024.1410968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Sweet sorghum juice is a typical production feedstock for natural, eco-friendly sweeteners and beverages. Clostridium tyrobutyricum is one of the widely used microorganisms in the food industry, and its principal product, bio-butyric acid is an important food additive. There are no published reports of Clostridium tyrobutyricum producing butyric acid using SSJ as the sole substrate without adding exogenous substances, which could reach a food-additive grade. This study focuses on tailoring a cost-effective, safe, and sustainable process and strategy for their production and application. Methods This study modeled the enzymolysis of non-reducing sugars via the first/second-order kinetics and added food-grade diatomite to the hydrolysate. Qualitative and quantitative analysis were performed using high-performance liquid chromatography, gas chromatography-mass spectrometer, full-scale laser diffraction method, ultra-performance liquid chromatography-tandem mass spectrometry, the cell double-staining assay, transmission electron microscopy, and Oxford nanopore technology sequencing. Quantitative real-time polymerase chain reaction, pathway and process enrichment analysis, and homology modeling were conducted for mutant genes. Results The treated sweet sorghum juice showed promising results, containing 70.60 g/L glucose and 63.09 g/L fructose, with a sucrose hydrolysis rate of 98.29% and a minimal sucrose loss rate of 0.87%. Furthermore, 99.62% of the colloidal particles and 82.13% of the starch particles were removed, and the concentrations of hazardous substances were effectively reduced. A food microorganism Clostridium tyrobutyricum TGL-A236 with deep utilization value was developed, which showed superior performance by converting 30.65% glucose and 37.22% fructose to 24.1364 g/L bio-butyric acid in a treated sweet sorghum juice (1:1 dilution) fermentation broth. This titer was 2.12 times higher than that of the original strain, with a butyric acid selectivity of 86.36%. Finally, the Genome atlas view, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and evolutionary genealogy of genes: Non-supervised Orthologous (eggNOG) functional annotations, three-dimensional structure and protein cavity prediction of five non-synonymous variant genes were obtained. Conclusion This study not only includes a systematic process flow and in-depth elucidation of relevant mechanisms but also provides a new strategy for green processing of food raw materials, improving food microbial performance, and ensuring the safe production of food additives.
Collapse
Affiliation(s)
- Mei-Han Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, China
| | - Miao-Miao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
- Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Ya-Juan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Bo Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, Hunan, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Qing-Feng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cai-Rong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Zi-Yi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Jun-Le Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Jing-Ru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Cheng-Lin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
| | - Jun Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, China
- Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin, China
- Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Hai-Yan Zhong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
2
|
Process optimization of acetone-butanol-ethanol fermentation integrated with pervaporation for enhanced butanol production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Li X, Henson MA. Dynamic metabolic modelling predicts efficient acetogen-gut bacterium cocultures for CO-to-butyrate conversion. J Appl Microbiol 2021; 131:2899-2917. [PMID: 34008274 DOI: 10.1111/jam.15155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
AIMS While gas-fermenting acetogens have been engineered to secrete non-native metabolites such as butyrate, acetate remains the most thermodynamically favourable product. An alternative to metabolic engineering is to exploit native capabilities for CO-to-acetate conversion by coculturing an acetogen with a second bacterium that provides efficient acetate-butyrate conversion. METHODS AND RESULTS We used dynamic metabolic modelling to computationally evaluate the CO-to-butyrate conversion capabilities of candidate coculture systems by exploiting the diversity of human gut bacteria for anaerobic synthesis of butyrate from acetate and ethanol. A preliminary screening procedure based on flux balance analysis was developed to identify 48 gut bacteria which satisfied minimal growth rate and acetate-to-butyrate conversion requirements when cultured on minimal medium containing acetate and a simple sugar not consumed by the paired acetogen. A total of 170 acetogen/gut bacterium/sugar combinations were dynamically simulated for continuous growth using a 70/30 CO/CO2 feed gas mixture and minimal medium computationally determined for each combination. CONCLUSIONS While coculture systems involving the acetogens Eubacterium limosum or Blautia producta yielded low butyrate productivities and CO-to-ethanol conversion had minimal impact on system performance, dynamic simulations predicted a large number of promising coculture designs with Clostridium ljungdahlii or C. autoethanogenum as the CO-to-acetate converter. Pairings with the gut bacterium Clostridium hylemonae or Roseburia hominis were particularly promising due to their ability to generate high butyrate productivities over a range of dilution rates with a variety of sugars. The higher specific acetate secretion rate of C. ljungdahlii proved more beneficial than the elevated growth rate of C. autoethanogenum for coculture butyrate productivity. SIGNIFICANCE AND IMPACT OF THE STUDY Our study demonstrated that metabolic modelling could provide useful insights into coculture design that can guide future experimental studies. More specifically, our predictions generated several favourable designs, which could serve as the first coculture systems realized experimentally.
Collapse
Affiliation(s)
- X Li
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - M A Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
4
|
Chen L, Li D, Ren L, Ma X, Song S, Rong Y. Effect of
non‐Saccharomyces
yeasts fermentation on flavor and quality of rice wine. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Dongna Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Lixia Ren
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Xia Ma
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Shiqing Song
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
5
|
Rajesh Banu J, Ginni G, Kavitha S, Yukesh Kannah R, Adish Kumar S, Bhatia SK, Kumar G. Integrated biorefinery routes of biohydrogen: Possible utilization of acidogenic fermentative effluent. BIORESOURCE TECHNOLOGY 2021; 319:124241. [PMID: 33254464 DOI: 10.1016/j.biortech.2020.124241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Biohydrogen production and integration possibilities are vital towards hydrogen economy and sustainability of the environment. Acidogenic fermentation is acquiring great interest and it is one of the prime pathways to produce biohydrogen and short chain carboxylic acids. In addition to hydrogen recovery, simultaneously nearly 60 percent of the organics may get converted to ethanol, 1,3propanediol and organic acids. Besides, these organics (fermentative effluents) can be used indirectly as a raw material for the generation of value- added products such as biolipid, polyhydroxyalkanoates, excess hydrogen, methane and electrical energy recovery. In this regard, this review has been assessed as a valuable biorefinery for biofuel and value- added products recovery. The biorefinery can be used to minimize entire cost of the approach by obtaining extra profits.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - G Ginni
- Department of Civil Engineering, Amrita College of Engineering and Technology, Amritagiri, Nagercoil, Tamil Nadu, 629901, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - S Adish Kumar
- Department of Civil Engineering, University V.O.C College of Engineering, Anna University, Thoothukudi Campus, Tamil Nadu, 628008, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Dynamic Optimization of a Fed-Batch Nosiheptide Reactor. Processes (Basel) 2020. [DOI: 10.3390/pr8050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nosiheptide is a sulfur-containing peptide antibiotic, showing exceptional activity against critical pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) with livestock applications that can be synthesized via fed-batch fermentation. A simplified mechanistic fed-batch fermentation model for nosiheptide production considers temperature- and pH-dependence of biomass growth, substrate consumption, nosiheptide production and oxygen mass transfer into the broth. Herein, we perform dynamic simulation over a broad range of possible feeding policies to understand and visualize the region of attainable reactor performances. We then formulate a dynamic optimization problem for maximization of nosiheptide production for different constraints of batch duration and operability limits. A direct method for dynamic optimization (simultaneous strategy) is performed in each case to compute the optimal control trajectories. Orthogonal polynomials on finite elements are used to approximate the control and state trajectories allowing the continuous problem to be converted to a nonlinear program (NLP). The resultant large-scale NLP is solved using IPOPT. Optimal operation requires feedrate to be manipulated in such a way that the inhibitory mechanism of the substrate can be avoided, with significant nosiheptide yield improvement realized.
Collapse
|
7
|
Sunarno JN, Prasertsan P, Duangsuwan W, Kongjan P, Cheirsilp B. Mathematical modeling of ethanol production from glycerol by Enterobacter aerogenes concerning the influence of impurities, substrate, and product concentration. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Ou J, Bao T, Ernst P, Si Y, Prabhu SD, Wu H, Zhang J(J, Zhou L, Yang ST, Liu X(M. Intracellular metabolism analysis of Clostridium cellulovorans via modeling integrating proteomics, metabolomics and fermentation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Balakrishnan R, Tadi SRR, Rajaram SK, Mohan N, Sivaprakasam S. Batch and fed-batch fermentation of optically pure D (-) lactic acid from Kodo millet (Paspalum scrobiculatum) bran residue hydrolysate: growth and inhibition kinetic modeling. Prep Biochem Biotechnol 2019; 50:365-378. [DOI: 10.1080/10826068.2019.1697934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rengesh Balakrishnan
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Madurai, India
| | - Subbi Rami Reddy Tadi
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Shyam Kumar Rajaram
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Madurai, India
| | - Naresh Mohan
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
10
|
Li X, Henson MA. Metabolic modeling of bacterial co-culture systems predicts enhanced carbon monoxide-to-butyrate conversion compared to monoculture systems. Biochem Eng J 2019; 151. [PMID: 32863734 DOI: 10.1016/j.bej.2019.107338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We used metabolic modeling to computationally investigate the potential of bacterial coculture system designs for CO conversion to the platform chemical butyrate. By taking advantage of the native capabilities of wild-type strains, we developed two anaerobic coculture designs by combining Clostridium autoethanogenum for CO-to-acetate conversion with bacterial strains that offer high acetate-to-butyrate conversion capabilities: the environmental bacterium the human gut bacteriumEubacterium rectale. When grown in continuous stirred tank reactor on a 70/0/30 CO/H2/N2 gas mixture, the C. autoethanogenum-C Kluyveri co-culture was predicted to offer no mprovement in butyrate volumetric productivity compared to an engineered C. autoethanogenum monoculture despite utilizing vinyl acetate as a secondary carbon source for C. kluyveri growth enhancement. A coculture consisting of C. autoethanogenum and C. kluyveri engineered in silico to eliminate hexanoate synthesis was predicted to enhance both butyrate productivity and titer. The C. autoethanogenum-E. rectale coculture offered similar improvements in butyrate productivity without the need for metabolic engineering when glucose was provided as a secondary carbon source to enhance E. rectale growth. A bubble column model developed to assess the potential for large-scale butyrate production of the C. autoethanogenum-E. rectale design predicted that a 40/30/30 CO/H2/N2 gas mixture and a 5 m column length would be preferred to enhance C. autoethanogenum growth and counteract CO inhibitory effects on E. rectale.
Collapse
Affiliation(s)
- Xiangan Li
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Michael A Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
11
|
Wang L, Chauliac D, Moritz BE, Zhang G, Ingram LO, Shanmugam KT. Metabolic engineering of Escherichia coli for the production of butyric acid at high titer and productivity. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:62. [PMID: 30949238 PMCID: PMC6429758 DOI: 10.1186/s13068-019-1408-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Several anaerobic bacteria produce butyric acid, a commodity chemical with use in chemical, pharmaceutical, food and feed industries, using complex media with acetate as a co-product. Butyrate titer of various recombinant Escherichia coli did not exceed 10 g l-1 in batch fermentations in any of the media tested. RESULTS A recombinant E. coli (strain LW393) that produced butyrate as the major fermentation product was constructed with genes from E. coli, Clostridium acetobutylicum and Treponema denticola. Strain LW393 produced 323 ± 6 mM (28.4 ± 0.4 g l-1) butyric acid in batch fermentations in mineral salt medium with glucose as C source at a yield of 0.37 ± 0.01 g (g glucose consumed)-1. Butyrate accounted for 90% of the total products produced by the culture. Supplementing this medium with yeast extract further increased butyric acid titer to 375 ± 4 mM. Average volumetric productivity of butyrate with xylose as C source was 0.89 ± 0.07 g l-1 h-1. CONCLUSIONS The butyrate titer reported in this study is about 2.5-3-times higher than the values reported for other recombinant E. coli and this is achieved in mineral salt medium with an expectation of lower purification and production cost of butyrate.
Collapse
Affiliation(s)
- Liang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
| | - Diane Chauliac
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
- Present Address: Galactic, Brussels, Belgium
| | - Brelan E. Moritz
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
| | - Guimin Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062 China
| | - Lonnie O. Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
| | - K. T. Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
12
|
Al-Shorgani NKN, Shukor H, Abdeshahian P, Kalil MS, Yusoff WMW, Hamid AA. Enhanced butanol production by optimization of medium parameters using Clostridium acetobutylicum YM1. Saudi J Biol Sci 2018; 25:1308-1321. [PMID: 30505175 PMCID: PMC6251989 DOI: 10.1016/j.sjbs.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/03/2016] [Accepted: 02/11/2016] [Indexed: 11/15/2022] Open
Abstract
A new isolate of the solvent-producing Clostridium acetobutylicum YM1 was used to produce butanol in batch culture fermentation. The effects of glucose concentration, butyric acid addition and C/N ratio were studied conventionally (one-factor-at-a-time). Moreover, the interactions between glucose concentration, butyric acid addition and C/N ratio were further investigated to optimize butanol production using response surface methodology (RSM). A central composite design was applied, and a polynomial regression model with a quadratic term was used to analyze the experimental data using analysis of variance (ANOVA). ANOVA revealed that the model was highly significant (p < 0.0001) and the effects of the glucose and butyric acid concentrations on butanol production were significant. The model validation experiment showed 13.82 g/L butanol was produced under optimum conditions. Scale up fermentation in optimized medium resulted in 17 g/L of butanol and 21.71 g/L of ABE. The experimental data of scale up in 5 L bioreactor and flask scale were fitted to kinetic mathematical models published in the literature to estimate the kinetic parameters of the fermentation. The models used gave the best fit for butanol production, biomass and glucose consumption for both flask scale and bioreactor scale up.
Collapse
Affiliation(s)
- Najeeb Kaid Nasser Al-Shorgani
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- Department of Applied Microbiology, Faculty of Applied Sciences, Taiz University, 6803 Taiz, Yemen
| | - Hafiza Shukor
- Department of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Peyman Abdeshahian
- Department of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Mohd Sahaid Kalil
- Department of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Wan Mohtar Wan Yusoff
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Aidil Abdul Hamid
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
13
|
Olorunnisola KS, Jamal P, Alam MZ. Growth, substrate consumption, and product formation kinetics of Phanerochaete chrysosporium and Schizophyllum commune mixed culture under solid-state fermentation of fruit peels. 3 Biotech 2018; 8:429. [PMID: 30305998 DOI: 10.1007/s13205-018-1452-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/24/2018] [Indexed: 11/28/2022] Open
Abstract
Kinetic analysis of solid-state fermentation (SSF) of fruit peels with Phanerochaete chrysosporium and Schizophyllum commune mixed culture was studied in flask and 7 kg capacity reactor. Modified Monod kinetic model suggested by Haldane sufficiently described microbial growth with co-efficient of determination (R 2) reaching 0.908 at increased substrate concentration than the classical Monod model (R 2 = 0.932). Leudeking-Piret model adequately described product synthesis in non-growth-dependent manner (R 2 = 0.989), while substrate consumption by P. chrysosporium and S. commune fungal mixed culture was growth-dependent (R 2 = 0.938). Hanes-Woolf model sufficiently represented α-amylase and cellulase enzymes synthesis (R 2 = 0.911 and 0.988); α-amylase had enzyme maximum velocity (V max) of 25.19 IU/gds/day and rate constant (K m) of 11.55 IU/gds/day, while cellulase enzyme had V max of 3.05 IU/gds/day and K m of 57.47 IU/gds/day. Product yield in the reactor increased to 32.65 mg/g/day compared with 28.15 mg/g/day in shake flask. 2.5 cm media thickness was adequate for product formation within a 6 day SSF in the tray reactor.
Collapse
Affiliation(s)
- Kola Saheed Olorunnisola
- 1Department of Biotechnology Engineering, Faculty of Engineering, Bioenvironmental Research Centre (BERC), International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
- 2Biological Sciences Department, Elizade University, P.M.B. 002, Ilara-Mokin, Ondo State Nigeria
| | - Parveen Jamal
- 1Department of Biotechnology Engineering, Faculty of Engineering, Bioenvironmental Research Centre (BERC), International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| | - Md Zahangir Alam
- 1Department of Biotechnology Engineering, Faculty of Engineering, Bioenvironmental Research Centre (BERC), International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
A novel isolate of Clostridium butyricum for efficient butyric acid production by xylose fermentation. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1340-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
15
|
Chun J, Choi O, Sang BI. Enhanced extraction of butyric acid under high-pressure CO 2 conditions to integrate chemical catalysis for value-added chemicals and biofuels. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:119. [PMID: 29713378 PMCID: PMC5911967 DOI: 10.1186/s13068-018-1120-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Extractive fermentation with the removal of carboxylic acid requires low pH conditions because acids are better partitioned into the solvent phase at low pH values. However, this requirement conflicts with the optimal near-neutral pH conditions for microbial growth. RESULTS CO2 pressurization was used, instead of the addition of chemicals, to decrease pH for the extraction of butyric acid, a fermentation product of Clostridium tyrobutyricum, and butyl butyrate was selected as an extractant. CO2 pressurization (50 bar) improved the extraction efficiency of butyric acid from a solution at pH 6, yielding a distribution coefficient (D) 0.42. In situ removal of butyric acid during fermentation increased the production of butyric acid by up to 4.10 g/L h, an almost twofold increase over control without the use of an extraction process. CONCLUSION In situ extraction of butyric acid using temporal CO2 pressurization may be applied to an integrated downstream catalytic process for upgrading butyric acid to value-added chemicals in an organic solvent.
Collapse
Affiliation(s)
- Jaesung Chun
- Department of Chemical Engineering, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul, 04763 South Korea
| | - Okkyoung Choi
- Department of Chemical Engineering, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul, 04763 South Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, 222 Wangshimni-ro, Seongdong-gu, Seoul, 04763 South Korea
| |
Collapse
|
16
|
Kushwaha D, Srivastava N, Mishra I, Upadhyay SN, Mishra PK. Recent trends in biobutanol production. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Finite availability of conventional fossil carbonaceous fuels coupled with increasing pollution due to their overexploitation has necessitated the quest for renewable fuels. Consequently, biomass-derived fuels are gaining importance due to their economic viability and environment-friendly nature. Among various liquid biofuels, biobutanol is being considered as a suitable and sustainable alternative to gasoline. This paper reviews the present state of the preprocessing of the feedstock, biobutanol production through fermentation and separation processes. Low butanol yield and its toxicity are the major bottlenecks. The use of metabolic engineering and integrated fermentation and product recovery techniques has the potential to overcome these challenges. The application of different nanocatalysts to overcome the existing challenges in the biobutanol field is gaining much interest. For the sustainable production of biobutanol, algae, a third-generation feedstock has also been evaluated.
Collapse
Affiliation(s)
- Deepika Kushwaha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Ishita Mishra
- Green Brick Eco Solutions, Okha Industrial Area , New Delhi 110020 , India
| | - Siddh Nath Upadhyay
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| |
Collapse
|
17
|
Huang J, Tang W, Zhu S, Du M. Biosynthesis of butyric acid by Clostridium tyrobutyricum. Prep Biochem Biotechnol 2018; 48:427-434. [PMID: 29561227 DOI: 10.1080/10826068.2018.1452257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Butyric acid (C3H7COOH) is an important chemical that is widely used in foodstuffs along with in the chemical and pharmaceutical industries. The bioproduction of butyric acid through large-scale fermentation has the potential to be more economical and efficient than petrochemical synthesis. In this paper, the metabolic pathways involved in the production of butyric acid from Clostridium tyrobutyricum using hexose and pentose as substrates are investigated, and approaches to enhance butyric acid production through genetic modification are discussed. Finally, bioreactor modifications (including fibrous bed bioreactor, inner disk-shaped matrix bioreactor, fibrous matrix packed in porous levitated sphere carriers), low-cost feedstocks, and special treatments (including continuous fermentation with cell recycling, extractive fermentation with solvent, using different artificial electron carriers) intended to improve the feasibility of commercial butyric acid bioproduction are summarized.
Collapse
Affiliation(s)
- Jin Huang
- a College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou , China
| | - Wan Tang
- a College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou , China
| | - Shengquan Zhu
- a College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou , China
| | - Meini Du
- a College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou , China
| |
Collapse
|
18
|
Luo H, Yang R, Zhao Y, Wang Z, Liu Z, Huang M, Zeng Q. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. BIORESOURCE TECHNOLOGY 2018; 253:343-354. [PMID: 29329775 DOI: 10.1016/j.biortech.2018.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Mengyu Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Qingwei Zeng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
19
|
Kim DK, Park JM, Song H, Chang YK. Kinetic modeling of substrate and product inhibition for 2,3-butanediol production by Klebsiella oxytoca. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Sjöblom M, Matsakas L, Christakopoulos P, Rova U. Catalytic upgrading of butyric acid towards fine chemicals and biofuels. FEMS Microbiol Lett 2016; 363:fnw064. [PMID: 26994015 PMCID: PMC4822402 DOI: 10.1093/femsle/fnw064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 01/10/2023] Open
Abstract
Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals.
Collapse
Affiliation(s)
- Magnus Sjöblom
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
21
|
Nuñez S, Garelli F, De Battista H. Product-based sliding mode observer for biomass and growth rate estimation in Luedeking–Piret like processes. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2015.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Wang L, Ou MS, Nieves I, Erickson JE, Vermerris W, Ingram LO, Shanmugam KT. Fermentation of sweet sorghum derived sugars to butyric acid at high titer and productivity by a moderate thermophile Clostridium thermobutyricum at 50°C. BIORESOURCE TECHNOLOGY 2015; 198:533-539. [PMID: 26432057 DOI: 10.1016/j.biortech.2015.09.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
In this study, a moderate thermophile Clostridium thermobutyricum is shown to ferment the sugars in sweet sorghum juice treated with invertase and supplemented with tryptone (10 g L(-1)) and yeast extract (10 g L(-1)) at 50°C to 44 g L(-1) butyrate at a calculated highest volumetric productivity of 1.45 g L(-1)h(-1) (molar butyrate yield of 0.85 based on sugars fermented). This volumetric productivity is among the highest reported for batch fermentations. Sugars from acid and enzyme-treated sweet sorghum bagasse were also fermented to butyrate by this organism with a molar yield of 0.81 (based on the amount of cellulose and hemicellulose). By combining the results from juice and bagasse, the calculated yield of butyric acid is approximately 90 kg per tonne of fresh sweet sorghum stalk. This study demonstrates that C. thermobutyricum can be an effective microbial biocatalyst for production of bio-based butyrate from renewable feedstocks at 50°C.
Collapse
Affiliation(s)
- Liang Wang
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Mark S Ou
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Ismael Nieves
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - John E Erickson
- Department of Agronomy, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - L O Ingram
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - K T Shanmugam
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
23
|
Ben Akacha N, Gargouri M. Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2014.09.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Polymer supported rhodium carbonyl complex catalyzed carbonylation of glycerol for the synthesis of carboxylic acids. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2014.09.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Ma C, Kojima K, Xu N, Mobley J, Zhou L, Yang ST, Liu X(M. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum. J Biotechnol 2015; 193:108-19. [DOI: 10.1016/j.jbiotec.2014.10.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
|
26
|
Dolejš I, Krasňan V, Stloukal R, Rosenberg M, Rebroš M. Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation. BIORESOURCE TECHNOLOGY 2014; 169:723-730. [PMID: 25108474 DOI: 10.1016/j.biortech.2014.07.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Clostridium acetobutylicum immobilised in polyvinylalcohol, lens-shaped hydrogel capsules (LentiKats(®)) was studied for production of butanol and other products of acetone-butanol-ethanol fermentation. After optimising the immobilisation protocol for anaerobic bacteria, continuous, repeated batch, and fed-batch fermentations in repeated batch mode were performed. Using glucose as a substrate, butanol productivity of 0.41 g/L/h and solvent productivity of 0.63 g/L/h were observed at a dilution rate of 0.05 h(-1) during continuous fermentation with a concentrated substrate (60 g/L). Through the process of repeated batch fermentation, the duration of fermentation was reduced from 27.8h (free-cell fermentation) to 3.3h (immobilised cells) with a solvent productivity of 0.77 g/L/h (butanol 0.57 g/L/h). The highest butanol and solvent productivities of 1.21 and 1.91 g/L/h were observed during fed-batch fermentation operated in repeated batch mode with yields of butanol (0.15 g/g) and solvents (0.24 g/g), respectively, produced per gram of glucose.
Collapse
Affiliation(s)
- Igor Dolejš
- Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Vladimír Krasňan
- Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Radek Stloukal
- LentiKat's a.s., Pod Vinicí 83, 471 27 Stráž pod Ralskem, Czech Republic
| | - Michal Rosenberg
- Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Martin Rebroš
- Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia.
| |
Collapse
|
27
|
Zhou X, Wang SY, Lu XH, Liang JP. Comparison of the effects of high energy carbon heavy ion irradiation and Eucommia ulmoides Oliv. on biosynthesis butyric acid efficiency in Clostridium tyrobutyricum. BIORESOURCE TECHNOLOGY 2014; 161:221-229. [PMID: 24704888 DOI: 10.1016/j.biortech.2014.03.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Clostridium tyrobutyricum is well documented as a fermentation strain for the production of butyric acid. In this work, using high-energy carbon heavy ion irradiated C. tyrobutyricum, then butyric acid fermentation using glucose or alkali and acid pretreatments of Eucommia ulmoides Oliv. as a carbon source was carried out. Initially, the modes at pH 5.7-6.5 and 37°C were compared using a model medium containing glucose as a carbon source. When the 72gL(-1) glucose concentration was found to be the highest yield, the maximum butyric acid production from glucose increased significantly, from 24gL(-1) for the wild type strains to 37gL(-1) for the strain irradiated at 126AMeV and a dose of 35Gy and a 10(7)ions/pulse. By feeding 100gL(-1) acid pretreatments of E. ulmoides Oliv. into the fermentations, butyrate yields (5.8gL(-1)) and butyrate/acetate (B/A) ratio (4.32) were achieved.
Collapse
Affiliation(s)
- Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000, PR China.
| | - Shu-Yang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000, PR China
| | - Xi-Hong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000, PR China
| | - Jian-Ping Liang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
28
|
Zhou X, Lu XH, Li XH, Xin ZJ, Xie JR, Zhao MR, Wang L, Du WY, Liang JP. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:22. [PMID: 24533663 PMCID: PMC3931924 DOI: 10.1186/1754-6834-7-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. RESULTS In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. CONCLUSIONS This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as a first step in a combined method employing long-term continuous fermentation of acid-production processes.
Collapse
Affiliation(s)
- Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Xi-Hong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Xue-Hu Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Zhi-Jun Xin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Jia-Rong Xie
- China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Mei-Rong Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Liang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Wen-Yue Du
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Jian-Ping Liang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
29
|
Jiang L, Li S, Hu Y, Xu Q, Huang H. Adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in Clostridium tyrobutyricum. Biotechnol Bioeng 2011; 109:708-18. [PMID: 21956266 DOI: 10.1002/bit.23346] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/13/2011] [Accepted: 09/19/2011] [Indexed: 11/07/2022]
Abstract
Laboratory adaptive evolution of microorganisms offers the possibility of relating acquired mutations to increased fitness of the organism under the conditions used. By combining a fibrous-bed bioreactor, we successfully developed a simple and valuable adaptive evolution strategy in repeated-batch fermentation mode with high initial substrate concentration and evolved Clostridium tyrobutyricum mutant with significantly improved butyric acid volumetric productivity up to 2.25 g/(L h), which is the highest value in batch fermentation reported so far. Further experiments were conducted to pay attention to glucose transport system in consideration of the high glucose consumption rate resulted from evolution. Complete characterization and comparison of the glucose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) were carried out in the form of toluene-treated cells and cell-free extracts derived from both C. tyrobutyricum wide-type and mutant, while an alternative glucose transport route that requires glucokinase was confirmed by the phenomena of resistance to the glucose analogue 2-deoxyglucose and ATP-dependent glucose phosphorylation. Our results suggest that C. tyrobutyricum mutant is defective in PTS activity and compensates for this defect with enhanced glucokinase activity, resulting in the efficient uptake and consumption of glucose during the whole metabolism.
Collapse
Affiliation(s)
- Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Yu M, Du Y, Jiang W, Chang WL, Yang ST, Tang IC. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Appl Microbiol Biotechnol 2011; 93:881-9. [DOI: 10.1007/s00253-011-3736-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 10/29/2011] [Accepted: 11/15/2011] [Indexed: 11/30/2022]
|