1
|
González-Rodríguez S, Trueba-Santiso A, Lu-Chau TA, Moreira MT, Eibes G. Valorization of bioethanol by-products to produce unspecific peroxygenase with Agrocybe aegerita: technological and proteomic perspectives. N Biotechnol 2023; 76:63-71. [PMID: 37169331 DOI: 10.1016/j.nbt.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Unspecific peroxygenase (UPO) presents a wide range of biotechnological applications. This study targets the use of by-products from bioethanol synthesis to produce UPO by Agrocybe aegerita. Solid-state and submerged fermentations (SSF and SmF) were evaluated, achieving the highest titers of UPO and laccase in SmF using vinasse as nutrients source. Optimized UPO production of 331U/L was achieved in 50% (v:v) vinasse with an inoculum grown for 14 days. These conditions were scaled-up to a 4L reactor, achieving a UPO activity of 265U/L. Fungal proteome expression was analyzed before and after UPO activity appeared by shotgun mass spectrometry proteomics. Laccase, dye-decolorizing peroxidases (DyP), lectins and proteins involved in reactive oxygen species (ROS) production and control were detected (in addition to UPO). Interestingly, the metabolism of complex sugars and nitrogen sources had a different activity at the beginning and end of the submerged fermentation. DATA AVAILABILITY: The data used to support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Sandra González-Rodríguez
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Alba Trueba-Santiso
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Thelmo A Lu-Chau
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - María Teresa Moreira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Gemma Eibes
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
2
|
Nutraceutical Enrichment of Animal Feed by Filamentous Fungi Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is an urgent need for improvements in animal production, particularly for ruminants, such that more sustainable and efficient processes are developed for obtaining more nutritious and efficient feeds. Filamentous fungi can add value to residual plant biomass, and may also have the potential to produce metabolites and enrich plant biomasses used in animal nutrition, converting them into nutraceutical sources. Thus, in this work, filamentous fungal fermentation of ruminant feed biomasses commonly used in Brazil was performed, and the enrichment for bioactive metabolites was tested. For this, Fistulina hepatica, Ganoderma lucidum, Pleurotus pulmonarius, Panus lecomtei, and Aspergillus terreus were grown for 28 days on different substrates: starchy grains- (sorghum, oat, and corn), fibrous substrates (coast-cross, rice husk, and moringa plant) and protein-rich substrates (cottonseed cake and pigeon pea plant). Fermented substrates were evaluated for laccase activity, crude protein, β-glucan, and lovastatin content. The highest growth rate was observed for G. lucidum in oat substrate (OT-01) (0.708 ± 0.035 cm/day) and F. hepatica in oat + coast-cross + pigeon pea treatment (OT-10) (0.607 ± 0.012 cm/day). High laccase activity was observed for P. lecomtei grown in starchy grain + moringa + pigeon pea substrate, reaching an activity of 416.8 ± 20.28 U/g. A. terreus growth in ST-09 (sorghum + pigeon pea) showed higher protein (15.3 ± 0.46%), β-glucan (503.56 ± 8.6 mg/g) and lovastatin (1.10 ± 0.17 mg/g) content compared to untreated substrates. These results demonstrate that filamentous fungi are an alternative for nutraceutical enrichment of ruminant feed biomasses. To the best of our knowledge, this is the first report in which P. lecomtei and F. hepatica are evaluated for their ability to be cultivated in ruminant feed substrates from Brazil.
Collapse
|
3
|
Wang L, Ding X, Huang Q, Hu B, Liang L, Wang Q. Gllac7 Is Induced by Agricultural and Forestry Residues and Exhibits Allelic Expression Bias in Ganoderma lucidum. Front Microbiol 2022; 13:890686. [PMID: 35847055 PMCID: PMC9279560 DOI: 10.3389/fmicb.2022.890686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ganoderma lucidum has a wide carbon spectrum, while the expression profile of key genes relevant to carbon metabolism on different carbon sources has been seldom studied. Here, the transcriptomes of G. lucidum mycelia cultured on each of 19 carbon sources were conducted. In comparison with glucose, 16 to 1,006 genes were upregulated and 7 to 1,865 genes were downregulated. Significant gene expression dynamics and induced activity were observed in laccase genes when using agricultural and forestry residues (AFRs) as solo carbon sources. Furthermore, study of laccase gene family in two haploids of G. lucidum GL0102 was conducted. Totally, 15 and 16 laccase genes were identified in GL0102_53 and GL0102_8, respectively, among which 15 pairs were allelic genes. Gene structures were conserved between allelic laccase genes, while sequence variations (most were SNPs) existed. Nine laccase genes rarely expressed on all the tested carbon sources, while the other seven genes showed high expression level on AFRs, especially Gllac2 and Gllac7, which showed 5- to 1,149-fold and 4- to 94-fold upregulation in mycelia cultured for 5 days, respectively. The expression of H53lac7 was consistently higher than that of H8lac7_1 on all the carbon sources except XM, exhibiting a case of allelic expression bias. A total of 47 SNPs and 3 insertions/deletions were observed between promoters of H53lac7 and H8lac7_1, which lead to differences in predicted binding sites of zinc fingers. These results provide scientific data for understanding the gene expression profile and regulatory role on different carbon sources and may support further functional research of laccase.
Collapse
Affiliation(s)
- Lining Wang
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoxia Ding
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinghua Huang
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Biao Hu
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Liang
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingfu Wang
- Guangdong Engineering Laboratory of Biomass High-Value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Yadav A, Rene ER, Kanti Mandal M, Kumar Dubey K. Biodegradation of cyclophosphamide and etoposide by white rot fungi and their degradation kinetics. BIORESOURCE TECHNOLOGY 2022; 346:126355. [PMID: 34798252 DOI: 10.1016/j.biortech.2021.126355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The biodegradation of cyclophosphamide and etoposide by Trametes versicolor (AH05), Ganoderma lucidum (MTCC-1039), and Phanerochaete chrysosporium (MTCC-787) were tested for 3, 6, 9, 12, and 15 days, respectively. G. lucidum achieved the highest degradation efficiency of cyclophosphamide (71.5%) and etoposide (98.4%) after 6 days of treatment. The degradation efficiency of T. versicolor and P. chrysosporium for etoposide was 79.8% and 76.8%, respectively. However, no degradation of cyclophosphamide was achieved with P. chrysosporium, although it showed the highest sorption efficiency for cyclophosphamide (23.7%). Trametes versicolor achieved only 1.4% degradation of cyclophosphamide, that includes both biodegradation and biosorption. The pseudo first-order degradation kinetics explained the degradation of etoposide and cyclophosphamide with t1/2 values of 1.32 and 4.43 days and 'k' constant of 0.16 and 0.54 day-1, respectively.
Collapse
Affiliation(s)
- Ankush Yadav
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Mrinal Kanti Mandal
- Department of Chemical Engineering, National Institute of Technology, Durgapur 713209, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Adamian Y, Lonappan L, Alokpa K, Agathos SN, Cabana H. Recent Developments in the Immobilization of Laccase on Carbonaceous Supports for Environmental Applications - A Critical Review. Front Bioeng Biotechnol 2021; 9:778239. [PMID: 34938721 PMCID: PMC8685458 DOI: 10.3389/fbioe.2021.778239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Τhe ligninolytic enzyme laccase has proved its potential for environmental applications. However, there is no documented industrial application of free laccase due to low stability, poor reusability, and high costs. Immobilization has been considered as a powerful technique to enhance laccase's industrial potential. In this technology, appropriate support selection for laccase immobilization is a crucial step since the support could broadly affect the properties of the resulting catalyst system. Through the last decades, a large variety of inorganic, organic, and composite materials have been used in laccase immobilization. Among them, carbon-based materials have been explored as a support candidate for immobilization, due to their properties such as high porosity, high surface area, the existence of functional groups, and their highly aromatic structure. Carbon-based materials have also been used in culture media as supports, sources of nutrients, and inducers, for laccase production. This study aims to review the recent trends in laccase production, immobilization techniques, and essential support properties for enzyme immobilization. More specifically, this review analyzes and presents the significant benefits of carbon-based materials for their key role in laccase production and immobilization.
Collapse
Affiliation(s)
- Younes Adamian
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Linson Lonappan
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Komla Alokpa
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Spiros N. Agathos
- Laboratory of Bioengineering, Earth and Life Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Hubert Cabana
- Université de Sherbrooke Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Si J, Wu Y, Ma HF, Cao YJ, Sun YF, Cui BK. Selection of a pH- and temperature-stable laccase from Ganoderma australe and its application for bioremediation of textile dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113619. [PMID: 34467865 DOI: 10.1016/j.jenvman.2021.113619] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
By virtue of screening, purification, and properties characterization, this study captures a new pH- and temperature-stable laccase, designated Galacc-F, from Ganoderma australe for dye bioremediating applications. The enzyme was purified to homogeneity by salt precipitation, ionic exchange, and size exclusion chromatography with a final specific activity of 22.214 U mg-1, yielding a purification fold of 23.989 and recovery of 38.44%. Its molecular weight was estimated to be 48.0 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymography, Sephadex G-100 column, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, which confirmed its monomeric nature. Galacc-F exhibited high levels of activity and stability over wide ranges of pH (5.0-8.0) and temperature (10-60 °C), which are highly valuable properties in industrial processes. Broad substrate specificity was observed, wherein a better affinity was found for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) with a low value of Km (164.137 μM) and higher kcat/Km ratio (1.663 s-1 μM-1). Activity was stimulated by Cu2+ and β-mercaptoethanol but inhibited by ethylenediaminetetraacetic acid, diethylpyrocarbonate, iodoacetic acid, phenylmethylsulfonyl fluoride, and Hg2+, indicating that Galacc-F is a metalloprotease containing a typical histidine-cysteine-serine catalytic triad. It had high tolerance to surfactants, oxidants, and salts. Additionally, a fabricated protocol for native Galacc-F immobilization onto Fe3O4@Chitosan composite nanoparticles using glutaraldehyde as a crosslinker was developed. Most importantly, the enzyme was determined to be ideal for use in efficient treatment of dye effluents as compared with the laccases requiring redox mediators.
Collapse
Affiliation(s)
- Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yi Wu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Hong-Fei Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yong-Jia Cao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yi-Fei Sun
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Backes E, Kato CG, Corrêa RCG, Peralta Muniz Moreira RDF, Peralta RA, Barros L, Ferreira IC, Zanin GM, Bracht A, Peralta RM. Laccases in food processing: Current status, bottlenecks and perspectives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Si J, Ma H, Cao Y, Cui B, Dai Y. Introducing a Thermo-Alkali-Stable, Metallic Ion-Tolerant Laccase Purified From White Rot Fungus Trametes hirsuta. Front Microbiol 2021; 12:670163. [PMID: 34093489 PMCID: PMC8176223 DOI: 10.3389/fmicb.2021.670163] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
This study introduces a valuable laccase, designated ThLacc-S, purified from white rot fungus Trametes hirsuta. ThLacc-S is a monomeric protein in nature with a molecular weight of 57.0 kDa and can efficiently metabolize endocrine disrupting chemicals. The enzyme was successfully purified to homogeneity via three consecutive steps consisting of salt precipitation and column chromatography, resulting in a 20.76-fold increase in purity and 46.79% yield, with specific activity of 22.111 U/mg protein. ThLacc-S was deciphered as a novel member of the laccase family and is a rare metalloenzyme that contains cysteine, serine, histidine, and tyrosine residues in its catalytic site, and follows Michaelis-Menten kinetic behavior with a K m and a k cat /K m of 87.466 μM and 1.479 s-1μM-1, respectively. ThLacc-S exerted excellent thermo-alkali stability, since it was markedly active after a 2-h incubation at temperatures ranging from 20 to 70°C and retained more than 50% of its activity after incubation for 72 h in a broad pH range of 5.0-10.0. Enzymatic activities of ThLacc-S were enhanced and preserved when exposed to metallic ions, surfactants, and organic solvents, rendering this novel enzyme of interest as a green catalyst for versatile biotechnological and industrial applications that require these singularities of laccases, particularly biodegradation and bioremediation of environmental pollutants.
Collapse
Affiliation(s)
- Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Hongfei Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yongjia Cao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Baokai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yucheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Debnath R, Mistry P, Roy P, Roy B, Saha T. Partial purification and characterization of a thermophilic and alkali-stable laccase of Phoma herbarum isolate KU4 with dye-decolorization efficiency. Prep Biochem Biotechnol 2021; 51:901-918. [PMID: 33586595 DOI: 10.1080/10826068.2021.1875235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Production of an extracellular thermophilic and alkali stable laccase from Phoma herbarum isolate KU4 was reported for the first time, both in submerged fermentation (SmF, highest 1590 U/mL) and solid state fermentation (SSF, highest 2014.21 U/mL) using agro-industrial residues. The laccase was partially purified to 7.93 fold with the apparent molecular weight of 298 kDa. The enzyme had pH optimum at 5.0 and temperature optimum at 50 °C, with maximum stability at pH 8.0. It showed activity towards various phenolic and non-phenolic compounds. The kinetic parameters, Km, Vmax and Kcat of the laccase for DMP were 0.216 mM, 270.27 U/mg and 506.69 s-1, respectively. Laccase activity was inhibited by various metal ions and conventional inhibitors, however, it was slightly increased by Zn2+. The laccase showed good decolorization efficiency towards four industrial dyes, namely, methyl violet (75.66%), methyl green (65%), indigo carmine (58%) and neutral red (42%) within 24 h. FTIR analysis of the decolorized products confirmed the degradation of the dyes. The decolorization efficiency of the enzyme suggests that the partially purified laccase could be used to decolorize synthetic dyes present in industrial effluents and for waste water treatments. The thermophilic and alkali stable laccase may also have wider potential industrial applications.
Collapse
Affiliation(s)
- Rinku Debnath
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| | - Prasenjit Mistry
- Department of Chemistry, Faculty of Science, University of Kalyani, Kalyani, India
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| | - Brindaban Roy
- Department of Chemistry, Faculty of Science, University of Kalyani, Kalyani, India
| | - Tanima Saha
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| |
Collapse
|
10
|
Ezike TC, Udeh JO, Joshua PE, Ezugwu AL, Isiwu CV, Eze SO, Chilaka FC. Substrate specificity of a new laccase from Trametes polyzona WRF03. Heliyon 2021; 7:e06080. [PMID: 33537494 PMCID: PMC7841367 DOI: 10.1016/j.heliyon.2021.e06080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 01/20/2021] [Indexed: 01/18/2023] Open
Abstract
Various aromatic compounds that are structurally analogous to lignin were tested as possible/preferred substrates for purified laccase from newly isolated white rote fungi, Trametes polyzona WRF03. The pH optima were tested using different substrates and kinetic studies were conducted at these pH optima. The pH optima in the presence of ABTS, α-naphthol, o-dianisidine, and catechol were 4.5 but 5.0 and 5.5 in the presence of guaiacol and pyrogallol, respectively. The initial velocities obtained from the kinetic study were analyzed using Graph Pad Prism 7 and Lineweaver-Burk plot to obtain kinetic constants (km and Vmax) which were used to calculate substrate specificity. Amongst all the substrates tested, ABTS had the highest specificity-constant (181.51 M−1s−1), and therefore, the most preferred substrate was followed by α-naphthol, o-dianisidine, guaiacol, pyrogallol, and catechol. Resorcinol, orcinol, and veratryl alcohol did not display any considerable chemical shift in the presence of Trametes polyzona WRF03 laccase. Also, oxidation of phenolic substrates appeared to be dependent on the nature of the substituent groups and their relative position on the aromatic nucleus. Since most of these substrates are structural analogs of lignin and many recalcitrant environmental pollutants, the enzyme may find application in delignification, treatment of wastewater containing dyes, and polycyclic aromatic hydrocarbons (PAHs).
Collapse
|
11
|
Ezike TC, Ezugwu AL, Udeh JO, Eze SOO, Chilaka FC. Purification and characterisation of new laccase from Trametes polyzona WRF03. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00566. [PMID: 33299811 PMCID: PMC7701954 DOI: 10.1016/j.btre.2020.e00566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 11/05/2022]
Abstract
Trametes polyzona WRF03 produced high yield of true laccase. Trametes polyzona WRF03 laccase was relatively pH and temperature stable. Fe2+, sodium azide and sodium cyanide greatly inhibited laccase activity. Trametes polyzona WRF03 laccase decolorised many classes of synthetic dyes.
The molecular screening for laccase specific gene sequences in Trametes polyzona WRF03 (TpWRF03) using designed oligonucleotide primers analogous to the conserved sequences on the copper-binding regions of known laccases showed positive amplification with an amplicon size corresponding to 1500 bp. The purified TpWRF03 laccase (TpL) is a monomer with a molecular weight corresponding to 66 kDa. The enzyme had an optimal pH of 4.5 and temperature of 55 °C. TpL was most stable within pH of 5.5–6.5 and at a temperature range of 40–50 °C. Sodium azide, sodium cyanide and Fe2+ greatly inhibited the enzyme activity. TpL showed more than 50 % decolourisation efficiency on coomassie brilliant blue (72.35 %) and malachite green (57.84 %) but displayed low decolourisation efficiency towards Azure B (1.78 %) and methylene blue (0.38 %). The results showed that TpWRF03 produces high-yield of true laccase with robust properties for biotechnological applications.
Collapse
Affiliation(s)
| | - Arinze Linus Ezugwu
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Jerry Okwudili Udeh
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | | | | |
Collapse
|
12
|
Xu L, Sun K, Wang F, Zhao L, Hu J, Ma H, Ding Z. Laccase production by Trametes versicolor in solid-state fermentation using tea residues as substrate and its application in dye decolorization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110904. [PMID: 32721339 DOI: 10.1016/j.jenvman.2020.110904] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
An efficient valorization of tea residues into value-added product was developed by Trametes versicolor in solid-state fermentation (SSF). The laccase production of 25.7 U/g dry substrate was obtained by optimizing culture medium and condition, resulting in a 4.0-fold increase compared to that of 6.4 U/g dry substrate under unoptimized condition. During the 7-day cultivation under SSF, 44.7%, 12.2% and 9.8% degradation occurred for lignin, hemicellulose and cellulose in tea residues, respectively. Laccase production reached 31.2 U/g dry substrate by the scaling-up culture in shallow tray system. The dry fermented tea residues were directly used as crude enzyme in the decolorization of malachite green. It possessed a decolorization rate of more than 95% within 120 min and remained 81.3% of decolorization capacity after 6 cycles. The present study provided a useful strategy for low-cost laccase production by SSF and it exhibited great potential for the application in dye decolorization.
Collapse
Affiliation(s)
- Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ke Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jianhua Hu
- Department of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
13
|
Junior JA, Vieira YA, Cruz IA, da Silva Vilar D, Aguiar MM, Torres NH, Bharagava RN, Lima ÁS, de Souza RL, Romanholo Ferreira LF. Sequential degradation of raw vinasse by a laccase enzyme producing fungus Pleurotus sajor-caju and its ATPS purification. ACTA ACUST UNITED AC 2020; 25:e00411. [PMID: 32211306 PMCID: PMC7083758 DOI: 10.1016/j.btre.2019.e00411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 12/10/2019] [Indexed: 12/01/2022]
Abstract
Vinasse degradation and laccase production by Pleurotus sajor-caju were performed; Laccase activity induction by copper sulfate and ethanol in raw vinasse as substrate was confirmed; Fermentation time to maximum laccase activity was reduced to just 3 days when cooper sulfate was used as inducer; The use of laccase inducers does not interfere with decolorization and turbidity removal; Aqueous two-phase systems reached 2.88-fold in laccase purification, with recovery of ∼ 99.9% to upper phase (PEG-rich phase).
This study evaluated simultaneously the raw vinasse degradation, an effluent from the sugar-alcohol industry, the laccase production by Pleurotus sajor-caju and its purification using aqueous two-phase systems (ATPS). To improve laccase production, different concentrations of inducers (ethanol and CuSO4) were added. The higher laccase production promoted an increase of 4-fold using 0.4 mM of CuSO4 as inducer, with maximum enzymatic activity of 539.3 U/L on the 3rd day of fermentation. The final treated vinasse had a decolorization of 92% and turbidity removal of 99% using CuSO4. Moreover, the produced laccase was then purified by ATPS in a single purification step, reaching 2.9-fold and recovered ≈ 99,9 %, in the top phase (PEG-rich phase) using 12 wt% of PEG 1500 + 20 wt% of citrate buffer + enzyme broth + water, at 25 °C. Thus, an integrated process of vinasse degradation, laccase production and purification with potential industrial application was proposed.
Collapse
Affiliation(s)
- Joberson Alves Junior
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Yago Araujo Vieira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ianny Andrade Cruz
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Débora da Silva Vilar
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Mario M Aguiar
- Division of Molecular Biology - Biocenter, Innsbruck Medical University, A-6020, Innsbruck, Austria
| | - Nádia Hortense Torres
- Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Álvaro Silva Lima
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil.,Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ranyere Lucena de Souza
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil.,Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil.,Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490, Aracaju, SE, Brazil
| |
Collapse
|
14
|
Buddhika UVA, Savocchia S, Steel CC. Copper induces transcription of BcLCC2 laccase gene in phytopathogenic fungus, Botrytis cinerea. Mycology 2020; 12:48-57. [PMID: 33628608 PMCID: PMC7889114 DOI: 10.1080/21501203.2020.1725677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Laccases are one of many groups of inducible enzymes produced by the filamentous fungus, Botrytis cinerea during colonisation of host plant tissues. While the processes involved in laccase induction are not fully understood, Cupric ions (e.g. CuSO4) and gallic acid (GA) have been reported as laccase inducers. This study investigates laccases activities and the expression of three laccase genes (BcLCC1, BcLCC2, BcLCC3) in three B. cinerea isolates grown in laccase-inducing medium (LIM) supplemented with CuSO4 and GA. Laccase activity in culture filtrates with CuSO4 increased after 48 h of growth in LIM at 24°C. The induction of BcLCC2 transcription was greatest at a concentration of 0.6 mM CuSO4, concentrations greater than 0.6 mM inhibited fungal growth. In contrast, no laccase induction was observed in the presence of GA. Liquid chromatography-mass spectroscopy (NanoLC ESI MS/MS) analysis confirmed the presence of a 63.4 kDa protein, the BcLCC2 isoform in the culture filtrate with 0.6 mM CuSO4. Analysis of mRNA transcripts further showed BcLCC3 was also inducible and the expression of BcLCC2 and BcLCC3 was isolate-dependent. In conclusion, CuSO4 induces a 63.4 kDa laccase in B. cinerea by induced transcription of the BcLCC2 gene.
Collapse
Affiliation(s)
- U V A Buddhika
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - S Savocchia
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - C C Steel
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
15
|
Gopalakrishnan RM, Manavalan T, Ramesh J, Thangavelu KP, Heese K. Improvement of Saccharification and Delignification Efficiency of Trichoderma reesei Rut-C30 by Genetic Bioengineering. Microorganisms 2020; 8:microorganisms8020159. [PMID: 31979278 PMCID: PMC7074786 DOI: 10.3390/microorganisms8020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Trichoderma reesei produces various saccharification enzymes required for biomass degradation. However, the lack of an effective lignin-degrading enzyme system reduces the species’ efficiency in producing fermentable sugars and increases the pre-treatment costs for biofuel production. In this study, we heterologously expressed the Ganoderma lucidum RMK1 versatile peroxidase gene (vp1) in the Rut-C30 strain of T. reesei. The expression of purified 6×His-tag–containing recombinant G. lucidum-derived protein (rVP1) was confirmed through western blot, which exhibited a single band with a relative molecular weight of 39 kDa. In saccharification and delignification studies using rice straw, the transformant (tVP7, T. reesei Rut-C30 expressing G. lucidum-derived rVP1) showed significant improvement in the yield of total reducing sugar and delignification, compared with that of the parent T. reesei Rut-C30 strain. Scanning electron microscopy (SEM) of tVP7-treated paddy straw showed extensive degradation of several layers of its surface compared with the parent strain due to the presence of G. lucidum-derived rVP1. Our results suggest that the expression of ligninolytic enzymes in cellulase hyperproducing systems helps to integrate the pre-treatment and saccharification steps that may ultimately reduce the costs of bioethanol production.
Collapse
Affiliation(s)
- Raja Mohan Gopalakrishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
| | - Tamilvendan Manavalan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
| | - Janani Ramesh
- Department of Medical Biochemistry, Dr ALM Postgraduate Institute of Biomedical Sciences, University of Madras, Chennai, Tamil Nadu 600 113, India;
| | - Kalaichelvan Puthupalayam Thangavelu
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
- Correspondence: (K.P.T.); (K.H.)
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
- Correspondence: (K.P.T.); (K.H.)
| |
Collapse
|
16
|
Exploiting the potential of metal and solvent tolerant laccase from Tricholoma giganteum AGDR1 for the removal of pesticides. Int J Biol Macromol 2019; 144:586-595. [PMID: 31830449 DOI: 10.1016/j.ijbiomac.2019.12.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
Laccase from previously reported hardwood degrading fungus, Tricholoma giganteum AGDR1, was isolated, identified at molecular level, biochemically characterized and also utilized for pesticide degradation. Laccase gene is comprised of 3752 bp, which encompassed 742-bp of 5' flanking upstream sequence with 12 introns and 12 exons. Mature enzyme possesses 391 amino acids and signal peptide, which is determined to be monomeric protein with an apparent molecular weight of 41 kDa and 6.45 pI. Higher optimal activities were observed at 45 °C and pH 3.0 and surprisingly, it exhibited more than 20% of relative activity at pH 1.5. Purified laccase was tolerant to 100 mM of metals (i.e. Se, Pb, Cu, Cr and Cd), organic solvents (ethyl acetate, methanol, ethanol and acetone) and potent inhibitors (hydroxylamine, thiourea, NaF and Na-azide) as compared to reported laccases. It was able to degrade 29%, 7% and 72% of chlorpyrifos, profenofos and thiophanate methyl within 15 h, respectively. Molecular docking analysis revealed that higher binding efficacy of these pesticides is observed with H83, H320, A95, V384, and P366 which are presented near to the catalytic site. Based on the results, T. giganteum AGDR1 laccase can be applied for the potential remediation and industrial applications under harsh conditions.
Collapse
|
17
|
Ardila-Leal LD, Albarracín-Pardo DA, Rivera-Hoyos CM, Morales-Álvarez ED, Poutou-Piñales RA, Cardozo-Bernal AM, Quevedo-Hidalgo BE, Pedroza-Rodríguez AM, Díaz-Rincón DJ, Rodríguez-López A, Alméciga-Díaz CJ, Cuervo-Patiño CL. Media improvement for 10 L bioreactor production of rPOXA 1B laccase by P. pastoris. 3 Biotech 2019; 9:447. [PMID: 31763125 DOI: 10.1007/s13205-019-1979-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/29/2019] [Indexed: 01/31/2023] Open
Abstract
In this work, we statistically improved culture media for rPOXA 1B laccase production, expressed in Pichia pastoris containing pGAPZαA-LaccPost-Stop construct and assayed at 10 L bioreactor production scale (6 L effective work volume). The concentrated enzyme was evaluated for temperature and pH stability and kinetic parameter, characterized by monitoring oxidation of different ABTS [2, 20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] substrate concentrations. Plackett-Burman experimental design (PBED) implementation improved previous work results by 3.05-fold, obtaining a laccase activity of 1373.72 ± 0.37 U L-1 at 168 h of culture in a 500 mL shake flask. In contrast, one factor experimental design (OFED) applied after PBED improved by threefold the previous study, additionally increasing the C/N ratio. Employing OFED media at 10 L bioreactor scale was capable of producing 3159.93 ± 498.90 U L-1 at 192 h, representing a 2.4-fold increase. rPOXA 1B concentrate remained stable between 10 and 50 °C and retained over 70% residual enzymatic activity at 60 °C and 50% at 70 °C. Concerning pH stability, the enzyme was stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity (60%) was obtained at pH 10.0 ± 0.2. Furthermore, the apparent kinetic parameters were V max of 3.163 × 10-2 mM min-1 and K m of 1.716 mM. Collectively, regarding enzyme stability our data provide possibilities for applications involving a wide range of pH and temperatures.
Collapse
|
18
|
Qin P, Wu Y, Adil B, Wang J, Gu Y, Yu X, Zhao K, Zhang X, Ma M, Chen Q, Chen X, Zhang Z, Xiang Q. Optimization of Laccase from Ganoderma lucidum Decolorizing Remazol Brilliant Blue R and Glac1 as Main Laccase-Contributing Gene. Molecules 2019; 24:E3914. [PMID: 31671660 PMCID: PMC6864837 DOI: 10.3390/molecules24213914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 11/25/2022] Open
Abstract
Many dyes and pigments are used in textile and printing industries, and their wastewater has been classed as a top source of pollution. Biodegradation of dyes by fungal laccase has great potential. In this work, the influence of reaction time, pH, temperature, dye concentration, metal ions, and mediators on laccase-catalyzed Remazol Brilliant Blue R dye (RBBR) decolorization were investigated in vitro using crude laccase from the white-rot fungus Ganoderma lucidum. The optimal decolorization percentage (50.3%) was achieved at 35 °C, pH 4.0, and 200 ppm RBBR in 30 min. The mediator effects from syringaldehyde, 1-hydroxybenzotriazole, and vanillin were compared, and 0.1 mM vanillin was found to obviously increase the decolorization percentage of RBBR to 98.7%. Laccase-mediated decolorization percentages significantly increased in the presence of 5 mM Na+ and Cu2+, and decolorization percentages reached 62.4% and 62.2%, respectively. Real-time fluorescence-quantitative PCR (RT-PCR) and protein mass spectrometry results showed that among the 15 laccase isoenzyme genes, Glac1 was the main laccase-contributing gene, contributing the most to the laccase enzyme activity and decolorization process. These results also indicate that under optimal conditions, G. lucidum laccases, especially Glac1, have a strong potential to remove RBBR from reactive dye effluent.
Collapse
Affiliation(s)
- Peng Qin
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yuetong Wu
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bilal Adil
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jie Wang
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yunfu Gu
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaoping Zhang
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China.
| | - Menggen Ma
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qiang Chen
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaoqiong Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.
| | - Zongjin Zhang
- Panzhihua Company of Sichuan Provincial Tobacco Corporation, Panzhihua 617026, China.
| | - Quanju Xiang
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
19
|
Rodrigues EM, Karp SG, Malucelli LC, Helm CV, Alvarez TM. Evaluation of laccase production by Ganoderma lucidum in submerged and solid-state fermentation using different inducers. J Basic Microbiol 2019; 59:784-791. [PMID: 31259434 DOI: 10.1002/jobm.201900084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/18/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
Laccases are multicopper oxidases with high potential for industrial applications. Several basidiomycete fungi are natural producers of this enzyme; however, the optimization of production and selection of inducers for increased productivity coupled with low costs is necessary. Lignocellulosic residues are important lignin sources and potential inducers for laccase production. Pinus taeda, a dominant source of wood-based products, has not been investigated for this purpose yet. The aim of this study was to evaluate the production of laccase by the basidiomycete fungus Ganoderma lucidum in the presence of different inducers in submerged and solid-state fermentation. The results of submerged fermentation in presence of 5 μM CuSO 4 , 2 mM ferulic acid, 0.1 g/L P. taeda sawdust, or 0.05 g/L Kraft lignin indicated that although all the tested inducers promoted increase in laccase activity in specific periods of time, the presence of 2 mM ferulic acid resulted in the highest value of laccase activity (49 U/L). Considering the submerged fermentation, experimental design following the Plackett-Burman method showed that the concentrations of ferulic acid and P. taeda sawdust had a significant influence on the laccase activity. The highest value of 785 U/L of laccase activity on submerged fermentation was obtained on the seventh day of cultivation. Finally, solid-state fermentation cultures in P. taeda using ferulic acid or CuSO 4 as inducers resulted in enzymatic activities of 144.62 and 149.89 U/g, respectively, confirming the potential of this approach for laccase production by G. lucidum.
Collapse
Affiliation(s)
- Euderléia M Rodrigues
- Master Program in Industrial Biotechnology, Universidade Positivo (UP), Curitiba, Paraná, Brazil
| | - Susan G Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Lucca C Malucelli
- Graduate Program in Environmental Management, Universidade Positivo (UP), Curitiba, Paraná, Brazil
| | - Cristiane V Helm
- Embrapa Florestas, Empresa Brasileira de Pesquisa Agropecuária, Colombo, Paraná, Brazil
| | - Thabata M Alvarez
- Master Program in Industrial Biotechnology, Universidade Positivo (UP), Curitiba, Paraná, Brazil
| |
Collapse
|
20
|
Torres-Farradá G, Manzano-León AM, Rineau F, Ramos Leal M, Thijs S, Jambon I, Put J, Czech J, Guerra Rivera G, Carleer R, Vangronsveld J. Biodegradation of polycyclic aromatic hydrocarbons by native Ganoderma sp. strains: identification of metabolites and proposed degradation pathways. Appl Microbiol Biotechnol 2019; 103:7203-7215. [PMID: 31256229 DOI: 10.1007/s00253-019-09968-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/28/2023]
Abstract
Since polycyclic aromatic hydrocarbons (PAHs) are mutagenic, teratogenic, and carcinogenic, they are of considerable environmental concern. A biotechnological approach to remove such compounds from polluted ecosystems could be based on the use of white-rot fungi (WRF). The potential of well-adapted indigenous Ganoderma strains to degrade PAHs remains underexplored. Seven native Ganoderma sp. strains with capacity to produce high levels of laccase enzymes and to degrade synthetic dyes were investigated for their degradation potential of PAHs. The crude enzymatic extracts produced by Ganoderma strains differentially degraded the PAHs assayed (naphthalene 34-73%, phenanthrene 9-67%, fluorene 11-64%). Ganoderma sp. UH-M was the most promising strain for the degradation of PAHs without the addition of redox mediators. The PAH oxidation performed by the extracellular enzymes produced more polar and soluble metabolites such as benzoic acid, catechol, phthalic and protocatechuic acids, allowing us to propose degradation pathways of these PAHs. This is the first study in which breakdown intermediates and degradation pathways of PAHs by a native strain of Ganoderma genus were determined. The treatment of PAHs with the biomass of this fungal strain enhanced the degradation of the three PAHs. The laccase enzymes played an important role in the degradation of these compounds; however, the role of peroxidases cannot be excluded. Ganoderma sp. UH-M is a promising candidate for the bioremediation of ecosystems polluted with PAHs.
Collapse
Affiliation(s)
- Giselle Torres-Farradá
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Calle 25 No. 455. Vedado, Havana, Cuba.
| | - Ana M Manzano-León
- Department of Plant Phytopathology, Research Institute for Tropical Fruit Trees (IIFT), Ave 7ma No. 3005, Playa, Havana, Cuba
| | - François Rineau
- Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590, Hasselt, Belgium
| | - Miguel Ramos Leal
- Department of Plant Phytopathology, Research Institute for Tropical Fruit Trees (IIFT), Ave 7ma No. 3005, Playa, Havana, Cuba
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590, Hasselt, Belgium
| | - Inge Jambon
- Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590, Hasselt, Belgium
| | - Jenny Put
- Institute for Materials Research, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590, Hasselt, Belgium
| | - Jan Czech
- Institute for Materials Research, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590, Hasselt, Belgium
| | - Gilda Guerra Rivera
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Calle 25 No. 455. Vedado, Havana, Cuba
| | - Robert Carleer
- Institute for Materials Research, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590, Hasselt, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590, Hasselt, Belgium
| |
Collapse
|
21
|
Palazzolo MA, Postemsky PD, Kurina-Sanz M. From agro-waste to tool: biotechnological characterization and application of Ganoderma lucidum E47 laccase in dye decolorization. 3 Biotech 2019; 9:213. [PMID: 31114737 DOI: 10.1007/s13205-019-1744-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/08/2019] [Indexed: 10/26/2022] Open
Abstract
The culture of fungal species from agro-waste allows for the sustainable preparation of valuable biotechnological products and contributes to establish the Circular Economy concept. The Ganoderma lucidum species is well known as producer of laccases (EC 1.10.3.2), which serves as a tool to oxidize chemicals. When producing G. lucidum E47 basidiomes with edible purposes out of rice crop residues, its laccase remains as by-product. In this work, we report the biotechnological characterization and application of the laccase recovered from spent cultures of the G. lucidum E47 strain. We detected at least one polypeptide (ca. 59 kDa) which displays attractive activity and stability values when used in the range of 18-45 °C in mildly acidic environment (pH 4.8-5.8). These parameters can be enhanced in the presence of organic cosolvents such as butyl acetate and methyl iso-butyl ketone, but the opposite effect is observed with solvents of lower log P. The best activity-stability performance is reached when the biocatalyst is used in pH 4.8 buffer with 5% (v/v) butyl acetate at 37 °C. The laccase was capable of decolorizing xanthene, azo and triarylmethane dyes, exhibiting excellent selectivity on bromocresol green and bromocresol purple. Furthermore, the biocatalyst displayed an attractive activity when assessed for the decolorization of bromocresol green in a proof-of-concept effluent biotreatment.
Collapse
|
22
|
Yasar G, Guven UG, Guduk E, Aktas F. Partial purification and characterization of the novel halotolerant and alkalophilic laccase produced by a new isolate of Bacillus subtilis LP2. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1594790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Gulhan Yasar
- Department of Biomedical Engineering, Institute of Science, Istanbul University, Istanbul, Turkey
| | | | - Elif Guduk
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Fatih Aktas
- Department of Environmental Engineering Faculty of Engineering, Duzce University, Duzce, Turkey
| |
Collapse
|
23
|
Llorca M, Castellet-Rovira F, Farré MJ, Jaén-Gil A, Martínez-Alonso M, Rodríguez-Mozaz S, Sarrà M, Barceló D. Fungal biodegradation of the N-nitrosodimethylamine precursors venlafaxine and O-desmethylvenlafaxine in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:346-356. [PMID: 30577003 DOI: 10.1016/j.envpol.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Antidepressant drugs such as Venlafaxine (VFX) and O-desmethylvenlafaxine (ODMVFX) are emerging contaminants that are commonly detected in aquatic environments, since conventional wastewater treatment plants are unable to completely remove them. They can be precursors of hazardous by-products, such as the carcinogenic N-nitrosodimethylamine (NDMA), generated upon water chlorination, as they contain the dimethylamino moiety, necessary for the formation of NDMA. In this study, the capability of three white rot fungi (Trametes versicolor, Ganoderma lucidum and Pleurotus ostreatus) to remove both antidepressants from water and to decrease NDMA formation potential was investigated. Furthermore, transformation by-products (TPs) generated along the treatment process were elucidated and also correlated with their NDMA formation potential. Very promising results were obtained for T. versicolor and G. lucidum, both being able to remove up to 100% of ODMVFX. In the case of VFX, which is very recalcitrant to conventional wastewater treatment, a 70% of removal was achieved by T. versicolor, along with a reduction in NDMA formation potential, thus decreasing the associated problems for human health and the environment. However, the NDMA formation potential remained practically constant during treatment with G. lucidum despite of the equally high VFX removal (70%). This difference was attributed to the generation of different TPs during both fungal treatments. For example, G. lucidum generated more ODMVFX, which actually has a higher NDMA formation potential than the parent compound itself.
Collapse
Affiliation(s)
- Marta Llorca
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Francesc Castellet-Rovira
- Department of Chemical, Biological, and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - María-José Farré
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain
| | - Adrián Jaén-Gil
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain
| | - Maira Martínez-Alonso
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain.
| | - Montserrat Sarrà
- Department of Chemical, Biological, and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
24
|
Laccases from Marine Organisms and Their Applications in the Biodegradation of Toxic and Environmental Pollutants: a Review. Appl Biochem Biotechnol 2018; 187:583-611. [DOI: 10.1007/s12010-018-2829-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
25
|
Cantele C, Fontana RC, Mezzomo AG, da Rosa LO, Poleto L, Camassola M, Dillon AJP. Production, characterization and dye decolorization ability of a high level laccase from Marasmiellus palmivorus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Zheng F, An Q, Meng G, Wu XJ, Dai YC, Si J, Cui BK. A novel laccase from white rot fungus Trametes orientalis : Purification, characterization, and application. Int J Biol Macromol 2017; 102:758-770. [DOI: 10.1016/j.ijbiomac.2017.04.089] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
|
27
|
Torres-Farradá G, Manzano León AM, Rineau F, Ledo Alonso LL, Sánchez-López MI, Thijs S, Colpaert J, Ramos-Leal M, Guerra G, Vangronsveld J. Diversity of Ligninolytic Enzymes and Their Genes in Strains of the Genus Ganoderma: Applicable for Biodegradation of Xenobiotic Compounds? Front Microbiol 2017; 8:898. [PMID: 28588565 PMCID: PMC5440474 DOI: 10.3389/fmicb.2017.00898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
White-rot fungi (WRF) and their ligninolytic enzymes (laccases and peroxidases) are considered promising biotechnological tools to remove lignin related Persistent Organic Pollutants from industrial wastewaters and contaminated ecosystems. A high diversity of the genus Ganoderma has been reported in Cuba; in spite of this, the diversity of ligninolytic enzymes and their genes remained unexplored. In this study, 13 native WRF strains were isolated from decayed wood in urban ecosystems in Havana (Cuba). All strains were identified as Ganoderma sp. using a multiplex polymerase chain reaction (PCR)-method based on ITS sequences. All Ganoderma sp. strains produced laccase enzymes at higher levels than non-specific peroxidases. Native-PAGE of extracellular enzymatic extracts revealed a high diversity of laccase isozymes patterns between the strains, suggesting the presence of different amino acid sequences in the laccase enzymes produced by these Ganoderma strains. We determined the diversity of genes encoding laccases and peroxidases using a PCR and cloning approach with basidiomycete-specific primers. Between two and five laccase genes were detected in each strain. In contrast, only one gene encoding manganese peroxidase or versatile peroxidase was detected in each strain. The translated laccases and peroxidases amino acid sequences have not been described before. Extracellular crude enzymatic extracts produced by the Ganoderma UH strains, were able to degrade model chromophoric compounds such as anthraquinone and azo dyes. These findings hold promises for the development of a practical application for the treatment of textile industry wastewaters and also for bioremediation of polluted ecosystems by well-adapted native WRF strains.
Collapse
Affiliation(s)
- Giselle Torres-Farradá
- Laboratory of Biotechnology, Department of Microbiology and Virology, Faculty of Biology, University of HavanaHavana, Cuba
| | - Ana M Manzano León
- Department of Phytopathology, Research Institute for Tropical Fruit TreesHavana, Cuba
| | - François Rineau
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityHasselt, Belgium
| | - Lucía L Ledo Alonso
- Laboratory of Biotechnology, Department of Microbiology and Virology, Faculty of Biology, University of HavanaHavana, Cuba
| | - María I Sánchez-López
- Laboratory of Biotechnology, Department of Microbiology and Virology, Faculty of Biology, University of HavanaHavana, Cuba
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityHasselt, Belgium
| | - Jan Colpaert
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityHasselt, Belgium
| | - Miguel Ramos-Leal
- Department of Phytopathology, Research Institute for Tropical Fruit TreesHavana, Cuba
| | - Gilda Guerra
- Laboratory of Biotechnology, Department of Microbiology and Virology, Faculty of Biology, University of HavanaHavana, Cuba
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityHasselt, Belgium
| |
Collapse
|
28
|
Bilal M, Asgher M, Iqbal HMN, Hu H, Zhang X. Biotransformation of lignocellulosic materials into value-added products-A review. Int J Biol Macromol 2017; 98:447-458. [PMID: 28163129 DOI: 10.1016/j.ijbiomac.2017.01.133] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/08/2023]
Abstract
In the past decade, with the key biotechnological advancements, lignocellulosic materials have gained a particular importance. In serious consideration of global economic, environmental and energy issues, research scientists have been re-directing their interests in (re)-valorizing naturally occurring lignocellulosic-based materials. In this context, lignin-modifying enzymes (LMEs) have gained considerable attention in numerous industrial and biotechnological processes. However, their lower catalytic efficiencies and operational stabilities limit their practical and multipurpose applications in various sectors. Therefore, to expand the range of natural industrial biocatalysts e.g. LMEs, significant progress related to the enzyme biotechnology has appeared. Owing to the abundant lignocellulose availability along with LMEs in combination with the scientific advances in the biotechnological era, solid-phase biocatalysts can be economically tailored on a large scale. This review article outlines first briefly on the lignocellulose materials as a potential source for biotransformation into value-added products including composites, fine chemicals, nutraceutical, delignification, and enzymes. Comprehensive information is also given on the purification and characterization of LMEs to present their potential for the industrial and biotechnological sector.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Postemsky PD, Bidegain MA, González-Matute R, Figlas ND, Cubitto MA. Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum. BIORESOURCE TECHNOLOGY 2017; 231:85-93. [PMID: 28199921 DOI: 10.1016/j.biortech.2017.01.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/27/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
Solid-state fermentation was evaluated at the pilot-scale for the bioconversion and valorization of rice husks and straw (RSH), or sunflower seed hulls (SSH), into medicinal mushrooms and crude extracts, with laccase activity. The average mushroom yield was 56kg dry weight per ton of agro-residues. Laccase activity in crude aqueous extracts showed its maximum value of 10,927Ukg-1 in RSH (day 10, Exudate phase) and 16,442Ukg-1 in SSH (day 5, Full colonization phase), the activity at the Residual substrate phase being 511Ukg-1 in RSH and 803Ukg-1 in SSH, respectively. Crude extracts obtained with various protocols revealed differences in the extraction yields. Lyophilization followed by storage at 4°C allowed the preservation of laccase activity for more than one month. It is proposed that standard mushroom farms could increase their profits by obtaining laccase as a byproduct during the gaps in mycelium running.
Collapse
Affiliation(s)
- P D Postemsky
- Centro de Recursos Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS), CONICET, Laboratorio de Biotecnología de Hongos Comestibles y Medicinales, Camino de la Carrindanga Km7, Bahía Blanca (8000), Buenos Aires, Argentina.
| | - M A Bidegain
- Centro de Recursos Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS), CONICET, Laboratorio de Biotecnología de Hongos Comestibles y Medicinales, Camino de la Carrindanga Km7, Bahía Blanca (8000), Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca (8000), Buenos Aires, Argentina
| | - R González-Matute
- Centro de Recursos Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS), CONICET, Laboratorio de Biotecnología de Hongos Comestibles y Medicinales, Camino de la Carrindanga Km7, Bahía Blanca (8000), Buenos Aires, Argentina
| | - N D Figlas
- Centro de Recursos Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS), CONICET, Laboratorio de Biotecnología de Hongos Comestibles y Medicinales, Camino de la Carrindanga Km7, Bahía Blanca (8000), Buenos Aires, Argentina; Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Argentina
| | - M A Cubitto
- Centro de Recursos Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS), CONICET, Laboratorio de Biotecnología de Hongos Comestibles y Medicinales, Camino de la Carrindanga Km7, Bahía Blanca (8000), Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca (8000), Buenos Aires, Argentina
| |
Collapse
|
30
|
Screening and optimization of laccase from cyanobacteria with its potential in decolorization of anthraquinonic dye Remazol Brilliant Blue R. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Plackett-Burman Design for rGILCC1 Laccase Activity Enhancement in Pichia pastoris: Concentrated Enzyme Kinetic Characterization. Enzyme Res 2017; 2017:5947581. [PMID: 28421142 PMCID: PMC5379127 DOI: 10.1155/2017/5947581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 01/09/2023] Open
Abstract
Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.
Collapse
|
32
|
Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase. Int J Biol Macromol 2017; 95:974-984. [DOI: 10.1016/j.ijbiomac.2016.10.086] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022]
|
33
|
Teerapatsakul C, Chitradon L. Physiological Regulation of an Alkaline-Resistant Laccase Produced by Perenniporia tephropora and Efficiency in Biotreatment of Pulp Mill Effluent. MYCOBIOLOGY 2016; 44:260-268. [PMID: 28154483 PMCID: PMC5287158 DOI: 10.5941/myco.2016.44.4.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/21/2016] [Accepted: 09/19/2016] [Indexed: 05/31/2023]
Abstract
Regulation of alkaline-resistant laccase from Perenniporia tephropora KU-Alk4 was proved to be controlled by several factors. One important factor was the initial pH, which drove the fungus to produce different kinds of ligninolytic enzymes. P. tephropora KU-Alk4 could grow at pH 4.5, 7.0, and 8.0. The fungus produced laccase and MnP at pH 7.0, but only laccase at pH 8.0. The specific activity of laccase in the pH 8.0 culture was higher than that in the pH 7.0 culture. At pH 8.0, glucose was the best carbon source for laccase production but growth was better with lactose. Low concentrations of glucose at 0.1% to 1.0% enhanced laccase production, while concentrations over 1% gave contradictory results. Veratryl alcohol induced the production of laccase. A trace concentration of copper ions was required for laccase production. Biomass increased with an increasing rate of aeration of shaking flasks from 100 to 140 rpm; however, shaking at over 120 rpm decreased laccase quantity. Highest amount of laccase produced by KU-Alk4, 360 U/mL, was at pH 8.0 with 1% glucose and 0.2 mM copper sulfate, unshaken for the first 3 days, followed by addition of 0.85 mM veratryl alcohol and shaking at 120 rpm. The crude enzyme was significantly stable in alkaline pH 8.0~10.0 for 24 hr. After treating the pulp mill effluent with the KU-Alk4 system for 3 days, pH decreased from 9.6 to 6.8, with reduction of color and chemical oxygen demand at 83.2% and 81%, respectively. Laccase was detectable during the biotreatment process.
Collapse
Affiliation(s)
- Churapa Teerapatsakul
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.; Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok 10900, Thailand
| | - Lerluck Chitradon
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.; Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
34
|
Teerapatsakul C, Pothiratana C, Chitradon L, Thachepan S. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13. J GEN APPL MICROBIOL 2016; 62:303-312. [PMID: 27885193 DOI: 10.2323/jgam.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The biodegradation of three polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, and pyrene, by a newly isolated thermotolerant white rot fungal strain RYNF13 from Thailand, was investigated. The strain RYNF13 was identified as Trametes polyzona, based on an analysis of its internal transcribed spacer sequence. The strain RYNF13 was superior to most white rot fungi. The fungus showed excellent removal of PAHs at a high concentration of 100 mg·L-1. Complete degradation of phenanthrene in a mineral salt glucose medium culture was observed within 18 days of incubation at 30°C, whereas 90% of fluorene and 52% of pyrene were degraded under the same conditions. At a high temperature of 42°C, the strain RYNF13 was still able to grow, and degraded approximately 68% of phenanthrene, whereas 48% of fluorene and 30% of pyrene were degraded within 32 days. Thus, the strain RYNF13 is a potential fungus for PAH bioremediation, especially in a tropical environment where the temperature can be higher than 40°C. The strain RYNF13 secreted three different ligninolytic enzymes, manganese peroxidase, laccase, and lignin peroxidase, during PAH biodegradation at 30°C. When the incubation temperature was increased from 30°C to 37°C and 42°C, only two ligninolytic enzymes, manganese peroxidase and laccase, were detectable during the biodegradation. Manganese peroxidase was the major enzyme produced by the fungus. In the culture containing phenanthrene, manganese peroxidase showed the highest enzymatic activity at 179 U·mL-1. T. polyzona RYNF13 was determined as a potential thermotolerant white rot fungus, and suitable for application in the treatment of PAH-containing contaminants.
Collapse
|
35
|
Bilal M, Asgher M, Iqbal HMN, Hu H, Zhang X. Gelatin-Immobilized Manganese Peroxidase with Novel Catalytic Characteristics and Its Industrial Exploitation for Fruit Juice Clarification Purposes. Catal Letters 2016; 146:2221-2228. [DOI: 10.1007/s10562-016-1848-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Isolation and Physicochemical Characterization of Laccase from Ganoderma lucidum-CDBT1 Isolated from Its Native Habitat in Nepal. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3238909. [PMID: 27822471 PMCID: PMC5086383 DOI: 10.1155/2016/3238909] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/25/2016] [Accepted: 09/21/2016] [Indexed: 11/21/2022]
Abstract
At present, few organisms are known to and capable of naturally producing laccases and white rot fungi are one such group. In the present study, three fungal species, namely, Ganoderma lucidum-CDBT1, Ganoderma japonicum, and Lentinula edodes, isolated from their native habitat in Nepal were screened for laccase production, and G. lucidum-CDBT1 was found to express highest levels of enzyme (day 10 culture media showed 0.92 IU/mg total protein or 92 IU/mL laccase activity with ABTS as substrate). Lignin extracted from rice straw was used in Olga medium for laccase production and isolation from G. lucidum-CDBT1. Presence of lignin (5 g/L) and copper sulfate (30 μM) in the media increased the extracellular laccase content by 111% and 114%, respectively. The laccase enzyme produced by G. lucidum-CDBT1 was fractionated by ammonium sulfate and purified by DEAE Sepharose anion exchange chromatography. The purified enzyme was found to have a molecular mass of 43 kDa and exhibits optimal activity at pH 5.0 and 30°C. The isolated laccase was thermally stable for up to 70°C for 1 h and exhibited broad pH stability. The kinetic constants, Km, Vmax, and Kcat, determined using 2,2′-azinobis-(-3-ethylbenzothiazoline-6-sulfonic acid) as substrate were found to be 110 μM, 36 μmol/min/mg, and 246 min−1, respectively. The isolated thermostable laccase will be used in future experiments for delignification process.
Collapse
|
37
|
Chmelová D, Ondrejovič M. Purification and characterization of extracellular laccase produced byCeriporiopsis subvermisporaand decolorization of triphenylmethane dyes. J Basic Microbiol 2016; 56:1173-1182. [DOI: 10.1002/jobm.201600152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/06/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Daniela Chmelová
- Faculty of Natural Sciences; Department of Biotechnologies; University of SS. Cyril and Methodius; Trnava Slovak Republic
| | - Miroslav Ondrejovič
- Faculty of Natural Sciences; Department of Biotechnologies; University of SS. Cyril and Methodius; Trnava Slovak Republic
| |
Collapse
|
38
|
Fillat Ú, Martín-Sampedro R, Macaya-Sanz D, Martín JA, Ibarra D, Martínez MJ, Eugenio ME. Screening of eucalyptus wood endophytes for laccase activity. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Martínková L, Kotik M, Marková E, Homolka L. Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review. CHEMOSPHERE 2016; 149:373-382. [PMID: 26874626 DOI: 10.1016/j.chemosphere.2016.01.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/09/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
The phylum Basidiomycota include organisms with enormous bioremediation potential. A variety of processes were proposed at the lab scale for using these fungi and their phenol oxidases in the degradation of phenolics. Here we present a survey of this topic using literature published mostly over the last 10 years. First, the sources of the enzymes are summarized. The laccase and tyrosinase were mainly from Trametes versicolor and Agaricus bisporus, respectively. Recently, however, new promising wild-type producers of the enzymes have emerged and a number of recombinant strains were also constructed, based mainly on yeasts or Aspergillus strains as hosts. The next part of the study summarizes the enzyme and whole-cell applications for the degradation of phenols, polyphenols, cresols, alkylphenols, naphthols, bisphenols and halogenated (bis)phenols in model mixtures or real wastewaters from the food, paper and coal industries, or municipal and hospital sewage. The enzymes were applied as free (crude or purified) enzymes or as enzymes immobilized in various supports or CLEAs, and optionally recycled or used in continuous mode. Alternatively, growing cultures or harvested mycelia were used instead. The products, which were characterized as quinones and their polymers in some cases, could be eliminated by filtration, flocculation or adsorption onto chitosan. The purity of a treated wastewater was monitored using a sensitive aquatic organism. It is concluded that low-cost sources of these enzymes should be searched for and the benefits of enzymatic, biological and physico-chemical methods could be combined to make the processes fit for industrial use.
Collapse
Affiliation(s)
- L Martínková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic.
| | - M Kotik
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - E Marková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, CZ-166 28 Prague, Czech Republic
| | - L Homolka
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| |
Collapse
|
40
|
Senthivelan T, Kanagaraj J, Panda RC. Recent trends in fungal laccase for various industrial applications: An eco-friendly approach - A review. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0278-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Patel H, Gupte A. Optimization of different culture conditions for enhanced laccase production and its purification from Tricholoma giganteum AGHP. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0088-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
dos Santos TC, dos Santos Reis N, Silva TP, Pereira Machado FDP, Ferereira Bonomo RC, Franco M. Prickly palm cactus husk as a raw material for production of ligninolytic enzymes by Aspergillus niger. Food Sci Biotechnol 2016; 25:205-211. [PMID: 30263259 PMCID: PMC6049362 DOI: 10.1007/s10068-016-0031-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/20/2015] [Accepted: 10/01/2015] [Indexed: 11/25/2022] Open
Abstract
Prickly palm cactus husk was used as a solid-state fermentation support-substrate for production of the ligninolytic enzymes laccase, peroxide manganese, and lignin peroxidase by Aspergillus niger. Effects of water activity, temperature, and fermentation time on enzymatic production were evaluated using a central composite rotatable design. Response surface methodology revealed that maximum enzyme production was achieved at 73.38 h of fermentation, a water activity of 0.87 Aw, at 28.74°C for laccase, at 65.33 h, 0.89 Aw, and 28.96°C for lignin peroxidase, and at 70.44 h, 0.91 Aw, and 28.84°C for manganese peroxidase. Optimized enzyme production was 9,023.67 UI/L for laccase, 2,234.75 UI/L for lignin peroxidase, and 8,534.81 UI/L for manganese peroxidase. Thermostability and pH stability were observed for all enzymes. Enzymatic deactivation kinetic experiments indicated that enzymes remained active after freezing of crude extracts.
Collapse
Affiliation(s)
- Tamires Carvalho dos Santos
- Pos-Graduation Program in Technology of Chemical and Biochemical Processes, Department of Biochemical Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909 Brazil
| | - Nadabe dos Santos Reis
- Pos-Graduation Program in Food Engineering, Department of Basic and Instrumental Studies, State University of Southwest Bahia, Itapetinga, Bahia, 45700-000 Brazil
| | - Tatielle Pereira Silva
- Pos-Graduation Program in Chemistry, Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, 45654-370 Brazil
| | | | | | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, 45654-370 Brazil
| |
Collapse
|
43
|
Forootanfar H, Faramarzi MA. Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications. Biotechnol Prog 2015; 31:1443-63. [DOI: 10.1002/btpr.2173] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/30/2015] [Indexed: 12/07/2022]
Affiliation(s)
- Hamid Forootanfar
- Dept. of Pharmaceutical Biotechnology, Faculty of Pharmacy; Kerman University of Medical Sciences; Kerman Iran
| | - Mohammad Ali Faramarzi
- Dept. of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center; Tehran University of Medical Sciences; Tehran 1417614411 Iran
| |
Collapse
|
44
|
Manavalan A, Manavalan T, Murugesan K, Kutzner A, Thangavelu KP, Heese K. Characterization of a solvent, surfactant and temperature-tolerant laccase from Pleurotus sp. MAK-II and its dye decolorizing property. Biotechnol Lett 2015; 37:2403-9. [DOI: 10.1007/s10529-015-1937-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
|
45
|
Manavalan T, Manavalan V, Thangavelu KP, Kutzner A, Heese K. Characterization of a Solvent-Tolerant Manganese Peroxidase (MnP) from G
anoderma Lucidum
and Its Application in Fruit Juice Clarification. J Food Biochem 2015. [DOI: 10.1111/jfbc.12188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tamilvendan Manavalan
- Centre for Advanced Studies in Botany; University of Madras; Chennai Tamil Nadu 600025 India
| | - Vetriselvan Manavalan
- Department of Pharmacology and Toxicology; University of Arkansas for Medical Sciences; Little Rock AR
| | - Kalaichelvan P. Thangavelu
- Centre for Advanced Studies in Botany; University of Madras; Chennai Tamil Nadu 600025 India
- Alka-Research Foundation; Coimbatore Tamil Nadu 641046 India
| | - Arne Kutzner
- Department of Information Systems; College of Engineering; Hanyang University; 222 Wangsimni-ro Seoul Seongdong-gu 133-791 Rep. of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering; Hanyang University; 222 Wangsimni-ro Seoul Seongdong-gu 133-791 Rep. of Korea
| |
Collapse
|
46
|
Manavalan T, Manavalan A, Thangavelu KP, Heese K. Characterization of a novel endoglucanase from Ganoderma lucidum. J Basic Microbiol 2015; 55:761-71. [PMID: 25895101 DOI: 10.1002/jobm.201400808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/01/2015] [Indexed: 12/28/2022]
Abstract
We evaluated the production and characterization of endoglucanase from Ganoderma lucidum using different lignocellulose biomasses. We purified a novel carboxymethyl cellulose (CMC) hydrolyzing endoglucanase from the white-rot fungus G. lucidum when the medium was supplemented with 1% (w/v) wheat bran. Endoglucanase was purified 12.5-fold via ammonium sulfate fractionation, Sephadex G-100, and Q-Sepharose column chromatography with a final yield of 15%. SDS-PAGE analysis revealed that the endoglucanase had a molecular mass of 64.0 kDa. The optimal activity of purified endoglucanase was at pH 5.0 and 35 °C, though it was stable between pH 4.0-7.0 and temperatures of 30-60 °C. The purified enzyme was specific to CMC as a suitable substrate. The metal ions Hg(2+), Fe(2+), and Cr(2+) inhibited enzyme activity, while Ca(2+), Mg(2+), and Mn(2+) enhanced enzyme activity. The endoglucanase showed high activity and stability in the presence of different surfactants and non-polar hydrophobic organic solvents. This endoglucanase is tolerant to high temperature, metal ions, surfactants, and solvents, suggesting that it is appropriate for use in biomass conversion for biofuel production under harsh environmental conditions.
Collapse
Affiliation(s)
- Tamilvendan Manavalan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - Arulmani Manavalan
- School of Biological Sciences, Nanyang Technological University, Singapore.,Institute of Advanced Studies, Nanyang Technological University, Singapore
| | | | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
47
|
Fang Z, Liu X, Chen L, Shen Y, Zhang X, Fang W, Wang X, Bao X, Xiao Y. Identification of a laccase Glac15 from Ganoderma lucidum 77002 and its application in bioethanol production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:54. [PMID: 25883681 PMCID: PMC4399389 DOI: 10.1186/s13068-015-0235-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/09/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Laccases have potential applications in detoxification of lignocellulosic biomass after thermochemical pretreatment and production of value-added products or biofuels from renewable biomass. However, their application in large-scale industrial and environmental processes has been severely thwarted by the high cost of commercial laccases. Therefore, it is necessary to identify new laccases with lower cost but higher activity to detoxify lignocellulosic hydrolysates and better efficiency to produce biofuels such as bioethanol. Laccases from Ganoderma lucidum represent proper candidates in processing of lignocellulosic biomass. RESULTS G. lucidum 77002 produces three laccase isoenzymes with a total laccase activity of 141.1 U/mL within 6 days when using wheat bran and peanut powder as energy sources in liquid culture medium. A new isoenzyme named Glac15 was identified, purified, and characterized. Glac15 possesses an optimum pH of 4.5 to 5.0 and a temperature range of 45°C to 55°C for the substrates tested. It was stable at pH values ranging from 5.0 to 7.0 and temperatures lower than 55°C, with more than 80% activity retained after incubation for 2 h. When used in bioethanol production process, 0.05 U/mL Glac15 removed 84% of the phenolic compounds in prehydrolysate, and the yeast biomass reached 11.81 (optimal density at 600 nm (OD600)), compared to no growth in the untreated one. Addition of Glac15 before cellulase hydrolysis had no significant effect on glucose recovery. However, ethanol yield were improved in samples treated with laccases compared to that in control samples. The final ethanol concentration of 9.74, 10.05, 10.11, and 10.81 g/L were obtained from samples containing only solid content, solid content treated with Glac15, solid content containing 50% prehydrolysate, and solid content containing 50% prehydrolysate treated with Glac15, respectively. CONCLUSIONS The G. lucidum laccase Glac15 has potentials in bioethanol production industry.
Collapse
Affiliation(s)
- Zemin Fang
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Xiaoman Liu
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Liyuan Chen
- />The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100 China
| | - Yu Shen
- />The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100 China
| | - Xuecheng Zhang
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Wei Fang
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Xiaotang Wang
- />Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199 USA
| | - Xiaoming Bao
- />The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100 China
| | - Yazhong Xiao
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| |
Collapse
|
48
|
Passarini MRZ, Ottoni CA, Santos C, Lima N, Sette LD. Induction, expression and characterisation of laccase genes from the marine-derived fungal strains Nigrospora sp. CBMAI 1328 and Arthopyrenia sp. CBMAI 1330. AMB Express 2015; 5:19. [PMID: 25852996 PMCID: PMC4385153 DOI: 10.1186/s13568-015-0106-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022] Open
Abstract
The capability of the fungi Nigrospora sp. CBMAI 1328 and Arthopyrenia sp. CBMAI 1330 isolated from marine sponge to synthesise laccases (Lcc) in the presence of the inducer copper (1–10 μM) was assessed. In a liquid culture medium supplemented with 5 μM of copper sulphate after 5 days of incubation, Nigrospora sp. presented the highest Lcc activity (25.2 U·L−1). The effect of copper on Lcc gene expression was evaluated by reverse transcriptase polymerase chain reaction. Nigrospora sp. showed the highest gene expression of Lcc under the same conditions of Lcc synthesis. The highest Lcc expression by the Arthopyrenia sp. was detected at 96 h of incubation in absence of copper. Molecular approaches allowed the detection of Lcc isozymes and suggest the presence of at least two undescribed putative genes. Additionally, Lcc sequences from the both fungal strains clustered with other Lcc sequences from other fungi that inhabit marine environments.
Collapse
|
49
|
Kumar A, Sharma KK, Kumar P, Ramchiary N. Laccase isozymes from Ganoderma lucidum MDU-7: Isolation, characterization, catalytic properties and differential role during oxidative stress. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Gioia L, Rodríguez-Couto S, Menéndez MDP, Manta C, Ovsejevi K. Reversible covalent immobilization of Trametes villosa laccase onto thiolsulfinate-agarose: An insoluble biocatalyst with potential for decoloring recalcitrant dyes. Biotechnol Appl Biochem 2014; 62:502-13. [PMID: 25196324 DOI: 10.1002/bab.1287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/02/2014] [Indexed: 01/12/2023]
Abstract
The development of a solid-phase biocatalyst based on the reversible covalent immobilization of laccase onto thiol-reactive supports (thiolsulfinate-agarose [TSI-agarose]) was performed. To achieve this goal, laccase-producing strains isolated from Eucalyptus globulus were screened and white rot fungus Trametes villosa was selected as the best strain for enzyme production. Reduction of disulfide bonds and introduction of "de novo" thiol groups in partially purified laccase were assessed to perform its reversible covalent immobilization onto thiol-reactive supports (TSI-agarose). Only the thiolation process dramatically improved the immobilization yield, from 0% for the native and reduced enzyme to 60% for the thiolated enzyme. Mild conditions for the immobilization process (pH 7.5 and 4°C) allowed the achievement of nearly 100% of coupling efficiency when low loads were applied. The kinetic parameters, pH, and thermal stabilities for the immobilized biocatalyst were similar to those for the native enzyme. After the first use and three consecutives reuses, the insoluble derivative kept more than 80% of its initial capacity for decolorizing Remazol Brilliant Blue R, showing its suitability for color removal from textile industrial effluents. The possibility of reusing the support was demonstrated by the reversibility of enzyme-support binding.
Collapse
Affiliation(s)
- Larissa Gioia
- Cátedra de Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Susana Rodríguez-Couto
- CEIT, Unit of Environmental Engineering, San Sebastian 20018, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
| | - María Del Pilar Menéndez
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Carmen Manta
- Cátedra de Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Karen Ovsejevi
- Cátedra de Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|