1
|
Choi SY, Lee Y, Yu HE, Cho IJ, Kang M, Lee SY. Sustainable production and degradation of plastics using microbes. Nat Microbiol 2023; 8:2253-2276. [PMID: 38030909 DOI: 10.1038/s41564-023-01529-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Plastics are indispensable in everyday life and industry, but the environmental impact of plastic waste on ecosystems and human health is a huge concern. Microbial biotechnology offers sustainable routes to plastic production and waste management. Bacteria and fungi can produce plastics, as well as their constituent monomers, from renewable biomass, such as crops, agricultural residues, wood and organic waste. Bacteria and fungi can also degrade plastics. We review state-of-the-art microbial technologies for sustainable production and degradation of bio-based plastics and highlight the potential contributions of microorganisms to a circular economy for plastics.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Hye Eun Yu
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Minju Kang
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea.
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea.
- BioInformatics Research Center, KAIST, Daejeon, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Tu KJ, Diplas BH, Regal JA, Waitkus MS, Pirozzi CJ, Reitman ZJ. Mining cancer genomes for change-of-metabolic-function mutations. Commun Biol 2023; 6:1143. [PMID: 37950065 PMCID: PMC10638295 DOI: 10.1038/s42003-023-05475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Enzymes with novel functions are needed to enable new organic synthesis techniques. Drawing inspiration from gain-of-function cancer mutations that functionally alter proteins and affect cellular metabolism, we developed METIS (Mutated Enzymes from Tumors In silico Screen). METIS identifies metabolism-altering cancer mutations using mutation recurrence rates and protein structure. We used METIS to screen 298,517 cancer mutations and identify 48 candidate mutations, including those previously identified to alter enzymatic function. Unbiased metabolomic profiling of cells exogenously expressing a candidate mutant (OGDHLp.A400T) supports an altered phenotype that boosts in vitro production of xanthosine, a pharmacologically useful chemical that is currently produced using unsustainable, water-intensive methods. We then applied METIS to 49 million cancer mutations, yielding a refined set of candidates that may impart novel enzymatic functions or contribute to tumor progression. Thus, METIS can be used to identify and catalog potentially-useful cancer mutations for green chemistry and therapeutic applications.
Collapse
Affiliation(s)
- Kevin J Tu
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 21044, USA
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Bill H Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joshua A Regal
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
| | | | | | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Department of Pathology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Biswas S, Das A. A Versatile Step-Growth Polymerization Route to Functional Polyesters from an Activated Diester Monomer. Chemistry 2023; 29:e202203849. [PMID: 36511092 DOI: 10.1002/chem.202203849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
This work describes a versatile and efficient condensation polymerization route to aliphatic polyesters by organo-catalyzed (4-dimethylaminopyridine) transesterification reactions between an activated pentafluorophenyl-diester of adipic acid and structurally different diols. By introducing "monofunctional impurity" or "stoichiometric imbalance," this methodology can afford well-defined end-functionalized polyesters with predictable molecular weights and narrow dispersity under mild conditions without any necessity for the removal of the byproducts to accelerate the polymerization reaction, which remains a major challenge in conventional polyester synthesis with non-activated diesters. Wide substrate scope with structurally different monomers and the synthesis of block copolymers by chain extension following either ring-opening polymerization or controlled radical polymerization have been successfully demonstrated. Some of the polyesters synthesized by this newly introduced approach show high thermal stability, crystallinity, and enzymatic degradation in aqueous environments.
Collapse
Affiliation(s)
- Subhendu Biswas
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
4
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
5
|
Son J, Lim SH, Kim YJ, Lim HJ, Lee JY, Jeong S, Park C, Park SJ. Customized valorization of waste streams by Pseudomonas putida: State-of-the-art, challenges, and future trends. BIORESOURCE TECHNOLOGY 2023; 371:128607. [PMID: 36638894 DOI: 10.1016/j.biortech.2023.128607] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Preventing catastrophic climate events warrants prompt action to delay global warming, which threatens health and food security. In this context, waste management using engineered microbes has emerged as a long-term eco-friendly solution for addressing the global climate crisis and transitioning to clean energy. Notably, Pseudomonas putida can valorize industry-derived synthetic wastes including plastics, oils, food, and agricultural waste into products of interest, and it has been extensively explored for establishing a fully circular bioeconomy through the conversion of waste into bio-based products, including platform chemicals (e.g., cis,cis-muconic and adipic acid) and biopolymers (e.g., medium-chain length polyhydroxyalkanoate). However, the efficiency of waste pretreatment technologies, capability of microbial cell factories, and practicability of synthetic biology tools remain low, posing a challenge to the industrial application of P. putida. The present review discusses the state-of-the-art, challenges, and future prospects for divergent biosynthesis of versatile products from waste-derived feedstocks using P. putida.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jin Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
6
|
Lai J, Huang H, Lin M, Xu Y, Li X, Sun B. Enzyme catalyzes ester bond synthesis and hydrolysis: The key step for sustainable usage of plastics. Front Microbiol 2023; 13:1113705. [PMID: 36713200 PMCID: PMC9878459 DOI: 10.3389/fmicb.2022.1113705] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Petro-plastic wastes cause serious environmental contamination that require effective solutions. Developing alternatives to petro-plastics and exploring feasible degrading methods are two solving routes. Bio-plastics like polyhydroxyalkanoates (PHAs), polylactic acid (PLA), polycaprolactone (PCL), poly (butylene succinate) (PBS), poly (ethylene furanoate) s (PEFs) and poly (ethylene succinate) (PES) have emerged as promising alternatives. Meanwhile, biodegradation plays important roles in recycling plastics (e.g., bio-plastics PHAs, PLA, PCL, PBS, PEFs and PES) and petro-plastics poly (ethylene terephthalate) (PET) and plasticizers in plastics (e.g., phthalate esters, PAEs). All these bio- and petro-materials show structure similarity by connecting monomers through ester bond. Thus, this review focused on bio-plastics and summarized the sequences and structures of the microbial enzymes catalyzing ester-bond synthesis. Most of these synthetic enzymes belonged to α/β-hydrolases with conserved serine catalytic active site and catalyzed the polymerization of monomers by forming ester bond. For enzymatic plastic degradation, enzymes about PHAs, PBS, PCL, PEFs, PES and PET were discussed, and most of the enzymes also belonged to the α/β hydrolases with a catalytic active residue serine, and nucleophilically attacked the ester bond of substrate to generate the cleavage of plastic backbone. Enzymes hydrolysis of the representative plasticizer PAEs were divided into three types (I, II, and III). Type I enzymes hydrolyzed only one ester-bond of PAEs, type II enzymes catalyzed the ester-bond of mono-ester phthalates, and type III enzymes hydrolyzed di-ester bonds of PAEs. Divergences of catalytic mechanisms among these enzymes were still unclear. This review provided references for producing bio-plastics, and degrading or recycling of bio- and petro-plastics from an enzymatic point of view.
Collapse
Affiliation(s)
- Jinghui Lai
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Huiqin Huang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Mengwei Lin
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Yan K, Wang J, Wang Z, Yuan L. Bio-based monomers for amide-containing sustainable polymers. Chem Commun (Camb) 2023; 59:382-400. [PMID: 36524867 DOI: 10.1039/d2cc05161c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The field of sustainable polymers from renewable feedstocks is a fast-reviving field after the decades-long domination of petroleum-based polymers. Amide-containing polymers exhibit a wide range of properties depending on the type of amide (primary, secondary, and tertiary), amide density, and other molecular structural parameters (co-existing groups, molecular weight, and topology). Engineering amide groups into sustainable polymers via the "monomer approach" is an industrially proven strategy, while bio-based monomers are of enormous importance to bridge the gap between renewable sources and amide-containing sustainable polymers (AmSPs). This feature article aims at conceptualizing the monomer-design philosophy behind most of the reported AmSPs and is organized by discussing di-functional monomers for step-growth polymerization, cyclic monomers for ring-opening polymerization and amide-containing monomers for chain-growth polymerization. We also give a perspective on AmSPs with respect to monomer design and performance enhancement.
Collapse
Affiliation(s)
- Kangle Yan
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Jie Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Zhongkai Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| |
Collapse
|
8
|
Maiouf FZ, Boumechhour A, Benadji S, Dermeche L, Mazari T, Lancelot C, Rabia C. Preparation, characterization of mixed-valence antimony-tin phosphomolybdic polyoxometalates and application in the cyclohexanone oxidation in the presence of hydrogen peroxide. CR CHIM 2022. [DOI: 10.5802/crchim.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Saez-Jimenez V, Scrima S, Lambrughi M, Papaleo E, Mapelli V, Engqvist MKM, Olsson L. Directed Evolution of ( R)-2-Hydroxyglutarate Dehydrogenase Improves 2-Oxoadipate Reduction by 2 Orders of Magnitude. ACS Synth Biol 2022; 11:2779-2790. [PMID: 35939387 PMCID: PMC9396657 DOI: 10.1021/acssynbio.2c00162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Pathway engineering is commonly employed to improve the
production
of various metabolites but may incur in bottlenecks due to the low
catalytic activity of a particular reaction step. The reduction of
2-oxoadipate to (R)-2-hydroxyadipate is a key reaction
in metabolic pathways that exploit 2-oxoadipate conversion via α-reduction
to produce adipic acid, an industrially important platform chemical.
Here, we engineered (R)-2-hydroxyglutarate dehydrogenase
from Acidaminococcus fermentans (Hgdh)
with the aim of improving 2-oxoadipate reduction. Using a combination
of computational analysis, saturation mutagenesis, and random mutagenesis,
three mutant variants with a 100-fold higher catalytic efficiency
were obtained. As revealed by rational analysis of the mutations found
in the variants, this improvement could be ascribed to a general synergistic
effect where mutation A206V played a key role since it boosted the
enzyme’s activity by 4.8-fold. The Hgdh variants with increased
activity toward 2-oxoadipate generated within this study pave the
way for the bio-based production of adipic acid.
Collapse
Affiliation(s)
- Veronica Saez-Jimenez
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Simone Scrima
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Valeria Mapelli
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Martin K M Engqvist
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
10
|
Vy Tran A, Park S, Jin Lee H, Yong Kim T, Kim Y, Suh Y, Lee K, Jin Kim Y, Baek J. Efficient Production of Adipic Acid by a Two-Step Catalytic Reaction of Biomass-Derived 2,5-Furandicarboxylic Acid. CHEMSUSCHEM 2022; 15:e202200375. [PMID: 35293137 PMCID: PMC9323459 DOI: 10.1002/cssc.202200375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Efficient catalytic ring-opening coupled with hydrogenation is a promising but challenging reaction for producing adipic acid (AA) from 2,5-furan dicarboxylic acid (FDCA). In this study, AA synthesis is carried out in two steps from FDCA via tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) over a recyclable Ru/Al2 O3 and an ionic liquid, [MIM(CH2 )4 SO3 H]I (MIM=methylimidazolium) to deliver 99 % overall yield of AA. Ru/Al2 O3 is found to be an efficient catalyst for hydrogenation and hydrogenolysis of FDCA to deliver THFDCA and 2-hydroxyadipic acid (HAA), respectively, where ruthenium is more economically viable than well-known palladium or rhodium hydrogenation catalysts. H2 chemisorption shows that the alumina phase strongly affects the interaction between Ru nanoparticles (NPs) and supports, resulting in materials with high dispersion and small size of Ru NPs, which in turn are responsible for the high conversion of FDCA. An ionic liquid system, [MIM(CH2 )4 SO3 H]I is applied to the hydrogenolysis of THFDCA for AA production. The [MIM(CH2 )4 SO3 H]I exhibits superior activity, enables simple product isolation with high purity, and reduces the severe corrosion problems caused by the conventional hydroiodic acid catalytic system.
Collapse
Affiliation(s)
- Anh Vy Tran
- Green and Sustainable Materials R&D DepartmentKorea Institute of Industrial Technology (KITECH)89 Yangdeagiro-gilIpjang-myeonCheonan-si 31056Republic of Korea
| | - Seok‐Kyu Park
- Department of Chemical and Biological EngineeringKorea University145 Anam-ro, Seongbuk-guSeoul02841Republic of Korea
| | - Hye Jin Lee
- Green and Sustainable Materials R&D DepartmentKorea Institute of Industrial Technology (KITECH)89 Yangdeagiro-gilIpjang-myeonCheonan-si 31056Republic of Korea
| | - Tae Yong Kim
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam-ro, Nam-guPohangGyeongbuk 37673Republic of Korea
| | - Younhwa Kim
- School of Chemical and Biological EngineeringSeoul National UniversityGwanak-ro, Gwanak-guSeoul08826Republic of Korea
| | - Young‐Woong Suh
- Department of Chemical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Kwan‐Young Lee
- Department of Chemical and Biological EngineeringKorea University145 Anam-ro, Seongbuk-guSeoul02841Republic of Korea
| | - Yong Jin Kim
- Green and Sustainable Materials R&D DepartmentKorea Institute of Industrial Technology (KITECH)89 Yangdeagiro-gilIpjang-myeonCheonan-si 31056Republic of Korea
- Department of Green Process and System EngineeringUniversity of Science and Technology (UST)217 Gajeong-ro, Yuseong-guDaejeon-si34113Republic of Korea
| | - Jayeon Baek
- Green and Sustainable Materials R&D DepartmentKorea Institute of Industrial Technology (KITECH)89 Yangdeagiro-gilIpjang-myeonCheonan-si 31056Republic of Korea
| |
Collapse
|
11
|
Abstract
Large-scale worldwide production of plastics requires the use of large quantities of fossil fuels, leading to a negative impact on the environment. If the production of plastic continues to increase at the current rate, the industry will account for one fifth of global oil use by 2050. Bioplastics currently represent less than one percent of total plastic produced, but they are expected to increase in the coming years, due to rising demand. The usage of bioplastics would allow the dependence on fossil fuels to be reduced and could represent an opportunity to add some interesting functionalities to the materials. Moreover, the plastics derived from bio-based resources are more carbon-neutral and their manufacture generates a lower amount of greenhouse gasses. The substitution of conventional plastic with renewable plastic will therefore promote a more sustainable economy, society, and environment. Consequently, more and more studies have been focusing on the production of interesting bio-based building blocks for bioplastics. However, a coherent review of the contribution of fermentation technology to a more sustainable plastic production is yet to be carried out. Here, we present the recent advancement in bioplastic production and describe the possible integration of bio-based monomers as renewable precursors. Representative examples of both published and commercial fermentation processes are discussed.
Collapse
|
12
|
Lang M, Li H. Sustainable Routes for the Synthesis of Renewable Adipic Acid from Biomass Derivatives. CHEMSUSCHEM 2022; 15:e202101531. [PMID: 34716751 DOI: 10.1002/cssc.202101531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Adipic acid (AA) is a key industrial dicarboxylic acid intermediate used in nylon manufacturing. Unfortunately, the traditional process technology is accompanied by serious environmental pollution. Given the growing demand for adipic acid and the desire to reduce its negative impact on the environment, considerable efforts have been devoted to developing more green and friendly routes. This Review is focused on the latest advances in the sustainable preparation of AA from biomass-based platform molecules, including 5-hydroxymethylfufural, glucose, γ-valerolactone, and phenolic compounds, through biocatalysis, chemocatalysis, and the combination of both. Additionally, the development of state-of-the-art catalysts for different catalytic systems systematically is discussed and summarized, as well as their reaction mechanisms. Finally, the prospects for all preparation routes are critically evaluated and key technical challenges in the development of green and sustainable processes for the manufacture of AA are highlighted. It is hoped that the green adipic acid synthesis pathways presented can provide insights and guidance for further research into other industrial processes for the production of nylon precursors in the future.
Collapse
Affiliation(s)
- Man Lang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| |
Collapse
|
13
|
Feng Y, Jia C, Zhao H, Wang K, Wang X. Phase-dependent photocatalytic selective oxidation of cyclohexane over copper vanadates. NEW J CHEM 2022. [DOI: 10.1039/d1nj05677h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three copper vanadates with different crystal phases show different abilities for selective oxidation of cyclohexane.
Collapse
Affiliation(s)
- Yi Feng
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chuanqi Jia
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - He Zhao
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Kang Wang
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xitao Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Applying a ‘Metabolic Funnel’ for Phenol Production in Escherichia coli. FERMENTATION 2021. [DOI: 10.3390/fermentation7040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phenol is an important petrochemical that is conventionally used as a precursor for synthesizing an array of plastics and fine chemicals. As an emerging alternative to its traditional petrochemical production, multiple enzyme pathways have been engineered to date to enable its renewable biosynthesis from biomass feedstocks, each incorporating unique enzyme chemistries and intermediate molecules. Leveraging all three of the unique phenol biosynthesis pathways reported to date, a series of synthetic ‘metabolic funnels’ was engineered, each with the goal of maximizing net precursor assimilation and flux towards phenol via the parallel co-expression of multiple distinct pathways within the same Escherichia coli host. By constructing and evaluating all possible binary and tertiary pathway combinations, one ‘funnel’ was ultimately identified, which supported enhanced phenol production relative to all three individual pathways by 16 to 69%. Further host engineering to increase endogenous precursor availability then allowed for 26% greater phenol production, reaching a final titer of 554 ± 19 mg/L and 28.8 ± 0.34 mg/g yield on glucose. Lastly, using a diphasic culture including dibutyl phthalate for in situ phenol extraction, final titers were further increased to a maximum of 812 ± 145 mg/L at a yield of 40.6 ± 7.2 mg/g. The demonstrated ‘funneling’ pathway holds similar promise in support of phenol production by other, non-E. coli hosts, while this general approach can be readily extended towards a diversity of other value-added bioproducts of interest.
Collapse
|
15
|
Hanson KG, Lin CH, Abu-Omar MM. Preparation and properties of renewable polyesters based on lignin-derived bisphenol. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Shin JH, Andersen AJC, Achterberg P, Olsson L. Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid. Microb Cell Fact 2021; 20:155. [PMID: 34348702 PMCID: PMC8336102 DOI: 10.1186/s12934-021-01647-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Adipic acid, a six-carbon platform chemical mainly used in nylon production, can be produced via reverse β-oxidation in microbial systems. The advantages posed by Corynebacterium glutamicum as a model cell factory for implementing the pathway include: (1) availability of genetic tools, (2) excretion of succinate and acetate when the TCA cycle becomes overflown, (3) initiation of biosynthesis with succinyl-CoA and acetyl-CoA, and (4) established succinic acid production. Here, we implemented the reverse β-oxidation pathway in C. glutamicum and assessed its functionality for adipic acid biosynthesis. RESULTS To obtain a non-decarboxylative condensation product of acetyl-CoA and succinyl-CoA, and to subsequently remove CoA from the condensation product, we introduced heterologous 3-oxoadipyl-CoA thiolase and acyl-CoA thioesterase into C. glutamicum. No 3-oxoadipic acid could be detected in the cultivation broth, possibly due to its endogenous catabolism. To successfully biosynthesize and secrete 3-hydroxyadipic acid, 3-hydroxyadipyl-CoA dehydrogenase was introduced. Addition of 2,3-dehydroadipyl-CoA hydratase led to biosynthesis and excretion of trans-2-hexenedioic acid. Finally, trans-2-enoyl-CoA reductase was inserted to yield 37 µg/L of adipic acid. CONCLUSIONS In the present study, we engineered the reverse β-oxidation pathway in C. glutamicum and assessed its potential for producing adipic acid from glucose as starting material. The presence of adipic acid, albeit small amount, in the cultivation broth indicated that the synthetic genes were expressed and functional. Moreover, 2,3-dehydroadipyl-CoA hydratase and β-ketoadipyl-CoA thiolase were determined as potential target for further improvement of the pathway.
Collapse
Affiliation(s)
- Jae Ho Shin
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Puck Achterberg
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
17
|
Lo TM, Hwang IY, Cho HS, Fedora RE, Chng SH, Choi WJ, Chang MW. Biosynthesis of Commodity Chemicals From Oil Palm Empty Fruit Bunch Lignin. Front Microbiol 2021; 12:663642. [PMID: 33897677 PMCID: PMC8064122 DOI: 10.3389/fmicb.2021.663642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/08/2021] [Indexed: 12/04/2022] Open
Abstract
Lignin is one of the most abundant natural resources that can be exploited for the bioproduction of value-added commodity chemicals. Oil palm empty fruit bunches (OPEFBs), byproducts of palm oil production, are abundant lignocellulosic biomass but largely used for energy and regarded as waste. Pretreatment of OPEFB lignin can yield a mixture of aromatic compounds that can potentially serve as substrates to produce commercially important chemicals. However, separation of the mixture into desired individual substrates is required, which involves expensive steps that undermine the utility of OPEFB lignin. Here, we report successful engineering of microbial hosts that can directly utilize heterogeneous mixtures derived from OPEFB lignin to produce commodity chemicals, adipic acid and levulinic acid. Furthermore, the corresponding bioconversion pathway was placed under a genetic controller to autonomously activate the conversion process as the cells are fed with a depolymerized OPEFB lignin mixture. This study demonstrates a simple, one-pot biosynthesis approach that directly utilizes derivatives of agricultural waste to produce commodity chemicals.
Collapse
Affiliation(s)
- Tat-Ming Lo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - In Young Hwang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Han-Saem Cho
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raissa Eka Fedora
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Si Hui Chng
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Won Jae Choi
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Hao T, Li G, Zhou S, Deng Y. Engineering the Reductive TCA Pathway to Dynamically Regulate the Biosynthesis of Adipic Acid in Escherichia coli. ACS Synth Biol 2021; 10:632-639. [PMID: 33687200 DOI: 10.1021/acssynbio.0c00648] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adipic acid is a versatile aliphatic dicarboxylic acid. It is applied mainly in the polymerization of nylon-6,6, which accounts for 50.8% of the global consumption market of adipic acid. The microbial production of adipic acid avoids the usage of petroleum resources and the emission of harmful nitrogen oxides that are generated by traditional chemical synthetic approaches. However, in the fermentation process, the low theoretical yield and the usage of expensive inducers hinders the large-scale industrial production of adipic acid. To overcome these challenges, we established an oxygen-dependent dynamic regulation (ODDR) system to control the expression of key genes (sucD, pyc, mdh, and frdABCD) that could be induced to enhance the metabolic flux of the reductive TCA pathway under anaerobic conditions. Coupling of the constitutively expressed adipic acid synthetic pathway not only avoids the use of inducers but also increases the theoretical yield by nearly 50%. After the gene combination and operon structure were optimized, the reaction catalyzed by frdABCD was found to be the rate-limiting step. Further optimizing the relative expression levels of sucD, pyc, and frdABCD improved the titer of adipic acid 41.62-fold compared to the control strain Mad1415, demonstrating the superior performance of our ODDR system.
Collapse
Affiliation(s)
- Tingting Hao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
19
|
Hoff B, Plassmeier J, Blankschien M, Letzel AC, Kourtz L, Schröder H, Koch W, Zelder O. Unlocking Nature's Biosynthetic Power-Metabolic Engineering for the Fermentative Production of Chemicals. Angew Chem Int Ed Engl 2021; 60:2258-2278. [PMID: 33026132 DOI: 10.1002/anie.202004248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/08/2020] [Indexed: 01/03/2023]
Abstract
Fermentation as a production method for chemicals is especially attractive, as it is based on cheap renewable raw materials and often exhibits advantages in terms of costs and sustainability. The tremendous development of technology in bioscience has resulted in an exponentially increasing knowledge about biological systems and has become the main driver for innovations in the field of metabolic engineering. Progress in recombinant DNA technology, genomics, and computational methods open new, cheaper, and faster ways to metabolically engineer microorganisms. Existing biosynthetic pathways for natural products, such as vitamins, organic acids, amino acids, or secondary metabolites, can be discovered and optimized efficiently, thereby enabling competitive commercial production processes. Novel biosynthetic routes can now be designed by the rearrangement of nature's unlimited number of enzymes and metabolic pathways in microbial strains. This expands the range of chemicals accessible by biotechnology and has yielded the first commercial products, while new fermentation technologies targeting novel active ingredients, commodity chemicals, and CO2 -fixation methods are on the horizon.
Collapse
Affiliation(s)
- Birgit Hoff
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Jens Plassmeier
- Biomaterials, Conagen, Inc., 15 DeAngelo Drive, 01730, Bedford, MA, USA
| | - Matthew Blankschien
- James R. Randall Research Center, ADM, 1001 North Brush College Road, 62521, Decatur, Il, USA
| | - Anne-Catrin Letzel
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Lauralynn Kourtz
- R&D, Allied Microbiota, 1345 Ave of Americas, 10105, New York, NY, USA
| | - Hartwig Schröder
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Walter Koch
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Oskar Zelder
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| |
Collapse
|
20
|
Li J, Rong L, Zhao Y, Li S, Zhang C, Xiao D, Foo JL, Yu A. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnol Adv 2020; 43:107605. [DOI: 10.1016/j.biotechadv.2020.107605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
|
21
|
Hoff B, Plassmeier J, Blankschien M, Letzel A, Kourtz L, Schröder H, Koch W, Zelder O. Unlocking Nature's Biosynthetic Power—Metabolic Engineering for the Fermentative Production of Chemicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Birgit Hoff
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Jens Plassmeier
- Biomaterials Conagen, Inc. 15 DeAngelo Drive 01730 Bedford, MA USA
| | - Matthew Blankschien
- James R. Randall Research Center ADM 1001 North Brush College Road 62521 Decatur, Il USA
| | - Anne‐Catrin Letzel
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Lauralynn Kourtz
- R&D Allied Microbiota 1345 Ave of Americas 10105 New York, NY USA
| | - Hartwig Schröder
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Walter Koch
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Oskar Zelder
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| |
Collapse
|
22
|
Wang F, Zhao J, Li Q, Yang J, Li R, Min J, Yu X, Zheng GW, Yu HL, Zhai C, Acevedo-Rocha CG, Ma L, Li A. One-pot biocatalytic route from cycloalkanes to α,ω-dicarboxylic acids by designed Escherichia coli consortia. Nat Commun 2020; 11:5035. [PMID: 33028823 PMCID: PMC7542165 DOI: 10.1038/s41467-020-18833-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Aliphatic α,ω‐dicarboxylic acids (DCAs) are a class of useful chemicals that are currently produced by energy-intensive, multistage chemical oxidations that are hazardous to the environment. Therefore, the development of environmentally friendly, safe, neutral routes to DCAs is important. We report an in vivo artificially designed biocatalytic cascade process for biotransformation of cycloalkanes to DCAs. To reduce protein expression burden and redox constraints caused by multi-enzyme expression in a single microbe, the biocatalytic pathway is divided into three basic Escherichia coli cell modules. The modules possess either redox-neutral or redox-regeneration systems and are combined to form E. coli consortia for use in biotransformations. The designed consortia of E. coli containing the modules efficiently convert cycloalkanes or cycloalkanols to DCAs without addition of exogenous coenzymes. Thus, this developed biocatalytic process provides a promising alternative to the current industrial process for manufacturing DCAs. Aliphatic α,ω-dicarboxylic acids (DCAs) are widely used chemicals that are synthesised by multistage chemical oxidations. Here, the authors report an artificially designed biocatalytic cascade for the oxidation of cycloalkanes or cycloalkanols to DCAs in the form of microbial consortia, composed of three Escherichia coli cell modules.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Qian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Jun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Renjie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Xiaojuan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | | | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China.
| |
Collapse
|
23
|
Yan W, Zhang W, Xia Q, Wang S, Zhang S, Shen J, Jin X. Highly dispersed metal incorporated hexagonal mesoporous silicates for catalytic cyclohexanone oxidation to adipic acid. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Sun L, Gong M, Lv X, Huang Z, Gu Y, Li J, Du G, Liu L. Current advance in biological production of short-chain organic acid. Appl Microbiol Biotechnol 2020; 104:9109-9124. [DOI: 10.1007/s00253-020-10917-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
|
25
|
Suitor JT, Varzandeh S, Wallace S. One-Pot Synthesis of Adipic Acid from Guaiacol in Escherichia coli. ACS Synth Biol 2020; 9:2472-2476. [PMID: 32786923 DOI: 10.1021/acssynbio.0c00254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adipic acid is one of the most important small molecules in the modern chemical industry. However, the damaging environmental impact of the current industrial synthesis of adipic acid has necessitated the development of greener, biobased approaches to its manufacture. Herein we report the first one-pot synthesis of adipic acid from guaiacol, a lignin-derived feedstock, using genetically engineered whole-cells of Escherichia coli. The reaction is mild, efficient, requires no additional additives or reagents, and produces no byproducts. This study demonstrates how modern synthetic biology can be used to valorize abundant feedstocks into industrially relevant small molecules in living cells.
Collapse
Affiliation(s)
- Jack T. Suitor
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| | - Simon Varzandeh
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| | - Stephen Wallace
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| |
Collapse
|
26
|
Saez-Jimenez V, Maršić ŽS, Lambrughi M, Shin JH, van Havere R, Papaleo E, Olsson L, Mapelli V. Structure-function investigation of 3-methylaspartate ammonia lyase reveals substrate molecular determinants for the deamination reaction. PLoS One 2020; 15:e0233467. [PMID: 32437404 PMCID: PMC7241714 DOI: 10.1371/journal.pone.0233467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/05/2020] [Indexed: 12/03/2022] Open
Abstract
The enzymatic reactions leading to the deamination of β-lysine, lysine, or 2-aminoadipic acid are of great interest for the metabolic conversion of lysine to adipic acid. Enzymes able to carry out these reactions are not known, however ammonia lyases (EC 4.3.1.-) perform deamination on a wide range of substrates. We have studied 3-methylaspartate ammonia lyase (MAL, EC 4.3.1.2) as a potential candidate for protein engineering to enable deamination towards β-lysine, that we have shown to be a competitive inhibitor of MAL. We have characterized MAL activity, binding and inhibition properties on six different compounds that would allow to define the molecular determinants necessary for MAL to deaminate our substrate of interest. Docking calculations showed that β-lysine as well as the other compounds investigated could fit spatially into MAL catalytic pocket, although they probably are weak or very transient binders and we identified molecular determinants involved in the binding of the substrate. The hydrophobic interactions formed by the methyl group of 3-methylaspartic acid, together with the presence of the amino group on carbon 2, play an essential role in the appropriate binding of the substrate. The results showed that β-lysine is able to fit and bind in MAL catalytic pocket and can be potentially converted from inhibitor to substrate of MAL upon enzyme engineering. The characterization of the binding and inhibition properties of the substrates tested here provide the foundation for future and more extensive studies on engineering MAL that could lead to a MAL variant able to catalyse this challenging deamination reaction.
Collapse
Affiliation(s)
- Veronica Saez-Jimenez
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Željka Sanader Maršić
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jae Ho Shin
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Robin van Havere
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Valeria Mapelli
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
27
|
Yan W, Zhang G, Wang J, Liu M, Sun Y, Zhou Z, Zhang W, Zhang S, Xu X, Shen J, Jin X. Recent Progress in Adipic Acid Synthesis Over Heterogeneous Catalysts. Front Chem 2020; 8:185. [PMID: 32296677 PMCID: PMC7136574 DOI: 10.3389/fchem.2020.00185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Adipic acid is one of the most important feedstocks for producing resins, nylons, lubricants, plasticizers. Current industrial petrochemical process, producing adipic acid from KA oil, catalyzed by nitric acid, has a serious pollution to the environment, due to the formation of waste nitrous oxide. Hence, developing cleaner methods to produce adipic acid has attracted much attention of both industry and academia. This mini-review article discussed advances on adipic acid synthesis from bio-renewable feedstocks, as well as most recent progress on cleaner technology from fossil fuels over novel catalytic materials. This work on recent advances in green adipic acid production will provide insights and guidance to further study of various other industrial processes for producing nylon precursors.
Collapse
Affiliation(s)
- Wenjuan Yan
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Guangyu Zhang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Yu Sun
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Ziqi Zhou
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Wenxiang Zhang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Shuxia Zhang
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| | - Xiaoqiang Xu
- Oil Production Group#2, Huabei Oil Field Company at PetroChina, Langfang, China
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, Center for Chemical Engineering Experimental Teaching, China University of Petroleum, Qingdao, China
| |
Collapse
|
28
|
Hilmi Ibrahim Z, Bae JH, Lee SH, Sung BH, Ab Rashid AH, Sohn JH. Genetic Manipulation of a Lipolytic Yeast Candida aaseri SH14 Using CRISPR-Cas9 System. Microorganisms 2020; 8:E526. [PMID: 32272579 PMCID: PMC7232369 DOI: 10.3390/microorganisms8040526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 11/22/2022] Open
Abstract
A lipolytic yeast Candida aaseri SH14 that can utilise long-chain fatty acids as the sole carbon source was isolated from oil palm compost. To develop this strain as a platform yeast for the production of bio-based chemicals from renewable plant oils, a genetic manipulation system using CRISPR-Cas9 was developed. Episomal vectors for expression of Cas9 and sgRNA were constructed using an autonomously replicating sequence isolated from C. aaseri SH14. This system guaranteed temporal expression of Cas9 for genetic manipulation and rapid curing of the vector from transformed strains. A β-oxidation mutant was directly constructed by simultaneous disruption of six copies of acyl-CoA oxidases genes (AOX2, AOX4 and AOX5) in diploid cells using a single sgRNA with 70% efficiency and the Cas9 vector was efficiently removed. Blocking of β-oxidation in the triple AOX mutant was confirmed by the accumulation of dodecanedioic acid from dodecane. Targeted integration of the expression cassette for C. aaseri lipase2 was demonstrated with 60% efficiency using this CRISPR-Cas9 system. This genome engineering tool could accelerate industrial application of C. aaseri SH14 for production of bio-based chemicals from renewable oils.
Collapse
Affiliation(s)
- Zool Hilmi Ibrahim
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (Z.H.I.); (J.-H.B.); (S.-H.L.); (B.H.S.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jung-Hoon Bae
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (Z.H.I.); (J.-H.B.); (S.-H.L.); (B.H.S.)
| | - Sun-Hee Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (Z.H.I.); (J.-H.B.); (S.-H.L.); (B.H.S.)
| | - Bong Hyun Sung
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (Z.H.I.); (J.-H.B.); (S.-H.L.); (B.H.S.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Ahmad Hazri Ab Rashid
- Industrial Biotechnology Research Centre, SIRIM Berhad, No.1, Persiaran Dato’ Menteri, Section 2, P.O. Box 7035, 40700 Shah Alam, Malaysia;
| | - Jung-Hoon Sohn
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (Z.H.I.); (J.-H.B.); (S.-H.L.); (B.H.S.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| |
Collapse
|
29
|
Guo X, Wang X, Chen T, Lu Y, Zhang H. Comparing E. coli mono-cultures and co-cultures for biosynthesis of protocatechuic acid and hydroquinone. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Stadler BM, Brandt A, Kux A, Beck H, de Vries JG. Properties of Novel Polyesters Made from Renewable 1,4-Pentanediol. CHEMSUSCHEM 2020; 13:556-563. [PMID: 31794106 PMCID: PMC7027755 DOI: 10.1002/cssc.201902988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Indexed: 05/04/2023]
Abstract
Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil-based 1,4-butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long-chain diacids (>C12 ) were used as the diacid building block. The low melting point of the C12 diacid-based material allows the development of biobased shape-memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature-sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4-pentanediol cannot be regarded as a direct substitute for 1,4-butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.
Collapse
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| | - Adrian Brandt
- Henkel AG & Co. KGaAHenkel-Str. 6740589DüsseldorfGermany
| | - Alexander Kux
- Henkel AG & Co. KGaAHenkel-Str. 6740589DüsseldorfGermany
| | - Horst Beck
- Henkel AG & Co. KGaAHenkel-Str. 6740589DüsseldorfGermany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| |
Collapse
|
31
|
Wong SS, Shu R, Zhang J, Liu H, Yan N. Downstream processing of lignin derived feedstock into end products. Chem Soc Rev 2020; 49:5510-5560. [DOI: 10.1039/d0cs00134a] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides critical analysis on various downstream processes to convert lignin derived feedstock into fuels, chemicals and materials.
Collapse
Affiliation(s)
- Sie Shing Wong
- Joint School of National University of Singapore and Tianjin University
- International Campus of Tianjin University
- Fuzhou 350207
- P. R. China
- Department of Chemical and Biomolecular Engineering
| | - Riyang Shu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- School of Materials and Energy
| | - Jiaguang Zhang
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane
- Lincoln
- UK
| | - Haichao Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University
- International Campus of Tianjin University
- Fuzhou 350207
- P. R. China
- Department of Chemical and Biomolecular Engineering
| |
Collapse
|
32
|
Li G, Huang D, Sui X, Li S, Huang B, Zhang X, Wu H, Deng Y. Advances in microbial production of medium-chain dicarboxylic acids for nylon materials. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00338j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Medium-chain dicarboxylic acids (MDCAs) are widely used in the production of nylon materials, and among which, succinic, glutaric, adipic, pimelic, suberic, azelaic and sebacic acids are particularly important for that purpose.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Dixuan Huang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Xue Sui
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Bing Huang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| |
Collapse
|
33
|
Recent advancements in fungal-derived fuel and chemical production and commercialization. Curr Opin Biotechnol 2019; 57:1-9. [DOI: 10.1016/j.copbio.2018.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
|
34
|
Site-directed mutation to improve the enzymatic activity of 5-carboxy-2-pentenoyl-CoA reductase for enhancing adipic acid biosynthesis. Enzyme Microb Technol 2019; 125:6-12. [DOI: 10.1016/j.enzmictec.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/28/2018] [Accepted: 02/14/2019] [Indexed: 11/23/2022]
|
35
|
Skoog E, Shin JH, Saez-Jimenez V, Mapelli V, Olsson L. Biobased adipic acid – The challenge of developing the production host. Biotechnol Adv 2018; 36:2248-2263. [DOI: 10.1016/j.biotechadv.2018.10.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/27/2018] [Indexed: 11/28/2022]
|
36
|
Kallscheuer N. Engineered Microorganisms for the Production of Food Additives Approved by the European Union-A Systematic Analysis. Front Microbiol 2018; 9:1746. [PMID: 30123195 PMCID: PMC6085563 DOI: 10.3389/fmicb.2018.01746] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023] Open
Abstract
In the 1950s, the idea of a single harmonized list of food additives for the European Union arose. Already in 1962, the E-classification system, a robust food safety system intended to protect consumers from possible food-related risks, was introduced. Initially, it was restricted to colorants, but at later stages also preservatives, antioxidants, emulsifiers, stabilizers, thickeners, gelling agents, sweeteners, and flavorings were included. Currently, the list of substances authorized by the European Food Safety Authority (EFSA) (referred to as "E numbers") comprises 316 natural or artificial substances including small organic molecules, metals, salts, but also more complex compounds such as plant extracts and polymers. Low overall concentrations of such compounds in natural producers due to inherent regulation mechanisms or production processes based on non-regenerative carbon sources led to an increasing interest in establishing more reliable and sustainable production platforms. In this context, microorganisms have received significant attention as alternative sources providing access to these compounds. Scientific advancements in the fields of molecular biology and genetic engineering opened the door toward using engineered microorganisms for overproduction of metabolites of their carbon metabolism such as carboxylic acids and amino acids. In addition, entire pathways, e.g., of plant origin, were functionally introduced into microorganisms, which holds the promise to get access to an even broader range of accessible products. The aim of this review article is to give a systematic overview on current efforts during construction and application of microbial cell factories for the production of food additives listed in the EU "E numbers" catalog. The review is focused on metabolic engineering strategies of industrially relevant production hosts also discussing current bottlenecks in the underlying metabolic pathways and how they can be addressed in the future.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
37
|
Biosynthesis of adipic acid via microaerobic hydrogenation of cis,cis-muconic acid by oxygen-sensitive enoate reductase. J Biotechnol 2018; 280:49-54. [DOI: 10.1016/j.jbiotec.2018.06.304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 12/26/2022]
|
38
|
Zhao M, Huang D, Zhang X, Koffas MA, Zhou J, Deng Y. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metab Eng 2018; 47:254-262. [DOI: 10.1016/j.ymben.2018.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/19/2018] [Accepted: 04/01/2018] [Indexed: 12/25/2022]
|
39
|
Wang S, Bilal M, Zong Y, Hu H, Wang W, Zhang X. Development of a Plasmid-Free Biosynthetic Pathway for Enhanced Muconic Acid Production in Pseudomonas chlororaphis HT66. ACS Synth Biol 2018; 7:1131-1142. [PMID: 29608278 DOI: 10.1021/acssynbio.8b00047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Muconic acid is a platform chemical and an important intermediate in the degradation process of a series of aromatic compounds. Herein, a plasmid-free synthetic pathway in Pseudomonas chlororaphis HT66 is constructed for the enhanced biosynthesis of muconic acid by connecting endogenous ubiquinone biosynthesis pathway with protocatechuate degradation pathway using chromosomal integration. Instead of being plasmid and inducer dependent, the engineered strains could steadily produce the high muconic acid using glycerol as a carbon source. The engineered strain HT66-MA6 achieved a 3376 mg/L muconic acid production with a yield of 187.56 mg/g glycerol via the following strategies: (1) block muconic acid conversion and enhance muconic acid efflux pumping with phenazine biosynthesis cluster; (2) increase the muconic acid precursors supply through overexpressing the rate-limiting step, and (3) coexpress the "3-dehydroshikimate-derived" route in parallel with the "4-hydroxybenzoic acid-derived" route to create a synthetic "metabolic funnel". Finally, on the basis of the glycerol feeding strategies, the muconic acid yield reached 0.122 mol/mol glycerol. The results suggest that the construction of synthetic pathway with a plasmid-free strategy in P. chlororaphis displays a high biotechnological perspective.
Collapse
|
40
|
Averesch NJH, Krömer JO. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds-Present and Future Strain Construction Strategies. Front Bioeng Biotechnol 2018; 6:32. [PMID: 29632862 PMCID: PMC5879953 DOI: 10.3389/fbioe.2018.00032] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/12/2018] [Indexed: 11/25/2022] Open
Abstract
The aromatic nature of shikimate pathway intermediates gives rise to a wealth of potential bio-replacements for commonly fossil fuel-derived aromatics, as well as naturally produced secondary metabolites. Through metabolic engineering, the abundance of certain intermediates may be increased, while draining flux from other branches off the pathway. Often targets for genetic engineering lie beyond the shikimate pathway, altering flux deep in central metabolism. This has been extensively used to develop microbial production systems for a variety of compounds valuable in chemical industry, including aromatic and non-aromatic acids like muconic acid, para-hydroxybenzoic acid, and para-coumaric acid, as well as aminobenzoic acids and aromatic α-amino acids. Further, many natural products and secondary metabolites that are valuable in food- and pharma-industry are formed outgoing from shikimate pathway intermediates. (Re)construction of such routes has been shown by de novo production of resveratrol, reticuline, opioids, and vanillin. In this review, strain construction strategies are compared across organisms and put into perspective with requirements by industry for commercial viability. Focus is put on enhancing flux to and through shikimate pathway, and engineering strategies are assessed in order to provide a guideline for future optimizations.
Collapse
Affiliation(s)
- Nils J H Averesch
- Universities Space Research Association at NASA Ames Research Center, Moffett Field, CA, United States
| | - Jens O Krömer
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
41
|
Thompson B, Pugh S, Machas M, Nielsen DR. Muconic Acid Production via Alternative Pathways and a Synthetic "Metabolic Funnel". ACS Synth Biol 2018; 7:565-575. [PMID: 29053259 DOI: 10.1021/acssynbio.7b00331] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Muconic acid is a promising platform biochemical and precursor to adipic acid, which can be used to synthesize various plastics and polymers. In this study, the systematic construction and comparative evaluation of a modular network of non-natural pathways for muconic acid biosynthesis was investigated in Escherichia coli, including via three distinct and novel pathways proceeding via phenol as a common intermediate. However, poor recombinant activity and high promiscuity of phenol hydroxylase ultimately limited "phenol-dependent" muconic acid production. A fourth pathway proceeding via p-hydroxybenzoate, protocatechuate, and catechol was accordingly developed, though with muconic acid titers by this route reaching just 819 mg/L, its performance lagged behind that of the established, "3-dehydroshikimiate-derived" route. Finally, these two most promising pathways were coexpressed in parallel to create a synthetic "metabolic funnel" that, by enabling maximal net precursor assimilation and flux while preserving native chorismate biosynthesis, nearly doubled muconic acid production to up to >3.1 g/L at a glucose yield of 158 mg/g while introducing only a single auxotrophy. This generalizable, "funneling" strategy is expected to have broad applications in metabolic engineering for further enhancing production of muconic acid, as well as other important bioproducts of interest.
Collapse
Affiliation(s)
- Brian Thompson
- Chemical Engineering, School for Engineering
of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Shawn Pugh
- Chemical Engineering, School for Engineering
of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael Machas
- Chemical Engineering, School for Engineering
of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering
of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
42
|
Averesch NJH, Martínez VS, Nielsen LK, Krömer JO. Toward Synthetic Biology Strategies for Adipic Acid Production: An in Silico Tool for Combined Thermodynamics and Stoichiometric Analysis of Metabolic Networks. ACS Synth Biol 2018; 7:490-509. [PMID: 29237121 DOI: 10.1021/acssynbio.7b00304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adipic acid, a nylon-6,6 precursor, has recently gained popularity in synthetic biology. Here, 16 different production routes to adipic acid were evaluated using a novel tool for network-embedded thermodynamic analysis of elementary flux modes. The tool distinguishes between thermodynamically feasible and infeasible modes under determined metabolite concentrations, allowing the thermodynamic feasibility of theoretical yields to be assessed. Further, patterns that always caused infeasible flux distributions were identified, which will aid the development of tailored strain design. A review of cellular efflux mechanisms revealed that significant accumulation of extracellular product is only possible if coupled with ATP hydrolysis. A stoichiometric analysis demonstrated that the maximum theoretical product carbon yield heavily depends on the metabolic route, ranging from 32 to 99% on glucose and/or palmitate in Escherichia coli and Saccharomyces cerevisiae metabolic models. Equally important, metabolite concentrations appeared to be thermodynamically restricted in several pathways. Consequently, the number of thermodynamically feasible flux distributions was reduced, in some cases even rendering whole pathways infeasible, highlighting the importance of pathway choice. Only routes based on the shikimate pathway were thermodynamically favorable over a large concentration and pH range. The low pH capability of S. cerevisiae shifted the thermodynamic equilibrium of some pathways toward product formation. One identified infeasible-pattern revealed that the reversibility of the mitochondrial malate dehydrogenase contradicted the current state of knowledge, which imposes a major restriction on the metabolism of S. cerevisiae. Finally, the evaluation of industrially relevant constraints revealed that two shikimate pathway-based routes in E. coli were the most robust.
Collapse
Affiliation(s)
- Nils J. H. Averesch
- Centre
for Microbial Electrochemical Systems (CEMES), Advanced Water Management
Centre (AWMC), The University of Queensland, Brisbane 4072, Australia
- Universities Space Research Association at NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Verónica S. Martínez
- Systems
and Synthetic Biology Group, Australian Institute for Bioengineering
and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
- ARC
Training Centre for Biopharmaceutical Innovation (CBI), Australian
Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
| | - Lars K. Nielsen
- Systems
and Synthetic Biology Group, Australian Institute for Bioengineering
and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
- DTU
BIOSUSTAIN, Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Jens O. Krömer
- Centre
for Microbial Electrochemical Systems (CEMES), Advanced Water Management
Centre (AWMC), The University of Queensland, Brisbane 4072, Australia
- Department
for Solar Materials, Helmholtz Centre of Environmental Research−UFZ, 04318 Leipzig, Germany
| |
Collapse
|
43
|
Tomaszewska J, Bieliński D, Binczarski M, Berlowska J, Dziugan P, Piotrowski J, Stanishevsky A, Witońska IA. Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Adv 2018; 8:3161-3177. [PMID: 35541165 PMCID: PMC9077669 DOI: 10.1039/c7ra12782k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/03/2018] [Indexed: 01/14/2023] Open
Abstract
This paper presents an overview of alternative uses for products of sugar beet processing, especially sucrose, as chemical raw materials for the production of biodegradable polymers. Traditionally, sucrose has not been considered as a chemical raw material, because of its use in the food industry and high sugar prices. Beet pulp and beetroot leaves have also not been considered as raw materials for chemical production processes until recently. However, current changes in the European sugar market could lead to falling demand and overproduction of sucrose. Increases in the production of white sugar will also increase the production of waste biomass, as a result of the processing of larger quantities of sugar beet. This creates an opportunity for the development of new chemical technologies based on the use of products of sugar beet processing as raw materials. Promising methods for producing functionalized materials include the acidic hydrolysis of sugars (sucrose, biomass polysaccharides), the catalytic dehydration of monosaccharides to HMF followed by catalytic oxidation of HMF to FDCA and polymerization to biodegradable polymers. The technologies reviewed in this article will be of interest both to industry and science.
Collapse
Affiliation(s)
- J Tomaszewska
- Institute of General and Ecological Chemistry, Lodz University of Technology 116 Zeromskiego Street Lodz 90-924 Poland +48 42 631 30 94
| | - D Bieliński
- Institute of Polymer & Dye Technology, Lodz University of Technology 12/16 Stefanowskiego Street Lodz 90-924 Poland
| | - M Binczarski
- Institute of General and Ecological Chemistry, Lodz University of Technology 116 Zeromskiego Street Lodz 90-924 Poland +48 42 631 30 94
| | - J Berlowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology 171/173 Wolczanska Street Lodz 90-924 Poland
| | - P Dziugan
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology 171/173 Wolczanska Street Lodz 90-924 Poland
| | - J Piotrowski
- National Sugar Company S.A. 12 John Paul II Avenue Warsaw 00-001 Poland
| | - A Stanishevsky
- Department of Physics, University of Alabama at Birmingham Birmingham AL 35294 USA
| | - I A Witońska
- Institute of General and Ecological Chemistry, Lodz University of Technology 116 Zeromskiego Street Lodz 90-924 Poland +48 42 631 30 94
| |
Collapse
|
44
|
Wang J, Yang Y, Zhang R, Shen X, Chen Z, Wang J, Yuan Q, Yan Y. Microbial production of branched-chain dicarboxylate 2-methylsuccinic acid via enoate reductase-mediated bioreduction. Metab Eng 2018; 45:1-10. [DOI: 10.1016/j.ymben.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 12/23/2022]
|
45
|
Kawasaki Y, Aniruddha N, Minakawa H, Masuo S, Kaneko T, Takaya N. Novel polycondensed biopolyamide generated from biomass-derived 4-aminohydrocinnamic acid. Appl Microbiol Biotechnol 2017; 102:631-639. [PMID: 29150705 DOI: 10.1007/s00253-017-8617-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023]
Abstract
Biomass plastics are expected to contribute to the establishment of a carbon-neutral society by replacing conventional plastics derived from petroleum. The biomass-derived aromatic amine 4-aminocinnamic acid (4ACA) produced by recombinant bacteria is applied to the synthesis of high-performance biopolymers such as polyamides and polyimides. Here, we developed a microbial catalyst that hydrogenates the α,β-unsaturated carboxylic acid of 4ACA to generate 4-aminohydrocinnamic acid (4AHCA). The ability of 10 microbial genes for enoate and xenobiotic reductases expressed in Escherichia coli to convert 4ACA to 4AHCA was assessed. A strain producing 2-enoate reductase from Clostridium acetobutylicum (ca2ENR) reduced 4ACA to 4AHCA with a yield of > 95% mol mol-1 and reaction rates of 3.4 ± 0.4 and 4.4 ± 0.6 mM h-1 OD600-1 at the optimum pH of 7.0 under aerobic and anaerobic conditions, respectively. This recombinant strain reduced caffeic, cinnamic, coumaric, and 4-nitrocinnamic acids to their corresponding propanoic acid derivatives. We polycondensed 4AHCA generated from biomass-derived 4ACA by dehydration under a catalyst to form high-molecular-weight poly(4AHCA) with a molecular weight of M n = 1.94 MDa. This polyamide had high thermal properties as indicated by a 10% reduction in weight at a temperature of T d10 = 394 °C and a glass transition temperature of T g = 240 °C. Poly(4AHCA) derived from biomass is stable at high temperatures and could be applicable to the production of high-performance engineering plastics.
Collapse
Affiliation(s)
- Yukie Kawasaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Nag Aniruddha
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Hajime Minakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
46
|
Zhang X, Fevre M, Jones GO, Waymouth RM. Catalysis as an Enabling Science for Sustainable Polymers. Chem Rev 2017; 118:839-885. [DOI: 10.1021/acs.chemrev.7b00329] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangyi Zhang
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Mareva Fevre
- IBM Research−Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Gavin O. Jones
- IBM Research−Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Robert M. Waymouth
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
47
|
Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks. Metab Eng 2017; 42:33-42. [PMID: 28550000 DOI: 10.1016/j.ymben.2017.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 12/30/2022]
Abstract
β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, but can also be involved in the utilization of aromatic compounds, amino acids and dicarboxylic acids. Each enzymatic step of a typical β-oxidation cycle is reversible, offering the possibility to also take advantage of reversed metabolic pathways for applied purposes. In such cases, 3-oxoacyl-CoA thiolases, which catalyze the final chain-shortening step in the catabolic direction, mediate the condensation of an acyl-CoA starter molecule with acetyl-CoA in the anabolic direction. Subsequently, the carbonyl-group at C3 is stepwise reduced and dehydrated yielding a chain-elongated product. In the last years, several β-oxidation pathways have been studied in detail and reversal of these pathways already proved to be a promising strategy for the production of chemicals and polymer building blocks in several industrially relevant microorganisms. This review covers recent advancements in this field and discusses constraints and bottlenecks of this metabolic strategy in comparison to alternative production pathways.
Collapse
|
48
|
Metabolic engineering strategies to bio-adipic acid production. Curr Opin Biotechnol 2017; 45:136-143. [PMID: 28365404 DOI: 10.1016/j.copbio.2017.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 11/21/2022]
Abstract
Adipic acid is the most industrially important dicarboxylic acid as it is a key monomer in the synthesis of nylon. Today, adipic acid is obtained via a chemical process that relies on petrochemical precursors and releases large quantities of greenhouse gases. In the last two years, significant progress has been made in engineering microbes for the production of adipic acid and its immediate precursors, muconic acid and glucaric acid. Not only have the microbial substrates expanded beyond glucose and glycerol to include lignin monomers and hemicellulose components, but the number of microbial chassis now goes further than Escherichia coli and Saccharomyces cerevisiae to include microbes proficient in aromatic degradation, cellulose secretion and degradation of multiple carbon sources. Here, we review the metabolic engineering and nascent protein engineering strategies undertaken in each of these chassis to convert different feedstocks to adipic, muconic and glucaric acid. We also highlight near term prospects and challenges for each of the metabolic routes discussed.
Collapse
|
49
|
Joo JC, Khusnutdinova AN, Flick R, Kim T, Bornscheuer UT, Yakunin AF, Mahadevan R. Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid. Chem Sci 2017; 8:1406-1413. [PMID: 28616142 PMCID: PMC5460604 DOI: 10.1039/c6sc02842j] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/08/2016] [Indexed: 12/26/2022] Open
Abstract
Adipic acid, a precursor for Nylon-6,6 polymer, is one of the most important commodity chemicals, which is currently produced from petroleum. The biosynthesis of adipic acid from glucose still remains challenging due to the absence of biocatalysts required for the hydrogenation of unsaturated six-carbon dicarboxylic acids to adipic acid. Here, we demonstrate the first enzymatic hydrogenation of 2-hexenedioic acid and muconic acid to adipic acid using enoate reductases (ERs). ERs can hydrogenate 2-hexenedioic acid and muconic acid producing adipic acid with a high conversion rate and yield in vivo and in vitro. Purified ERs exhibit a broad substrate spectrum including aromatic and aliphatic 2-enoates and a significant oxygen tolerance. The discovery of the hydrogenation activity of ERs contributes to an understanding of the catalytic mechanism of these poorly characterized enzymes and enables the environmentally benign biosynthesis of adipic acid and other chemicals from renewable resources.
Collapse
Affiliation(s)
- Jeong Chan Joo
- Center for Bio-based Chemistry , Division of Convergence Chemistry , Korea Research Institute of Chemical Technology , 141 Gajeong-ro, Yuseong-gu , Daejeon 34114 , Republic of Korea .
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Taeho Kim
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Uwe T Bornscheuer
- Institute of Biochemistry , Department of Biotechnology & Enzyme Catalysis , Greifswald University , Felix-Hausdorff-Strasse 4 , 17487 Greifswald , Germany
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , 200 College Street , ON M5S 3E5 , Canada . ;
| |
Collapse
|
50
|
Jiang Y, Loos K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers (Basel) 2016; 8:E243. [PMID: 30974520 PMCID: PMC6432488 DOI: 10.3390/polym8070243] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 11/17/2022] Open
Abstract
Nowadays, "green" is a hot topic almost everywhere, from retailers to universities to industries; and achieving a green status has become a universal aim. However, polymers are commonly considered not to be "green", being associated with massive energy consumption and severe pollution problems (for example, the "Plastic Soup") as a public stereotype. To achieve green polymers, three elements should be entailed: (1) green raw materials, catalysts and solvents; (2) eco-friendly synthesis processes; and (3) sustainable polymers with a low carbon footprint, for example, (bio)degradable polymers or polymers which can be recycled or disposed with a gentle environmental impact. By utilizing biobased monomers in enzymatic polymerizations, many advantageous green aspects can be fulfilled. For example, biobased monomers and enzyme catalysts are renewable materials that are derived from biomass feedstocks; enzymatic polymerizations are clean and energy saving processes; and no toxic residuals contaminate the final products. Therefore, synthesis of renewable polymers via enzymatic polymerizations of biobased monomers provides an opportunity for achieving green polymers and a future sustainable polymer industry, which will eventually play an essential role for realizing and maintaining a biobased and sustainable society.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
| | - Katja Loos
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
| |
Collapse
|