1
|
Schuenck Knupp M, Rodrigues Adão Malafaia C, Homobono Brito de Moura P, Guimarães Freire DM, Wanderley Tinoco L, Corrêa Pinto S, Frazão Muzitano M, Correa Ramos Leal I. Preparation of esculin acetates through transesterification reaction catalyzed by Novozyme 435 ® and their Purification followed by NMR characterization. Prep Biochem Biotechnol 2024:1-11. [PMID: 39482901 DOI: 10.1080/10826068.2024.2415961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In this study, biocatalytic transesterification reaction using Novozyme 435® (N435) lipase was employed to enhance the hydrophobicity of esculin, aiming to improve its solubility for commercial applications and enhance its bioactivity and oral viability. The acylation reaction of esculin with vinyl acetate was conducted at 60 °C and 200 rpm for 24 h. After chromatographic and spectroscopic analysis, two products were identified: the first one was monoacylated at the 6'-OH position of the glucosyl moiety of esculin (TR: 10.3 min and m/z 382.93 [M + H]+), and the second one was diacylated at the 6'-OH and 3'-OH positions (TR: 13.0 min and m/z 424.93 [M + H]+). The latter was the major product, with a conversion rate of 53.550 ± 0.368%, while the monoacetylated one showed 8.715 ± 0.064%. Both products were isolated by high-speed counter-current chromatography (HSCCC) using a two-phase system HEMWat 1:9:1:9 and characterized by NMR. In this way, these results improve the practical application of esculin, through the obtention of esculin mono and diacetates by fast and efficient biocatalysis reaction.
Collapse
Affiliation(s)
- Maryna Schuenck Knupp
- Laboratório de Produtos Bioativos (LPBio), Instituto de Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro- Campus Macaé, Macaé, RJ, Brazil
| | - Camila Rodrigues Adão Malafaia
- Laboratório de Produtos Naturais e Ensaios Biológicos (LaProNEB), Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro-RJ, Brazil
| | - Patrícia Homobono Brito de Moura
- Laboratório de Produtos Naturais e Ensaios Biológicos (LaProNEB), Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro-RJ, Brazil
| | - Denise Maria Guimarães Freire
- Laboratório de Biotecnologia Microbiana, Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro-RJ, Brazil
| | - Luzineide Wanderley Tinoco
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro-RJ, Brazil
| | - Shaft Corrêa Pinto
- Laboratório de Produtos Bioativos (LPBio), Instituto de Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro- Campus Macaé, Macaé, RJ, Brazil
| | - Michelle Frazão Muzitano
- Laboratório de Produtos Bioativos (LPBio), Instituto de Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro- Campus Macaé, Macaé, RJ, Brazil
| | - Ivana Correa Ramos Leal
- Laboratório de Produtos Naturais e Ensaios Biológicos (LaProNEB), Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro-RJ, Brazil
| |
Collapse
|
2
|
Papanikolaou A, Chatzikonstantinou AV, Fotiadou R, Tsakni A, Houhoula D, Polydera AC, Pavlidis IV, Stamatis H. A Study on the Regioselective Acetylation of Flavonoid Aglycons Catalyzed by Immobilized Lipases. Biomolecules 2024; 14:897. [PMID: 39199285 PMCID: PMC11352720 DOI: 10.3390/biom14080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to explore the capacity of immobilized lipases on the acetylation of six aglycon flavonoids, namely myricetin, quercetin, luteolin, naringenin, fisetin and morin. For this purpose, lipase B from Candida antarctica (CaLB) and lipase from Thermomyces lanuginosus (TLL) were immobilized onto the surface of ZnOFe nanoparticles derived from an aqueous olive leaf extract. Various factors affecting the conversion of substrates and the formation of monoesterified and diesterified products, such as the amount of biocatalyst and the molar ratio of the substrates and reaction solvents were investigated. Both CaLB and TLL-ZnOFe achieved 100% conversion yield of naringenin to naringenin acetate after 72 h of reaction time, while TLL-ZnOFe achieved higher conversion yields of quercetin, morin and fisetin (73, 85 and 72% respectively). Notably, CaLB-ZnOFe displayed significantly lower conversion yields for morin compared with TLL-ZnOFe. Molecular docking analysis was used to elucidate this discrepancy, and it was revealed that the position of the hydroxyl groups of the B ring on morin introduced hindrances on the active site of CaLB. Finally, selected flavonoid esters showed significantly higher antimicrobial activity compared with the original compound. This work indicated that these lipase-based nanobiocatalysts can be successfully applied to produce lipophilic derivatives of aglycon flavonoids with improved antimicrobial activity.
Collapse
Affiliation(s)
- Angelos Papanikolaou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Alexandra V. Chatzikonstantinou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Aliki Tsakni
- Department of Food Science and Technology, University of West Attica, 12243 Athens, Greece; (A.T.); (D.H.)
| | - Dimitra Houhoula
- Department of Food Science and Technology, University of West Attica, 12243 Athens, Greece; (A.T.); (D.H.)
| | - Angeliki C. Polydera
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Ioannis V. Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece;
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| |
Collapse
|
3
|
Arunachalam SS, Chandrasekar V, Belur PD. Synthesis and characterization of 3,4-dihydroxyphenyl acetic acid esters and study of their efficacy in bulk fish oil. Food Chem 2024; 441:138380. [PMID: 38218149 DOI: 10.1016/j.foodchem.2024.138380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Lipophilization of natural antioxidants is a proven strategy to enhance the solubility in bulk oil systems, thereby increasing their efficacy against oxidative degradation. This study aims to synthesize esters of 3,4-dihydroxyphenylacetic acid (3,4-DHPA) using Amberlyst-15 and to study the application of these esters in refined fish oil. Lipophilic esters were synthesized by esterification and transesterification of 3,4-DHPA in various solvent systems. Esters of methanol, butanol and hexanol were obtained with percent conversion of 81.1, 69.3 and 78.8 respectively, and were subjected to molecular characterization and in vitro oxidant assays. The 3,4-DHPA and its methyl ester showed 36% reduction in the TOTOX value over 30 days of storage. The length of the acyl chain in the ester was found to exert a high influence on its efficacy and lipophilicity. This is the first report of 3,4-DHPA and its lipophilic esters studied for enhancing the oxidative stability of fish oil.
Collapse
Affiliation(s)
- Selva Sudha Arunachalam
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | | | - Prasanna D Belur
- Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, India.
| |
Collapse
|
4
|
Zhuang Y, Quan W, Wang X, Cheng Y, Jiao Y. Comprehensive Review of EGCG Modification: Esterification Methods and Their Impacts on Biological Activities. Foods 2024; 13:1232. [PMID: 38672904 PMCID: PMC11048832 DOI: 10.3390/foods13081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Epigallocatechin gallate (EGCG), the key constituent of tea polyphenols, presents challenges in terms of its lipid solubility, stability, and bioavailability because of its polyhydroxy structure. Consequently, structural modifications are imperative to enhance its efficacy. This paper comprehensively reviews the esterification techniques applied to EGCG over the past two decades and their impacts on bioactivities. Both chemical and enzymatic esterification methods involve catalysts, solvents, and hydrophobic groups as critical factors. Although the chemical method is cost-efficient, it poses challenges in purification; on the other hand, the enzymatic approach offers improved selectivity and simplified purification processes. The biological functions of EGCG are inevitably influenced by the structural changes incurred through esterification. The antioxidant capacity of EGCG derivatives can be compromised under certain conditions by reducing hydroxyl groups, while enhancing lipid solubility and stability can strengthen their antiviral, antibacterial, and anticancer properties. Additionally, esterification broadens the utility of EGCG in food applications. This review provides critical insights into developing cost-effective and environmentally sustainable selective esterification methods, as well as emphasizes the elucidation of the bioactive mechanisms of EGCG derivatives to facilitate their widespread adoption in food processing, healthcare products, and pharmaceuticals.
Collapse
Affiliation(s)
- Yingjun Zhuang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; (Y.Z.); (X.W.); (Y.C.)
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Xufeng Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; (Y.Z.); (X.W.); (Y.C.)
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; (Y.Z.); (X.W.); (Y.C.)
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; (Y.Z.); (X.W.); (Y.C.)
| |
Collapse
|
5
|
Chen M, She W, Zhao X, Chen C, Zhu B, Sun Y, Yao Z. Immobilization of Thermomyces lanuginosus lipase in a novel polysaccharide-based hydrogel by a two-step crosslinking method and its use in the lauroylation of α-arbutin. BIORESOUR BIOPROCESS 2024; 11:7. [PMID: 38647918 PMCID: PMC10991105 DOI: 10.1186/s40643-023-00721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/17/2023] [Indexed: 04/25/2024] Open
Abstract
The Thermomyces lanuginosus lipase (TLLs) was successfully immobilized within a novel hydrogel matrix through a two-step crosslinking method. TLLs were initially crosslinked through the Schiff base reaction by oxidized carboxymethyl cellulose (OCMC). The water-soluble OCMC@TLLs complex was subsequently crosslinked by carboxymethyl chitosan (CMCSH) in a microfluidic apparatus to form the CMCHS/OCMC@TLLs microspheres. The CD (Circular Dichroism, CD) and FT-IR (Fourier Transform infrared spectroscopy, FT-IR) spectra demonstrated that the crosslinking of TLLs with OCMC resulted in a less significant impact on their structure compared to that with glutaraldehyde. CMCHS/OCMC@TLLs showed decreased catalytic performance due to the mass transfer resistance, while its thermal stability was greatly improved. The CMCHS/OCMC@TLLs were used to catalyze the lauroylation of arbutin in tetrahydrofuran. After 12 h of reaction under optimal conditions, the yield of 6'-O-lauryl arbutin reached an impressive 92.12%. The prepared 6'-O-lauryl arbutin has high lipophilicity and exhibits similar tyrosinase inhibitory activity and higher antioxidant activity compared to its parent compound.
Collapse
Affiliation(s)
- Ming Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Weina She
- Department of Chemical and Pharmaceutical Engineering, Southeast University Chenxian College, Jiangsu, China
| | - Xin Zhao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Cheng Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Yun Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
6
|
de Figueiredo TZP, Voll FAP, Krieger N, Mitchell DA. Lipase-catalyzed two-step transesterification of diols: estimation of selectivities. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Bernardo LR, Braga ARC. Sakuranetin State of the Art: Physical Properties, Biological Effects, and Biotechnological Trends. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
- Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| |
Collapse
|
8
|
Milivojević A, Ćorović M, Simović M, Banjanac K, Pjanović R, Bezbradica D. Evaluation of in vitro Skin Permeation of Enzymatically Synthesized Phloridzin Acetates from Emulsions and Liposomes Dispersed in Gel. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Milivojević
- Innovation Center of Faculty of Technology and Metallurgy Karnegijeva 4 Belgrade 11000 Serbia
| | - Marija Ćorović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Milica Simović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Katarina Banjanac
- Innovation Center of Faculty of Technology and Metallurgy Karnegijeva 4 Belgrade 11000 Serbia
| | - Rada Pjanović
- Department of Chemical Engineering Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| |
Collapse
|
9
|
Li C, Dai T, Chen J, Chen M, Liang R, Liu C, Du L, McClements DJ. Modification of flavonoids: methods and influences on biological activities. Crit Rev Food Sci Nutr 2022; 63:10637-10658. [PMID: 35687361 DOI: 10.1080/10408398.2022.2083572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flavonoids are important active ingredients in plant-based food, which have many beneficial effects on health. But the low solubility, poor oral bioavailability, and inferior stability of many flavonoids may limit their applications in the food, cosmetics, and pharmaceutical industries. Structural modification can overcome these shortcomings to improve and extend the application of flavonoids. The study of how to modify flavonoids and the influence of various modifications on biological activity have drawn great interest in the current literature. In this review, the working principles and operating conditions of modification methods were summarized along with their potential and limitations in terms of operational safety, cost, and productivity. The influence of various modifications on biological activities and the structure-activity relationships of flavonoids derivatives were discussed and highlighted, which may give guidance for the synthesis of highly effective active agents. In addition, the safety of flavonoids derivatives is reviewed, and future research directions of flavonoid modification research are discussed.
Collapse
Affiliation(s)
- Changhong Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Guangxi Academy of Agricultural Sciences, Agro-food Science and Technology Research Institute, Nanning, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingshun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqing Du
- China Academy of Tropical Agricultural Sciences, South Subtropical Crop Research Institute, Zhanjiang China
| | | |
Collapse
|
10
|
Contente ML, Annunziata F, Cannazza P, Donzella S, Pinna C, Romano D, Tamborini L, Barbosa FG, Molinari F, Pinto A. Biocatalytic Approaches for an Efficient and Sustainable Preparation of Polyphenols and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13669-13681. [PMID: 34762407 DOI: 10.1021/acs.jafc.1c05088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many sectors of industry, such as food, cosmetics, nutraceuticals, and pharmaceuticals, have increased their interest in polyphenols due to their beneficial properties. These molecules are widely found in Nature (plants) and can be obtained through direct extraction from vegetable matrices. Polyphenols introduced through the diet may be metabolized in the human body via different biotransformations leading to compounds having different bioactivities. In this context, enzyme-catalyzed reactions are the most suitable approach to produce modified polyphenols that not only can be studied for their bioactivity but also can be labeled as green, natural products. This review aims to give an overview of the potential of biocatalysis as a powerful tool for the modification of polyphenols to enhance their bioaccessibility, bioavailability, biological activity or modification of their physicochemical properties. The main polyphenol transformations occurring during their metabolism in the human body have been also presented.
Collapse
Affiliation(s)
- Martina Letizia Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Pietro Cannazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Cecilia Pinna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Francisco Geraldo Barbosa
- Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Fortaleza-CE 60455-970, Brazil
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
11
|
Hao L, Zhang M, Li X, Xin X, Lei F, Lai X, Zhao G, Wu H. Highly efficient whole-cell biosynthesis and cytotoxicity of esculin esters. J Biotechnol 2021; 337:46-56. [PMID: 34197823 DOI: 10.1016/j.jbiotec.2021.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Esculin is a polyphenol with multiple bioactivities and poor lipophilicity. Therefore, a whole-cell catalytic strategy for esculin acylation was developed to improve its lipophilicity. A total of 12 strains were tested, among which Pseudomonas stutzeri exhibited the highest catalytic activity and mono-acylated regioselectivity. The conversion reached the highest level of 92.7 % at 24 h under the optimal conditions, when vinyl acetate was used as an acyl donor. The catalytic ability of P. stutzeri remained above 60 % after three cycles. Subsequently, five esculin esters with different lengths of fatty chains were synthesized and structurally identified. Of them, esculin-6'-O-octanoate, esculin-6'-O-laurate, and esculin-6'-O-myristate exhibited cytotoxicity on LO2 cells by inducing apoptosis and necrosis. The cytotoxicity of these three esters may attribute to their membrane-disrupting properties. This study provides a novel whole-cell biocatalytic strategy for the acylation of esculin and insight for application of esculin esters as a food additive or drug.
Collapse
Affiliation(s)
- Lisha Hao
- College of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| | - Mengmeng Zhang
- College of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| | - Xiaofeng Li
- College of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| | - Xuan Xin
- College of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| | - Faling Lei
- College of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| | - Xueneng Lai
- College of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|
12
|
Zhu S, Meng N, Chen S, Li Y. Study of acetylated EGCG synthesis by enzymatic transesterification in organic media. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
13
|
Milivojević A, Ćorović M, Simović M, Banjanac K, Bezbradica D. Flavonoid esters synthesis using novel biocatalytic systems - CAL B immobilized onto LifeTech™ ECR supports. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Puchl’ová E, Szolcsányi P. Scalable Green Approach Toward Fragrant Acetates. Molecules 2020; 25:molecules25143217. [PMID: 32674512 PMCID: PMC7397122 DOI: 10.3390/molecules25143217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
The advantageous properties of ethylene glycol diacetate (EGDA) qualify it as a useful substitute for glycerol triacetate (GTA) for various green applications. We scrutinised the lipase-mediated acetylation of structurally diverse alcohols in neat EGDA furnishing the range of naturally occurring fragrant acetates. We found that such enzymatic system exhibits high reactivity and selectivity towards activated (homo) allylic and non-activated primary/secondary alcohols. This feature was utilised in the scalable multigram synthesis of fragrant (Z)-hex-3-en-1-yl acetate in 70% yield. In addition, the Lipozyme 435/EGDA system was also found to be applicable for the chemo-selective acetylation of (hydroxyalkyl) phenols as well as for the kinetic resolution of chiral secondary alcohols. Lastly, its discrimination power was demonstrated in competitive experiments of equimolar mixtures of two isomeric alcohols. This enabled the practical synthesis of 1-pentyl acetate isolated as a single product in 68% yield from the equimolar mixture of 1-pentanol and 3-pentanol.
Collapse
|
15
|
Yang R, Nie Z, Xu N, Zhao X, Wang Z, Luo H. Significantly Enhanced Synthesis of Aromatic Esters of Arbutin Catalyzed by Immobilized Lipase in Co-solvent Systems. Front Bioeng Biotechnol 2020; 8:273. [PMID: 32363180 PMCID: PMC7180213 DOI: 10.3389/fbioe.2020.00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/16/2020] [Indexed: 11/14/2022] Open
Abstract
Highly efficient and regioselective synthesis of pharmacologically interesting aromatic esters of arbutin catalyzed by immobilized lipase from Penicillium expansum in co-solvent systems was successfully carried out. As compared to tetrahydrofuran solvent, the initial rate and substrate conversion of arbutin vanilylation were markedly enhanced in tetrahydrofuran-isopropyl ether (20%, v/v). Moreover, the effects of three reaction parameters (enzyme amount, temperature and substrate molar ratio of vinyl vanillic acid to arbutin) on 6′-O-vanilloyl-arbutin synthesis were scrutinized and the key process parameters were optimized using response surface methodology (RSM). The experimental data were fitted well to a second order polynomial model by using multiple regression analysis. The best combination of variables was 50°C, 93 U/mL and 11 for the reaction temperature, the enzyme amount and mole ratio of arbutin to vinyl vanilic acid, respectively, and which the reaction rate, substrate conversion and regioselectivity were as high as 8.2 mM/h, 93 and 99%. It was worth noting that a variety of aromatic esters of arbutin were obtained with much higher conversion (93–99%) at these optimal conditions.
Collapse
|
16
|
Thermal Analysis of Nigerian Oil Palm Biomass with Sachet-Water Plastic Wastes for Sustainable Production of Biofuel. Processes (Basel) 2019. [DOI: 10.3390/pr7070475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nigeria, being the world’s largest importer of diesel-powered gen-sets, is expected to invest in bio-fuels in the future. Hence, it is important to examine the thermal properties and synergy of wastes for potential downstream resource utilization. In this study, thermal conversion as a route to reduce the exploding volume of wastes from sachet-water plastic (SWP) and oil palm empty fruit bunch (OPEFB) biomass was studied. Thermogravimetric (TGA) and subsequent differential scanning calorimeter (DSC) was used for the analysis. The effect of heating rate at 20 °C min−1 causes the increase of activation energy of the decomposition in the first-stage across all the blends (0.96 and 16.29 kJ mol−1). A similar phenomenon was seen when the heating rate was increased from 10 to 20 °C min−1 in the second-stage of decomposition. Overall, based on this study on the synergistic effects during the process, it can be deduced that co-pyrolysis can be an effective waste for energy platform.
Collapse
|