1
|
Kavaliers M, Wah DTO, Bishnoi IR, Ossenkopp KP, Choleris E. Disgusted snails, oxytocin, and the avoidance of infection threat. Horm Behav 2023; 155:105424. [PMID: 37678092 DOI: 10.1016/j.yhbeh.2023.105424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Disgust is considered to be a fundamental affective state associated with triggering the behavioral avoidance of infection and parasite/pathogen threat. In humans, and other vertebrates, disgust affects how individuals interact with, and respond to, parasites, pathogens and potentially infected conspecifics and their sensory cues. Here we show that the land snail, Cepaea nemoralis, displays a similar "disgust-like" state eliciting behavioral avoidance responses to the mucus associated cues of infected and potentially infected snails. Brief exposure to the mucus of snails treated with the Gram-negative bacterial endotoxin, lipopolysaccharide (LPS), elicited dose-related behavioral avoidance, including acute antinociceptive responses, similar to those expressed by mammals. In addition, exposure to the mucus cues of LPS treated snails led to a subsequent avoidance of unfamiliar individuals, paralleling the recognition of and avoidance responses exhibited by vertebrates exposed to potential pathogen risk. Further, the avoidance of, and antinociceptive responses to, the mucus of LPS treated snails were attenuated in a dose-related manner by the oxytocin (OT) receptor antagonist, L-368,899. This supports the involvement of OT and OT receptor homologs in the expression of infection avoidance, and consistent with the roles of OT in the modulation of responses to salient social and infection threats by rodents and other vertebrates. These findings with land snails are indicative of evolutionarily conserved disgust-like states associated with OT/OT receptor homolog modulated behavioral avoidance responses to infection and pathogen threat.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada.
| | - Deanne T O Wah
- Department of Psychology, University of Western Ontario, London, Canada
| | - Indra R Bishnoi
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
2
|
Breiner DJ, Whalen MR, Worthington AM. The developmental high wire: Balancing resource investment in immunity and reproduction. Ecol Evol 2022; 12:e8774. [PMID: 35414895 PMCID: PMC8986548 DOI: 10.1002/ece3.8774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
The strategic allocation of resources into immunity poses a unique challenge for individuals, where infection at different stages of development may result in unique trade-offs with concurrent physiological processes or future fitness-enhancing traits. Here, we experimentally induced an immune challenge in female Gryllus firmus crickets to test whether illness at discrete life stages differentially impacts fitness. We injected heat-killed Serratia marcescens bacteria into antepenultimate juveniles, penultimate juveniles, sexually immature adults, and sexually mature adults, and then measured body growth, instar duration, mating rate, viability of stored sperm, egg production, oviposition rate, and egg viability. Immune activation significantly impacted reproductive traits, where females that were immune challenged as adults had decreased mating success and decreased egg viability compared to healthy individuals or females that were immune challenged as juveniles. Although there was no effect of an immune challenge on the other traits measured, the stress of handling resulted in reduced mass gain and smaller adult body size in females from the juvenile treatments, and females in the adult treatments suffered from reduced viability of sperm stored within their spermatheca. In summary, we found that an immune challenge does have negative impacts on reproduction, but also that even minor acute stressors can have significant impacts on fitness-enhancing traits. These findings highlight that the factors affecting fitness can be complex and at times unpredictable, and that the consequences of illness are specific to when during an individual's life an immune challenge is induced.
Collapse
Affiliation(s)
- Daniel J. Breiner
- Department of Biological SciencesCreighton UniversityOmahaNebraskaUSA
| | - Matthew R. Whalen
- Department of Biological SciencesCreighton UniversityOmahaNebraskaUSA
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | |
Collapse
|
3
|
Intersection between parental investment, transgenerational immunity, and termite sociality in the face of disease: a theoretical approach. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03128-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Limberger GM, Esteves KP, Halal LM, Nery LEM, da Fonseca DB. Chronic immune challenge is detrimental to female survival, feeding behavior, and reproduction in the field cricket Gryllus assimilis (Fabricius, 1775). J Comp Physiol B 2022; 192:423-434. [PMID: 35195757 DOI: 10.1007/s00360-022-01431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023]
Abstract
Physiological trade-offs among expensive fitness-related traits, such as reproduction and immunity, are common in life histories of animals. An immune challenge can have different effects on female reproduction mediated by resource allocation and acquisition. In this study, employing a widely used method to challenge the insect immune system (nylon implant), we assessed the effects of mounting a chronic immune response simulating three successive immune assaults on survival and reproduction of mated females of Gryllus assimilis. We also verified feeding behavior following an implantation, which can be important in explaining trade-off dynamics in terms of energy acquisition. For this, three experimental groups were designed (Control, Sham, and Implant) with oviposition rates, egg morphometry, and nymph vigour observed over 3 weeks, at which ovarian mass and unlaid eggs were quantified from remaining individuals. The results showed that chronic implants were detrimental to female survival and reproduction throughout the experiments; Surgical Sham had no effect on survival compared to the control, but did on reproductive aspects such as oviposition rates and hatchling vigour. These negative effects on reproduction in Sham disappeared in the last experimental week, but still strong in the implanted females. Such immune challenge affected the feeding behavior of implanted females by reducing food consumption compared to control after infection, which is probably explained by illness-induced anorexia that takes place to maximize the immune system performance as a part of sickness behavior, exacerbating the adverse effects observed on reproduction (i.e., fewer and smaller eggs, and low vigour of nymphs) and survival.
Collapse
Affiliation(s)
- Guilherme Martins Limberger
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil.
| | | | - Lamia Marques Halal
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | | |
Collapse
|
5
|
Social immunity in the honey bee: do immune-challenged workers enter enforced or self-imposed exile? Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Animals living in large colonies are especially vulnerable to infectious pathogens and may therefore have evolved additional defences. Eusocial insects supplement their physiological immune systems with ‘social immunity’, a set of adaptations that impedes the entrance, establishment, and spread of pathogens in the colony. We here find that honey bee workers (Apis mellifera) that had been experimentally immune-challenged with bacterial lipopolysaccharide (LPS) often exited the hive and subsequently died; some individuals were dragged out by other workers, while others appeared to leave voluntarily. In a second experiment, we found that healthy workers treated with surface chemicals from LPS-treated bees were evicted from the hive more often than controls, indicating that immune-challenged bees produce chemical cues or signals that elicit their eviction. Thirdly, we observed pairs of bees under lab conditions, and found that pairs spent more time apart when one member of the pair had received LPS, relative to controls. Our findings suggest that immune-challenged bees altruistically banish themselves, and that workers evict sick individuals which they identify using olfactory cues, putatively because of (kin) selection to limit the spread of pathogens within colonies.
Significance statement
Just as in humans, animals living in large groups must contend with infectious diseases. Social insects such as honey bees have evolved a range of behavioural and organisational defences against disease, collectively termed ‘social immunity’. Here, we describe experiments in which we introduced immune-stimulated bee workers into hives to study social immunity. We find that bees that were wounded or immune-challenged were more likely to leave the hive—resulting in their death—compared to healthy controls. Some of the bees leaving the hive were ejected by other workers, while some left the hive seemingly by choice: we thus find evidence for both ‘banishment’ of immune-challenged bees and self-imposed exile. Furthermore, using experiments transferring chemical signals between healthy and immune stimulated bees, we establish that the latter are identified for banishment by the chemicals present on their body surface.
Collapse
|
6
|
Mangold CA, Hughes DP. Insect Behavioral Change and the Potential Contributions of Neuroinflammation-A Call for Future Research. Genes (Basel) 2021; 12:465. [PMID: 33805190 PMCID: PMC8064348 DOI: 10.3390/genes12040465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022] Open
Abstract
Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communication on host behavior and reflect on its potential role as an important tool in the "neuro-engineer" toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune communication. We close by identifying opportunities for integrating research in insect innate immunity, glial cell physiology, and neurobiology in the investigation of behavioral manipulation.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - David P. Hughes
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
7
|
Miyashita A, Lee TYM, Adamo SA. High-Stakes Decision-Making by Female Crickets ( Gryllus texensis): When to Trade In Wing Muscles for Eggs. Physiol Biochem Zool 2021; 93:450-465. [PMID: 33147114 DOI: 10.1086/711956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractResource-intensive traits, such as dispersal and reproduction, can be difficult to express simultaneously because of resource limitations. One solution is to switch between resource-intensive behaviors. Such phenotypic plasticity is one strategy that organisms use to funnel resources from one expensive trait to another. In crickets (Gryllus texensis), the development and maintenance of flight muscles reduce resource availability for reproduction, leading to physiological trade-offs between the two traits. Long-winged female G. texensis can histolyze their wing muscles, resulting in increased egg production, but they can then no longer fly. Using a diet that mimics food availability in the field, we found that long-winged females adopted one of the three following strategies: early reproduction, intermediate reproduction, and late reproduction. Some late reproducers maintained their flight capability until the end of their natural life span and laid few eggs. If females lost the ability to fly (i.e., their hind wings are removed), they laid eggs earlier, leading to increased reproductive output. However, other environmental cues (e.g., an increased number of mates, increased oviposition substrate quality, or a bout of dispersal flight) had no effect. Late-reproducing females laid 96% fewer eggs than early reproducers, suggesting that late reproduction exacts a huge fitness cost. Nevertheless, some females maintain their flight muscles to the end of their natural life span in both the lab and the field. We suggest that the ability to fly allows for bet hedging against an environmental catastrophe (e.g., drought or flood). This benefit may help explain the persistence of late-reproducing long-winged females, despite the cost of this choice. As climate change increases drought and flood in Texas, late dispersal may be one factor that helps this species survive in the future. An increased understanding of factors that maintain seemingly low fitness strategies can help us predict the resilience of species under climate change.
Collapse
|
8
|
How insects protect themselves against combined starvation and pathogen challenges, and the implications for reductionism. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110564. [PMID: 33508422 DOI: 10.1016/j.cbpb.2021.110564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/19/2023]
Abstract
An explosion of data has provided detailed information about organisms at the molecular level. For some traits, this information can accurately predict phenotype. However, knowledge of the underlying molecular networks often cannot be used to accurately predict higher order phenomena, such as the response to multiple stressors. This failure raises the question of whether methodological reductionism is sufficient to uncover predictable connections between molecules and phenotype. This question is explored in this paper by examining whether our understanding of the molecular responses to food limitation and pathogens in insects can be used to predict their combined effects. The molecular pathways underlying the response to starvation and pathogen attack in insects demonstrates the complexity of real-world physiological networks. Although known intracellular signaling pathways suggest that food restriction should enhance immune function, a reduction in food availability leads to an increase in some immune components, a decrease in others, and a complex effect on disease resistance in insects such as the caterpillar Manduca sexta. However, our inability to predict the effects of food restriction on disease resistance is likely due to our incomplete knowledge of the intra- and extracellular signaling pathways mediating the response to single or multiple stressors. Moving from molecules to organisms will require novel quantitative, integrative and experimental approaches (e.g. single cell RNAseq). Physiological networks are non-linear, dynamic, highly interconnected and replete with alternative pathways. However, that does not make them impossible to predict, given the appropriate experimental and analytical tools. Such tools are still under development. Therefore, given that molecular data sets are incomplete and analytical tools are still under development, it is premature to conclude that methodological reductionism cannot be used to predict phenotype.
Collapse
|
9
|
McMillan LE, Adamo SA. Friend or foe? Effects of host immune activation on the gut microbiome in the caterpillar Manduca sexta. ACTA ACUST UNITED AC 2020; 223:223/19/jeb226662. [PMID: 33046577 DOI: 10.1242/jeb.226662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/12/2020] [Indexed: 01/04/2023]
Abstract
For many animals, the gut microbiome plays an essential role in immunity and digestion. However, certain animals, such as the caterpillar Manduca sexta, do not have a resident gut microbiome. Although these animals do have bacteria that pass through their gut from their natural environment, the absence of such bacteria does not reduce growth or survival. We hypothesized that M. sexta would sterilize their gut as a protective measure against secondary infection when faced with a gut infection or exposure to heat-killed bacteria in the blood (haemolymph). However, we found that gut sterilization did not occur during either type of immune challenge, i.e. bacterial numbers did not decrease. By examining the pattern of immune-related gene expression, gut pH, live bacterial counts and mass change (as a measure of sickness behaviour), we found evidence for physiological trade-offs between regulating the microbiome and defending against systemic infections. Caterpillars exposed to both gut pathogens and a systemic immune challenge had higher numbers of bacteria in their gut than caterpillars exposed to a single challenge. Following a multivariate analysis of variance, we found that the response patterns following an oral challenge, systemic challenge or dual challenge were unique. Our results suggest that the immune response for each challenge resulted in a different configuration of the immunophysiological network. We hypothesize that these different configurations represent different resolutions of physiological trade-offs based on the immune responses needed to best protect the animal against the present immune challenges.
Collapse
Affiliation(s)
- Laura E McMillan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada, B3H4R2
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada, B3H4R2
| |
Collapse
|
10
|
Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens. J Comp Physiol B 2020; 190:381-390. [PMID: 32529590 DOI: 10.1007/s00360-020-01282-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
When animals are faced with a life-threatening challenge, they mount an organism-wide response (i.e. Plan A). For example, both the stress response (i.e. fight-or-flight) and the immune response recruit molecular resources from other body tissues, and induce physiological changes that optimize the body for defense. However, pathogens and predators often co-occur. Animals that can optimize responses for a dual challenge, i.e. simultaneous predator and pathogen attacks, will have a selective advantage. Responses to a combined predator and pathogen attack have not been well studied, but this paper summarizes the existing literature in insects. The response to dual challenges (i.e. Plan B) results in a suite of physiological changes that are different from either the stress response or the immune response, and is not a simple summation of the two. It is also not a straight-forward trade-off of one response against the other. The response to a dual challenge (i.e. Plan B) appears to resolve physiological trade-offs between the stress and immune responses, and reconfigures both responses to provide the best overall defense. However, the dual response appears to be more costly than either response occurring singly, resulting in greater damage from oxidative stress, reduced growth rate, and increased mortality.
Collapse
|
11
|
Kelly CD, Mc Cabe Leroux J. No evidence of sickness behavior in immune-challenged field crickets. Ecol Evol 2020; 10:6049-6058. [PMID: 32607212 PMCID: PMC7319135 DOI: 10.1002/ece3.6349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 01/05/2023] Open
Abstract
Sickness behavior is a taxonomically widespread coordinated set of behavioral changes that increases shelter-seeking while reducing levels of general activity, as well as food (anorexia) and water (adipsia) consumption, when fighting infection by pathogens and disease. The leading hypothesis explaining such sickness-related shifts in behavior is the energy conservation hypothesis. This hypothesis argues that sick (i.e., immune-challenged) animals reduce energetic expenditure in order have more energy to fuel an immune response, which in some vertebrates, also includes producing an energetically expensive physiological fever. We experimentally tested the hypothesis that an immune challenge with lipopolysaccharide (LPS) will cause Gryllus firmus field crickets to reduce their activity, increase shelter use and avoid foods that interfere with an immune response (i.e., fat) while preferring a diet that fuels an immune response (i.e., protein). We found little evidence of sickness behavior in Gryllus firmus as immune-challenged individuals did not reduce their activity or increase their shelter-seeking. Neither did we observe changes in feeding or drinking behavior nor a preference for protein or avoidance of lipids. Males tended to use shelters less than females but no other behaviors differed between the sexes. The lack of sickness behavior in our study might reflect the fact that invertebrates do not possess energetically expensive physiological fever as part of their immune response. Therefore, there is little reason to conserve energy via reduced activity or increased shelter use when immune-challenged.
Collapse
Affiliation(s)
- Clint D. Kelly
- Département des Sciences biologiquesUniversité du Québec à MontréalMontrealQCCanada
| | - Jules Mc Cabe Leroux
- Département des Sciences biologiquesUniversité du Québec à MontréalMontrealQCCanada
| |
Collapse
|
12
|
Scholnick DA, Winslow AE. The role of fasting on spine regeneration and bacteremia in the purple sea urchin Strongylocentrotus purpuratus. PLoS One 2020; 15:e0228711. [PMID: 32053660 PMCID: PMC7018041 DOI: 10.1371/journal.pone.0228711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 11/18/2022] Open
Abstract
Fasting has been shown to increase longevity and alter immune function in a variety of animals, but little is understood about how reduced caloric intake may impact regeneration and infections in animals that must regularly repair and regenerate tissue in marine environments that contain high levels of bacteria. We examined the possibility that fasting could enhance spine regeneration and reduce bacteremia in the purple sea urchin Strongylocentrotus purpuratus. A small number of spines were removed from urchins and rates of spine regrowth and levels of culturable bacteria from the coelomic fluid were measured for 21 days in fed and fasted urchins. Fasted urchins had higher rates of spine regrowth and lower levels of colony-forming units (CFU) per milliliter of coeolomic fluid. The predominant bacteria in the coelomic fluid was isolated and identified by DNA sequence-based methods as Vibrio cyclitrophicus. After 21 days, fasted and fed urchins were injected with V. cyclitrophicus. Two hours after injection, fed urchins had about 25% more culturable bacteria remaining in their coelomic fluid compared to fasted urchins. We found no evidence that fasting altered coelomic fluid cell number or righting response, indicators of physiologic and behavioral stress in urchins. Our results demonstrate that V. cyclitrophicus is present in purple urchin coelomic fluid, that fasting can increase spine regeneration and that fasted urchins have much lower levels of culturable bacteria in their coelomic fluid than fed urchins. Overall, our data suggests that fasting may ultimately reduce bacteremia and infection in injured or damaged urchins.
Collapse
Affiliation(s)
- David A. Scholnick
- Department of Biology, Pacific University, Forest Grove, Oregon, United States of America
- * E-mail:
| | - Alexandra E. Winslow
- Department of Biology, Pacific University, Forest Grove, Oregon, United States of America
| |
Collapse
|
13
|
Adamo SA, McMillan LE. Listening to your gut: immune challenge to the gut sensitizes body wall nociception in the caterpillar Manduca sexta. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190278. [PMID: 31544611 DOI: 10.1098/rstb.2019.0278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immune-nociceptor connections are found in animals across phyla. Local inflammation and/or damage results in increased nociceptive sensitivity of the affected area. However, in mammals, immune responses far from peripheral nociceptors, such as immune responses in the gut, produce a general increase in peripheral nociceptive sensitivity. This phenomenon has not, to our knowledge, been found in other animal groups. We found that consuming heat-killed pathogens reduced the tactile force needed to induce a defensive strike in the caterpillar Manduca sexta. This increase in the nociceptive sensitivity of the body wall is probably part of the reconfiguration of behaviour and physiology that occurs during an immune response (e.g. sickness behaviour). This increase may help enhance anti-predator behaviour as molecular resources are shifted towards the immune system. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada B3H4R2
| | - Laura E McMillan
- Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada B3H4R2
| |
Collapse
|
14
|
Adamo SA. Turning your victim into a collaborator: exploitation of insect behavioral control systems by parasitic manipulators. CURRENT OPINION IN INSECT SCIENCE 2019; 33:25-29. [PMID: 31358191 DOI: 10.1016/j.cois.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 06/10/2023]
Abstract
Some parasites manipulate host behavior by exploiting the host's behavioral control networks. This review explores two examples of this approach using parasites from opposite ends of the size spectrum, that is, viruses and parasitic insects. The first example explores the use of the gene (egt) by some baculoviruses to deactivate the hormone 20-hydroxyecdysone. Suppressing this chemical signal prevents the expression of behaviors that could reduce viral transmission. The second example explores how a parasitic wasp uses the host's immune/neural communication system to control host behavior. When a host's manipulated behavior requires complex neural coordination, exploitation of host behavioral control systems is likely to be involved. Simpler host behaviors can be induced by damage to host tissues.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
15
|
Miyashita A, Lee TYM, McMillan LE, Easy R, Adamo SA. Immunity for nothing and the eggs for free: Apparent lack of both physiological trade-offs and terminal reproductive investment in female crickets (Gryllus texensis). PLoS One 2019; 14:e0209957. [PMID: 31091239 PMCID: PMC6519836 DOI: 10.1371/journal.pone.0209957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
Should females alter their reproductive strategy when attacked by pathogens? Two hypotheses provide opposite predictions. Terminal reproductive investment theory predicts that reproduction should increase when the risk of death increases. However, physiological trade-offs between reproduction and immune function might be expected to produce a decrease in reproduction during a robust immune response. There is evidence for both hypotheses. We examine whether age determines the effect of an immune challenge on reproductive strategy in long-winged females of the Texas field cricket, Gryllus texensis, when fed an ecologically valid (i.e. limited) diet. The limited diet reduced reproductive output. However, even under resource-limited conditions, immune challenge had no effect on the reproductive output of young or middle-aged females. Both reproductive output and immune function (lysozyme-like activity and phenoloxidase (PO) activity) increased with age, which is contrary to both hypotheses. We hypothesize that PO activity is pleiotropic and represents an investment in both reproduction and immune function. Three proPO genes (identified in a published RNA-seq dataset (transcriptome)) were expressed either in the fat body or the ovaries (supporting the hypothesis that PO is bifunctional). The possible bifunctionality of PO suggests that it may not be an appropriate immune measure for studies on immune/reproductive trade-offs. This study also suggests that the threshold for terminal reproductive investment may not decrease prior to senescence in some species.
Collapse
Affiliation(s)
- Atsushi Miyashita
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Ting Yat Marco Lee
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura E. McMillan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Russell Easy
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Shelley A. Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
16
|
Istas O, Greenhalgh A, Cooper R. The Effects of a Bacterial Endotoxin on Behavior and Sensory-CNS-Motor Circuits in Drosophila melanogaster. INSECTS 2019; 10:insects10040115. [PMID: 31013568 PMCID: PMC6523965 DOI: 10.3390/insects10040115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
The effect of bacterial sepsis on animal behavior and physiology is complex due to direct and indirect actions. The most common form of bacterial sepsis in humans is from gram-negative bacterial strains. The endotoxin (lipopolysaccharide, LPS) and/or associated peptidoglycans from the bacteria are the key agents to induce an immune response, which then produces a cascade of immunological consequences. However, there are direct actions of LPS and associated peptidoglycans on cells which are commonly overlooked. This study showed behavioral and neural changes in larval Drosophila fed commercially obtained LPS from Serratia marcescens. Locomotor behavior was not altered, but feeding behavior increased and responses to sensory tactile stimuli were decreased. In driving a sensory-central nervous system (CNS)-motor neural circuit in in-situ preparations, direct application of commercially obtained LPS initially increased evoked activity and then decreased and even stopped evoked responses in a dose-dependent manner. With acute LPS and associated peptidoglycans exposure (10 min), the depressed neural responses recovered within a few minutes after removal of LPS. Commercially obtained LPS induces a transitory hyperpolarization of the body wall muscles within seconds of exposure and alters activity within the CNS circuit. Thus, LPS and/or associated peptidoglycans have direct effects on body wall muscle without a secondary immune response.
Collapse
Affiliation(s)
- Oscar Istas
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Abigail Greenhalgh
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Robin Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
17
|
Cole EL, Ilieş I, Rosengaus RB. Competing Physiological Demands During Incipient Colony Foundation in a Social Insect: Consequences of Pathogenic Stress. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
McMillan LE, Miller DW, Adamo SA. Eating when ill is risky: immune defense impairs food detoxification in the caterpillar Manduca sexta. ACTA ACUST UNITED AC 2018; 221:jeb.173336. [PMID: 29217626 DOI: 10.1242/jeb.173336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022]
Abstract
Mounting an immune response consumes resources, which should lead to increased feeding. However, activating the immune system reduces feeding (i.e. illness-induced anorexia) in both vertebrates and invertebrates, suggesting that it may be beneficial. We suggest that illness-induced anorexia may be an adaptive response to conflicts between immune defense and food detoxification. We found that activating an immune response in the caterpillar Manduca sexta increased its susceptibility to the toxin permethrin. Conversely, a sublethal dose of permethrin reduced resistance to the bacterium Serratia marcescens, demonstrating a negative interaction between detoxification and immune defense. Immune system activation and toxin challenge each depleted the amount of glutathione in the hemolymph. Increasing glutathione concentration in the hemolymph increased survival for both toxin- and immune+toxin-challenged groups. The results of this rescue experiment suggest that decreased glutathione availability, such as occurs during an immune response, impairs detoxification. We also found that the expression of some detoxification genes were not upregulated during a combined immune-toxin challenge, although they were when animals received a toxin challenge alone. These results suggest that immune defense reduces food detoxification capacity. Illness-induced anorexia may protect animals by decreasing exposure to food toxins when detoxification is impaired.
Collapse
Affiliation(s)
- Laura E McMillan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada, B3H4R2
| | - Dylan W Miller
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada, B3H4R2
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada, B3H4R2
| |
Collapse
|
19
|
Leech T, Sait SM, Bretman A. Sex-specific effects of social isolation on ageing in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2017; 102:12-17. [PMID: 28830760 DOI: 10.1016/j.jinsphys.2017.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Social environments can have a major impact on ageing profiles in many animals. However, such patterns in variation in ageing and their underlying mechanisms are not well understood, particularly because both social contact and isolation can be stressful. Here, we use Drosophila melanogaster fruitflies to examine sex-specific effects of social contact. We kept flies in isolation versus same-sex pairing throughout life, and measured actuarial (lifespan) and functional senescence (declines in climbing ability). To investigate underlying mechanisms, we determined whether an immune stress (wounding) interacted with effects of social contact, and assessed behaviours that could contribute to differences in ageing rates. Pairing reduced lifespan for both sexes, but the effect was greater for males. In contrast, pairing reduced the rate of decline in climbing ability for females, whereas for males, pairing caused more rapid declines with age. Wounding reduced lifespan for both sexes, but doubled the negative effect of pairing on male lifespan. We found no evidence that these effects are driven by behavioural interactions. These findings suggest that males and females are differentially sensitive to social contact, that environmental stressors can impact actuarial and functional senescence differently, and that these effects can interact with environmental stressors, such as immune challenges.
Collapse
Affiliation(s)
- Thomas Leech
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Steven M Sait
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
20
|
Gupta V, Stewart CO, Rund SSC, Monteith K, Vale PF. Costs and benefits of sublethal Drosophila C virus infection. J Evol Biol 2017; 30:1325-1335. [PMID: 28425174 DOI: 10.1111/jeb.13096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/24/2023]
Abstract
Viruses are major evolutionary drivers of insect immune systems. Much of our knowledge of insect immune responses derives from experimental infections using the fruit fly Drosophila melanogaster. Most experiments, however, employ lethal pathogen doses through septic injury, frequently overwhelming host physiology. While this approach has revealed several immune mechanisms, it is less informative about the fitness costs hosts may experience during infection in the wild. Using both systemic and oral infection routes, we find that even apparently benign, sublethal infections with the horizontally transmitted Drosophila C virus (DCV) can cause significant physiological and behavioural morbidity that is relevant for host fitness. We describe DCV-induced effects on fly reproductive output, digestive health and locomotor activity, and we find that viral morbidity varies according to the concentration of pathogen inoculum, host genetic background and sex. Notably, sublethal DCV infection resulted in a significant increase in fly reproduction, but this effect depended on host genotype. We discuss the relevance of sublethal morbidity for Drosophila ecology and evolution, and more broadly, we remark on the implications of deleterious and beneficial infections for the evolution of insect immunity.
Collapse
Affiliation(s)
- V Gupta
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - C O Stewart
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - S S C Rund
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, Scotland
| | - K Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - P F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.,Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
21
|
Murdock CC, Luckhart S, Cator LJ. Immunity, host physiology, and behaviour in infected vectors. CURRENT OPINION IN INSECT SCIENCE 2017; 20:28-33. [PMID: 28602233 PMCID: PMC5584383 DOI: 10.1016/j.cois.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/24/2017] [Accepted: 03/07/2017] [Indexed: 05/24/2023]
Abstract
When infection alters host behaviour such that the pathogen benefits, the behaviour is termed a manipulation. There are several examples of this fascinating phenomenon in many different systems. Vector-borne diseases are no exception. In some instances, as the term implies, pathogens directly interfere with host processes to control behaviour. However, host response to infection and host physiology are likely to play important roles in these phenotypes. We highlight the importance of considering host response and physiology from recent work on altered host-seeking in malaria parasite-infected mosquitoes and argue that this general approach will provide useful insights across vector-borne disease systems.
Collapse
Affiliation(s)
- Courtney C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA; Odum School of Ecology, University of Georgia, 140 E. Green Street, Athens GA 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Drive, Athens GA 30602, USA; Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, 140 E. Green Street, Athens GA 30602, USA; Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens GA 30602, USA; University of Georgia Riverbasin Center, University of Georgia,203 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, University of California, Davis, USA
| | - Lauren J Cator
- Grand Challenges in Ecosystems and Environment, Department of Life Sciences, Silwood Park, Ascot, SL5 7PY, United Kingdom.
| |
Collapse
|
22
|
Kurz CL, Charroux B, Chaduli D, Viallat-Lieutaud A, Royet J. Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition. eLife 2017; 6. [PMID: 28264763 PMCID: PMC5365318 DOI: 10.7554/elife.21937] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/26/2017] [Indexed: 12/15/2022] Open
Abstract
As infectious diseases pose a threat to host integrity, eukaryotes have evolved mechanisms to eliminate pathogens. In addition to develop strategies reducing infection, animals can engage in behaviors that lower the impact of the infection. The molecular mechanisms by which microbes impact host behavior are not well understood. We demonstrate that bacterial infection of Drosophila females reduces oviposition and that peptidoglycan, the component that activates Drosophila antibacterial response, is also the elicitor of this behavioral change. We show that peptidoglycan regulates egg-laying rate by activating NF-κB signaling pathway in octopaminergic neurons and that, a dedicated peptidoglycan degrading enzyme acts in these neurons to buffer this behavioral response. This study shows that a unique ligand and signaling cascade are used in immune cells to mount an immune response and in neurons to control fly behavior following infection. This may represent a case of behavioral immunity. DOI:http://dx.doi.org/10.7554/eLife.21937.001 Bacteria are all around us: they are on our skin, in the food that we eat and inside our bodies, particularly in the gut. While many of these bacteria are harmless and some even help us digest our food, others can make us ill. Upon detecting harmful bacteria, our bodies therefore trigger an immune response intended to destroy them. Some insects – including butterflies, moths and grasshoppers – have an additional way of defending themselves against bacteria besides their immune response. Whenever they detect harmful microorganisms, the insects change their behavior so as to reduce their chances of becoming infected and limit the damage an infection would cause. The insects move away from areas containing harmful bacteria, for example, and temporarily stop eating. But whereas the insects’ immune response to bacteria is well documented, little was known about the mechanisms that underlie these changes in behavior. Kurz, Charroux et al. set out to rectify this using another insect species, the fruit fly Drosophila. Flies that are infected with bacteria lay fewer eggs than healthy flies: a change in behavior that helps protect the offspring from infection. Kurz, Charroux et al. show that fruit flies are able to detect a component of the cell wall that surrounds all bacteria. This substance, known as peptidoglycan, activates a set of neurons in the fly that produce a chemical called octopamine. These neurons in turn activate a signaling pathway featuring a molecule known as NF-κB, and this causes the flies to lay fewer eggs. Notably, peptidoglycan and NF-κB are also the molecules that trigger the anti-bacterial immune response. Fruit flies thus use the same pathway in immune cells and in neurons to trigger immune responses and behavioral changes, respectively. The challenge now is to identify precisely which neurons respond to bacterial peptidoglycan, and to work out how peptidoglycan changes the activity of these cells. Furthermore, studies have recently shown that bacterial peptidoglycan can influence the development of the mouse brain, as well as mouse behavior. This suggests that mechanisms for detecting harmful bacteria may be conserved across evolution, a possibility that requires further investigation. DOI:http://dx.doi.org/10.7554/eLife.21937.002
Collapse
Affiliation(s)
- C Leopold Kurz
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Bernard Charroux
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Delphine Chaduli
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Annelise Viallat-Lieutaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| | - Julien Royet
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Institut de Biologie du Développement de Marseille, Marseille Cedex, France
| |
Collapse
|
23
|
Adelman JS, Hawley DM. Tolerance of infection: A role for animal behavior, potential immune mechanisms, and consequences for parasite transmission. Horm Behav 2017; 88:79-86. [PMID: 27984034 DOI: 10.1016/j.yhbeh.2016.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Infected organisms can resist or tolerate infection, with tolerance of infection defined as minimizing per-parasite reductions in fitness. Although tolerance is well studied in plants, researchers have only begun to probe the mechanisms and transmission consequences of tolerance in animals. Here we suggest that research on tolerance in animals would benefit from explicitly incorporating behavior as a component of tolerance, given the importance of behavior for host fitness and parasite transmission. We propose two distinct manifestations of tolerance in animals: tissue-specific tolerance, which minimizes fitness losses due to tissue damage during infection, and behavioral tolerance, which minimizes fitness losses by maintaining normal, fitness-enhancing behaviors during infection. Here we briefly review one set of potential immune mechanisms underlying both responses in vertebrate animals: inflammation and its associated signaling molecules. Inflammatory responses, including broadly effective resistance mechanisms like the production of reactive oxygen species, can incur severe costs in terms of damage to a host's own tissues, thereby reducing tissue-specific tolerance. In addition, signaling molecules involved in these responses facilitate stereotypical behavioral changes during infection, which include lethargy and anorexia, reducing normal behaviors and behavioral tolerance. We consider how tissue-specific and behavioral tolerance may vary independently or in conjunction and outline potential consequences of such covariation for the transmission of infectious diseases. We put forward the distinction between tissue-specific and behavioral tolerance not as a definitive framework, but to help stimulate and broaden future research by considering animal behavior as intimately linked to the mechanisms and consequences of tolerance in animals.
Collapse
Affiliation(s)
- James S Adelman
- Department of Natural Resource Ecology and Management, Iowa State University, 339 Science Hall II, 2310 Pammel Dr., Ames, IA 50011, United States.
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, 1405 Perry St. Blacksburg, VA 24061, United States.
| |
Collapse
|
24
|
Grécias L, Hébert FO, Berger CS, Barber I, Aubin-Horth N. Can the behaviour of threespine stickleback parasitized with Schistocephalus solidus be replicated by manipulating host physiology? J Exp Biol 2016; 220:237-246. [DOI: 10.1242/jeb.151456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/23/2016] [Indexed: 12/25/2022]
Abstract
Sticklebacks infected by the parasitic flatworm Schistocephalus solidus show dramatic changes in phenotype, including a loss of species-typical behavioural responses to predators. The timing of host behaviour change coincides with the development of infectivity of the parasite to the final host (a piscivorous bird), making it an ideal model for studying the mechanisms of infection-induced behavioural modification. However, whether the loss of host anti-predator behaviour results from direct manipulation by the parasite, or is a by-product (e.g. host immune response) or side-effect of infection (e.g. energetic loss), remains controversial. To understand the physiological mechanisms that generate these behavioural changes, we quantified the behavioural profiles of experimentally infected fish and attempted to replicate these in non-parasitized fish by exposing them to treatments including immunity activation and fasting, or by pharmacologically inhibiting the stress axis. All fish were screened for the following behaviours: activity, water depth preference, sociability, phototaxis, anti-predator response and latency to feed. We were able to change individual behaviours with certain treatments. Our results suggest that the impact of S. solidus on the stickleback might be of a multifactorial nature. The behaviour changes observed in infected fish may be due to the combined effects of modifying the serotonergic axis, the lack of energy, and the activation of the immune system.
Collapse
Affiliation(s)
- Lucie Grécias
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - François-Olivier Hébert
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - Chloé Suzanne Berger
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| | - Iain Barber
- Department of Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| | - Nadia Aubin-Horth
- Département de Biologie et Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, Canada
| |
Collapse
|