1
|
Jiang N, Meng YJ, Pu X, Zhu CY, Tan SH, Xu YH, Zhu YL, Xu JW, Bryce MR. Nonconventional Full-Color Luminescent Polyurethanes: Luminescence Mechanism at the Molecular Orbital Level. ACS MATERIALS LETTERS 2025; 7:24-31. [PMID: 39790738 PMCID: PMC11707742 DOI: 10.1021/acsmaterialslett.4c02100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025]
Abstract
The study of structure-activity relationships is a top priority in the development of nontraditional luminescent materials. In this work, nonconjugated polyurethanes (PUs) with full-color emission (red, green, and blue) are easily obtained by control of the diol monomer structure and the polymerization conditions. Selected diol monomers introduced single, double, or triple bond repeating units into the main chain of the PUs, in order to understand how unsaturated bonds and H-bonds affect their luminescence from a molecular orbital viewpoint. Detailed experimental and theoretical results show that the PUs have different temperature-dependent behaviors related to the interplay of H-bonding, through-space n-π interactions, and aggregation properties. The potential applications of PUs in colorful displays, covert information transmission, and multifunctional bioimaging have been verified. This work provides a new general protocol for the simple preparation of multifunctional nonconventional fluorescent polymers and deepens the understanding of their luminescence mechanisms.
Collapse
Affiliation(s)
- Nan Jiang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Ya-Jie Meng
- Ministry-of-Education
Key Laboratory of Numerical Simulation of Large-Scale Complex System
(NSLSCS) and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xin Pu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, 130012, China
| | - Chang-Yi Zhu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Shu-Han Tan
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Yan-Hong Xu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - You-Liang Zhu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, 130012, China
| | - Jia-Wei Xu
- Ministry-of-Education
Key Laboratory of Numerical Simulation of Large-Scale Complex System
(NSLSCS) and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham, DH1 3LE, U.K.
| |
Collapse
|
2
|
Bahatibieke A, Zhao J, Fan D, Zhou Z, Li J, Wang X, Zhao H, Wang T, Fang Z, Xie Y, Huang C, Xiao C, Zheng Y. Sea-Island Micelle Structured Hydrogel Scaffold: A Dual-Action Approach to Combat Cartilage Damage under RA Conditions. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39746184 DOI: 10.1021/acsami.4c16005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune joint disease characterized by persistent synovial inflammation and cartilage damage. The current clinical treatments primarily utilize drugs such as triptolide (TP) to address inflammation, yet they are unable to directly repair damaged cartilage. Furthermore, the persistent inflammation often undermines the effectiveness of traditional cartilage repair strategies, preventing them from achieving optimal outcomes. To tackle this challenge, this study successfully developed a drug-loaded polyurethane hydrogel-oriented porous scaffold, designed to address persistent inflammation and facilitate cartilage repair under RA conditions. A drug-loaded hydrogel was formed via solvent-induced polyurethane-gelatin, resulting in the scaffold TP@GSPU. The sea-island micelle structure of TP@GSPU enables efficient loading of TP. The release of TP in the in vivo environment regulates the expression of inflammatory factors in macrophages, thereby improving the inflammatory microenvironment within the joint cavity. Additionally, the gelatin component of the scaffold provides robust support for cartilage regeneration. The efficacy of the TP@GSPU in regulating the inflammatory microenvironment and facilitating cartilage repair under RA conditions, which was demonstrated through cartilage damage repair experiments conducted in a rat collagen-induced arthritis (CIA) model. The design scheme of this material offers a potential approach to cartilage repair in the conditions of RA.
Collapse
Affiliation(s)
- Abudureheman Bahatibieke
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianming Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Danping Fan
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Zixiang Zhou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Junfei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xing Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100070, China
| | - Tianyang Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziyuan Fang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Cheng Huang
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Shi Z, Zhang Y, Xiao Y, Shi Z, Wei X, Wang B, Yuan Y, Li P. The protective effects of gastrodin on neurological disorders: an update and future perspectives. Front Pharmacol 2024; 15:1494277. [PMID: 39776583 PMCID: PMC11703667 DOI: 10.3389/fphar.2024.1494277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Neurological disorders are characterized by high mortality and disability rates. Furthermore, the burden associated with disability and mortality resulting from neurological disorders has been increasing at an alarming rate. Botanical drugs and their bioactive components have emerged as a prominent area of research, offering a promising avenue for developing novel alternatives for treating neurological diseases. Gastrodin is the principal active component derived from the traditional Chinese medicinal plant Gastrodia elata Blume (GEB). Existing literature reveals that gastrodin exerts various pharmacological protective actions against neurological disorders. This review aimed to collate novel literature on gastrodin for treating neurological disorders from Web of Science, PubMed, Embase and CNKI. The pharmacokinetics of gastrodin, its therapeutic role in neurological disorders, the main mechanisms of action and clinical application were addressed. Furthermore, a detailed overview of gastrodin drug delivery systems and physical enhancement methods was presented, offering invaluable insights into potential research and the extensive applications of gastrodin.
Collapse
Affiliation(s)
- Zhouying Shi
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yali Zhang
- College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuhua Xiao
- College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhoujing Shi
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaotong Wei
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Bin Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yue Yuan
- College of Nursing, Changchun University of Chinese Medicine, Changchun, China
| | - Ping Li
- College of Nursing, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Azarmgin S, Torabinejad B, Kalantarzadeh R, Garcia H, Velazquez CA, Lopez G, Vazquez M, Rosales G, Heidari BS, Davachi SM. Polyurethanes and Their Biomedical Applications. ACS Biomater Sci Eng 2024; 10:6828-6859. [PMID: 39436687 DOI: 10.1021/acsbiomaterials.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The tunable mechanical properties of polyurethanes (PUs), due to their extensive structural diversity and biocompatibility, have made them promising materials for biomedical applications. Scientists can address PUs' issues with platelet absorption and thrombus formation owing to their modifiable surface. In recent years, PUs have been extensively utilized in biomedical applications because of their chemical stability, biocompatibility, and minimal cytotoxicity. Moreover, addressing challenges related to degradation and recycling has led to a growing focus on the development of biobased polyurethanes as a current focal point. PUs are widely implemented in cardiovascular fields and as implantable materials for internal organs due to their favorable biocompatibility and physicochemical properties. Additionally, they show great potential in bone tissue engineering as injectable grafts or implantable scaffolds. This paper reviews the synthesis methods, physicochemical properties, and degradation pathways of PUs and summarizes recent progress in applying different types of polyurethanes in various biomedical applications, from wound repair to hip replacement. Finally, we discuss the challenges and future directions for the translation of novel polyurethane materials into biomedical applications.
Collapse
Affiliation(s)
- Sepideh Azarmgin
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
| | - Bahman Torabinejad
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
| | - Rooja Kalantarzadeh
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gino Lopez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Marisol Vazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gabriel Rosales
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| |
Collapse
|
5
|
Zivari-Ghader T, Rashidi MR, Mehrali M. Biological macromolecule-based hydrogels with antibacterial and antioxidant activities for wound dressing: A review. Int J Biol Macromol 2024; 279:134578. [PMID: 39122064 DOI: 10.1016/j.ijbiomac.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
6
|
Mani MP, Ponnambalath Mohanadas H, Mohd Faudzi AA, Ismail AF, Tucker N, Mohamaddan S, Ayyar M, Palanisamy T, Rathanasamy R, Jaganathan SK. Characterization and Performance Evaluation of Magnesium Chloride-Enriched Polyurethane Nanofiber Patches for Wound Dressings. Int J Nanomedicine 2024; 19:11129-11141. [PMID: 39502632 PMCID: PMC11537197 DOI: 10.2147/ijn.s460921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/19/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Wound patches are essential for wound healing, yet developing patches with enhanced mechanical and biological properties remains challenging. This study aimed to enhance the mechanical and biological properties of polyurethane (PU) by incorporating magnesium chloride (MgCl2) into the patch. Methodology The composite patch was fabricated using the electrospinning technique, producing nanofibers from a mixture of PU and MgCl2 solutions. The electrospun PU/MgCl2 was then evaluated for various physico-chemical characteristics and biological properties to determine its suitability for wound healing applications. Results Tensile strength testing showed that the mechanical properties of the composite patch (10.98 ± 0.18) were significantly improved compared to pristine PU (6.66 ± 0.44). Field scanning electron microscopy (FESEM) revealed that the electrospun nanofiber patch had a smooth, randomly oriented non-woven structure (PU - 830 ± 145 nm and PU/MgCl2 - 508 ± 151 nm). Fourier infrared spectroscopy (FTIR) confirmed magnesium chloride's presence in the polyurethane matrix via strong hydrogen bond formation. Blood compatibility studies using coagulation assays, including activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolysis assays, demonstrated improved blood compatibility of the composite patch (APTT - 174 ± 0.5 s, PT - 91 ± 0.8s, and Hemolytic percentage - 1.78%) compared to pristine PU (APTT - 152 ± 1.2s, PT - 73 ± 1.7s, and Hemolytic percentage - 2.55%). Antimicrobial testing showed an enhanced zone of inhibition (Staphylococcus aureus - 21.5 ± 0.5 mm and Escherichia coli - 27.5 ± 2.5 mm) compared to the control, while cell viability assays confirmed the non-cytotoxic nature of the developed patches on fibroblast cells. Conclusion The study concludes that adding MgCl2 to PU significantly improves the mechanical, biological, and biocompatibility properties of the patch. This composite patch shows potential for future wound healing applications, with further studies needed to validate its efficacy in-vivo.
Collapse
Affiliation(s)
- Mohan Prasath Mani
- Department of Mechanical Engineering, SNS College of Technology, Coimbatore, TN, India
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, JB, Malaysia
| | | | - Ahmad Athif Mohd Faudzi
- School of Electrical Engineering, Faculty of Engineering, UniversitiTeknologi Malaysia, Skudai, JB, Malaysia
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, SG, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, JB, Malaysia
| | - Nick Tucker
- School of Engineering and Physical Sciences, College of Health and Sciences, University of Lincoln, Lincoln, LS, UK
| | - Shahrol Mohamaddan
- Innovative Global ProgramCollege of Engineering Shibaura Institute of Technology Tokyo, Tokyo, Japan
| | - Manikandan Ayyar
- Department of Chemistry, Centre for Materials Chemistry, Karapagam Acdemy of Higher Education, Coimbatore, TN, India
| | | | - Rajasekar Rathanasamy
- Department of Mechanical Engineering, Kongu Engineering College, Perunduari, TN, India
| | - Saravana Kumar Jaganathan
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
- Biomaterials and Tissue Engineering, School of Engineering and Physical Sciences, College of Health and Sciences, University of Lincoln, Lincoln, LS, UK
| |
Collapse
|
7
|
Dei Rossi G, Vergani LM, Buccino F. A Novel Triad of Bio-Inspired Design, Digital Fabrication, and Bio-Derived Materials for Personalised Bone Repair. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5305. [PMID: 39517582 PMCID: PMC11547793 DOI: 10.3390/ma17215305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The emerging paradigm of personalised bone repair embodies a transformative triad comprising bio-inspired design, digital fabrication, and the exploration of innovative materials. The increasing average age of the population, alongside the rising incidence of fractures associated with age-related conditions such as osteoporosis, necessitates the development of customised, efficient, and minimally invasive treatment modalities as alternatives to conventional methods (e.g., autografts, allografts, Ilizarov distraction, and bone fixators) typically employed to promote bone regeneration. A promising innovative technique involves the use of cellularised scaffolds incorporating mesenchymal stem cells (MSCs). The selection of materials-ranging from metals and ceramics to synthetic or natural bio-derived polymers-combined with a design inspired by natural sources (including bone, corals, algae, shells, silk, and plants) facilitates the replication of geometries, architectures, porosities, biodegradation capabilities, and mechanical properties conducive to physiological bone regeneration. To mimic internal structures and geometries for construct customisation, scaffolds can be designed using Computer-aided Design (CAD) and fabricated via 3D-printing techniques. This approach not only enables precise control over external shapes and internal architectures but also accommodates the use of diverse materials that improve biological performance and provide economic advantages. Finally, advanced numerical models are employed to simulate, analyse, and optimise the complex processes involved in personalised bone regeneration, with computational predictions validated against experimental data and in vivo studies to ascertain the model's ability to predict the recovery of bone shape and function.
Collapse
Affiliation(s)
- Greta Dei Rossi
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
| | - Laura Maria Vergani
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
- IRCCS Orthopedic Institute Galeazzi, Via Cristina Belgioioso 173, 20157 Milan, Italy
| | - Federica Buccino
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
- IRCCS Orthopedic Institute Galeazzi, Via Cristina Belgioioso 173, 20157 Milan, Italy
| |
Collapse
|
8
|
Lv X, Li Z, Zhang Z, Wang H, Song H, Yuan S, Fu X, Li Z. Quaternary Ammonium Salt-Based Intrinsic Antibacterial Polyurethanes: Optimizing the Antibacterial Activity via Cationic Main- or Side-Chain Design in Hard Segments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56862-56873. [PMID: 39397780 DOI: 10.1021/acsami.4c13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Thermoplastic polyurethanes (TPUs) are one of the most appealing materials with extensive applications in biomedical fields due to their versatile mechanical properties and excellent biocompatibility. In response to the escalating challenges of bacterial infections, it is desirable to obtain TPUs with intrinsic antibacterial activity, particularly for application in biomedical devices and public places. Herein, a cationic main-/side-chain structure regulation strategy in the TPU hard segment was adopted to introduce and optimize the antibacterial activity. This was achieved by synthesizing two types of quaternary ammonium salts (QAS)-containing chain extenders, i.e., N-methyl-N-alkyl-N,N-bis(2-hydroxyethyl) ammonium bromide (Mn, where n represents the N-alkyl chain length) and N,N-dimethyl-N-alkyl-N-2,3-propylene glycol (Dn), from N-methyldiethanolamine (MDEA) and 3-dimethylamino-1,2-propanediol (DMAD), respectively. Given the structural differences between Mn and Dn, main-chain-type PU-Mn and side-chain-type PU-Dn were subsequently obtained with QAS groups in the hard segment. The N-alkyl chain length, QAS content, and main-/side-chain types were systematically investigated to optimize bactericidal properties. The results revealed that a long N-alkyl chain (from C6 to C14) increased the antibacterial activity of the chain extenders and corresponding TPU films. Besides, side-chain-type PU-Dn films showed higher contact-active antibacterial activity than that exerted by the main-chain-type PU-Mn films. Remarkably, almost 100% of Staphylococcus aureus(S. aureus) could be killed by the PU-D14 film with a low QAS content (1.6 wt %). All the TPUs showed good thermal stability with a degradation temperature of 5% mass loss (Td,5%) above 300 °C. Moreover, the TPU films displayed excellent mechanical properties with the tensile strength at break varying from 20.7 to 47.5 MPa and ultimate elongation above 1000%. All of the intrinsic antibacterial films showed negligible hemolytic activities.
Collapse
Affiliation(s)
- Xingshuang Lv
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhi Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhenhao Zhang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hao Wang
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hongwei Song
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaohui Fu
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
9
|
Jiang N, Meng YJ, Zhu CY, Li KX, Li X, Xu YH, Xu JW, Bryce MR. Nonconjugated Polyurethane Derivatives with Aggregation-Induced Luminochromism for Multicolor and White Photoluminescent Films. ACS Macro Lett 2024; 13:1226-1232. [PMID: 39248726 PMCID: PMC11483944 DOI: 10.1021/acsmacrolett.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
A simple and effective strategy to obtain solid-state multicolor emitting materials is a particularly attractive topic. Nonconventional/nonconjugated polymers are receiving widespread attention because of their advantages of rich structural diversity, low cost, and good processability. However, it is difficult to control the molecular conformation or to obtain the crystal structure of amorphous molecules, which means it is a challenge to obtain nontraditional polymeric materials with multicolor emission. In this work, a polyurethane derivative (PUH) with red-shifted emission was synthesized by a simple one-pot polymerization reaction. By exploiting the aggregation-induced luminochromism of PUH, a series of plastic films with tunable emission from blue to orange, and white-light emission, was obtained by doping different amounts of PUH into poly(methyl methacrylate) (PMMA), thereby changing the aggregation degree of PUH. This work demonstrates the excellent promise of polyurethane derivatives for the simple fabrication of large-scale flexible luminescent films.
Collapse
Affiliation(s)
- Nan Jiang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Ya-Jie Meng
- Ministry-of-Education
Key Laboratory of Numerical Simulation of Large-Scale Complex System
(NSLSCS) and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chang-Yi Zhu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Ke-Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Yan-Hong Xu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Jia-Wei Xu
- Ministry-of-Education
Key Laboratory of Numerical Simulation of Large-Scale Complex System
(NSLSCS) and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
10
|
Bahatibieke A, Wei S, Feng H, Zhao J, Ma M, Li J, Xie Y, Qiao K, Wang Y, Peng J, Meng H, Zheng Y. Injectable and in situ foaming shape-adaptive porous Bio-based polyurethane scaffold used for cartilage regeneration. Bioact Mater 2024; 39:1-13. [PMID: 38783924 PMCID: PMC11108820 DOI: 10.1016/j.bioactmat.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 05/25/2024] Open
Abstract
Irregular articular cartilage injury is a common type of joint trauma, often resulting from intense impacts and other factors that lead to irregularly shaped wounds, the limited regenerative capacity of cartilage and the mismatched shape of the scaffods have contributed to unsatisfactory therapeutic outcomes. While injectable materials are a traditional solution to adapt to irregular cartilage defects, they have limitations, and injectable materials often lack the porous microstructures favorable for the rapid proliferation of cartilage cells. In this study, an injectable porous polyurethane scaffold named PU-BDO-Gelatin-Foam (PUBGF) was prepared. After injection into cartilage defects, PUBGF forms in situ at the site of the defect and exhibits a dynamic microstructure during the initial two weeks. This dynamic microstructure endows the scaffold with the ability to retain substances within its interior, thereby enhancing its capacity to promote chondrogenesis. Furthermore, the chondral repair efficacy of PUBGF was validated by directly injecting it into rat articular cartilage injury sites. The injectable PUBGF scaffold demonstrates a superior potential for promoting the repair of cartilage defects when compared to traditional porous polyurethane scaffolds. The substance retention ability of this injectable porous scaffold makes it a promising option for clinical applications.
Collapse
Affiliation(s)
- Abudureheman Bahatibieke
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuai Wei
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Han Feng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
- Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Jianming Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengjiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Junfei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kun Qiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanseng Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haoye Meng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Li X, Xue X, Xie P. Smart Dressings and Their Applications in Chronic Wound Management. Cell Biochem Biophys 2024; 82:1965-1977. [PMID: 38969950 DOI: 10.1007/s12013-024-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
During chronic wound healing, the inflammatory phase can endure for extended periods, heavily impeding or halting the process. Regular inspections and dressing changes are crucial. Modern dressings like hydrogels, hydrocolloids, and foam provide protection and an optimal healing environment. However, they have limitations in offering real-time wound bed status and healing rate. Evaluation relies heavily on direct observation, and passive dressings fail to identify subtle healing differences, preventing adaptive adjustments in biological factors and drug concentrations. In recent years, the clinical field recognizes the value of integrating intelligent diagnostic tools into wound dressings. By monitoring biomarkers linked to chronic wounds' inflammatory state, real-time data can be captured, reducing medical interventions and enabling more effective treatment plans. This fosters innovation in chronic wound care. Researchers have developed smart dressings with sensing, active drug delivery, and self-adjustment capabilities. These dressings detect inflammatory markers like temperature, pH, and oxygen content, enhancing drug bioavailability on the wound surface. As wound healing technology evolves, these smart dressings hold immense potential in chronic wound care and treatment. This comprehensive review updates our understanding on the role and mechanism of action of the smart dressings in chronic refractory wounds by summarizing and discussing the latest research progresses, including the intelligent monitoring of wound oxygen content, temperature, humidity, pH, infection, and enzyme kinetics; intelligent drug delivery triggered by temperature, pH, near-infrared, and electricity; as well as the intelligent self-adjustment of pressure and shape. The review also delves into the constraints and future perspectives of smart dressings in clinical settings, thereby advancing the development of smart wound dressings for chronic wound healing and their practical application in clinical practice.
Collapse
Affiliation(s)
- Xiaodong Li
- Center for Cosmetic Surgery, General Hospital of Lanzhou Petrochemical Company (The Fourth Affiliated Hospital of Gansu University of Chinese Medicine), Lanzhou, 730060, Gansu, China
| | - Xiaodong Xue
- Department of Plastic Surgery, People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Peilin Xie
- Department of Plastic Surgery, People's Hospital of Gansu Province, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
12
|
de Carvalho Rodrigues V, Guterres IZ, Pereira Savi B, Fongaro G, Silva IT, Vitor Salmoria G. Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-16. [PMID: 39190633 DOI: 10.1080/09205063.2024.2396221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The treatment of recurrent genital herpes typically involves daily doses of acyclovir for extended periods. Additive manufacturing is an intriguing technique for creating personalised drug delivery systems, which can enhance the effectiveness of treatments for various diseases. The vaginal route offers a viable alternative for the systemic administration of drugs with low oral bioavailability. In this study, we produced different grades of thermoplastic polyurethane (TPU) filaments through hot-melt extrusion, with acyclovir concentrations of 0%, 10%, and 20% by weight. We used fused filament fabrication to manufacture matrix-based devices, including intrauterine devices and intravaginal rings. Our results, obtained through SEM, FTIR, and DSC analyses, confirm the successful incorporation of acyclovir into the matrix. Thermal analysis reveals that the manufacturing process alters the organization of the TPU chains, resulting in a slight reduction in crystallinity. In our in-vitro tests, we observed an initial burst release on the first day, followed by sustained release at reduced rates for up to 145 days, demonstrating their potential for long-term applications. Additionally, cytotoxicity analysis suggests the excellent biocompatibility of the printed devices, and biological assays show a remarkable 99% reduction in HSV-1 replication. In summary, TPU printed devices offer a promising alternative for long-term genital herpes treatment, with the results obtained potentially contributing to the advancement of pharmaceutical manufacturing.
Collapse
Affiliation(s)
| | - Iara Zanella Guterres
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Beatriz Pereira Savi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Izabella Thaís Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gean Vitor Salmoria
- Nimma, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Biomechanics Engineering Laboratory, University Hospital (HU), Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
13
|
Hao D, Zhang Y, Ding Y, Yan Q. Preparation and properties of silver-carrying nano-titanium dioxide antimicrobial agents and silicone composite. Sci Rep 2024; 14:18870. [PMID: 39143137 PMCID: PMC11324888 DOI: 10.1038/s41598-024-69787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The characteristics of dopamine self-polymerization were used to cover the nano-titanium dioxide (TiO2) surface and produce nano-titanium dioxide-polydopamine (TiO2-PDA). The reducing nature of dopamine was then used to reduce silver nitrate to silver elemental particles on the modified nano-titanium dioxide: The resulting TiO2-PDA-Ag nanoparticles were used as antimicrobial agents. Finally, the antibacterial agent was mixed with silicone to obtain an antibacterial silicone composite material. The composition and structure of antibacterial agents were analyzed by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron energy spectroscopy, and X-ray diffraction. Microscopy and the antibacterial properties of the silicone antibacterial composites were studied as well. The TiO2-PDA-Ag antimicrobial agent had good dispersion versus nano-TiO2. The three were strongly combined with obvious characteristic peaks. The antibacterial agents were evenly dispersed in silicone, and the silicone composite has excellent antibacterial properties. Bacillus subtilis (B. subtilis) adhesion was reduced from 246 × 104 cfu/cm2 to 2 × 104 cfu/cm2, and colibacillus (E. coli) reduced from 228 × 104 cfu/cm2 leading to bacteria-free adhesion.
Collapse
Affiliation(s)
- Dongdong Hao
- Changzhou University Huaide College, Jingjiang, 214500, China
| | - Yuxuan Zhang
- Changzhou Vocational Institute of Textile and Garment, Changzhou, 213000, China.
| | | | - Qiuyu Yan
- Changzhou University Huaide College, Jingjiang, 214500, China
| |
Collapse
|
14
|
Zaręba M, Chmiel-Szukiewicz E, Uram Ł, Noga J, Rzepna M, Wołowiec S. A Novel PAMAM G3 Dendrimer-Based Foam with Polyether Polyol and Castor Oil Components as Drug Delivery System into Cancer and Normal Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3905. [PMID: 39203083 PMCID: PMC11355831 DOI: 10.3390/ma17163905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
One of the intensively developed tools for cancer therapy is drug-releasing matrices. Polyamidoamine dendrimers (PAMAM) are commonly used as nanoparticles to increase the solubility, stability and retention of drugs in the human body. Most often, drugs are encapsulated in PAMAM cavities or covalently attached to their surface. However, there are no data on the use of PAMAM dendrimers as a component of porous matrices based on polyurethane foams for the controlled release of drugs and biologically active substances. Therefore, in this work, porous materials based on polyurethane foam with incorporated third-generation poly(amidoamine) dendrimers (PAMAM G3) were synthesized and characterized. Density, water uptake and morphology of foams were examined with SEM and XPS. The PAMAM was liquefied with polyether polyol (G441) and reacted with polymeric 4,4'-diphenylmethane diisocyanate (pMDI) in the presence of silicone, water and a catalyst to obtain foam (PF1). In selected compositions, the castor oil was added (PF2). Analogs without PAMAM G3 were also synthesized (F1 and F2, respectively). An SEM analysis of foams showed that they are composed of thin ribs/walls forming an interconnected network containing hollow bubbles/pores and showing some irregularities in the structure. Foam from a G3:G441:CO (PF2) composition is characterized by a more regular structure than the foam from the composition without castor oil. The encapsulation efficiency of drugs determined by the XPS method shows that it varies depending on the matrix and the drug and ranges from several to a dozen mass percent. In vitro biological studies with direct contact and extract assays indicated that the F2 matrix was highly biocompatible. Significant toxicity of dendrimeric matrices PF1 and PF2 containing 50% of PAMAM G3 was higher against human squamous carcinoma cells than human immortalized keratinocytes. The ability of the matrices to immobilize drugs was demonstrated in the example of perspective (Nimesulide, 8-Methoxypsolarene) or approved anticancer drugs (Doxorubicin-DOX, 5-Aminolevulinic acid). Release into the culture medium and penetration of DOX into the tested SCC-15 and HaCaT cells were also proved. The results show that further modification of the obtained matrices may lead to their use as drug delivery systems, e.g., for anticancer therapy.
Collapse
Affiliation(s)
- Magdalena Zaręba
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Elżbieta Chmiel-Szukiewicz
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Łukasz Uram
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Justyna Noga
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Magdalena Rzepna
- Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Stanisław Wołowiec
- Medical College, University of Rzeszow, 1a Warzywna Street, 35-310 Rzeszow, Poland
| |
Collapse
|
15
|
Hu Y, Li L, Li Q, Pan S, Feng G, Lan X, Jiao J, Zhong L, Sun L. A biomimetic tri-phasic scaffold with spatiotemporal patterns of gastrodin to regulate hierarchical tissue-based vascular regeneration. Bioact Mater 2024; 38:512-527. [PMID: 38798891 PMCID: PMC11126808 DOI: 10.1016/j.bioactmat.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Clinical use of small-diameter vascular grafts remains a challenging issue in neovessel regeneration in view of thrombosis and intimal hyperplasia. Developing a vascular graft with structure and function similar to those of the native vessels necessitates a major direction of vascular tissue regeneration. Thus, this study sought to design and fabricate a range of tri-phasic scaffolds (0, 2, and 5 wt% gastrodin-polyurethane (PU)) with spatiotemporally defined structure and gastrodin-release for regulating the highly coordinated processes in growth of the intima and media. While the small pores of inner layer guided infiltration of human umbilical vein endothelial cells (HUVECs), the bigger pores of medial layer could offer smooth muscle cell (SMC)-friendly habitat, and external fibers conferred adequate mechanical properties. Correspondingly, spatial distribution and differential regulation of key proteins in HUVECs and SMCs were mediated by hierarchical release of gastrodin, of which rapid release in inner layer elicited enhanced HUVEC proliferation and migration against those of the SMC via activated endothelial nitric oxide synthase (eNOS) and heat shock protein 70 (HSP70) signal. Of note, superior anti-coagulation was reflected in 2 wt% gastrodin-PU ex vivo extracorporeal blood circulation experiment. After in vivo implantation for 12 weeks, there was no formation of obvious thrombosis and intimal hyperplasia in 2 wt% gastrodin-PU. The scaffold maintained high patency and improved vascular remodeling, including the formation of thin endothelialization in lumen and dense extracellular matrix deposition in medial layer. Taken together, the results demonstrate the positive function of hierarchical releasing system that responded to tri-phasic structure, which not only suppressed intimal thickening but also tightly controlled tissue regeneration.
Collapse
Affiliation(s)
- Yingrui Hu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 650101, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shilin Pan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Guangli Feng
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Xiaoqian Lan
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Jianlin Jiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lianmei Zhong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lin Sun
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 650101, China
| |
Collapse
|
16
|
Lele M, Kapur S, Hargett S, Sureshbabu NM, Gaharwar AK. Global trends in clinical trials involving engineered biomaterials. SCIENCE ADVANCES 2024; 10:eabq0997. [PMID: 39018412 PMCID: PMC466960 DOI: 10.1126/sciadv.abq0997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Engineered biomaterials are materials specifically designed to interact with biological systems for biomedical applications. This paper offers the comprehensive analysis of global clinical trial trends involving such materials. We surveyed 834 studies in the ClinicalTrials.gov database and explored biomaterial types, their initiation points, and durations in clinical trials. Predominantly, synthetic and natural polymers, particularly silicone and collagen, are used. Trials, focusing on ophthalmology, dentistry, and vascular medicine, are primarily conducted in the United States, Canada, and Italy. These trials encompass a broad demographic, and trials enrolled fewer than 100 participants. The study duration varied ranging from 0.5 to 4.5 years. These biomaterials are mainly bioresorbable or bioinert, with the integration of cells in biomaterials remaining an underexplored area. Our findings shed light on current practices and future potentials of engineered biomaterials in clinical research, offering insights for advancing this dynamic field globally.
Collapse
Affiliation(s)
- Mahim Lele
- Bridgeland High School, 10707 Mason Rd., Cypress, TX 77433, USA
| | - Shaunak Kapur
- Seven Lakes High School, 9251 S Fry Rd., Katy, TX 77494, USA
| | - Sarah Hargett
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Nivedhitha Malli Sureshbabu
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
17
|
Gao Y, Wang X, Fan C. Advances in graphene-based 2D materials for tendon, nerve, bone/cartilage regeneration and biomedicine. iScience 2024; 27:110214. [PMID: 39040049 PMCID: PMC11261022 DOI: 10.1016/j.isci.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Two-dimensional (2D) materials, especially graphene-based materials, have important implications for tissue regeneration and biomedicine due to their large surface area, transport properties, ease of functionalization, biocompatibility, and adsorption capacity. Despite remarkable progress in the field of tissue regeneration and biomedicine, there are still problems such as unclear long-term stability, lack of in vivo experimental data, and detection accuracy. This paper reviews recent applications of graphene-based materials in tissue regeneration and biomedicine and discusses current issues and prospects for the development of graphene-based materials with respect to promoting the regeneration of tendons, neuronal cells, bone, chondrocytes, blood vessels, and skin, as well as applications in sensing, detection, anti-microbial activity, and targeted drug delivery.
Collapse
Affiliation(s)
- Yuxin Gao
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Orthopaedics, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Orthopaedics, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
18
|
Czifrák K, Lakatos C, Cserháti C, Vecsei G, Zsuga M, Kéki S. Bio-Based Polyurethane Networks Containing Sunflower Oil Based Polyols. Int J Mol Sci 2024; 25:7300. [PMID: 39000407 PMCID: PMC11242490 DOI: 10.3390/ijms25137300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
This work focused on the preparation and investigation of polyurethane (SO-PU)-containing sunflower oil glycerides. By transesterification of sunflower oil with glycerol, we synthesized a glyceride mixture with an equilibrium composition, which was used as a new diol component in polyurethanes in addition to poly(ε-caprolactone)diol (PCLD2000). The structure of the glyceride mixture was characterized by physicochemical methods, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), nuclear magnetic resonance spectroscopy (NMR), and size exclusion chromatography (SEC) measurements. The synthesis of polyurethanes was performed in two steps: first the prepolymer with the isocyanate end was synthesized, followed by crosslinking with an additional amount of diisocyanate. For the synthesis of the prepolymer, 4,4'-methylene diphenyl diisocyanate (MDI) or 1,6-hexamethylene diisocyanate (HDI) were used as isocyanate components, while the crosslinking was carried out using an additional amount of MDI or HDI. The obtained SO-PU flexible polymer films were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The so-obtained flexible SO-PU films were proved to be suitable for the preparation of potentially biocompatible and/or biodegradable scaffolds. In addition, the stress versus strain curves for the SO-PU polymers were interpreted in terms of a mechanical model, taking into account the yield and the strain hardening.
Collapse
Affiliation(s)
- Katalin Czifrák
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (K.C.); (C.L.); (M.Z.)
| | - Csilla Lakatos
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (K.C.); (C.L.); (M.Z.)
| | - Csaba Cserháti
- Department of Solid State Physics, Faculty of Science and Technology, University of Debrecen, Bem tér 18/b, H-4026 Debrecen, Hungary; (C.C.); (G.V.)
| | - Gergő Vecsei
- Department of Solid State Physics, Faculty of Science and Technology, University of Debrecen, Bem tér 18/b, H-4026 Debrecen, Hungary; (C.C.); (G.V.)
| | - Miklós Zsuga
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (K.C.); (C.L.); (M.Z.)
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (K.C.); (C.L.); (M.Z.)
| |
Collapse
|
19
|
Song P, Andre M, Chitnis P, Xu S, Croy T, Wear K, Sikdar S. Clinical, Safety, and Engineering Perspectives on Wearable Ultrasound Technology: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:730-744. [PMID: 38090856 PMCID: PMC11416895 DOI: 10.1109/tuffc.2023.3342150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Wearable ultrasound has the potential to become a disruptive technology enabling new applications not only in traditional clinical settings, but also in settings where ultrasound is not currently used. Understanding the basic engineering principles and limitations of wearable ultrasound is critical for clinicians, scientists, and engineers to advance potential applications and translate the technology from bench to bedside. Wearable ultrasound devices, especially monitoring devices, have the potential to apply acoustic energy to the body for far longer durations than conventional diagnostic ultrasound systems. Thus, bioeffects associated with prolonged acoustic exposure as well as skin health need to be carefully considered for wearable ultrasound devices. This article reviews emerging clinical applications, safety considerations, and future engineering and clinical research directions for wearable ultrasound technology.
Collapse
|
20
|
Ledenko M, Toskich B, Mehner C, Ceylan H, Patel T. Therapeutic biliary stents: applications and opportunities. Expert Rev Med Devices 2024; 21:399-409. [PMID: 38716580 DOI: 10.1080/17434440.2024.2341960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Biliary stents are used to optimize ductal patency and enable bile flow in the management of obstruction or injury related to biliary tract tumors, strictures, stones, or leaks. Although direct therapeutic applications of biliary stents are less well developed, stents can be used to deliver drugs, radioisotopes, and photodynamic therapy. AREAS COVERED This report provides an in-depth overview of the clinical indications, and therapeutic utility of biliary stents. Unique considerations for the design of biliary stents are described. The properties and functionalities of materials used for stents such as metal alloys, plastic polymers, or biodegradable materials are described, and opportunities for design of future stents are outlined. Current and potential applications of stents for therapeutic applications for biliary tract diseases are described. EXPERT OPINION Therapeutic biliary stents could be used to minimize inflammation, prevent stricture formation, reduce infections, or provide localized anti-cancer therapy for biliary tract cancers. Stents could be transformed into therapeutic platforms using advanced materials, 3D printing, nanotechnology, and artificial intelligence. Whilst clinical study and validation will be required for adoption, future advances in stent design and materials are expected to expand the use of therapeutic biliary stents for the treatment of biliary tract disorders.
Collapse
Affiliation(s)
- Matthew Ledenko
- Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Beau Toskich
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Christine Mehner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Hakan Ceylan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Tushar Patel
- Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
21
|
Santra A, Prakash R, Maity S, Nilawar S, Chatterjee K, Maiti P. Core-Shell Structure of Photopolymer-Grafted Polyurethane as a Controlled Drug Delivery Vehicle for Biomedical Application. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17193-17207. [PMID: 38532651 DOI: 10.1021/acsami.3c19155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Functionalized ultraviolet photocurable bisphenol A-glycerolate dimethacrylates with tailorable size have been synthesized as the core, which have further been grafted using the diisocyanate chain end of polyurethane (PU) as the shell to create a core-shell structure of tunable size for a controlled drug delivery vehicle. The core-shell structure has been elucidated through spectroscopic techniques like 1H NMR, FTIR, and UV-vis and their relative shape and size through TEM and AFM morphology. The greater cross-link density of the core is reflected in the higher glass transition temperature, and the improved thermal stability of the graft copolymer is proven from its thermogravimetric analyses. The flow behavior and enhanced strength of the graft copolymers have been revealed from rheological measurements. The graft copolymer exhibits sustained release of the drug, as compared to pure polyurethane and photopolymer, arising from its core-shell structure and strong interaction between the copolymer and drug, as observed through a significant shifting of absorption peaks in FTIR and UV-vis measurements. Biocompatibility has been tested for the real application of the novel graft copolymer in medical fields, as revealed from MTT assay, cell imaging, and cell adhesion studies. The efficacy of controlled release from a graft copolymer has been verified from the gradual cell killing and ∼70% killing in 3 days vs meager cell killing of ∼25% very quickly in 1 day, followed by the increased cell viability of the system treated with the pure drug. The mechanism of slow and controlled drug release from the core-shell structure has been explored. The fluorescence images support the higher cell-killing efficiency as opposed to a pure drug or a drug embedded in polyurethane. Cells seeded on 3D scaffolds have been developed by embedding a graft copolymer, and fluorescence imaging confirms the successful growth of cells within the scaffold, realizing the potential of the core-shell graft copolymer in the biomedical arena.
Collapse
Affiliation(s)
- Amita Santra
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ravi Prakash
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Swapan Maity
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sagar Nilawar
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
22
|
Zhang ML, Zhang GP, Ma HS, Pan YZ, Liao XL. Preparation of pH-responsive polyurethane nano micelles and their antibacterial application. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:519-534. [PMID: 38265701 DOI: 10.1080/09205063.2024.2301807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Considering the differences in pH between bacterial infection microenvironment and normal tissues, a series of pH-responsive drug-release amphiphilic polyurethane copolymers (DPU-g-PEG) have been prepared in this work. Fourier transform infrared (FT-IR) spectroscopy and 1H NMR was selected to detect the structure of the condensed polymers. The DPU-g-PEG amphiphilic copolymers could form stable micelles with a hydrophilic shell of polyethylene glycol (PEG) and a hydrophobic core of polylactic acid (PLA). We loaded a model drug called triclosan onto DPU-g-PEG micelles and studied how pH affects their particle size, Zeta potential, and drug release performance. The results revealed that when exposed to acidic conditions, the surface potential of DPU-g-PEG micelles changed, the micelles' particle size increased, and the drug release performance was significantly enhanced. These results suggested that the micelles prepared in this study can release more antibacterial substances at sites of bacterial infection. Meanwhile, we also investigated the impact of different ratios of soft and hard segments on the properties of micelles, and the results showed that the pH responsiveness of micelles was strongest when the ratio of soft segments (PLLA diol + PEG 2000): 1,6-hexamethylene diisocyanate (HDI): 2,6-Bis-(2-hydroxy-ethyl)-pyrrolo[3,4-f]isoindole-1,3,5,7-tetraone (DMA) = 1: 1.2: 0.2. Furthermore, the results of inhibition zone test, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) all confirmed the antibacterial activity of triclosan-load DPU-g-PEG micelles. In conclusion, the DPU-g-PEG micelles produced in this study have the potential to be used as intelligent drug delivery systems in the biomedical field.
Collapse
Affiliation(s)
- Mao-Lan Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Gui-Ping Zhang
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Hong-Shuo Ma
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Yu-Zhu Pan
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Xiao-Ling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
23
|
Pierrard A, Melo SF, Thijssen Q, Van Vlierberghe S, Lancellotti P, Oury C, Detrembleur C, Jérôme C. Design of 3D-Photoprintable, Bio-, and Hemocompatible Nonisocyanate Polyurethane Elastomers for Biomedical Implants. Biomacromolecules 2024; 25:1810-1824. [PMID: 38360581 DOI: 10.1021/acs.biomac.3c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Polyurethanes (PUs) have adjustable mechanical properties, making them suitable for a wide range of applications, including in the biomedical field. Historically, these PUs have been synthesized from isocyanates, which are toxic compounds to handle. This has encouraged the search for safer and more environmentally friendly synthetic routes, leading today to the production of nonisocyanate polyurethanes (NIPUs). Among these NIPUs, polyhydroxyurethanes (PHUs) bear additional hydroxyl groups, which are particularly attractive for derivatizing and adjusting their physicochemical properties. In this paper, polyether-based NIPU elastomers with variable stiffness are designed by functionalizing the hydroxyl groups of a poly(propylene glycol)-PHU by a cyclic carbonate carrying a pendant unsaturation, enabling them to be post-photo-cross-linked with polythiols (thiol-ene). Elastomers with remarkable mechanical properties whose stiffness can be adjusted are obtained. Thanks to the unique viscous properties of these PHU derivatives and their short gel times observed by rheology experiments, formulations for light-based three-dimensional (3D) printing have been developed. Objects were 3D-printed by digital light processing with a resolution down to the micrometer scale, demonstrating their ability to target various designs of prime importance for personalized medicine. In vitro biocompatibility tests have confirmed the noncytotoxicity of these materials for human fibroblasts. In vitro hemocompatibility tests have revealed that they do not induce hemolytic effects, they do not increase platelet adhesion, nor activate coagulation, demonstrating their potential for future applications in the cardiovascular field.
Collapse
Affiliation(s)
- Anna Pierrard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| | - Sofia F Melo
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
- Faculty of Medicine, University of Liège, Avenue Hippocrate 15, Quartier Hôpital, 4000 Liège, Belgium
| | - Quinten Thijssen
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Patrizio Lancellotti
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
- Department of Cardiology - Centre Hospitalier Universitaire (CHU) of Liège, University of Liège Hospital, 4000 Liège, Belgium
| | - Cécile Oury
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| |
Collapse
|
24
|
Song W, Muhammad S, Dang S, Ou X, Fang X, Zhang Y, Huang L, Guo B, Du X. The state-of-art polyurethane nanoparticles for drug delivery applications. Front Chem 2024; 12:1378324. [PMID: 38476653 PMCID: PMC10929011 DOI: 10.3389/fchem.2024.1378324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Nowadays, polyurethanes (PUs) stand out as a promising option for drug delivery owing to their versatile properties. PUs have garnered significant attention in the biomedical sector and are extensively employed in diverse forms, including bulk devices, coatings, particles, and micelles. PUs are crucial in delivering various therapeutic agents such as antibiotics, anti-cancer medications, dermal treatments, and intravaginal rings. Effective drug release management is essential to ensure the intended therapeutic impact of PUs. Commercially available PU-based drug delivery products exemplify the adaptability of PUs in drug delivery, enabling researchers to tailor the polymer properties for specific drug release patterns. This review primarily focuses on the preparation of PU nanoparticles and their physiochemical properties for drug delivery applications, emphasizing how the formation of PUs affects the efficiency of drug delivery systems. Additionally, cutting-edge applications in drug delivery using PU nanoparticle systems, micelles, targeted, activatable, and fluorescence imaging-guided drug delivery applications are explored. Finally, the role of artificial intelligence and machine learning in drug design and delivery is discussed. The review concludes by addressing the challenges and providing perspectives on the future of PUs in drug delivery, aiming to inspire the design of more innovative solutions in this field.
Collapse
Affiliation(s)
- Wencong Song
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Saz Muhammad
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Shanxing Dang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingyan Ou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xingzi Fang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - Lihe Huang
- Center for Educational Technology, Yulin Normal University, Yulin, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, China
| | - XueLian Du
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
25
|
Drożdż K, Gołda-Cępa M, Chytrosz-Wróbel P, Kotarba A, Brzychczy-Włoch M. Improving Biocompatibility of Polyurethanes Apply in Medicine Using Oxygen Plasma and Its Negative Effect on Increased Bacterial Adhesion. Int J Biomater 2024; 2024:5102603. [PMID: 38434098 PMCID: PMC10907100 DOI: 10.1155/2024/5102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Polyurethanes (PUs) are versatile polymers used in medical applications due to their high flexibility and fatigue resistance. PUs are widely used for synthetic blood vessels, wound dressings, cannulas, and urinary and cardiovascular catheters. Many scientific reports indicate that surface wettability is crucial for biocompatibility and bacterial adhesion. The use of oxygen plasma to modify PUs is advantageous because of its effectiveness in introducing oxygen-containing functional groups, thereby altering surface wettability. The purpose of this study was to investigate the effect of the modification of the oxygen plasma of polyurethane on its biocompatibility with lung tissue (A549 cell line) and the adhesion of Gram-positive bacteria (S. aureus and S. epidermidis). The results showed that the modification of polyurethane by oxygen plasma allowed the introduction of functional groups containing oxygen (-OH and -COOH), which significantly increased its hydrophilicity (change from 105° ± 2° to 9° ± 2°) of PUs. Surface analysis by atomic force microscopy (AFM) showed changes in PU topography (change in maximum height from ∼110.3 nm to ∼32.1 nm). Moreover, biocompatibility studies on A549 cells showed that on the PU-modified surface, the cells exhibited altered morphology (increases in cell surface area and length, and thus reduced circularity) without concomitant effects on cell viability. However, serial dilution and plate count and microscopic methods confirmed that plasma modification significantly increased the adhesion of S. aureus and S. epidermidis bacteria. This study indicate the important role of surface hydrophilicity in biocompatibility and bacterial adhesion, which is important in the design of new medical biomaterials.
Collapse
Affiliation(s)
- Kamil Drożdż
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow 31-121, Poland
| | - Monika Gołda-Cępa
- Faculty of Chemistry, Jagiellonian University, Krakow 31-007, Poland
| | | | - Andrzej Kotarba
- Faculty of Chemistry, Jagiellonian University, Krakow 31-007, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow 31-121, Poland
| |
Collapse
|
26
|
Wang H, Huddleston S, Yang J, Ameer GA. Enabling Proregenerative Medical Devices via Citrate-Based Biomaterials: Transitioning from Inert to Regenerative Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306326. [PMID: 38043945 DOI: 10.1002/adma.202306326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Regenerative medicine aims to restore tissue and organ function without the use of prosthetics and permanent implants. However, achieving this goal has been elusive, and the field remains mostly an academic discipline with few products widely used in clinical practice. From a materials science perspective, barriers include the lack of proregenerative biomaterials, a complex regulatory process to demonstrate safety and efficacy, and user adoption challenges. Although biomaterials, particularly biodegradable polymers, can play a major role in regenerative medicine, their suboptimal mechanical and degradation properties often limit their use, and they do not support inherent biological processes that facilitate tissue regeneration. As of 2020, nine synthetic biodegradable polymers used in medical devices are cleared or approved for use in the United States of America. Despite the limitations in the design, production, and marketing of these devices, this small number of biodegradable polymers has dominated the resorbable medical device market for the past 50 years. This perspective will review the history and applications of biodegradable polymers used in medical devices, highlight the need and requirements for regenerative biomaterials, and discuss the path behind the recent successful introduction of citrate-based biomaterials for manufacturing innovative medical products aimed at improving the outcome of musculoskeletal surgeries.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Samantha Huddleston
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jian Yang
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
27
|
Manohar SS, Das C, Kakati V. Bone Tissue Engineering Scaffolds: Materials and Methods. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:347-362. [PMID: 38389691 PMCID: PMC10880649 DOI: 10.1089/3dp.2022.0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The wide development in biomedical, regenerative medicine, and surgical techniques has ensured that new technologies are developed to improve patient-specific treatment and care. Tissue engineering is a special field in biomedical engineering that works toward cell development using scaffolds. Bone tissue engineering is a separate branch of tissue engineering, in which the construction of bone, functionalities of bone, and bone tissue regeneration are studied in detail to repair or regenerate new functional bone tissues. In India alone, people suffering from bone diseases are extensive in numbers. Almost 15% to 20% of the population suffers from osteoporosis. Bone scaffolds are proving to be an excellent solution for osseous abnormalities or defect treatment. Scaffolds are three dimensional (3D) and mostly porous structures created to enhance new tissue growth. Bone scaffolds are specially designed to promote osteoinductive cell growth, expansion, and migration on their surface. This review article aims to provide an overview of possible bone scaffolding materials in practice, different 3D techniques to fabricate these scaffolds, and effective bone scaffold characteristics targeted by researchers to fabricate tissue-engineered bone scaffolds.
Collapse
Affiliation(s)
- Shreeprasad S. Manohar
- Mechanical Engineering Department, Assam Don Bosco University, Guwahati, India
- Mechanical Department, DBIT, Mumbai, India
| | - Chinmoy Das
- Department of Orthopaedics, Tezpur Medical College and Hospital, Tezpur, India
| | - Vikramjit Kakati
- Mechanical Engineering Department, Assam Don Bosco University, Guwahati, India
| |
Collapse
|
28
|
Jiang N, Li KX, Wang JJ, Zhu YL, Zhu CY, Xu YH, Bryce MR. Amphiphilic Polyurethane with Cluster-Induced Emission for Multichannel Bioimaging in Living Cell Systems. ACS Macro Lett 2024; 13:52-57. [PMID: 38147539 PMCID: PMC10795471 DOI: 10.1021/acsmacrolett.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The development of single-component materials with low cytotoxicity and multichannel fluorescence imaging capability is a research hotspot. In the present work, highly electron-deficient pyrazine monomers were covalently connected into a polyurethane backbone using addition polymerization with terminal poly(ethylene glycol) monomethyl ether units containing a high density of electron pairs. Thereby, an amphiphilic polyurethane-pyrazine (PUP) derivative has been synthesized. The polymer displays cluster-induced emission through compact inter- and/or intramolecular noncovalent interactions and extensive through-space electron coupling and delocalization. Molecular rigidity facilitates red-shifted emission. Based on hydrophilic/hydrophobic interactions and excitation dependence emission at low concentrations, PUP has been self-assembled into fluorescent nanoparticles (PUP NPs) without additional surfactant. PUP NPs have been used for cellular multicolor imaging to provide a variety of switchable colors on demand. This work provides a simple molecular design for environmentally sustainable, luminescent materials with excellent photophysical properties, biocompatibility, low cytotoxicity, and color modulation.
Collapse
Affiliation(s)
- Nan Jiang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Ke-Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Jia-Jun Wang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - You-Liang Zhu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Chang-Yi Zhu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Yan-Hong Xu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
29
|
Wang J, Teong SP, Riduan SN, Armugam A, Lu H, Gao S, Yean YK, Ying JY, Zhang Y. Redox Active Zn@MOFs as Spontaneous Reactive Oxygen Species Releasing Antimicrobials. J Am Chem Soc 2024; 146:599-608. [PMID: 38109168 DOI: 10.1021/jacs.3c10411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The rapid development of antimicrobial resistance (AMR) among infectious pathogens has become a major threat and challenge in healthcare systems globally. A strategy distinct from minimizing the overuse of antimicrobials involves the development of novel antimicrobials with a mode of action that prevents the development of AMR microbial strains. Reactive oxygen species (ROS) are formed as a natural byproduct of the cellular aerobic metabolism. However, it becomes pathological when ROS is produced at excessive levels. Exploiting this phenomenon, research on redox-active bactericides has been demonstrated to be beneficial. Materials that release ROS via photodynamic, thermodynamic, and photocatalytic interventions have been developed as nanomedicines and are used in various applications. However, these materials require external stimuli for ROS release to be effective as biocides. In this paper, we report novel zinc-based metal organic framework (Zn@MOF) particles that promote the spontaneous release of active ROS species. The synthesized Zn@MOF spontaneously releases superoxide anions and hydrogen peroxide, exhibiting a potent antimicrobial efficacy against various microbes. Zn@MOF-incorporated plastic films and coatings show excellent, long-lasting antimicrobial potency even under continuous microbial challenge and an aging process. These disinfecting surfaces maintain their antimicrobial properties even after 500× surface wipes. Zn@MOF is also biocompatible and safe on the skin, illustrating its broad potential applications in medical technology and consumer care applications.
Collapse
Affiliation(s)
- Jinquan Wang
- Institute of Sustainability for Chemicals Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute of Bioengineering and Bioimaging, A*STAR (Agency for Science, Technology and Research), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Siew Ping Teong
- Institute of Sustainability for Chemicals Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute of Bioengineering and Bioimaging, A*STAR (Agency for Science, Technology and Research), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Siti Nurhanna Riduan
- Institute of Bioengineering and Bioimaging, A*STAR (Agency for Science, Technology and Research), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Arunmozhiarasi Armugam
- Institute of Bioengineering and Bioimaging, A*STAR (Agency for Science, Technology and Research), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| | - Hongfang Lu
- NanoBio Lab, Institute of Materials Research and Engineering, A*STAR, 31 Biopolis Way, The Nanos, #09-01, 138669 Singapore
| | - Shujun Gao
- NanoBio Lab, Institute of Materials Research and Engineering, A*STAR, 31 Biopolis Way, The Nanos, #09-01, 138669 Singapore
| | - Yong Kin Yean
- NanoBio Lab, Institute of Materials Research and Engineering, A*STAR, 31 Biopolis Way, The Nanos, #09-01, 138669 Singapore
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering, A*STAR, 31 Biopolis Way, The Nanos, #09-01, 138669 Singapore
- Bioengineering Department, King Fahd University of Petroleum & Minerals, Dharan 31261, Saudi Arabia
| | - Yugen Zhang
- Institute of Sustainability for Chemicals Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute of Bioengineering and Bioimaging, A*STAR (Agency for Science, Technology and Research), 31 Biopolis Way, #07-01, The Nanos, 138669 Singapore
| |
Collapse
|
30
|
Xu Y, Chen Q, Xia L, Yuan S, Li Z. Fabrication of Oleophilic Polypeptide Nanoparticle from Complexing of Cross-Linked Epsilon-poly-l-lysine with Docusate Sodium for Preparation of Bactericidal Thermoplastic Polyurethanes. ACS Biomater Sci Eng 2024; 10:599-606. [PMID: 38153378 DOI: 10.1021/acsbiomaterials.3c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Thermoplastic polyurethanes (TPUs) are extensively utilized in the biomedical field due to their exceptional mechanical properties and biocompatibility. However, the lack of antibacterial activity limits their application ranges. Nanoscopic particle-based additives with inherent antibacterial characteristics are regarded as promising strategies to prevent biomaterials-associated infection. Herein, a novel polymeric nanoparticle is prepared, which integrates chemically cross-linked epsilon-poly-l-lysine (CPL) and anionic surfactant-docusate sodium (DS). The cross-linked epsilon-poly-l-lysine/docusate sodium (CPL/DS) nanoparticle can be well dispersed in organic solvent and a polymer matrix, which is beneficial to endowing TPUs with synergistic miscibility and antibacterial properties. An antibacterial test showed that the CPL/DS nanoparticles have strong antibacterial activity against S. aureus. Moreover, the results of antibacterial experiments in vitro revealed that almost 100% of S. aureus could be killed by CPL/DS nanoparticle-embedded TPU film with a content of 0.5 wt %. In addition, all of the CPL/DS modified TPU films showed good cytocompatibility in vitro. Consequently, this kind of CPL/DS nanoplatform has great potential to serve as a safe and high-efficient bactericidal agent for endowing biomedical devices with bactericidal property.
Collapse
Affiliation(s)
- Yuanjing Xu
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Qi Chen
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Lin Xia
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| |
Collapse
|
31
|
Uboldi M, Chiappa A, Rossi M, Briatico-Vangosa F, Melocchi A, Zema L. Development of a multi-component gastroretentive expandable drug delivery system (GREDDS) for personalized administration of metformin. Expert Opin Drug Deliv 2024; 21:131-149. [PMID: 38088371 DOI: 10.1080/17425247.2023.2294884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVES Efficacy and compliance of type II diabetes treatment would greatly benefit from dosage forms providing controlled release of metformin in the upper gastrointestinal tract. In this respect, the feasibility of a new system ensuring stomach-retention and personalized release of this drug at its absorption window for multiple days was investigated. METHODS The system proposed comprised of a drug-containing core and a viscoelastic umbrella-like skeleton, which were manufactured by melt-casting and 3D printing. Prototypes, alone or upon assembly and insertion into commercially-available capsules, were characterized for key parameters: thermo-mechanical properties, accelerated stability, degradation, drug release, deployment performance, and resistance to simulated gastric contractions. RESULTS Each part of the system was successfully manufactured using purposely-selected materials and the performance of final prototypes matched the desired one. This included: i) easy folding of the skeleton against the core in the collapsed administered shape, ii) rapid recovery of the cumbersome configuration at the target site, even upon storage, and iii) prolonged release of metformin. CONCLUSIONS Composition, geometry, and performance of the system developed in this work were deemed acceptable for stomach-retention and prolonged as well as customizable release of metformin in its absorption window, laying promising bases for further development steps.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Arianna Chiappa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Margherita Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Francesco Briatico-Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
32
|
Mangal M, H S, Bose S, Banerjee T. Innovations in applications and prospects of non-isocyanate polyurethane bioplastics. Biopolymers 2023; 114:e23568. [PMID: 37846654 DOI: 10.1002/bip.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.
Collapse
Affiliation(s)
- Mangal Mangal
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Supriya H
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Tamal Banerjee
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
33
|
Yu N, An ZW, Zhang JL, Cheng BX, Ye K, Wang S, Wu W, Li RKY, Tan X, Zhao H. Recent Advances in Tailored Fabrication and Properties of Biobased Self-Healing Polyurethane. Biomacromolecules 2023; 24:4605-4621. [PMID: 37917193 DOI: 10.1021/acs.biomac.3c00805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
With the emergence of challenges in the environmental degradation and resource scarcity fields, the research of biobased self-healing polyurethane (BSPU) has become a prevailing trend in the technology of the polyurethane industry and a promising direction for developing biomass resources. Here, the production of BSPU from lignocellulose, vegetable oil, chitosan, collagen, and coumarin is classified, and the principles of designing polyurethane based on compelling examples using the latest methods and current research are summarized. Moreover, the impact of biomass materials on self-healing and mechanical properties, as well as the tailored performance method, are presented in detail. Finally, the applications of BSPU in biomedicine, sensors, coatings, etc. are also summarized, and the possible challenges and development prospects are explored to helpfully make progress in the development of BSPU. These findings demonstrate valuable references and practical significance for future BSPU research.
Collapse
Affiliation(s)
- Ning Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Ze-Wei An
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jia-Le Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Bing-Xu Cheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Kang Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wei Wu
- Jihua Laboratory, Foshan, 528200, China
| | - Robert K Y Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xuecai Tan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Science, Hubei University, Wuhan, 430062, China
| |
Collapse
|
34
|
Plugariu IA, Gradinaru LM, Avadanei M, Rosca I, Nita LE, Maxim C, Bercea M. Thermosensitive Polyurethane-Based Hydrogels as Potential Vehicles for Meloxicam Delivery. Pharmaceuticals (Basel) 2023; 16:1510. [PMID: 38004376 PMCID: PMC10674489 DOI: 10.3390/ph16111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Meloxicam (MX) is a nonsteroidal anti-inflammatory drug (NSAID) used mainly to reduce pain, inflammation, and fever. In the present study, thermosensitive polyurethane (PU)-based hydrogels with various excipients (PEG, PVP, HPC, and essential oil) were prepared and loaded with MX. Rheological investigations were carried out on the PU-based formulations in various shear regimes, and their viscoelastic characteristics were determined. The average size of the PU micelles was 35.8 nm at 37 °C and slightly increased at 37 nm in the presence of MX. The zeta potential values of the hydrogels were between -10 mV and -11.5 mV. At pH = 6 and temperature of 37 °C, the formulated PU-based hydrogels loaded with MX could deliver significant amounts of the active substance, between 60% and 80% over 24-48 h and more than 90% within 2 weeks. It was found that anomalous transport phenomena dominated MX's release mechanism from the PU-based networks. The results are encouraging for further studies aiming to design alternative carriers to commercial dosage forms of nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ioana-Alexandra Plugariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Mihaela Avadanei
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Loredana Elena Nita
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| | - Claudia Maxim
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, 73A, D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.P.); (M.A.); (I.R.); (L.E.N.)
| |
Collapse
|
35
|
Borcan F, Vlase T, Vlase G, Popescu R, Soica CM. The Influence of an Isocyanate Structure on a Polyurethane Delivery System for 2'-Deoxycytidine-5'-monophosphate. J Funct Biomater 2023; 14:526. [PMID: 37888191 PMCID: PMC10607123 DOI: 10.3390/jfb14100526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The delivery of nucleosides represents an interesting research trend in recent years due to their application in various viral infections. The main aims of this study were to develop and to characterize polyurethane particles that are intended to be used for the transport of nucleosides. Three samples have been prepared using aliphatic diisocyanates, a mixture of polyethylene glycol, polycaprolactone, and diols, respectively. The samples were characterized through refractivity measurements, drug loading efficacy, release and penetration rate investigations, FTIR and Raman spectroscopy, thermal analyses, Zetasizer, SEM, HDFa cells viability, and irritation tests on mice skin. The results indicate the obtaining of particles with sizes between 132 and 190 nm, positive Zeta potential values (28.3-31.5 mV), and a refractivity index around 1.60. A good thermal stability was found, and SEM images show a medium tendency to agglomerate. The samples' color, pH, and electrical conductivity have changed only to a small extent over time, and the evaluations indicate an almost 70% encapsulation efficacy, a prolonged release, and that around 70% of particles have penetrated an artificial membrane in the first 24 h. The synthesized products should be tested in further clinical trials, and the current tests on cell cultures and mice skin revealed no side effects.
Collapse
Affiliation(s)
- Florin Borcan
- Department I, Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timisoara, Romania
| | - Titus Vlase
- Research Center “Thermal Analysis in Environmental Problems”, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi Str., 300115 Timisoara, Romania; (T.V.); (G.V.)
| | - Gabriela Vlase
- Research Center “Thermal Analysis in Environmental Problems”, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi Str., 300115 Timisoara, Romania; (T.V.); (G.V.)
| | - Roxana Popescu
- Department II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 14A T. Vladimirescu Str., 300041 Timisoara, Romania;
| | - Codruta M. Soica
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
36
|
Mahdieh A, Yeganeh H, Motasadizadeh H, Nekoueifard E, Maghsoudian S, Hossein Ghahremani M, Nyström B, Dinarvand R. Waterborne polyurethane magnetic nanomicelles with magnetically governed functions for breast cancer therapy. Int J Pharm 2023; 645:123356. [PMID: 37661033 DOI: 10.1016/j.ijpharm.2023.123356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Drug delivery strategies aim to maximize a drug's therapeutic efficiency by increasing the drug's concentration at the target site while minimizing delivery to off-target tissues. There is a great deal of interest in using magnetic nanoparticles in combination with applied magnetic fields to selectively control drug accumulation and release in target tissue while minimizing effects on other tissues. In this study, a magnetic targeted drug delivery system based on waterborne polyurethane nanomicelles was prepared by encapsulating hydrophobic doxorubicin (DOX, model drug) and hydrophobic oleic acid-superparamagnetic nanoparticles (SPION-OA) into the hydrophobic core of waterborne polyurethane micelles (CPUM) using the solvent evaporation method. The prepared drug-loaded magnetomicelles (CPUM-DOX-SPION) had a spherical shape with an average diameter of 158 nm. The magnetomicelles showed superparamagnetic properties with excellent magnetic resonance imaging (MRI) contrast effects and T2 relaxation in vitro. In the absence and presence of a magnetic field, the cytocompatibility and cellular uptake of the samples were assessed by MTT assay and flow cytometry, respectively, and the cells were imaged with a confocal microscope. Application of the magnetic field increased cellular cytotoxicity and cellular uptake in association with improved DOX delivery. In addition, the in vivo study of tumor volume showed that tumor growth of the mice group treated with CPUM-DOX-SPION in the presence of an external magnetic field was significantly retarded, with no apparent loss of body weight, compared with the same magnetomicelles in the absence of the magnetic field and with free DOX at the same dose. Moreover, the in vivo MRI experiment indicated the potential of these magnetomicelles as a probe in MRI diagnosis for tumor targeting, and the results showed that magnetically guided delivery of CPUM-SPION magnetomicelles into tumors could significantly improve the targeting efficacy. All the results suggest that the prepared novel magnetomicelles will be promising theranostic systems for effective magnetically guided delivery of chemotherapeutic agents and image-guided personalized medicine.
Collapse
Affiliation(s)
- Athar Mahdieh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran; Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, N-0316, Oslo, Norway
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, P.O. Box: 14965-115, Tehran, Iran.
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Effat Nekoueifard
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran; Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern N-0315, Oslo, Norway
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.
| |
Collapse
|
37
|
Elfarargy RG, Sedki M, Samhan FA, Hassan RYA, El-Sherbiny IM. Surface grafting of polymeric catheters and stents to prevent biofilm formation of pathogenic bacteria. J Genet Eng Biotechnol 2023; 21:92. [PMID: 37707582 PMCID: PMC10501021 DOI: 10.1186/s43141-023-00545-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Tecothane (medical grade of polyurethane) is strongly involved in the fabrication of metallic and polymeric-based medical devices (e.g., catheters and stents) as they can withstand cardiac cycle-related forces without deforming or failing, and they can mimic tissue behavior. The main problem is microbial contamination and formation of pathogenic biofilms on such solid surfaces within the human body. Accordingly, our hypothesis is the coating of tecothane outer surfaces with antibacterial agents through the electro-deposition or chemical grafting of anti-biofilm agents onto the stent and catheter surfaces. RESULTS Tecothane is grafted with itaconic acid for cross-linking the polyethyleneimine (PEI) as the protective-active layer. Accordingly, the grafting of poly-itaconic acid onto the Tecothane was achieved by three different methods: wet-chemical approach, electro-polymerization, or by using plasma treatment. The successful modifications were verified using Fourier Transform Infrared (FTIR) spectroscopy, grafting percentage calculations, electrochemical, and microscopic monitoring of biofilm formation. The grafting efficiency of itaconic acid was over 3.2% (w/w) at 60 ℃ after 6 h of the catheter chemical modification. Bio-electrochemical signals of biofilms have been seriously reduced after chemical modification because of the inhibition of biofilm formation (for both Pseudomonas aeruginosa and Staphylococcus aureus) over a period of 9 days. CONCLUSION Chemical functionalization of the polyurethane materials with the antimicrobial and anti-biofilm agents led to a significant decrease in the formation of pathogenic biofilms. This promising proof-concept will open the door to explore further surface protection with potential anti-biofilm agents providing better and sustainable productions of stents and catheters biomaterials.
Collapse
Affiliation(s)
- Reham G Elfarargy
- Center for Materials Science, Zewail City of Science and Technology, 6Th October City, Giza, 12578, Egypt
| | - Mohamed Sedki
- Center for Materials Science, Zewail City of Science and Technology, 6Th October City, Giza, 12578, Egypt
| | - Farag A Samhan
- Water Pollution Research Department, National Research Centre (NRC), Giza, Egypt
| | - Rabeay Y A Hassan
- Center for Materials Science, Zewail City of Science and Technology, 6Th October City, Giza, 12578, Egypt.
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, Zewail City of Science and Technology, 6Th October City, Giza, 12578, Egypt.
| |
Collapse
|
38
|
Ristić I, Cakić S, Vukić N, Teofilović V, Tanasić J, Pilić B. The Influence of Soft Segment Structure on the Properties of Polyurethanes. Polymers (Basel) 2023; 15:3755. [PMID: 37765608 PMCID: PMC10536526 DOI: 10.3390/polym15183755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
A series of polyurethanes (PU) were synthesised via one-step polymerisation without a chain extender, using toluene diisocyanate as well as a variety of soft segments composed of different macrodiols. Poly(D,L-lactide) (PDLLA) and polycaprolactone diol (PCL) were synthesised as a polyester type polyols to obtain soft segments. The process of varying the molar ratio of newly synthesised PDLLA in soft segments has been confirmed as a powerful tool for fine-tuning the final properties of PU. Fourier-transformed infrared spectroscopy was used for evaluation of molecular structures of synthesised PDLLA polyol and final PU. Nuclear magnetic resonance spectrometry was used to confirm the presumed structure of PU. The influence of soft segment composition on polyurethane thermal characteristics was examined using thermogravimetric analysis and differential scanning calorimetry. The composition of soft segments had little impact on the thermal stability of PU materials, which is explained by the comparable structures of both polyester polyols. Wide-angle X-ray scattering was utilised to evaluate the effect of amorphous PDLLA on the degree of crystallinity of PCL in soft PU segments. It was discovered that not only did the PDLLA ratio in the soft segment have a substantial influence on the degree of microphase separation in the soft and hard segments, but it also influenced the crystallisation behaviour of the materials. Furthermore, the restriction of crystallisation of the PCL soft segment has been verified to be dependent on the hard segment concentration and the ratio of PDLLA/PCL polyols. The sample with pure PCL as the polyol component achieved the highest degree of crystallinity (34.8%). The results demonstrated that the composition of soft segments directly affected the properties of obtained polyurethane films. These results can be utilised to easily achieve a desirable set of properties required for application in biomaterials.
Collapse
Affiliation(s)
- Ivan Ristić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (V.T.); (J.T.); (B.P.)
| | - Suzana Cakić
- Faculty of Technology, University of Niš, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia;
| | - Nevena Vukić
- Faculty of Technical Sciences, University of Kragujevac, Svetog Save 65, 32102 Čačak, Serbia
| | - Vesna Teofilović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (V.T.); (J.T.); (B.P.)
| | - Jelena Tanasić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (V.T.); (J.T.); (B.P.)
| | - Branka Pilić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia; (V.T.); (J.T.); (B.P.)
| |
Collapse
|
39
|
Wang X, Ou Y, Wang X, Yuan L, He N, Li Z, Luo F, Li J, Tan H. A biodegradable injectable fluorescent polyurethane-oxidized dextran hydrogel for non-invasive monitoring. J Mater Chem B 2023; 11:8506-8518. [PMID: 37603338 DOI: 10.1039/d3tb01488f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Hydrogels have been extensively used in the field of biomedical engineering. In order to achieve non-invasive and real-time visualization of the in vivo status of hydrogels, we designed a fluorescent polyurethane-oxidized dextran (PU-OD) hydrogel with good injectability and self-healing properties, which was cross-linked from a tetraphenyl ethylene (TPE)-containing fluorescent polyurethane emulsion with oxidized dextran by dynamic acylhydrazone bonds. The hydrogel can be used as a visual platform for drug delivery as well as monitoring its own degradation. The network structure of the hydrogel gave it drug-loading capability, and the acylhydrazone bond enabled its pH-responsive drug release. Meanwhile, the PU-OD hydrogel could undergo fluorescence resonance transfer with doxorubicin hydrochloride, showing its potential application in monitoring drug release. In addition, fluorometric and weighing methods were performed to monitor the degradation behavior of the hydrogels in vivo and in vitro, respectively, showing that the non-invasive fluorometric method can be consistent with the invasive weighing method. This work highlights that the introduction of aggregation-induced emission molecules into polyurethanes provides a visual platform that allows for non-invasive monitoring of the material without affecting its own function, which is convenient and less damaging to the body or animals. Consequently, it possesses excellent and promising potential in biomedical materials technologies.
Collapse
Affiliation(s)
- Xiao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yangcen Ou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaofei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Lei Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Nan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
40
|
Luo Y, Geng Z, Zhang W, He J, Yang R. Strategy for Constructing Phosphorus-Based Flame-Retarded Polyurethane Elastomers for Advanced Performance in Long-Term. Polymers (Basel) 2023; 15:3711. [PMID: 37765565 PMCID: PMC10537912 DOI: 10.3390/polym15183711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Polyurethane elastomer (PUE), which is widely used in coatings for construction, transportation, electronics, aerospace, and other fields, has excellent physical properties. However, polyurethane elastomers are flammable, which limits their daily use, so the flame retardancy of polyurethane elastomers is very important. Reactive flame retardants have the advantages of little influence on the physical properties of polymers and low tendency to migrate out. Due to the remarkable needs of non-halogenated flame retardants, phosphorus flame retardant has gradually stood out as the main alternative. In this review, we focus on the fire safety of PUE and provide a detailed overview of the current molecular design and mechanisms of reactive phosphorus-containing, as well as P-N synergistic, flame retardants in PUE. From the structural characteristics, several basic aspects of PUE are overviewed, including thermal performance, combustion performance, and mechanical properties. In addition, the perspectives on the future advancement of phosphorus-containing flame-retarded polyurethane elastomers (PUE) are also discussed. Based on the past research, this study provides prospects for the application of flame-retarded PUE in the fields of self-healing materials, bio-based materials, wearable electronic devices, and solid-state electrolytes.
Collapse
Affiliation(s)
| | - Zhishuai Geng
- National Engineering Technology Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenchao Zhang
- National Engineering Technology Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | | | | |
Collapse
|
41
|
Peng J, Li K, Du Y, Yi F, Wu L, Liu G. A robust mixed-charge zwitterionic polyurethane coating integrated with antibacterial and anticoagulant functions for interventional blood-contacting devices. J Mater Chem B 2023; 11:8020-8032. [PMID: 37530181 DOI: 10.1039/d3tb01443f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Antifouling coatings based on zwitterionic polymers have been widely applied for surface modification of interventional blood-contacting devices to combat thrombosis and infection. However, the weak adhesion stability of the zwitterionic coating to the device surface is still the key challenge. In this work, biocompatible mixed-charge zwitterionic polyurethane (MPU) polymers, that bear equal amounts of cationic quaternary amine groups and anionic carboxyl groups, were developed and further uniformly dip-coated onto a thermoplastic polyurethane (TPU) substrate with a commercial aliphatic isocyanate cross-linker (AIC). During the curing process, AIC not only crosslinks MPU chains into a polymer network but also reacts with hydroxyl groups of TPU to interlink the polymer network to the substrate, resulting in a cross-linking reinforced MPU coating (CMPU) with excellent mechanical robustness and adhesion strength. Taking advantage of the mixed-charge feature, the final zwitterionic CMPU coating exhibits both excellent antifouling and antibacterial activities against protein adsorption and bacterial growth, respectively, which is beneficial for effectively inhibiting the occurrence of in vivo infection. Moreover, anticoagulation studies show that CMPU-coated TPU catheters can also prevent the formation of blood clots in ex vivo rabbit blood circuits without anticoagulants. Hence, the designed CMPU coating has immense potential to address thrombosis and infection for interventional blood-contacting devices.
Collapse
Affiliation(s)
- Jinyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Feng Yi
- Department of Emergency, Yueyang Central Hospital, Yueyang 414100, China.
| | - Lei Wu
- Department of Emergency, Yueyang Central Hospital, Yueyang 414100, China.
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
42
|
Pires-Junior R, Frizera A, Marques C, Leal-Junior A. Development of Fiber-Bragg-Grating-Integrated Artificial Embedded Tendon for Multifunctional Assessment of Temperature, Strain, and Curvature. SENSORS (BASEL, SWITZERLAND) 2023; 23:7332. [PMID: 37687788 PMCID: PMC10490486 DOI: 10.3390/s23177332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
This paper presents the development and application of an optical fiber-embedded tendon based on biomimetic multifunctional structures. The tendon was fabricated using a thermocure resin (polyurethane) and the three optical fibers with one fiber Bragg grating (FBG) inscribed in each fiber. The first step in the FBG-integrated artificial tendon analysis is the mechanical properties assessment through stress-strain curves, which indicated the customization of the proposed device, since it is possible to tailor the Young's modulus and strain limit of the tendon as a function of the integrated optical fibers, where the coated and uncoated fibers lead to differences in both parameters, i.e., strain limits and Young's modulus. Then, the artificial tendon integrated with FBG sensors undergoes three types of characterization, which assesses the influence of temperature, single-axis strain, and curvature. Results show similarities in the temperature responses in all analyzed FBGs, where the variations are related to the heterogeneity on the polyurethane matrix distribution. In contrast, the FBGs embedded in the tendon presented a reduction in the strain sensitivity when compared with the bare FBGs (i.e., without the integration in the artificial tendon). Such results demonstrated a reduction in the sensitivity as high as 77% when compared with the bare FBGs, which is related to strain field distributions in the FBGs when embedded in the tendon. In addition, the curvature tests indicated variations in both optical power and wavelength shift, where both parameters are used on the angle estimation using the proposed multifunctional artificial tendon. To that extent, root mean squared error of around 3.25° is obtained when both spectral features are considered. Therefore, the proposed approach indicates a suitable method for the development of smart structures in which the multifunctional capability of the device leads to the possibility of using not only as a structural element in tendon-driven actuators and devices, but also as a sensor element for the different structures.
Collapse
Affiliation(s)
- Robertson Pires-Junior
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitoria 29075-910, Brazil; (R.P.-J.); (A.F.)
| | - Anselmo Frizera
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitoria 29075-910, Brazil; (R.P.-J.); (A.F.)
| | - Carlos Marques
- Department of Physics and I3N, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Arnaldo Leal-Junior
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitoria 29075-910, Brazil; (R.P.-J.); (A.F.)
| |
Collapse
|
43
|
Yang X, Han Z, Jia C, Wang T, Wang X, Hu F, Zhang H, Zhao J, Zhang X. Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications. Polymers (Basel) 2023; 15:3193. [PMID: 37571087 PMCID: PMC10420975 DOI: 10.3390/polym15153193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Shape memory polymers (SMPs) are currently one of the most attractive smart materials expected to replace traditional shape memory alloys and ceramics (SMAs and SMCs, respectively) in some fields because of their unique properties of high deformability, low density, easy processing, and low cost. As one of the most popular SMPs, shape memory polyurethane (SMPU) has received extensive attention in the fields of biomedicine and smart textiles due to its biocompatibility and adjustable thermal transition temperature. However, its laborious synthesis, limitation to thermal response, poor conductivity, and low modulus limit its wider application. In this work, biocompatible poly(ε-caprolactone) diol (PCL-2OH) is used as the soft segment, isophorone diisocyanate (IPDI) is used as the hard segment, and glycerol (GL) is used as the crosslinking agent to prepare thermoset SMPU with a thermal transition temperature close to body temperature for convenient medical applications. The effects of different soft-chain molecular weights and crosslinking densities on the SMPU's properties are studied. It is determined that the SMPU has the best comprehensive performance when the molar ratio of IPDI:PCL-2OH:GL is 2:1.5:0.33, which can trigger shape memory recovery at body temperature and maintain 450% recoverable strain. Such materials are excellent candidates for medical devices and can make great contributions to human health.
Collapse
Affiliation(s)
- Xiaoqing Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China;
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China; (C.J.); (F.H.)
| | - Zhipeng Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.H.); (T.W.); (X.W.); (H.Z.)
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chengqi Jia
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China; (C.J.); (F.H.)
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Tianjiao Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.H.); (T.W.); (X.W.); (H.Z.)
- Research Institute of Aerospace Special Materials and Processing Technology, Beijing 100074, China
| | - Xiaomeng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.H.); (T.W.); (X.W.); (H.Z.)
- AVIC Manufacturing Technology Institute, Beijing 101300, China
| | - Fanqi Hu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China; (C.J.); (F.H.)
| | - Hui Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.H.); (T.W.); (X.W.); (H.Z.)
| | - Jun Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Z.H.); (T.W.); (X.W.); (H.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuesong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China;
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China; (C.J.); (F.H.)
| |
Collapse
|
44
|
Thakur M, Chandel M, Kumar A, Kumari S, Kumar P, Pathania D. The development of carbohydrate polymer- and protein-based biomaterials and their role in environmental health and hygiene: A review. Int J Biol Macromol 2023; 242:124875. [PMID: 37196726 DOI: 10.1016/j.ijbiomac.2023.124875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Biological macromolecules have been significantly used in the medicine due to their certain therapeutic values. Macromolecules have been employed in medical filed in order to enhance, support, and substitute damaged tissues or any other biological function. In the past decade, the biomaterial field has developed considerably because of vast innovations in regenerative medicine, tissue engineering, etc. Different types of biological macromolecules such as natural protein and polysaccharide etc. and synthetic molecules such as metal based, polymer based, and ceramic based etc. have been discussed. These materials can be modified by coatings, fibres, machine parts, films, foams, and fabrics for utilization in biomedical products and other environmental applications. At present, the biological macromolecules can used in different areas like medicine, biology, physics, chemistry, tissue engineering, and materials science. These materials have been used to promote the healing of human tissues, medical implants, bio-sensors and drug delivery, etc. These materials also considered as environmentally sustainable as they are prepared in association with renewable natural resources and living organisms in contrast to non-renewable resources (petrochemicals). In addition, enhanced compatibility, durability and circular economy of biological materials make them highly attractive and innovative for current research.The present review paper summarizes a brief about biological macromolecules, their classification, methods of synthesis, and their role in biomedicine, dyes and herbal products.
Collapse
Affiliation(s)
- Manita Thakur
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Manisha Chandel
- Department of Chemistry, IEC University Baddi, Solan, Himachal Pradesh, India
| | - Ajay Kumar
- Department of Chemistry, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Sarita Kumari
- Department of Zoology, Sardar Patel University, Mandi, (HP) 175001, India
| | - Pawan Kumar
- Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla 171013, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Bagla (RahyaSuchani), Jammu 181143, India.
| |
Collapse
|
45
|
Kesharwani P, Prajapati SK, Jain A, Sharma S, Mody N, Jain A. Biodegradable Nanogels for Dermal Applications: An Insight. CURRENT NANOSCIENCE 2023; 19:509-524. [DOI: 10.2174/1573413718666220415095630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 08/22/2024]
Abstract
Abstract:
Biodegradable nanogels in the biomedical field are emerging vehicles comprising
dispersions of hydrogel nanoparticles having 3D crosslinked polymeric networks. Nanogels show
distinguished characteristics including their homogeneity, adjustable size, low toxicity, stability
in serum, stimuli-responsiveness (pH, temperature, enzymes, light, etc.), and relatively good
drug encapsulation capability. Due to these characteristics, nanogels are referred to as nextgeneration
drug delivery systems and are suggested as promising carriers for dermal applications.
The site-specific delivery of drugs with effective therapeutic effects is crucial in transdermal drug
delivery. The nanogels made from biodegradable polymers can show external stimuliresponsiveness
which results in a change in gel volume, water content, colloidal stability, mechanical
strength, and other physical and chemical properties, thus improving the site-specific
topical drug delivery. This review provides insight into the advances in development, limitations,
and therapeutic significance of nanogels formulations. It also highlights the process of release of
drugs in response to external stimuli, various biodegradable polymers in the formulation of the
nanogels, and dermal applications of nanogels and their role in imaging, anti‐inflammatory therapy,
antifungal and antimicrobial therapy, anti‐psoriatic therapy, and ocular and protein/peptide
drug delivery.
Collapse
Affiliation(s)
- Payal Kesharwani
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, Uttar Pradesh,
India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O. Rajasthan 304022, India
| | - Shiv Kumar Prajapati
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, Uttar Pradesh,
India
| | - Anushka Jain
- Raj Kumar
Goel Institute of Technology (Pharmacy), 5-Km. Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O. Rajasthan-304022-India
| | - Nishi Mody
- Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (MP) 470003, India
| | - Ankit Jain
- Department of
Materials Engineering, Indian Institute of Science, Bangalore 560012 (Karnataka), India
| |
Collapse
|
46
|
Grzęda D, Węgrzyk G, Nowak A, Idaszek J, Szczepkowski L, Ryszkowska J. Cytotoxic Properties of Polyurethane Foams for Biomedical Applications as a Function of Isocyanate Index. Polymers (Basel) 2023; 15:2754. [PMID: 37376400 DOI: 10.3390/polym15122754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Polyurethane foams are widely used in biomedical applications due to their desirable mechanical properties and biocompatibility. However, the cytotoxicity of its raw materials can limit their use in certain applications. In this study, a group of open-cell polyurethane foams were investigated for their cytotoxic properties as a function of the isocyanate index, a critical parameter in the synthesis of polyurethanes. The foams were synthesized using a variety of isocyanate indices and characterized for their chemical structure and cytotoxicity. This study indicates that the isocyanate index highly influences the chemical structure of polyurethane foams, also causing changes in cytotoxicity. These findings have important implications for designing and using polyurethane foams as composite matrices in biomedical applications, as careful consideration of the isocyanate index is necessary to ensure biocompatibility.
Collapse
Affiliation(s)
- Dominik Grzęda
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Grzegorz Węgrzyk
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Joanna Idaszek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | | | - Joanna Ryszkowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| |
Collapse
|
47
|
Yang MR, Cheng YT, Tsai HC, Darge HF, Huang CC, Lin SY. Hofmeister effect-based soaking strategy for gelatin hydrogels with adjustable gelation temperature, mechanical properties, and ionic conductivity. BIOMATERIALS ADVANCES 2023; 152:213504. [PMID: 37331244 DOI: 10.1016/j.bioadv.2023.213504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/19/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
As a natural polymer with good biocompatibility, gelatin hydrogel has been widely used in the field of biomedical science for a long time. However, the lack of suitable gelation temperature and mechanical properties often limit the clinical applicability in diverse and complex environments. Here, we proposed a strategy based on the Hofmeister effect that gelatin hydrogels were soaked in the appropriate concentration of sodium sulfate solution, and the change in molecular chain interactions mainly guided by kosmotropic ions resulted in a comprehensive adjustment of multiple properties. A series of gelatin hydrogels treated with different concentrations of the salt solution gave rise to microstructural changes, which brought a decrease in the number and size of pores, a wide range of gelation temperature from 32 °C to 46 °C, a stress enhancement of about 40 times stronger to 0.8345 MPa, a strain increase of about 7 times higher to 238.05 %, and a certain degree of electrical conductivity to be utilized for versatile applications. In this regard, for example, we prepared microneedles and obtained a remarkable compression (punctuation) strength of 0.661 N/needle, which was 55 times greater than those of untreated ones. Overall, by integrating various characterizations and suggesting the corresponding mechanism behind the phenomenon, this method provides a simpler and more convenient performance control procedure. This allowed us to easily modulate the properties of the hydrogel as per the intended purpose, revealing its vast potential applications such as smart sensors, electronic skin, and drug delivery.
Collapse
Affiliation(s)
- Meng-Ru Yang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Ting Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chun-Chiang Huang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan.
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu, Taiwan.
| |
Collapse
|
48
|
Kim DH, Lee BJ, Park BK. Influence of the Foaming Process on the Burning Behavior of the PET-PEN Copolymer. ACS OMEGA 2023; 8:19556-19566. [PMID: 37305302 PMCID: PMC10249124 DOI: 10.1021/acsomega.3c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023]
Abstract
The manufacturing process can modify the micromechanical structure, usefulness, and functionality of foams. Although one-step foaming is a simple process, controlling the morphology of the foams is difficult compared to the two-step processing method. In this study, we investigated the experimental differences in thermal and mechanical properties, particularly combustion behavior, between PET-PEN copolymers prepared by the two methods. With an increase in foaming temperature Tf, the PET-PEN copolymers became more fragile, and the breaking stress of the one-step PET-PEN foamed at the highest Tf was only 2.4% of that of the raw material. For the pristine PET-PEN, 24% of the mass was burned, leaving 76% as a molten sphere residue. The two-step MEG PET-PEN had only 1% of its mass remaining as a residue, whereas the one-step PET-PENs had between 41 and 55%. The actual mass burning rates were similar for all the samples except the raw material. The coefficient of thermal expansion of the one-step PET-PEN was about two orders of magnitude lower than that of the two-step SEG.
Collapse
Affiliation(s)
- Dong Hyeon Kim
- School
of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Byeong Jun Lee
- School
of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Byung Kyu Park
- Institute
of Advanced Machines and Design, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
49
|
Javaid MA, Jabeen S, Arshad N, Zia KM, Hussain MT, Bhatti IA, Iqbal A, Ahmad S, Ullah I. Development of amylopectin based polyurethanes for sustained drug release studies. Int J Biol Macromol 2023:125224. [PMID: 37285893 DOI: 10.1016/j.ijbiomac.2023.125224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
In this research work, the crosslinked structure of polyurethane has been exploited for sustained drug delivery. Polyurethane composites have been prepared by the reaction of isophorone diisocyanate (IPDI) and polycaprolactone diol (PCL), which were further extended by varying the mole ratios of amylopectin (AMP) and 1,4-butane diol (1,4-BDO) chain extenders. The progress and completion of the reaction of polyurethane (PU) were confirmed using Fourier Transform infrared (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopic techniques. Gel permeation chromatography (GPC) analysis showed that the molecular weights of prepared polymers were increased with the addition of amylopectin into the PU matrix. The molecular weight of AS-4 (Mw ≈ 99,367) was found threefold as compared to amylopectin-free PU (Mw ≈ 37,968). Thermal degradation analysis was done using thermal gravimetric analysis (TGA) and inferred that AS-5 showed stability up to 600 °C which was the maximum among all PUs because AMP has a large number of -OH units for linking with prepolymer resulting in a more cross-linked structure which improved the thermal stability of the AS-5 sample. The samples prepared with AMP showed less drug release (<53 %) as compared to the PU sample prepared without AMP (AS-1).
Collapse
Affiliation(s)
- Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Sobia Jabeen
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Noureen Arshad
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan; Liberty Mills Limited, Karachi 75700, Pakistan
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University, Faisalabad 38030, Pakistan; Department of Applied Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Muhammad Tahir Hussain
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | - Ijaz Ahmed Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amer Iqbal
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Saliha Ahmad
- Department of Applied Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Inam Ullah
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| |
Collapse
|
50
|
Bianchi E, Ruggeri M, Vigani B, Del Favero E, Ricci C, Boselli C, Icaro Cornaglia A, Viseras C, Rossi S, Sandri G. Cerium Oxide and Chondroitin Sulfate Doped Polyurethane Scaffold to Bridge Tendons. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37220144 DOI: 10.1021/acsami.3c06144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tendon disorders are common medical conditions, which can be greatly debilitating as they are often accompanied by great pain and inflammation. The techniques used nowadays for the treatment of chronic tendon injuries often involve surgery. However, one critical aspect of this procedure involves the scar tissue, characterized by mechanical properties that vary from healthy tissue, rendering the tendons inclined to reinjury or rupture. Synthetic polymers, such as thermoplastic polyurethane, are of special interest in the tissue engineering field as they allow the production of scaffolds with controlled elastic and mechanical properties, which could guarantee an effective support during the new tissue formation. The aim of this work was the design and the development of tubular nanofibrous scaffolds based on thermoplastic polyurethane and enriched with cerium oxide nanoparticles and chondroitin sulfate. The scaffolds were characterized by remarkable mechanical properties, especially when tubular aligned, reaching values comparable to the ones of the native tendons. A weight loss test was performed, suggesting a degradation in prolonged times. In particular, the scaffolds maintained their morphology and also remarkable mechanical properties after 12 weeks of degradation. The scaffolds promoted the cell adhesion and proliferation, in particular when in aligned conformation. Finally, the systems in vivo did not cause any inflammatory effect, representing interesting platforms for the regeneration of injured tendons.
Collapse
Affiliation(s)
- Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA Viale Fratelli Cervi 93, Segrate 20090, Italy
| | - Caterina Ricci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA Viale Fratelli Cervi 93, Segrate 20090, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, Pavia 27100 , Italy
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, Granada 18071, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| |
Collapse
|