1
|
Lu Y, Lian X, Cao Y, Yang B, Qin T, Jing X, Huang D. An enhanced tri-layer bionic periosteum with gradient structure loaded by mineralized collagen for guided bone regeneration and in-situ repair. Int J Biol Macromol 2024; 277:134148. [PMID: 39059521 DOI: 10.1016/j.ijbiomac.2024.134148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Severe fracture non-union often accompanied by damaged or even absent periosteum remains a significant challenge. This paper presents a novel tri-layer bionic periosteum with gradient structure and mineralized collagen (MC) mimics natural periosteum for in-situ repair and bone regeneration. The construct with ultrasonic polylactic acid as the loose outer fibrous layer (UPLA), poly(ε-caprolactone) as the intermediate barrier layer (PCL-M), and poly(ε-caprolactone)/MC as the inner osteoblastic layer (PM) was prepared. The physicochemical properties of layers were investigated. UPLA/PCL-M/PM exhibited a tensile strength (3.55 ± 0.23 MPa) close to that of natural periosteum and excellent adhesion between the layers. In vitro experiments demonstrated that all layers had no toxicity to cells. UPLA promoted inward growth of mouse fibroblasts. PCL-M with a uniform pore size (2.82 ± 0.05 μm) could achieve a barrier effect against fibroblasts according to the live/dead assay. Meanwhile, PM could effectively promote cell migration with high alkaline phosphatase expression and significant mineralization of the extracellular matrix. Besides, in vivo experiments showed that UPLA/PCL-M/PM significantly promoted the regeneration of bone and early angiogenesis. Therefore, this construct with gradient structure developed in this paper would have great application potential in the efficient and high-quality treatment of severe fractures with periosteal defects.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yu Cao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Bo Yang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Tingwei Qin
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xuan Jing
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030600, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| |
Collapse
|
2
|
Liang R, Li R, Mo W, Zhang X, Ye J, Xie C, Li W, Peng Z, Gu Y, Huang Y, Zhang S, Wang X, Ouyang H. Engineering biomimetic silk fibroin hydrogel scaffolds with "organic-inorganic assembly" strategy for rapid bone regeneration. Bioact Mater 2024; 40:541-556. [PMID: 39055734 PMCID: PMC11269296 DOI: 10.1016/j.bioactmat.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Although natural polymers have been widely used in constructing bone scaffolds, it still remains challenging to fabricate natural polymer-derived bone scaffolds with biomimetic mechanical properties as well as outstanding osteogenic properties for large-size and weight-bearing bone defects regeneration. Herein, an "organic-inorganic assembly" strategy is developed to construct silk fibroin (SF)-based bone scaffolds with the aforementioned merits. After secondary structure reshuffling, the 3.3-fold increment of β-sheet structures in SF hydrogel resulted in a 100-fold improvement of mineral-assembly efficacy via influencing the ion adsorption process and providing templates for mineral growth. Notably, abundant minerals were deposited within the hydrogel and also on the surface, which indicated entire mineral-assembly, which ensured the biomimetic mechanical properties of the digital light processing 3D printed SF hydrogel scaffolds with haversian-mimicking structure. In vitro experiments proved that the assembly between the mineral and SF results in rapid adhesion and enhanced osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. In vivo experiments further proved that the mineral-assembled SF hydrogel scaffold could significantly enhance integration and bone regeneration at the weight-bearing site within one month. This SF-based "organic-inorganic assembly" strategy sheds light on constructing cell-free, growth factor-free and natural polymer-derived bone scaffolds with biomimetic 3D structure, mechanical properties and excellent osteogenic properties.
Collapse
Affiliation(s)
- Renjie Liang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Rui Li
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Weidong Mo
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Xianzhu Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, China
| | - Jinchun Ye
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Chang Xie
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wenyue Li
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Zhi Peng
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Yuqing Gu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Yuxuan Huang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Shufang Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Xiaozhao Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
3
|
Li M, Wu H, Gao K, Wang Y, Hu J, Guo Z, Hu R, Zhang M, Pang X, Guo M, Liu Y, Zhao L, He W, Ding S, Li W, Cheng W. Smart Implantable Hydrogel for Large Segmental Bone Regeneration. Adv Healthc Mater 2024:e2402916. [PMID: 39344873 DOI: 10.1002/adhm.202402916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Large segmental bone defects often lead to nonunion and dysfunction, posing a significant challenge for clinicians. Inspired by the intrinsic bone defect repair logic of "vascularization and then osteogenesis", this study originally reports a smart implantable hydrogel (PDS-DC) with high mechanical properties, controllable scaffold degradation, and timing drug release that can proactively match different bone healing cycles to efficiently promote bone regeneration. The main scaffold of PDS-DC consists of polyacrylamide, polydopamine, and silk fibroin, which endows it with superior interfacial adhesion, structural toughness, and mechanical stiffness. In particular, the adjustment of scaffold cross-linking agent mixing ratio can effectively regulate the in vivo degradation rate of PDS-DC and intelligently satisfy the requirements of different bone defect healing cycles. Ultimately, PDS hydrogel loaded with free desferrioxamine (DFO) and CaCO3 mineralized ZIF-90 loaded bone morphogenetic protein-2 (BMP-2) to stimulate efficient angiogenesis and osteogenesis. Notably, DFO is released rapidly by free diffusion, whereas BMP-2 is released slowly by pH-dependent layer-by-layer disintegration, resulting in a significant difference in release time, thus matching the intrinsic logic of bone defect repair. In vivo and in vitro results confirm that PDS-DC can effectively realize high-quality bone generation and intelligently regulate to adapt to different demands of bone defects.
Collapse
Affiliation(s)
- Menghan Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Haiping Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Ke Gao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yubo Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Jiaqi Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Ziling Guo
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing Key Laboratory of Forensic Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Ruiwei Hu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Mengxuan Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Minghui Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yuanjie Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Lina Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Wen He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Wenyang Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
4
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
5
|
Sun Z, Li H, Gao J, Xing Y, Liu Y, Jin C, Peng J, Zhang Z, Ma JA, Jiang W. Selective Chiral Interactions between Hydrophilic/Hydrophobic Amino Acids and Growing Gypsum Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17454-17462. [PMID: 39101658 DOI: 10.1021/acs.langmuir.4c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
In nature, selective interactions between chiral amino acids and crystals are important for the formation of chiral biominerals and provide insight into the mysterious origin of homochirality. Here, we show that chiral amino acids with different hydrophilicities/hydrophobicities exhibit different chiral selectivity preferences in the dynamically growing gypsum [001] steps. Hydrophilic amino acids show a chiral selectivity preference for their d-isomers, whereas hydrophobic amino acids prefer their l-isomers. These differences in chiral recognition can be attributed to the different stereochemical matching between the hydrophilic and hydrophobic amino acids on the [001] steps of growing gypsum. These different chiral selectivities resulting from the amino acid hydrophilicity/hydrophobicity are confirmed by the experimental crystallization investigations from nano regulation on dynamic steps, to microscopic modification of gypsum morphology, and to macroscopic precipitation. Furthermore, as the hydrophilicity of amino acids increases, the disparity in chiral selection rises; conversely, the increase in the hydrophobicity of amino acids results in a decline in chiral selection. These insights improve our understanding of the interaction mechanism between amino acids and crystals and provide insights into the formation process of chiral biominerals and the origin of homochirality in nature.
Collapse
Affiliation(s)
- Zhiheng Sun
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Haibin Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai, People's Republic of China
| | - Jing Gao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yi Xing
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yue Liu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chao Jin
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianhong Peng
- Qinghai Provincial Key Laboratory of Nanomaterials and Nanotechnology, Qinghai Minzu University, Xining 810007, PR China
| | - Zhisen Zhang
- Department of Physics, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wenge Jiang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai, People's Republic of China
| |
Collapse
|
6
|
Khan MUA, Aslam MA, Abdullah MFB, Abdal-Hay A, Gao W, Xiao Y, Stojanović GM. Recent advances of bone tissue engineering: carbohydrate and ceramic materials, fundamental properties and advanced biofabrication strategies ‒ a comprehensive review. Biomed Mater 2024; 19:052005. [PMID: 39105493 DOI: 10.1088/1748-605x/ad6b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Bone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering. Bone tissue engineering (BTE) has the potential to develop scaffolds for repairing critical-size damaged bone. BTE is a multidisciplinary engineered scaffold with the desired properties for repairing damaged bone tissue. Herein, we have provided an overview of the common carbohydrate polymers, fundamental structural, physicochemical, and biological properties, and fabrication techniques for bone tissue engineering. We also discussed advanced biofabrication strategies and provided the limitations and prospects by highlighting significant issues in bone tissue engineering. There are several review articles available on bone tissue engineering. However, we have provided a state-of-the-art review article that discussed recent progress and trends within the last 3-5 years by emphasizing challenges and future perspectives.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| | - Abdalla Abdal-Hay
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- School of Dentistry, University of Queensland, 288 Herston Road, Herston QLD 4006, Australia
| | - Wendong Gao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Yin Xiao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
7
|
Rossi A, Furlani F, Bassi G, Cunha C, Lunghi A, Molinari F, Teran FJ, Lista F, Bianchi M, Piperno A, Montesi M, Panseri S. Contactless magnetically responsive injectable hydrogel for aligned tissue regeneration. Mater Today Bio 2024; 27:101110. [PMID: 39211510 PMCID: PMC11360152 DOI: 10.1016/j.mtbio.2024.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular alignment plays a pivotal role in several human tissues, including skeletal muscle, spinal cord and tendon. Various techniques have been developed to control cellular alignment using 3D biomaterials. However, the majority of 3D-aligned scaffolds require invasive surgery for implantation. In contrast, injectable hydrogels provide a non-invasive delivery method, gaining considerable attention for the treatment of diverse conditions, including osteochondral lesions, volumetric muscle loss, and traumatic brain injury. We engineered a biomimetic hydrogel with magnetic responsiveness by combining gellan gum, hyaluronic acid, collagen, and magnetic nanoparticles (MNPs). Collagen type I was paired with MNPs to form magnetic collagen bundles (MCollB), allowing the orientation control of these bundles within the hydrogel matrix through the application of a remote low-intensity magnetic field. This resulted in the creation of an anisotropic architecture. The hydrogel mechanical properties were comparable to those of human soft tissues, such as skeletal muscle, and proof of the aligned hydrogel concept was demonstrated. In vitro findings confirmed the absence of toxicity and pro-inflammatory effects. Notably, an increased fibroblast cell proliferation and pro-regenerative activation of macrophages were observed. The in-vivo study further validated the hydrogel biocompatibility and demonstrated the feasibility of injection with rapid in situ gelation. Consequently, this magnetically controlled injectable hydrogel exhibits significant promise as a minimally invasive, rapid gelling and effective treatment for regenerating various aligned human tissues.
Collapse
Affiliation(s)
- Arianna Rossi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Franco Furlani
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Giada Bassi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
- University of G. D'Annunzio, Department of Neurosciences, Imaging and Clinical Sciences. Via Luigi Polacchi, 11, 66100 Chieti, Italy
| | - Carla Cunha
- i3S - Instituto de Investigação e Inovação em Saúde. Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia 44121 Ferrara, Italy
- Section of Physiology, Università di Ferrara 44121 Ferrara, Italy
| | - Filippo Molinari
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Francisco J. Teran
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Nanotech Solutions, Ctra Madrid23, 40150 Villacastín, Spain
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, IGESAN, Via di Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Michele Bianchi
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia 44125 Modena, Italy
| | - Anna Piperno
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences. Viale Ferdinando Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| | - Silvia Panseri
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy. Via Granarolo 64, 48018. Faenza, Italy
| |
Collapse
|
8
|
Abedi M, Shafiee M, Afshari F, Mohammadi H, Ghasemi Y. Collagen-Based Medical Devices for Regenerative Medicine and Tissue Engineering. Appl Biochem Biotechnol 2024; 196:5563-5603. [PMID: 38133881 DOI: 10.1007/s12010-023-04793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Assisted reproductive technologies are key to solving the problems of aging and organ defects. Collagen is compatible with living tissues and has many different chemical properties; it has great potential for use in reproductive medicine and the engineering of reproductive tissues. It is a natural substance that has been used a lot in science and medicine. Collagen is a substance that can be obtained from many different animals. It can be made naturally or created using scientific methods. Using pure collagen has some drawbacks regarding its physical and chemical characteristics. Because of this, when collagen is processed in various ways, it can better meet the specific needs as a material for repairing tissues. In simpler terms, collagen can be used to help regenerate bones, cartilage, and skin. It can also be used in cardiovascular repair and other areas. There are different ways to process collagen, such as cross-linking it, making it more structured, adding minerals to it, or using it as a carrier for other substances. All of these methods help advance the field of tissue engineering. This review summarizes and discusses the current progress of collagen-based materials for reproductive medicine.
Collapse
Affiliation(s)
- Mehdi Abedi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran.
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran.
| | - Mina Shafiee
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Farideh Afshari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Yang F, Chen Y, Zhang W, Gu S, Liu Z, Chen M, Chen L, Chen F, Zhang H, Ding Y, Liu Y, Chen J, Wang L. Tunable and fast-cured hyaluronic acid hydrogel inspired on catechol architecture for enhanced adhesion property. Int J Biol Macromol 2024; 271:132119. [PMID: 38816297 DOI: 10.1016/j.ijbiomac.2024.132119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
Hyaluronic acid-based hydrogels have been broadly used in medical applications due to their remarkable properties such as biocompatibility, biodegradability, super hydroscopicity, non-immunogenic effect, etc. However, the inherent weak and hydrophilic polysaccharide structure of pure hyaluronic acid (HA) hydrogels has limited their potential use in muco-adhesiveness, wound dressing, and 3D printing. In this research, we developed in-situ forming of catechol-modified HA hydrogels with improved mechanical properties involving blue-light curing crosslinking reaction. The effect of catechol structure on the physicochemical properties of HA hydrogels was evaluated by varying the content (0-40 %). The as-synthesized hydrogel demonstrated rapid prototyping, excellent wetting adhesiveness, and good biocompatibility. Furthermore, an optimized hydrogel precursor solution was used as a blue light-cured bio-ink with high efficiency and good precision and successfully prototyped a microstructure that mimicked the human hepatic lobule by using DLP 3D printing method. This catechol-modified HA hydrogel with tunable physicochemical and rapid prototyping properties has excellent potential in biomedical engineering.
Collapse
Affiliation(s)
- Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Yunlu Chen
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310014, PR China
| | - Wentao Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Shaochun Gu
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, PR China.
| | - Maohu Chen
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Leidan Chen
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Feng Chen
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Yude Ding
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China
| | - Yanshan Liu
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310014, PR China
| | - Jinyi Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, PR China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| |
Collapse
|
10
|
Panda G, Barik D, Dash M. Understanding Matrix Stiffness in Vinyl Polymer Hydrogels: Implications in Bone Tissue Engineering. ACS OMEGA 2024; 9:17891-17902. [PMID: 38680357 PMCID: PMC11044159 DOI: 10.1021/acsomega.3c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
Matrix elasticity helps to direct bone cell differentiation, impact healing processes, and modify extracellular matrix deposition, all of which are required for tissue growth and maintenance. In this work, we evaluated the role of inorganic nanocrystals or mineral inducers such as nanohydroxyapatite, alkaline phosphatase, and nanoclay also known as montmorillonite deposited on vinyl-based hydrogels in generating matrices with different stiffness and their role in cell differentiation. Poly-2-(dimethylamino)ethyl methacrylate (PD) and poly-2-hydroxypropylmethacrylamide (PH) are the two types of vinyl polymers chosen for preparing hydrogels via thermal cross-linking. The hydrogels exhibited porosity, which decreased with an increase in stiffness. Each of the compositions is non-cytotoxic and maintains the viability of pre-osteoblasts (MC3T3-E1) and human bone marrow mesenchymal stem cells (hBMSCs). The PD hydrogels in the presence of ALP showed the highest mineralization ability confirmed through the alizarin assay and a better structural environment for their use as scaffolds for tissue engineering. The study reveals that understanding such interactions can generate hydrogels that can serve as efficient 3D models to study biomineralization.
Collapse
Affiliation(s)
| | - Debyashreeta Barik
- Institute
of Life Sciences, Nalco
Square, Bhubaneswar, Odisha 751023, India
- School
of Biotechnology, Kalinga Institute of Industrial
Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Mamoni Dash
- Institute
of Life Sciences, Nalco
Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
11
|
Castanheira EJ, Monteiro LPG, Gaspar VM, Correia TR, Rodrigues JMM, Mano JF. In-Bath 3D Printing of Anisotropic Shape-Memory Cryogels Functionalized with Bone-Bioactive Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18386-18399. [PMID: 38591243 DOI: 10.1021/acsami.3c18290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cryogels exhibit unique shape memory with full recovery and structural stability features after multiple injections. These constructs also possess enhanced cell permeability and nutrient diffusion when compared to typical bulk hydrogels. Volumetric processing of cryogels functionalized with nanosized units has potential to widen their biomedical applications, however this has remained challenging and relatively underexplored. In this study, we report a novel methodology that combines suspension 3D printing with directional freezing for the fabrication of nanocomposite cryogels with configurable anisotropy. When compared to conventional bulk or freeze-dried hydrogels, nanocomposite cryogel formulations exhibit excellent shape recovery (>95%) and higher pore connectivity. Suspension printing, assisted with a prechilled metal grid, was optimized to induce anisotropy. The addition of calcium- and phosphate-doped mesoporous silica nanoparticles into the cryogel matrix enhanced bioactivity toward orthopedic applications without hindering the printing process. Notably, the nanocomposite 3D printed cryogels exhibit injectable shape memory while also featuring a lamellar topography. The fabrication of these constructs was highly reproducible and exhibited potential for a cell-delivery injectable cryogel with no cytotoxicity to human-derived adipose stem cells. Hence, in this work, it was possible to combine a gravity defying 3D printed methodology with injectable and controlled anisotropic macroporous structures containing bioactive nanoparticles. This methodology ameliorates highly tunable injectable 3D printed anisotropic nanocomposite cryogels with a user-programmable degree of structural complexity.
Collapse
Affiliation(s)
- Edgar J Castanheira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - Luís P G Monteiro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - Vítor M Gaspar
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - Tiago R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - João M M Rodrigues
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| |
Collapse
|
12
|
Qian G, Wu T, Wang Z, Yu B, Ye J. Synergistic effects of calcium silicate/zinc silicate dual compounds and in-situinterconnected pores on promoting bone regeneration of composite scaffolds. Biomed Mater 2024; 19:035024. [PMID: 38518361 DOI: 10.1088/1748-605x/ad3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Rapid bone regeneration in implants is important for successful transplantation. In this regard, we report the development of calcium silicate/zinc silicate (CS/ZS) dual-compound-incorporated calcium phosphate cement (CPC) scaffolds with a three-dimensional poly (lactic-co-glycolic acid) network that synergistically promote bone regeneration.In vitroresults demonstrated that the incorporation of CS/ZS dual compounds into the CPC significantly promoted the osteogenic differentiation of stem cells compared to the addition of CS or ZS alone. Moreover, the bone-regeneration efficacy of the composite scaffolds was validated by filling in femur condyle defects in rabbits, which showed that the scaffolds with CS and ZS possessed a great bone repair effect, as evidenced by more new bone formation and a faster scaffold biodegradation compared to the scaffold with CS alone.
Collapse
Affiliation(s)
- Guowen Qian
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, People's Republic of China
| | - Zhaozhen Wang
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510630, People's Republic of China
| | - Bo Yu
- Orthopedic and traumatology department, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Jiandong Ye
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
13
|
Sriram M, Priya S, Katti DS. Polyhydroxybutyrate-based osteoinductive mineralized electrospun structures that mimic components and tissue interfaces of the osteon for bone tissue engineering. Biofabrication 2024; 16:025036. [PMID: 38471166 DOI: 10.1088/1758-5090/ad331a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Scaffolds for bone tissue engineering should enable regeneration of bone tissues with its native hierarchically organized extracellular matrix (ECM) and multiple tissue interfaces. To achieve this, inspired by the structure and properties of bone osteon, we fabricated polyhydroxybutyrate (PHB)-based mineralized electrospun fibrous scaffolds. After studying multiple PHB-based fibers, we chose 7%PHB/1%Gelatin fibers (PG) to fabricate mineralized fibers that mimic mineralized collagen fibers in bone. The mineralized PG (mPG) surface had a rough, hydrophilic layer of low crystalline calcium phosphate which was biocompatible to bone marrow stromal cells (BMSCs), induced their proliferation and was osteoinductive. Subsequently, by modulating the electrospinning process, we fabricated mPG-based novel higher order fibrous scaffolds that mimic the macroscale geometries of osteons of bone ECM. Inspired by the aligned collagen fibers in bone lamellae, we fabricated mPG scaffolds with aligned fibers that could direct anisotropic elongation of mouse BMSC (mBMSCs). Further, we fabricated electrospun mPG-based osteoinductive tubular constructs which can mimic cylindrical bone components like osteons or lamellae or be used as long bone analogues based on their dimensions. Finally, to regenerate tissue interfaces in bone, we introduced a novel bi-layered scaffold-based approach. An electrospun bi-layered tubular construct that had PG in the outer layer and 7%PHB/0.5%Polypyrrole fibers (PPy) in the inner layer was fabricated. The bi-layered tubular construct underwent preferential surface mineralization only on its outer layer. This outer mineralized layer supported osteogenesis while the inner PPy layer could support neural cell growth. Thus, the bi-layered tubular construct may be used to regenerate haversian canal in the osteons which hosts nerve fibers. Overall, the study introduced novel techniques to fabricate biomimetic structures that can regenerate components of bone osteon and its multiple tissue interfaces. The study lays foundation for the fabrication of a modular scaffold that can regenerate bone with its hierarchical structure and complex tissue interfaces.
Collapse
Affiliation(s)
- M Sriram
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Smriti Priya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
14
|
Li C, Chen G, Wang Y, Xu W, Hu M. Indirect co-culture of osteoblasts and endothelial cells in vitro based on a biomimetic 3D composite hydrogel scaffold to promote the proliferation and differentiation of osteoblasts. PLoS One 2024; 19:e0298689. [PMID: 38527040 PMCID: PMC10962808 DOI: 10.1371/journal.pone.0298689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
The field of orthopedics has long struggled with the challenge of repairing and regenerating bone defects, which involves a complex process of osteogenesis requiring coordinated interactions among different types of cells. The crucial role of endothelial cells and osteoblasts in bone vascularization and osteogenesis underscores the importance of their intimate interaction. However, efforts to bioengineer bone tissue have been impeded by the difficulty in establishing proper angiogenesis and osteogenesis in tissue structures. This study presents a novel approach to bone tissue engineering, involving a three-dimensional composite hydrogel scaffold composed of sodium alginate microspheres encapsulated in type I collagen. Using this scaffold, a three-dimensional indirect co-culture system was established for osteoblasts and endothelial cells to evaluate the osteogenic differentiation potential of osteoblasts. Results demonstrate that the non-contact co-culture system of endothelial cells and osteoblasts constructed by the composite hydrogel scaffold loaded with microspheres holds promise for bone tissue engineering. The innovative concept of an indirect co-culture system presents exciting prospects for conducting intercellular communication studies and offers a valuable in vitro tissue platform to investigate tissue regeneration.
Collapse
Affiliation(s)
- Cheng Li
- Department of Orthopedics, Jiangsu Provincial People's Hospital, Nanjing, Jiangsu, China
| | - Guanghui Chen
- Department of Orthopedics, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Yangyang Wang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wenwu Xu
- Department of Orthopedics, Dongguan Tungwah Hospital, Dongguan, Guangdong, China
| | - Minghui Hu
- Department of Orthopedics, DongGuan SongShan Lake Tungwah Hospital, Dongguan, Guangdong, China
| |
Collapse
|
15
|
Zhang Y, Zhu Y, Habibovic P, Wang H. Advanced Synthetic Scaffolds Based on 1D Inorganic Micro-/Nanomaterials for Bone Regeneration. Adv Healthc Mater 2024; 13:e2302664. [PMID: 37902817 DOI: 10.1002/adhm.202302664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Inorganic nanoparticulate biomaterials, such as calcium phosphate and bioglass particles, with chemical compositions similar to that of the inorganic component of natural bone, and hence having excellent biocompatibility and bioactivity, are widely used for the fabrication of synthetic bone graft substitutes. Growing evidence suggests that structurally anisotropic, or 1D inorganic micro-/nanobiomaterials are superior to inorganic nanoparticulate biomaterials in the context of mechanical reinforcement and construction of self-supporting 3D network structures. Therefore, in the past decades, efforts have been devoted to developing advanced synthetic scaffolds for bone regeneration using 1D micro-/nanobiomaterials as building blocks. These scaffolds feature extraordinary physical and biological properties, such as enhanced mechanical properties, super elasticity, multiscale hierarchical architecture, extracellular matrix-like fibrous microstructure, and desirable biocompatibility and bioactivity, etc. In this review, an overview of recent progress in the development of advanced scaffolds for bone regeneration is provided based on 1D inorganic micro-/nanobiomaterials with a focus on their structural design, mechanical properties, and bioactivity. The promising perspectives for future research directions are also highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yingjie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Pamela Habibovic
- Maastricht University, Minderbroedersberg 4-6, Maastricht, 6211 LK ER, The Netherlands
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
16
|
An C, Zhang S, Xu J, Zhang Y, Dou Z, Shao F, Long C, yang J, Wang H, Liu J. The microparticulate inks for bioprinting applications. Mater Today Bio 2024; 24:100930. [PMID: 38293631 PMCID: PMC10825055 DOI: 10.1016/j.mtbio.2023.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as a groundbreaking technology for fabricating intricate and functional tissue constructs. Central to this technology are the bioinks, which provide structural support and mimic the extracellular environment, which is crucial for cellular executive function. This review summarizes the latest developments in microparticulate inks for 3D bioprinting and presents their inherent challenges. We categorize micro-particulate materials, including polymeric microparticles, tissue-derived microparticles, and bioactive inorganic microparticles, and introduce the microparticle ink formulations, including granular microparticles inks consisting of densely packed microparticles and composite microparticle inks comprising microparticles and interstitial matrix. The formulations of these microparticle inks are also delved into highlighting their capabilities as modular entities in 3D bioprinting. Finally, existing challenges and prospective research trajectories for advancing the design of microparticle inks for bioprinting are discussed.
Collapse
Affiliation(s)
- Chuanfeng An
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen, 518060, China
| | - Jiqing Xu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Yujie Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Zhenzhen Dou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Fei Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Canling Long
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jianhua yang
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| |
Collapse
|
17
|
Gholipour Choubar E, Nasirtabrizi MH, Salimi F, Sadeghianmaryan A. Improving bone regeneration with electrospun antibacterial polycaprolactone/collagen/polyvinyl pyrrolidone scaffolds coated with hydroxyapatite and cephalexin delivery capability. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:127-145. [PMID: 37837633 DOI: 10.1080/09205063.2023.2270216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Electrospinning is a facile popular method for the creation of nano-micro fibers tissue engineering scaffolds. Here, polycaprolactone (PCL)/collagen (COL): polyvinyl pyrrolidone (PVP) scaffolds (PCL/COL: PVP) were fabricated for bone regeneration. Various concentrations of Cephalexin (CEF) (0.5, 1, 1.5 wt. %) were added to PCL/COL: PVP scaffold to provide an antibacterial scaffold, and different concentrations of hydroxyapatite (HA) (1, 2, 5 wt. %) was electrospray on the surface of the scaffolds. The PCL/COL: PVP scaffold contained 1.5% CEF and coated with 2% HA was introduced as the best sample and in-vitro tests were performed on this scaffold based on the antibacterial and MTT test results. Morphology observations demonstrated a bead-free uniform combined nano-micro fibrous structure. Fourier transform infrared spectroscopy and X-ray diffraction tests confirmed the successful formation of the scaffolds and the wettability, swelling, and biodegradability evaluations of the scaffolds confirmed the hydrophilicity nature of the scaffold with high swelling properties and suitable biodegradation ratio. The scaffolds supported cell adhesion and represented high alkaline phosphatase activity. CEF loading led to antibacterial properties of the designed scaffolds and showed a suitable sustained release rate within 48 h. It seems that the electrospun PCL/COL: PVP scaffold loaded with 1.5% CEF and coated with 2% HA can be useful for bone regeneration applications that need further evaluation in the near future.
Collapse
Affiliation(s)
| | | | - Farshid Salimi
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Ali Sadeghianmaryan
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
18
|
Becht A, Frączyk J, Waśko J, Menaszek E, Kajdanek J, Miłowska K, Kolesinska B. Selection of collagen IV fragments forming the outer sphere of the native protein: Assessment of biological activity for regenerative medicine. J Pept Sci 2024; 30:e3537. [PMID: 37607826 DOI: 10.1002/psc.3537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
The aim of this research was to select the fragments that make up the outer layer of the collagen IV (COL4A6) protein and to assess their potential usefulness for regenerative medicine. It was expected that because protein-protein interactions take place via contact between external domains, the set of peptides forming the outer sphere of collagen IV will determine its interaction with other proteins. Cellulose-immobilized protein fragment libraries treated with polyclonal anti-collagen IV antibodies were used to select the peptides forming the outer sphere of collagen IV. In the first test, 33 peptides that strongly interacted with the polyclonal anti-collagen IV antibodies were selected from a library of non-overlapping fragments of collagen IV. The selected fragments of collagen IV (cleaved from the cellulose matrix) were tested for their cytotoxicity, their effects on cell viability and proliferation, and their impact on the formation of reactive oxygen species (ROS). The studies used RAW 264.7 mouse macrophage cells and Hs 680.Tr human fibroblasts. PrestoBlue, ToxiLight™, and ToxiLight 100% Lysis Control assays were conducted. The viability of fibroblasts cultured with the addition of increasing concentrations of the peptide mix did not show statistically significant differences from the control. Fragments 161-170, 221-230, 721-730, 1331-1340, 1521-1530, and 1661-1670 of COL4A6 were examined for cytotoxicity against BJ normal human foreskin fibroblasts. None of the collagen fragments were found to be cytotoxic. Further research is underway on the potential uses of collagen IV fragments in regenerative medicine.
Collapse
Affiliation(s)
- Angelika Becht
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Justyna Frączyk
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Joanna Waśko
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Chair of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Jakub Kajdanek
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Beata Kolesinska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
19
|
Dobaj Štiglic A, Lackner F, Nagaraj C, Beaumont M, Bračič M, Duarte I, Kononenko V, Drobne D, Madhan B, Finšgar M, Kargl R, Stana Kleinschek K, Mohan T. 3D-Printed Collagen-Nanocellulose Hybrid Bioscaffolds with Tailored Properties for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2023; 6:5596-5608. [PMID: 38050684 PMCID: PMC10731651 DOI: 10.1021/acsabm.3c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023]
Abstract
Hybrid collagen (Coll) bioscaffolds have emerged as a promising solution for tissue engineering (TE) and regenerative medicine. These innovative bioscaffolds combine the beneficial properties of Coll, an important structural protein of the extracellular matrix, with various other biomaterials to create platforms for long-term cell growth and tissue formation. The integration or cross-linking of Coll with other biomaterials increases mechanical strength and stability and introduces tailored biochemical and physical factors that mimic the natural tissue microenvironment. This work reports on the fabrication of chemically cross-linked hybrid bioscaffolds with enhanced properties from the combination of Coll, nanofibrillated cellulose (NFC), carboxymethylcellulose (CMC), and citric acid (CA). The bioscaffolds were prepared by 3D printing ink containing Coll-NFC-CMC-CA followed by freeze-drying, dehydrothermal treatment, and neutralization. Cross-linking through the formation of ester bonds between the polymers and CA in the bioscaffolds was achieved by exposing the bioscaffolds to elevated temperatures in the dry state. The morphology, pores/porosity, chemical composition, structure, thermal behavior, swelling, degradation, and mechanical properties of the bioscaffolds in the dry and wet states were investigated as a function of Coll concentration. The bioscaffolds showed no cytotoxicity to MG-63 human bone osteosarcoma cells as tested by different assays measuring different end points. Overall, the presented hybrid Coll bioscaffolds offer a unique combination of biocompatibility, stability, and structural support, making them valuable tools for TE.
Collapse
Affiliation(s)
- Andreja Dobaj Štiglic
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty
of Chemistry and Chemical Engineering, Laboratory for Analytical Chemistry
and Industrial Analysis, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Florian Lackner
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Chandran Nagaraj
- Ludwig
Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Marco Beaumont
- Department
of Chemistry, Institute of Chemistry o Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), A-3430 Tulln, Austria
| | - Matej Bračič
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Isabel Duarte
- Department
of Mechanical Engineering, Centre for Mechanical Technology and Automation
(TEMA), Intelligent Systems Associate Laboratory (LASI), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veno Kononenko
- Department
of Biology, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department
of Biology, Biotechnical Faculty, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Balaraman Madhan
- CSIR-Central
Leather Research Institute, Chennai 600 020, Tamil Nadu, India
| | - Matjaž Finšgar
- Faculty
of Chemistry and Chemical Engineering, Laboratory for Analytical Chemistry
and Industrial Analysis, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Rupert Kargl
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Institute
of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska cesta 46, 2000 Maribor, Slovenia
| | - Tamilselvan Mohan
- Faculty
of Mechanical Engineering, Laboratory for Characterization and Processing
of Polymers, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
20
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Feroz S, Muhammad N, Ullah R, Nishan U, Cathro P, Dias G. Mechanical properties, and in vitro biocompatibility assessment of biomimetic dual layered keratin/ hydroxyapatite scaffolds. Front Bioeng Biotechnol 2023; 11:1304147. [PMID: 38173873 PMCID: PMC10764155 DOI: 10.3389/fbioe.2023.1304147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
A novel biomimetic dual layered keratin/hydroxyapatite (keratin/HA) scaffold was designed using iterative freeze-drying technique. The prepared scaffolds were studied using several analytical techniques to better understand the biological, structural, and mechanical properties. The developed multilayered, interconnected, porous keratin scaffold with different hydroxyapatite (HA) content in the outer and inner layer, mimics the inherent gradient structure of alveolar bone. SEM studies showed an interconnected porous architecture of the prepared scaffolds with seamless integration between the upper and lower layers. The incorporation of HA improved the mechanical properties keratin/HA scaffolds. The keratin/HA scaffolds exhibited superior mechanical properties in terms of Young's modulus and compressive strength in comparison to pure keratin scaffolds. The biocompatibility studies suggested that both keratin and keratin/HA scaffolds were cyto-compatible, in terms of cell proliferation. Furthermore, it showed that both the tested materials can served as an ideal substrate for the differentiation of Saos-2 cells, leading to mineralization of the extracellular matrix. In summary, ionic liquid based green technique was employed for keratin extraction to fabricate keratin/HA scaffolds and our detailed in vitro investigations suggest the great potential for these composite scaffolds for bone tissue engineering in future.
Collapse
Affiliation(s)
- Sandleen Feroz
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Peter Cathro
- Department of Oral Rehabilitation, University of Otago School of Dentistry, Dunedin, New Zealand
| | - George Dias
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Dewey MJ, Chang RSH, Nosatov AV, Janssen K, Crotts SJ, Hollister SJ, Harley BAC. Generative design approach to combine architected Voronoi foams with porous collagen scaffolds to create a tunable composite biomaterial. Acta Biomater 2023; 172:249-259. [PMID: 37806375 PMCID: PMC10827241 DOI: 10.1016/j.actbio.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Regenerative biomaterials for musculoskeletal defects must address multi-scale mechanical challenges. Repairing craniomaxillofacial bone defects, which are often large and irregularly shaped, requires close conformal contact between implant and defect margins to aid healing. While mineralized collagen scaffolds can promote mesenchymal stem cell osteogenic differentiation in vitro and bone formation in vivo, their mechanical performance is insufficient for surgical translation. We report a generative design approach to create scaffold-mesh composites by embedding a macro-scale polymeric Voronoi mesh into the mineralized collagen scaffold. The mechanics of architected foam reinforced composites are defined by a rigorous predictive moduli equation. We show biphasic composites localize strain during loading. Further, planar and 3D mesh-scaffold composites can be rapidly shaped to aid conformal fitting. Voronoi-based composites overcome traditional porosity-mechanics relationship limits while enabling rapid shaping of regenerative implants to conformally fit complex defects unique for individual patients. STATEMENT OF SIGNIFICANCE: Biomaterial strategies for (craniomaxillofacial) bone regeneration are often limited by the size and complex geometry of the defects. Voronoi structures are open-cell foams with tunable mechanical properties which have primarily been used computationally. We describe generative design strategies to create Voronoi foams via 3D-printing then embed them into an osteogenic mineralized collagen scaffold to form a multi-scale composite biomaterial. Voronoi structures have predictable and tailorable moduli, permit stain localization to defined regions of the composite, and permit conformal fitting to effect margins to aid surgical practicality and improve host-biomaterial interactions. Multi-scale composites based on Voronoi foams represent an adaptable design approach to address significant challenges to large-scale bone repair.
Collapse
Affiliation(s)
- Marley J Dewey
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Raul Sun Han Chang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Andrey V Nosatov
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Katherine Janssen
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Sarah J Crotts
- Center for 3D Medical Fabrication, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Scott J Hollister
- Center for 3D Medical Fabrication, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA; Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
23
|
Tang L, Chen X, Wang M, Liu Y, Li B, Li Y, Zhang Y. A biomimetic in situ mineralization ECM composite scaffold to promote endogenous bone regeneration. Colloids Surf B Biointerfaces 2023; 232:113587. [PMID: 37844476 DOI: 10.1016/j.colsurfb.2023.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Bone tissue engineering scaffolds constructed from single-component organic materials have inherent limitations. Inspired by the hierarchical structure of physiological natural bone hard tissues, our research explores the construction of organic-inorganic composite scaffold for bone regeneration. In this study, we used a natural and readily obtainable extracellular matrix (ECM) material, i.e., decellularized small intestinal submucosa (SIS), to build the organic component of a phosphorylated hydroxyapatite nanocrystal-containing composite scaffold (nHA@SIS). Guided by polymer-induced liquid-precursor theory, we introduced a soluble inorganic mineralization solution to achieve an inorganic component of nHA@SIS. Using in situ mineralization, we successfully formed inorganic component within SIS and constructed nHA@SIS composite scaffold. We analyzed the physicochemical properties and the osteogenic role of nHA@SIS via a series of in vitro and in vivo studies. Compared with SIS scaffold, the nHA@SIS possessed suitable physicochemical properties, maintained the excellent cell activity of SIS and better guided reorganization of the cell skeleton, thereby achieving superior osteoconductivity and maintaining osteoinductivity at the protein and gene levels. Furthermore, the rat cranial defect area in the nHA@SIS scaffold group was mostly repaired after 12 weeks of implantation, with a larger amount of higher-density new bone tissue being visible at the edge and center than SIS and blank control group. This significantly improved in vivo osteogenic ability indicated the great potential of nHA@SIS for bone tissue engineering applications.
Collapse
Affiliation(s)
- Lin Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, PR China
| | - Xiaoying Chen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, PR China
| | - Mei Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Yuhua Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, PR China.
| | - Bowen Li
- Department of Stomatology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Yuke Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, PR China
| | - Yi Zhang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, Beijing 100081, PR China
| |
Collapse
|
24
|
Poddar D, Singh A, Rao P, Mohanty S, Jain P. Modified-Hydroxyapatite-Chitosan Hybrid Composite Interfacial Coating on 3D Polymeric Scaffolds for Bone Tissue Engineering. Macromol Biosci 2023; 23:e2300243. [PMID: 37586699 DOI: 10.1002/mabi.202300243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Three dimensional (3D) scaffolds have huge limitations due to their low porosity, mechanical strength, and lack of direct cell-bioactive drug contact. Whereas bisphosphonate drug has the ability to stimulate osteogenesis in osteoblasts and bone marrow mesenchymal stem cells (hMSC) which attracted its therapeutic use. However it is hard administration low bioavailability, and lack of site-specificity, limiting its usage. The proposed scaffold architecture allows cells to access the bioactive surface at their apex by interacting at the scaffold's interfacial layer. The interface of 3D polycaprolactone (PCL) scaffolds has been coated with alendronate-modified hydroxyapatite (MALD) enclosed in a chitosan matrix, to mimic the native environment and stupulate the through interaction of cells to bioactive layer. Where the mechanical strength will be provided by the skeleton of PCL. In the MALD composite's hydroxyapatite (HAP) component will govern alendronate (ALD) release behavior, and HAP presence will drive the increase in local calcium ion concentration increases hMSC proliferation and differentiation. In results, MALD show release of 86.28 ± 0.22. XPS and SEM investigation of the scaffold structure, shows inspiring particle deposition with chitosan over the interface. All scaffolds enhanced cell adhesion, proliferation, and osteocyte differentiation for over a week without in vitro cell toxicity with 3.03 ± 0.2 kPa mechanical strength.
Collapse
Affiliation(s)
- Deepak Poddar
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector 3, New Delhi, 110078, India
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ankita Singh
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector 3, New Delhi, 110078, India
| | - Pranshu Rao
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector 3, New Delhi, 110078, India
| |
Collapse
|
25
|
Zhang Y, He F, Zhang Q, Lu H, Yan S, Shi X. 3D-Printed Flat-Bone-Mimetic Bioceramic Scaffolds for Cranial Restoration. RESEARCH (WASHINGTON, D.C.) 2023; 6:0255. [PMID: 37899773 PMCID: PMC10603392 DOI: 10.34133/research.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023]
Abstract
The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study, we originally developed 2 types of flat-bone-mimetic β-tricalcium phosphate bioceramic scaffolds (Gyr-Comp and Gyr-Tub) by high-precision vat-photopolymerization-based 3-dimensional printing. Both scaffolds had 2 outer layers and an inner layer with gyroid pores mimicking the diploe structure. The outer layers of Gyr-Comp scaffolds simulated the low porosity of outer tables, while those of Gyr-Tub scaffolds mimicked the tubular pore structure in the tables of flat bones. The Gyr-Comp and Gyr-Tub scaffolds possessed higher compressive strength and noticeably promoted in vitro cell proliferation, osteogenic differentiation, and angiogenic activities compared with conventional scaffolds with cross-hatch structures. After implantation into rabbit cranial defects for 12 weeks, Gyr-Tub achieved the best repairing effects by accelerating the generation of bone tissues and blood vessels. This work provides an advanced strategy to prepare biomimetic biomaterials that fit the structural and functional needs of efficacious bone regeneration.
Collapse
Affiliation(s)
- Yihang Zhang
- School of Electromechanical Engineering,
Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Fupo He
- School of Electromechanical Engineering,
Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Qiang Zhang
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510641, P. R. China
| | - Haotian Lu
- Peking Union Medical College Graduate School, Beijing 100730, P. R. China
| | - Shengtao Yan
- Peking Union Medical College Graduate School, Beijing 100730, P. R. China
- Department of Emergency,
China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Xuetao Shi
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
26
|
Wang H. The Potential of Collagen Treatment for Comorbid Diseases. Polymers (Basel) 2023; 15:3999. [PMID: 37836047 PMCID: PMC10574914 DOI: 10.3390/polym15193999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Collagen, the most abundant protein in our bodies, plays a crucial role in maintaining the structural integrity of various tissues and organs. Beyond its involvement in skin elasticity and joint health, emerging research suggests that collagen may significantly impact the treatment of complex diseases, particularly those associated with tissue damage and inflammation. The versatile functions of collagen, including skin regeneration, improving joint health, and increasing bone strength, make it potentially useful in treating different diseases. To the best of my knowledge, the strategy of using collagen to treat comorbid diseases has not been widely studied. This paper aims to explore the potential of collagen in treating comorbid diseases, including rheumatoid arthritis, osteoarthritis, osteoporosis, psoriatic arthritis, sarcopenia, gastroesophageal reflux, periodontitis, skin aging, and diabetes mellitus. Collagen-based therapies have shown promise in managing comorbidities due to their versatile properties. The multifaceted nature of collagen positions it as a promising candidate for treating complex diseases and addressing comorbid conditions. Its roles in wound healing, musculoskeletal disorders, cardiovascular health, and gastrointestinal conditions highlight the diverse therapeutic applications of collagen in the context of comorbidity management.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
27
|
Hao S, Wang M, Yin Z, Jing Y, Bai L, Su J. Microenvironment-targeted strategy steers advanced bone regeneration. Mater Today Bio 2023; 22:100741. [PMID: 37576867 PMCID: PMC10413201 DOI: 10.1016/j.mtbio.2023.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Traditional strategies in bone tissue engineering have focused primarily on mimicking the extracellular matrix (ECM) of bone in terms of structure and composition. However, the synergistic effects of other cues from the microenvironment during bone regeneration are often neglected. The bone microenvironment is a sophisticated system that includes physiological (e.g., neighboring cells such as macrophages), chemical (e.g., oxygen, pH), and physical factors (e.g., mechanics, acoustics) that dynamically interact with each other. Microenvironment-targeted strategies are increasingly recognized as crucial for successful bone regeneration and offer promising solutions for advancing bone tissue engineering. This review provides a comprehensive overview of current microenvironment-targeted strategies and challenges for bone regeneration and further outlines prospective directions of the approaches in construction of bone organoids.
Collapse
Affiliation(s)
- Shuyue Hao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200444, China
| |
Collapse
|
28
|
Yang T, Hao Z, Wu Z, Xu B, Liu J, Fan L, Wang Q, Li Y, Li D, Tang S, Liu C, Li W, Teng W. An engineered lamellar bone mimicking full-scale hierarchical architecture for bone regeneration. Bioact Mater 2023; 27:181-199. [PMID: 37091064 PMCID: PMC10120318 DOI: 10.1016/j.bioactmat.2023.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Lamellar bone, compactly and ingeniously organized in the hierarchical pattern with 6 ordered scales, is the structural motif of mature bone. Each hierarchical scale exerts an essential role in determining physiological behavior and osteogenic bioactivity of bone. Engineering lamellar bone with full-scale hierarchy remains a longstanding challenge. Herein, using bioskiving and mineralization, we attempt to engineer compact constructs resembling full-scale hierarchy of lamellar bone. Through systematically investigating the effect of mineralization on physicochemical properties and bioactivities of multi-sheeted collagen matrix fabricated by bioskiving, the hierarchical mimicry and hierarchy-property relationship are elucidated. With prolongation of mineralization, hierarchical mimicry and osteogenic bioactivity of constructs are performed in a bidirectional manner, i.e. first rising and then descending, which is supposed to be related with transformation of mineralization mechanism from nonclassical to classical crystallization. Construct mineralized 9 days can accurately mimic each hierarchical scale and efficiently promote osteogenesis. Bioinformatic analysis further reveals that this construct potently activates integrin α5-PI3K/AKT signaling pathway through mechanical and biophysical cues, and thereby repairing critical-sized bone defect. The present study provides a bioinspired strategy for completely resembling complex hierarchy of compact mineralized tissue, and offers a critical research model for in-depth studying the structure-function relationship of bone.
Collapse
Affiliation(s)
- Tao Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Zhichao Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Zhenzhen Wu
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Binxin Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Jiangchen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Le Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Qinmei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanshan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Dongying Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Sangzhu Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Chuanzi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
- Corresponding author.
| | - Wei Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
- Corresponding author.
| |
Collapse
|
29
|
Liu X, Gao J, Cui X, Nie S, Wu X, Zhang L, Tang P, Liu J, Li M. Functionalized 3D-Printed PLA Biomimetic Scaffold for Repairing Critical-Size Bone Defects. Bioengineering (Basel) 2023; 10:1019. [PMID: 37760121 PMCID: PMC10526104 DOI: 10.3390/bioengineering10091019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The treatment of critical-size bone defects remains a complicated clinical challenge. Recently, bone tissue engineering has emerged as a potential therapeutic approach for defect repair. This study examined the biocompatibility and repair efficacy of hydroxyapatite-mineralized bionic polylactic acid (PLA) scaffolds, which were prepared through a combination of 3D printing technology, plasma modification, collagen coating, and hydroxyapatite mineralization coating techniques. Physicochemical analysis, mechanical testing, and in vitro and animal experiments were conducted to elucidate the impact of structural design and microenvironment on osteogenesis. Results indicated that the PLA scaffold exhibited a porosity of 84.1% and a pore size of 350 μm, and its macrostructure was maintained following functionalization modification. The functionalized scaffold demonstrated favorable hydrophilicity and biocompatibility and promoted cell adhesion, proliferation, and the expression of osteogenic genes such as ALP, OPN, Col-1, OCN, and RUNX2. Moreover, the scaffold was able to effectively repair critical-size bone defects in the rabbit radius, suggesting a novel strategy for the treatment of critical-size bone defects.
Collapse
Affiliation(s)
- Xiao Liu
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.); (J.G.)
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianpeng Gao
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.); (J.G.)
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Xiang Cui
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Shaobo Nie
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Xiaoyong Wu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Licheng Zhang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Peifu Tang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianheng Liu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Ming Li
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| |
Collapse
|
30
|
Fan Z, Liu H, Ding Z, Xiao L, Lu Q, Kaplan DL. Simulation of Cortical and Cancellous Bone to Accelerate Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2301839. [PMID: 37601745 PMCID: PMC10437128 DOI: 10.1002/adfm.202301839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 08/22/2023]
Abstract
Different tissues have complex anisotropic structures to support biological functions. Mimicking these complex structures in vitro remains a challenge in biomaterials designs in support of tissue regeneration. Here, inspired by different types of silk nanofibers, a composite materials strategy was pursued towards this challenge. A combination of fabrication methods was utilized to achieve separate control of amorphous and beta-sheet rich silk nanofibers in the same solution. Aqueous solutions containing these two structural types of silk nanofibers were then simultaneously treated with an electric field and with ethylene glycol diglycidyl ether (EGDE). Under these conditions, the beta-sheet rich silk nanofibers in the mixture responded to the electric field while the amorphous nanofibers were active in the crosslinking process with the EGDE. As a result, cryogels with anisotropic structures were prepared, including mimics for cortical- and cancellous-like bone biomaterials as a complex osteoinductive niche. In vitro studies revealed that mechanical cues of the cryogels induced osteodifferentiation of stem cells while the anisotropy inside the cryogels influenced immune reactions of macrophages. These bioactive cryogels also stimulated improved bone regeneration in vivo through modulation of inflammation, angiogenesis and osteogenesis responses, suggesting an effective strategy to develop bioactive matrices with complex anisotropic structures beneficial to tissue regeneration.
Collapse
Affiliation(s)
- Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People’s Republic of China
| | - Hongxiang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People’s Republic of China
| | - Zhaozhao Ding
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People’s Republic of China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People’s Republic of China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People’s Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
31
|
Zhou S, Liu S, Wang Y, Li W, Wang J, Wang X, Wang S, Chen W, Lv H. Advances in the Study of Bionic Mineralized Collagen, PLGA, Magnesium Ionomer Materials, and Their Composite Scaffolds for Bone Defect Treatment. J Funct Biomater 2023; 14:406. [PMID: 37623651 PMCID: PMC10455784 DOI: 10.3390/jfb14080406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The healing of bone defects after a fracture remains a key issue to be addressed. Globally, more than 20 million patients experience bone defects annually. Among all artificial bone repair materials that can aid healing, implantable scaffolds made from a mineralized collagen (MC) base have the strongest bionic properties. The MC/PLGA scaffold, created by adding Poly (lactic-co-glycolic acid) copolymer (PLGA) and magnesium metal to the MC substrate, plays a powerful role in promoting fracture healing because, on the one hand, it has good biocompatibility similar to that of MC; on the other hand, the addition of PLGA provides the scaffold with an interconnected porous structure, and the addition of magnesium allows the scaffold to perform anti-inflammatory, osteogenic, and angiogenic activities. Using the latest 3D printing technology for scaffold fabrication, it is possible to model the scaffold in advance according to the requirement and produce a therapeutic scaffold suitable for various bone-defect shapes with less time and effort, which can promote bone tissue healing and regeneration to the maximum extent. This study reviews the material selection and technical preparation of MC/PLGA scaffolds, and the progress of their research on bone defect treatment.
Collapse
Affiliation(s)
- Shuai Zhou
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Shihang Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Yan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Wenjing Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 30 Shuangqing Road, Beijing 100084, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 30 Shuangqing Road, Beijing 100084, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Hongzhi Lv
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| |
Collapse
|
32
|
Lv S, Yuan X, Xiao J, Jiang X. Hemostasis-osteogenesis integrated Janus carboxymethyl chitin/hydroxyapatite porous membrane for bone defect repair. Carbohydr Polym 2023; 313:120888. [PMID: 37182974 DOI: 10.1016/j.carbpol.2023.120888] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Barrier membranes with osteogenesis are desirable for promoting bone repair. Janus membrane, which has a bilayered structure with different properties on each side, could meet the osteogenesis/barrier dual functions of guided bone regeneration. In this work, new biodegradable Janus carboxymethyl chitin membrane with asymmetric pore structure was prepared based on thermosensitive carboxymethyl chitin without using any crosslinkers. Nano-hydroxyapatites were cast on single-sided membrane. The obtained carboxymethyl chitin/nano-hydroxyapatite Janus membrane showed dual biofunctions: the dense layer of the Janus membrane could act as a barrier to prevent connective tissue cells from invading the bone defects, while the porous layer (with pore size 100-200 μm) containing nano-hydroxyapatite could guide bone regeneration. After implanted on the rat critical-sized calvarial defect 8 weeks, carboxymethyl chitin/nano-hydroxyapatite membrane showed the most newly formed bone tissue with the highest bone volume/total volume ratio (10.03 ± 1.81 %, analyzed by micro CT), which was significantly better than the commercial collagen membrane GTR® (5.05 ± 0.76 %). Meanwhile, this Janus membrane possessed good hemostatic ability. These results suggest a facile strategy to construct hemostasis-osteogenesis integrated Janus carboxymethyl chitin/hydroxyapatite membrane for guided bone regeneration.
Collapse
Affiliation(s)
- Siyao Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264005, PR China.
| | - Xi Yuan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
33
|
Ortiz F, Díaz-Barrios A, Lopez-Cabaña ZE, González G. Effect of the Electric Field on the Biomineralization of Collagen. Polymers (Basel) 2023; 15:3121. [PMID: 37514510 PMCID: PMC10384922 DOI: 10.3390/polym15143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Collagen/hydroxyapatite hybrids are promising biomimetic materials that can replace or temporarily substitute bone tissues. The process of biomineralization was carried out through a double diffusion system. The methodological principle consisted in applying an electric field on the incubation medium to promote the opposite migration of ions into collagen membranes to form hydroxyapatite (HA) on the collagen membrane. Two physically separated solutions were used for the incubation medium, one rich in phosphate ions and the other in calcium ions, and their effects were evaluated against the traditional mineralization in Simulated Body Fluid (SBF). Pre-polarization of the organic membranes and the effect of incubation time on the biomineralization process were also assessed by FTIR and Raman spectroscopies.Our results demonstrated that the membrane pre-polarization significantly accelerated the mineralization process on collagen. On the other side, it was found that the application of the electric field influenced the collagen structure and its interactions with the mineral phase. The increment of the mineralization degree enhanced the photoluminescence properties of the collagen/HA materials, while the conductivity and the dielectric constant were reduced. These results might provide a useful approach for future applications in manufacturing biomimetic bone-like materials.
Collapse
Affiliation(s)
- Fiorella Ortiz
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
- Institute of Chemistry of Natural Resources, Universidad de Talca, Talca 3460000, Chile
| | - Antonio Díaz-Barrios
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Zoraya E Lopez-Cabaña
- Institute of Chemistry of Natural Resources, Universidad de Talca, Talca 3460000, Chile
| | - Gema González
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
| |
Collapse
|
34
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
35
|
Mohammed-Sadhakathullah AHM, Paulo-Mirasol S, Torras J, Armelin E. Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. Int J Mol Sci 2023; 24:10312. [PMID: 37373461 PMCID: PMC10299464 DOI: 10.3390/ijms241210312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted. Considering the most recent use in the field of biosensors, tethered lipid bilayers, drug delivery, wound dressing, skin regeneration, targeted chemotherapy and imaging/diagnostics, functionalized NMs and NPs have become one of the main pillars of modern biomedical applications.
Collapse
Affiliation(s)
- Ahammed H. M. Mohammed-Sadhakathullah
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Sofia Paulo-Mirasol
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| |
Collapse
|
36
|
Ke Y, Wu J, Ye Y, Zhang X, Gu T, Wang Y, Jiang F, Yu J. Feather keratin-montmorillonite nanocomposite hydrogel promotes bone regeneration by stimulating the osteogenic differentiation of endogenous stem cells. Int J Biol Macromol 2023:125330. [PMID: 37307978 DOI: 10.1016/j.ijbiomac.2023.125330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Bone defects caused by bone trauma, infection, surgery, or other systemic diseases remain a severe challenge for the medical field. To address this clinical problem, different hydrogels were exploited to promote bone tissue regrowth and regeneration. Keratins are natural fibrous proteins found in wool, hair, horns, nails, and feather. Due to their unique characteristics of outstanding biocompatibility, great biodegradability, and hydrophilic, keratins have been widely applicated in different fields. In our study, the feather keratin-montmorillonite nanocomposite hydrogels that consist of keratin hydrogels serving as the scaffold support to accommodate endogenous stem cells and montmorillonite is synthesized. The introduction of montmorillonite greatly improves the osteogenic effect of the keratin hydrogels via bone morphogenetic protein 2 (BMP-2)/phosphorylated small mothers against decapentaplegic homolog 1/5/8 (p-SMAD 1/5/8)/runt-related transcription factor 2 (RUNX2) expression. Moreover, the incorporation of montmorillonite into hydrogels can improve the mechanical properties and bioactivity of the hydrogels. The morphology of feather keratin-montmorillonite nanocomposite hydrogels was shown by scanning electron microscopy (SEM) to have an interconnected porous structure. The incorporation of montmorillonite into the keratin hydrogels was confirmed by the energy dispersive spectrum (EDS). We prove that the feather keratin-montmorillonite nanocomposite hydrogels enhance the osteogenic differentiation of BMSCs. Furthermore, micro-CT and histological analysis of rat cranial bone defect demonstrated that feather keratin-montmorillonite nanocomposite hydrogels dramatically stimulated bone regeneration in vivo. Collectively, feather keratin-montmorillonite nanocomposite hydrogels can regulate BMP/SMAD signaling pathway to stimulate osteogenic differentiation of endogenous stem cells and promote bone defect healing, indicating their promising candidate in bone tissue engineering.
Collapse
Affiliation(s)
- Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Stomatology, East Hospital Affiliated to Tongji University, Shanghai 200120, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Ye
- Institute of Periodontology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaolan Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tingjie Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yanqiu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of General Dentistry, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Institute of Stomatology, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
37
|
Zhu X, Wang C, Bai H, Zhang J, Wang Z, Li Z, Zhao X, Wang J, Liu H. Functionalization of biomimetic mineralized collagen for bone tissue engineering. Mater Today Bio 2023; 20:100660. [PMID: 37214545 PMCID: PMC10199226 DOI: 10.1016/j.mtbio.2023.100660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Mineralized collagen (MC) is the basic unit of bone structure and function and is the main component of the extracellular matrix (ECM) in bone tissue. In the biomimetic method, MC with different nanostructures of neo-bone have been constructed. Among these, extra-fibrous MC has been approved by regulatory agencies and applied in clinical practice to play an active role in bone defect repair. However, in the complex microenvironment of bone defects, such as in blood supply disorders and infections, MC is unable to effectively perform its pro-osteogenic activities and needs to be functionalized to include osteogenesis and the enhancement of angiogenesis, anti-infection, and immunomodulation. This article aimed to discuss the preparation and biological performance of MC with different nanostructures in detail, and summarize its functionalization strategy. Then we describe the recent advances in the osteo-inductive properties and multifunctional coordination of MC. Finally, the latest research progress of functionalized biomimetic MC, along with the development challenges and future trends, are discussed. This paper provides a theoretical basis and advanced design philosophy for bone tissue engineering in different bone microenvironments.
Collapse
Affiliation(s)
- Xiujie Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Haotian Bai
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Xin Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| |
Collapse
|
38
|
Arif ZU, Khalid MY, Noroozi R, Hossain M, Shi HH, Tariq A, Ramakrishna S, Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J Pharm Sci 2023; 18:100812. [PMID: 37274921 PMCID: PMC10238852 DOI: 10.1016/j.ajps.2023.100812] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
Collapse
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering (ZCCE), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, Western University, Ontario N6A 3K7, Canada
| | - Ali Tariq
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
39
|
Qu X, Guo Y, Xie C, Li S, Liu Z, Lei B. Photoactivated MXene Nanosheets for Integrated Bone-Soft Tissue Therapy: Effect and Potential Mechanism. ACS NANO 2023; 17:7229-7240. [PMID: 37017455 DOI: 10.1021/acsnano.2c10103] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The bone defects caused by trauma are inevitably accompanied by soft tissue damage. The development of multifunctional bioactive biomaterials with integrated bone and soft tissue regeneration is necessary and needed urgently in orthopedics. In this work, we found that the photoactivated MXene (Ti3C2Tx) nanosheet showed positive effects on promoting both bone and soft tissue regeneration. We further investigated the detailed effect and potential mechanism of photoactivated MXene on tissue regeneration. Photoactivated MXene shows a good thermal effect and robust antibacterial activity to inhibit the expression of inflammation factors and methicillin-resistant Staphylococcus aureus (MRSA) infection and induces the expression of pro-angiogenic factors and soft tissue wound repair. Photoactivated MXene can also regulate the osteogenic differentiation of adipose-derived stem cells (ADSCs) through the ERK signaling pathway by activating the heat shock protein 70 (HSP70) and enhancing the repair of bone tissue. This work sheds light on the development of bioactive MXene with photothermal activation as an efficient strategy for bone and soft tissue regeneration simultaneously.
Collapse
Affiliation(s)
- Xiaoyan Qu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yi Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Chenxi Xie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zhengqing Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
40
|
Ye Z, Qi Y, Zhang A, Karels BJ, Aparicio C. Biomimetic Mineralization of Fibrillar Collagen with Strontium-doped Hydroxyapatite. ACS Macro Lett 2023; 12:408-414. [PMID: 36897173 DOI: 10.1021/acsmacrolett.3c00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Fibrillar collagen structures mineralized with hydroxyapatite using the polymer-induced liquid precursor (PILP) process have been explored as synthetic models for studying biomineralization of human hard tissues and have also been applied in the fabrication of scaffolds for hard tissue regeneration. Strontium has important biological functions in bone and has been used as a therapeutic agent for treating diseases that result in bone defects, such as osteoporosis. Here, we developed a strategy to mineralize collagen with Sr-doped hydroxyapatite (HA) using the PILP process. Doping with Sr altered the crystal lattice of HA and inhibited the degree of mineralization in a concentration-dependent manner, but did not affect the unique formation of intrafibrillar minerals using the PILP. The Sr-doped HA nanocrystals were aligned in the [001] direction but did not recapitulate the parallel alignment of the c-axis of pure Ca HA in relation to the collagen fiber long axis. The mimicry of doping Sr in PILP-mineralized collagen can help understand the doping of Sr in natural hard tissues and during treatment. The fibrillary mineralized collagen with Sr-doped HA will be explored in future work as biomimetic and bioactive scaffolds for regeneration of bone and tooth dentin.
Collapse
Affiliation(s)
- Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R., China
| | - Yipin Qi
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510000, China
| | - Anqi Zhang
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brandon J Karels
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Division of Basic and Translational Research, Faculty of Odontology, UIC Barcelona - Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
| |
Collapse
|
41
|
Wu C, Sun Y, He X, Weng W, Cheng K, Chen Z. Photothermal extracellular matrix based nanocomposite films and their effect on the osteogenic differentiation of BMSCs. NANOSCALE 2023; 15:5379-5390. [PMID: 36825767 DOI: 10.1039/d2nr05889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mild thermal stimulation in vivo could induce osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In this study, nano-functionalized photothermal extracellular matrix (ECM) nanocomposite films were obtained through adding graphene during cell culture, so that graphene could directly integrate with the ECM secreted by cells. Owing to the similarity of the ECM to the in vivo microenvironment and the apparent photothermal effect of graphene nanoflakes, heat could be generated and transferred at the material-cell interface in a biomimetic way. It was demonstrated that such nanocomposite films achieved an interface temperature rise with light illumination. This could be easily sensed by BMSCs through the ECM. According to alkaline phosphatase, osteogenic related gene expression, mineral deposition, and upregulated expression of heat shock protein (HSP70) and p-ERK, composite films with proper illumination significantly promoted the differentiation of BMSCs into osteoblasts. This work endeavors to study the thermal regulation of BMSC differentiation and provide a new perspective on biocompatible osteo-implant materials which can be remotely controlled.
Collapse
Affiliation(s)
- Chengwei Wu
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China.
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Yuan Sun
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Xuzhao He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Kui Cheng
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China.
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
- Center of Rehabilitation Biomedical Materials, Zhejiang University, Hangzhou 310027, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China.
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
42
|
Chernozem RV, Pariy I, Surmeneva MA, Shvartsman VV, Planckaert G, Verduijn J, Ghysels S, Abalymov A, Parakhonskiy BV, Gracey E, Gonçalves A, Mathur S, Ronsse F, Depla D, Lupascu DC, Elewaut D, Surmenev RA, Skirtach AG. Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide. Adv Healthc Mater 2023; 12:e2201726. [PMID: 36468909 DOI: 10.1002/adhm.202201726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/29/2022] [Indexed: 12/12/2022]
Abstract
This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V-1 ) and lateral (1.06 ± 0.02 pm V-1 ) piezoresponse owing to a greater presence of electroactive β-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications.
Collapse
Affiliation(s)
- Roman V Chernozem
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| | - Igor Pariy
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Vladimir V Shvartsman
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Guillaume Planckaert
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Joost Verduijn
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| | - Stef Ghysels
- Department of Green Chemistry and Technology, Ghent University, Ghent, 9000, Belgium
| | - Anatolii Abalymov
- Department of Environmental Sciences, Jozef Stefan Institute, Jamova cesta 39, Ljubljana, 1000, Slovenia
| | | | - Eric Gracey
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Amanda Gonçalves
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Frederik Ronsse
- Department of Green Chemistry and Technology, Ghent University, Ghent, 9000, Belgium
| | - Diederik Depla
- Department of Solid State Sciences, Ghent University, 9000, Ghent, Belgium
| | - Doru C Lupascu
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Dirk Elewaut
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
43
|
Song JE, Lee DH, Khang G, Yoon SJ. Accelerating bone regeneration using poly(lactic-co-glycolic acid)/hydroxyapatite scaffolds containing duck feet-derived collagen. Int J Biol Macromol 2023; 229:486-495. [PMID: 36587641 DOI: 10.1016/j.ijbiomac.2022.12.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Collagen, with low antigenicity and excellent cell adhesion, is a biomaterial mainly used for regenerating bone, cartilage, and skin, owing to its biocompatibility and biodegradability. Results from a previous study confirmed that a scaffold mixed with duck feet-derived collagen (DC) and Poly(lactic-co-glycolic acid) (PLGA) reduced inflammatory reaction and increased bone regeneration. To develop an optimal bone substitute we included hydroxyapatite (HAp), a key osteoconductive material, in a DC and PLGA mixture. We fabricated 0, 10, 20, 40, 60, and 80 wt% DC/PLGA/HAp scaffolds and studied their potential for bone tissue engineering. Characteristic analysis of the scaffold and seeding of rabbit bone marrow mesenchymal stem cells (rBMSCs) on the scaffold were conducted to investigate cell proliferation, osteogenic differentiation, and bone formation. We confirmed that increasing DC concentration not only improved the compressive strength of the DC/PLGA/HAp scaffold but also cell proliferation and osteogenic differentiation. It was found through comparison with previous studies that including HAp in the scaffold also promotes osteogenic differentiation. Our study thus shows through in vivo results that the 80 wt% DC/PLGA/HAp scaffold promotes bone mineralization and collagen deposition while reducing the inflammatory response. Hence, 80 wt% DC/PLGA/HAp has excellent potential as a biomaterial for bone regeneration applications.
Collapse
Affiliation(s)
- Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Dae Hoon Lee
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Sun-Jung Yoon
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Department of Orthopedic Surgery, Jeonbuk National University Medical School, 20 Gunjiro, Deokjin-gu, Jeonju-si, Jeollabuk-do 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University, 20 Gunjiro, Deokjin-gu, Jeonju-si, Jeollabuk-do 54907, Republic of Korea.
| |
Collapse
|
44
|
Zhang M, He Y, Zhang X, Gan S, Xie X, Zheng Z, Liao J, Chen W. Engineered cell-overexpression of circular RNA hybrid hydrogels promotes healing of calvarial defects. Biomater Sci 2023; 11:1665-1676. [PMID: 36472132 DOI: 10.1039/d2bm01472f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Craniomaxillofacial bone defects seriously affect the physical and mental health of patients. Bone marrow mesenchymal stem cells (BMSCs) are "gold standard" cells used for bone repair. However, the collection of BMSCs is invasive, and the osteogenic capacity is limited with age. Human umbilical cord mesenchymal stem cells (hUCMSCs) are promising alternative seed cells for bone tissue engineering. Our group previously used high-throughput sequencing technology and bioinformatics methods to detect circ-CTTN (hsa-circ_0003376) molecules, which may play an essential role in the osteogenic differentiation of hUCMSCs. In this study, osteogenic induction in vitro showed that the overexpressing circ-CTTN (OE group) exhibits a more pronounced osteogenic phenotype. The levels of osteogenesis-related genes in the OE group were highly expressed. The gelatin-methacrylate (GelMA) hydrogel possessed excellent biocompatibility and was used to load hUCMSCs. In the rat calvarial defect, the OE group presented a larger bone healing volume and denser bone trabecular distribution than other groups. So far, the overexpression of circ-CTTN could enhance the osteogenic differentiation of hUCMSCs and accelerate bone reconstruction. Our research could provide a new strategy and a strong theoretical basis for promoting hUCMSC clinical application in bone tissue engineering.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Yanjing He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Xi Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China.
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, China. .,Department of Oral Prosthodontics & Jinjiang out-patient section, West China Hospital of Stomatology, Sichuan University, China
| |
Collapse
|
45
|
Rahnamaee SY, Dehnavi SM, Bagheri R, Barjasteh M, Golizadeh M, Zamani H, Karimi A. Boosting bone cell growth using nanofibrous carboxymethylated cellulose and chitosan on titanium dioxide nanotube array with dual surface charges as a novel multifunctional bioimplant surface. Int J Biol Macromol 2023; 228:570-581. [PMID: 36563824 DOI: 10.1016/j.ijbiomac.2022.12.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
One of the most vital aspects of the orthopedic implant field has been the development of multifunctional coatings that improve bone-implant contact while simultaneously preventing bacterial infection. The present study investigates the fabrication and characterization of multifunctional polysaccharides, including carboxymethyl cellulose (CMCn) and carboxymethyl chitosan nanofibers (CMCHn), as a novel implant coating on titania nanotube arrays (T). Field emission scanning electron microscopy (FESEM) images revealed a nanofibrous morphology with a narrow diameter for CMCn and CMCHn, similar to extracellular matrix nanostructures. Compared to the T surface, the roughness of CMCn and CMCHn samples increased by over 250 %. An improved cell proliferation rate was observed on CMCHn nanofibers with a positively charged surface caused by the amino groups. Furthermore, in an antibacterial experiment, CMCn and CMCHn inhibited bacterial colony formation by 80 % and 73 %, respectively. According to the results, constructed modified CMCn and CMCHn increased osteoblast cell survival while inhibiting bacterial biofilm formation owing to their surface charge and bioinspired physicochemical properties.
Collapse
Affiliation(s)
- Seyed Yahya Rahnamaee
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Department of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Reza Bagheri
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mahdi Barjasteh
- Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; BioTex Innovation Factory, Sharif Development of Health and Biotechnology Institute, Tehran, Iran
| | - Mortaza Golizadeh
- BioTex Innovation Factory, Sharif Development of Health and Biotechnology Institute, Tehran, Iran
| | - Hedyeh Zamani
- Department of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Afzal Karimi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Li Z, Xue L, Wang P, Ren X, Zhang Y, Wang C, Sun J. Biological Scaffolds Assembled with Magnetic Nanoparticles for Bone Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1429. [PMID: 36837058 PMCID: PMC9961196 DOI: 10.3390/ma16041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are widely used in bone tissue engineering because of their unique physical and chemical properties and their excellent biocompatibility. Under the action of a magnetic field, SPIONs loaded in a biological scaffold can effectively promote osteoblast proliferation, differentiation, angiogenesis, and so on. SPIONs have very broad application prospects in bone repair, bone reconstruction, bone regeneration, and other fields. In this paper, several methods for forming biological scaffolds via the biological assembly of SPIONs are reviewed, and the specific applications of these biological scaffolds in bone tissue engineering are discussed.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Le Xue
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Peng Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xueqian Ren
- Clinical Medical Engineering Department, The Affiliated Zhongda Hospital of Southeast University Medical School, Nanjing 210009, China
| | - Yunyang Zhang
- Center of Modern Analysis, Nanjing University, Nanjing 210000, China
| | - Chuan Wang
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
47
|
Bernardo MP, Rodrigues BC, Sechi A, Mattoso LH. Grafting of maleic anhydride on poly(lactic acid)/hydroxyapatite composites augments their ability to support osteogenic differentiation of human mesenchymal stem cells. J Biomater Appl 2023; 37:1286-1299. [PMID: 36537783 DOI: 10.1177/08853282221147422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Implantation of bone substitutes is the treatment of choice for bone defects exceeding a critical size, when self-healing becomes impossible. The use of 3D printing techniques allows the construction of scaffolds with customized properties. However, there is a lack of suitable materials for bone replacement. In this study, maleic anhydride-grafted poly (lactic acid) (MAPLA) was investigated as a potential compatibilizer agent for 3D-printed polylactic acid (PLA)/hydroxyapatite (HA) composites, in order to enhance the physicochemical and biological properties of the scaffolds. The grafting process was performed by reactive processing in a torque rheometer, with the evaluation of the use of different concentrations of maleic anhydride (MA). The success of the grafting reaction was confirmed by titration of acid groups and spectroscopic analyses, indicating the presence of succinic anhydride groups on the PLA chain. Morphological analysis of the PLA/HA 3D scaffolds, using SEM, revealed that the use of the compatibilizer resulted in a structure free from voids and holes. The compatibilization also increased the degradation process. On the other hand, TGA and DSC analyses revealed that the use of a compatibilizer had little effect on the thermal properties of the composite. Most importantly, the samples with compatibilizer were demonstrated to have a minimal cytotoxic effect on human mesenchymal stem cells (MSCs), promoting the osteogenic differentiation of these cells in a medium without the addition of classical osteogenic factors. Therefore, the grafting of PLA/HA composites improved their physicochemical and biological properties, especially the induction of MSC osteogenic differentiation, demonstrating the potential of these scaffolds for bone tissue replacement.
Collapse
Affiliation(s)
- Marcela P Bernardo
- National Nanotechnology Laboratory for Agribusiness, Brazilian Agricultural Research Corporation, 564899Embrapa Instrumentation, São Paulo, Brazil.,Department of Cell and Tumor Biology, Faculty of Medicine, 9165RWTH Aachen University, Aachen, Germany
| | - Bruna C Rodrigues
- National Nanotechnology Laboratory for Agribusiness, Brazilian Agricultural Research Corporation, 564899Embrapa Instrumentation, São Paulo, Brazil
| | - Antonio Sechi
- Department of Cell and Tumor Biology, Faculty of Medicine, 9165RWTH Aachen University, Aachen, Germany
| | - Luiz Hc Mattoso
- National Nanotechnology Laboratory for Agribusiness, Brazilian Agricultural Research Corporation, 564899Embrapa Instrumentation, São Paulo, Brazil
| |
Collapse
|
48
|
Li Z, Ruan C, Niu X. Collagen-based bioinks for regenerative medicine: Fabrication, application and prospective. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
49
|
A composite hydrogel scaffold based on collagen and carboxymethyl chitosan for cartilage regeneration through one-step chemical crosslinking. Int J Biol Macromol 2023; 226:706-715. [PMID: 36526059 DOI: 10.1016/j.ijbiomac.2022.12.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The number of cases of cartilage damage worldwide is increasing annually and this problem severely limits an individual's physical activities, subsequently contributing to additional medical problems. Hydrogels can repair cartilage defects and promote cartilage regeneration. In this study, a composite hydrogel scaffold was prepared with collagen (COL), carboxymethyl chitosan (CMC), and the Arg-Gly-Asp (RGD) peptide through one-step chemical crosslinking, in which the three compositions ratio was especially investigated. The hydrogel scaffold performed well in cell adhesion and biocompatibility experiments, mainly due to the favorable porosity (the aperture was concentrated at 100 μm and the porosity was >70 %) and RGD concentration (2 mM RGD was the optimal concentration, which could effectively improve the attachment of BMSCs to the stent). Moreover, bone marrow mesenchymal stem cells (BMSCs) filled in the hydrogel scaffold, together with transforming growth factor TGF-β3, which was applied to evaluate the feasibility on the repair of the injured cartilage of the rat. In vitro and in vivo study, according to the results of cell proliferation and cytotoxicity, the hydrogel material had no toxic effect on cells, and the COL2/CMC1 hydrogel scaffold had the most obvious role in promoting cell proliferation. The results of pathological section showed that the cell scaffold complex group provided good mechanical properties for the wound and supplemented the stem cells derived from chondrocytes and showed good cartilage defect repair effect; In the scaffold group, the surface fibrosis of the injured area was mainly filled with fibrocartilage and other collagen fibers The hydrogel/BMSCs complex based on COL and CMC can be beneficial for the regeneration of cartilage.
Collapse
|
50
|
Wu Y, Fu Y, Pan H, Chang C, Ao N, Xu H, Zhang Z, Hu P, Li R, Duan S, Li YY. Preparation and evaluation of stingray skin collagen/oyster osteoinductive composite scaffolds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-22. [PMID: 36644798 DOI: 10.1080/09205063.2023.2166338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The regeneration of bone defects is a major challenge for clinical orthopaedics. Herein, we designed and prepared a new type of bioactive material, using stingray skin collagen and oyster shell powder (OSP) as raw materials. A stingray skin collagen/oyster osteoinductive composite scaffold (Col-OSP) was prepared for the first time by genipin cross-linking, pore-forming and freeze-drying methods. These scaffolds were characterized by ATR-FTIR, SEM, compression, swelling, cell proliferation, cell adhesion, alkaline phosphatase activity, alizarin red staining and RT-PCR etc. The Col-OSP scaffold had an interconnected three-dimensional porous structure, and the mechanical properties of the Col-OSP composite scaffold were enhanced compared with Col, combining with the appropriate swelling rate and degradation rate, the scaffold was more in line with the requirements of bone tissue engineering scaffolds. The Col-OSP scaffold was non-toxic, promoted the proliferation, adhesion, and differentiation of MC3T3-E1 cells, and stimulated the osteogenesis-related genes expressions of osteocalcin (OCN), collagen type I (COL-I) and RUNX2 of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China.,R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Yingkun Fu
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Hongfu Pan
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Cong Chang
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Ningjian Ao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| | - Hui Xu
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Zhengnan Zhang
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Ping Hu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| | - Riwang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| | - Shuxia Duan
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| |
Collapse
|