1
|
Blancard C, Decoeur F, Duvezin-Caubet S, Giraud MF, Salin B. Advancing yeast cell analysis: A cryomethod for serial block-face scanning electron microscopy imaging in mitochondrial morphology studies. Biol Cell 2024:e202400038. [PMID: 39648486 DOI: 10.1111/boc.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND INFORMATION Conventional Transmission Electron Microscopy analysis of biological samples often provides limited insights due to its inherent two-dimensional (2D) nature. This limitation hampers a comprehensive understanding of the three-dimensional (3D) complexity of cellular structures, occasionally leading to misinterpretations. Serial block-face scanning electron microscopy emerges as a powerful method for acquiring high-resolution 3D images of cellular volumes. By iteratively removing ultrathin sample sections and capturing images of each newly exposed surface, Serial block-face scanning electron microscopy allows for the meticulous reconstruction of a comprehensive 3D volume. RESULTS In this study, we investigate the 3D architecture of altered mitochondrial morphologies in Saccharomyces cerevisiae using Serial block-face scanning electron microscopy imaging. We have developed a novel cryomethod based on plunge freezing and a dedicated freeze-substitution protocol. CONCLUSION This protocol enhances ultrastructural preservation enabling a more accurate understanding of mitochondrial defects observed in 2D electron microscopy. SIGNIFICANCE Our findings underscore the utility of Serial block-face scanning electron microscopy coupled with optimized sample preparation techniques in elucidating complex cellular structures in 3D.
Collapse
Affiliation(s)
| | - Fanny Decoeur
- University of Bordeaux, CNRS, INSERM, BIC, Bordeaux, France
| | | | | | | |
Collapse
|
2
|
Venkateshwarlu A, Akshayveer, Singh S, Melnik R. Piezoelectricity and flexoelectricity in biological cells: the role of cell structure and organelles. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01895-7. [PMID: 39455540 DOI: 10.1007/s10237-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Living tissues experience various external forces on cells, influencing their behaviour, physiology, shape, gene expression, and destiny through interactions with their environment. Despite much research done in this area, challenges remain in our better understanding of the behaviour of the cell in response to external stimuli, including the arrangement, quantity, and shape of organelles within the cell. This study explores the electromechanical behaviour of biological cells, including organelles like microtubules, mitochondria, nuclei, and cell membranes. A two-dimensional bio-electromechanical model for two distinct cell structures has been developed to analyze the behavior of the biological cell to the external electrical and mechanical responses. The piezoelectric and flexoelectric effects have been included via multiphysics coupling for the biological cell. All the governing equations have been discretized and solved by the finite element method. It is found that the longitudinal stress is absent and only the transverse stress plays a crucial role when the mechanical load is imposed on the top side of the cell through compressive displacement. The impact of flexoelectricity is elucidated by introducing a new parameter called the maximum electric potential ratio ( V R , max ). It has been found that V R , max depends upon the orientation angle and shape of the microtubules. The magnitude of V R , max exhibit huge change when we change the shape and orientation of the organelles, which in some cases (boundary condition (BC)-3) can reach to three times of regular shape organelles. Further, the study reveals that the number of microtubules significantly impacts effective elastic and piezoelectric coefficients, affecting cell behavior based on structure, microtubule orientation, and mechanical stress direction. The insight obtained from the current study can assist in advancements in medical therapies such as tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akepogu Venkateshwarlu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
| | - Akshayveer
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - Sundeep Singh
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
3
|
Shapiro IM, Risbud MV, Landis WJ. Toward understanding the cellular control of vertebrate mineralization: The potential role of mitochondria. Bone 2024; 185:117112. [PMID: 38697384 PMCID: PMC11251007 DOI: 10.1016/j.bone.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
This review examines the possible role of mitochondria in maintaining calcium and phosphate ion homeostasis and participating in the mineralization of bone, cartilage and other vertebrate hard tissues. The paper builds on the known structural features of mitochondria and the documented observations in these tissues that the organelles contain calcium phosphate granules. Such deposits in mitochondria putatively form to buffer excessively high cytosolic calcium ion concentrations and prevent metabolic deficits and even cell death. While mitochondria protect cytosolic enzyme systems through this buffering capacity, the accumulation of calcium ions by mitochondria promotes the activity of enzymes of the tricarboxylic acid (TCA/Krebs) cycle, increases oxidative phosphorylation and ATP synthesis, and leads to changes in intramitochondrial pH. These pH alterations influence ion solubility and possibly the transitions and composition in the mineral phase structure of the granules. Based on these considerations, mitochondria are proposed to support the mineralization process by providing a mobile store of calcium and phosphate ions, in smaller cluster or larger granule form, while maintaining critical cellular activities. The rise in the mitochondrial calcium level also increases the generation of citrate and other TCA cycle intermediates that contribute to cell function and the development of extracellular mineral. This paper suggests that another key role of the mitochondrion, along with the effects just noted, is to supply phosphate ions, derived from the breakdown of ATP, to endolysosomes and autophagic vesicles originating in the endoplasmic reticulum and Golgi and at the plasma membrane. These many separate but interdependent mitochondrial functions emphasize the critical importance of this organelle in the cellular control of vertebrate mineralization.
Collapse
Affiliation(s)
- Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - William J Landis
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
4
|
Abstract
Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.
Collapse
Affiliation(s)
- Till Klecker
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
5
|
Jakubke C, Roussou R, Maiser A, Schug C, Thoma F, Bunk D, Hörl D, Leonhardt H, Walter P, Klecker T, Osman C. Cristae-dependent quality control of the mitochondrial genome. SCIENCE ADVANCES 2021; 7:eabi8886. [PMID: 34516914 PMCID: PMC8442932 DOI: 10.1126/sciadv.abi8886] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 06/10/2023]
Abstract
Mitochondrial genomes (mtDNA) encode essential subunits of the mitochondrial respiratory chain. Mutations in mtDNA can cause a shortage in cellular energy supply, which can lead to numerous mitochondrial diseases. How cells secure mtDNA integrity over generations has remained unanswered. Here, we show that the single-celled yeast Saccharomyces cerevisiae can intracellularly distinguish between functional and defective mtDNA and promote generation of daughter cells with increasingly healthy mtDNA content. Purifying selection for functional mtDNA occurs in a continuous mitochondrial network and does not require mitochondrial fission but necessitates stable mitochondrial subdomains that depend on intact cristae morphology. Our findings support a model in which cristae-dependent proximity between mtDNA and the proteins it encodes creates a spatial “sphere of influence,” which links a lack of functional fitness to clearance of defective mtDNA.
Collapse
Affiliation(s)
- Christopher Jakubke
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School Life Science Munich, Planegg, Germany
| | - Rodaria Roussou
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School Life Science Munich, Planegg, Germany
| | - Andreas Maiser
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | | | - Felix Thoma
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School Life Science Munich, Planegg, Germany
| | - David Bunk
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - David Hörl
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Till Klecker
- Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Galber C, Minervini G, Cannino G, Boldrin F, Petronilli V, Tosatto S, Lippe G, Giorgio V. The f subunit of human ATP synthase is essential for normal mitochondrial morphology and permeability transition. Cell Rep 2021; 35:109111. [PMID: 33979610 DOI: 10.1016/j.celrep.2021.109111] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023] Open
Abstract
The f subunit is localized at the base of the ATP synthase peripheral stalk. Its function in the human enzyme is poorly characterized. Because full disruption of its ATP5J2 gene with the CRISPR-Cas9 strategy in the HAP1 human model has been shown to cause alterations in the amounts of other ATP synthase subunits, here we investigated the role of the f subunit in HeLa cells by regulating its levels through RNA interference. We confirm the role of the f subunit in ATP synthase dimer stability and observe that its downregulation per se does not alter the amounts of the other enzyme subunits or ATP synthase synthetic/hydrolytic activity. We show that downregulation of the f subunit causes abnormal crista organization and decreases permeability transition pore (PTP) size, whereas its re-expression in f subunit knockdown cells rescues mitochondrial morphology and PTP-dependent swelling.
Collapse
Affiliation(s)
- Chiara Galber
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy; Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova 35121, Italy
| | - Giovanni Minervini
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | - Giuseppe Cannino
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | | | - Valeria Petronilli
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy; Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova 35121, Italy
| | - Silvio Tosatto
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | - Giovanna Lippe
- Department of Medicine, University of Udine, Udine 33100, Italy
| | - Valentina Giorgio
- Department of Biomedical Sciences, University of Padova, Padova 35121, Italy; Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padova 35121, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
7
|
Chahed A, Nesler A, Navazio L, Baldan B, Busato I, Ait Barka E, Pertot I, Puopolo G, Perazzolli M. The Rare Sugar Tagatose Differentially Inhibits the Growth of Phytophthora infestans and Phytophthora cinnamomi by Interfering With Mitochondrial Processes. Front Microbiol 2020; 11:128. [PMID: 32117150 PMCID: PMC7015900 DOI: 10.3389/fmicb.2020.00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
Rare sugars are monosaccharides with limited availability in nature and their biological functions are largely unknown. Among them, tagatose was developed as a low-calorie sweetener and showed beneficial effects on human health. Tagatose is metabolized by only certain microbial taxa and inhibits the growth of important crop pathogens (e.g., Phytophthora infestans), but its mode of action and the microbial responses are unknown. The aim of this study was to understand the tagatose mode of action against Phytophthora spp., with the final aim of developing new plant protection products. Tagatose inhibited P. infestans growth in vitro and caused severe ultrastructural alterations, with the formation of circular and concentric mitochondrial cristae. Decreased ATP content and reduced oxygen consumption rate (OCR) were found in tagatose-incubated P. infestans as compared to the control, with the consequent accumulation of reactive oxygen species (ROS) and induction of genes related to apoptosis and oxidative stress response. On the other hand, tagatose did not, or only slightly, affect the growth, cellular ultrastructure and mitochondrial processes in Phytophthora cinnamomi, indicating a species-specific response to this rare sugar. The mode of action of tagatose against P. infestans was mainly based on the inhibition of mitochondrial processes and this rare sugar seems to be a promising active substance for the further development of eco-friendly fungicides, thanks to its anti-nutritional properties on some phytopathogens and low risk for human health.
Collapse
Affiliation(s)
- Abdessalem Chahed
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Biological Products for Agriculture (Bi-PA), Londerzeel, Belgium.,Department of Plant Induced Resistance and Bioprotection, University of Reims Champagne-Ardenne, Reims, France
| | - Andrea Nesler
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Biological Products for Agriculture (Bi-PA), Londerzeel, Belgium
| | - Lorella Navazio
- Department of Biology, University of Padua, Padua, Italy.,Botanical Garden, University of Padua, Padua, Italy
| | - Barbara Baldan
- Department of Biology, University of Padua, Padua, Italy.,Botanical Garden, University of Padua, Padua, Italy
| | - Isabella Busato
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Biology, University of Padua, Padua, Italy
| | - Essaid Ait Barka
- Department of Plant Induced Resistance and Bioprotection, University of Reims Champagne-Ardenne, Reims, France
| | - Ilaria Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| |
Collapse
|
8
|
Chen H, Liu T, Holt WV, Yang P, Zhang L, Zhang L, Han X, Bian X, Chen Q. Advances in understanding mechanisms of long-term sperm storage-the soft-shelled turtle model. Histol Histopathol 2019; 35:1-23. [PMID: 31290136 DOI: 10.14670/hh-18-148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Long-term sperm storage is a special reproductive strategy, which can extend the time window between mating and fertilization in some animal species. Spermatozoa of the soft-shelled turtle, Pelodiscus sinensis, can be stored in the epididymis and oviduct for at least six months and one year, respectively. How spermatozoa can be stored in vivo for such a prolonged period is yet to be explained. We analyze the mechanisms that contribute to long-term sperm storage in P. sinensis, and compare them with other species from three different perspectives: the spermatozoon itself, the storage microenvironment and the interaction between the spermatozoon and microenvironment. Characteristics of soft-shelled turtle spermatozoa itself, such as the huge cytoplasmic droplet with its content of several large lipid droplets (LDs) and onion-like mitochondira, facilitate long-term sperm storage. The microenvironment of reproductive tract, involving in the secretions, structural barriers, exosomes, androgen receptors, Toll-like receptors and survival factor Bcl-2, are important for the maintenance of spermatozoa long-term storage. Sperm heads are always embedded among the oviductal cilia and even intercalate into the apical hollowness of the ciliated cells, indicating that the ciliated cells support the stored spermatozoa. RNA seq is firstly used to detect the molecular mechanism of sperm storage, which shows that autophagy, apoptosis and immune take part in the long-term sperm storage in this species.
Collapse
Affiliation(s)
- Hong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Tengfei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, United Kingdom
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Linli Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Li Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xiangkun Han
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xunguang Bian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
9
|
Uittenbogaard M, Brantner CA, Fang Z, Wong LJC, Gropman A, Chiaramello A. Novel insights into the functional metabolic impact of an apparent de novo m.8993T>G variant in the MT-ATP6 gene associated with maternally inherited form of Leigh Syndrome. Mol Genet Metab 2018; 124:71-81. [PMID: 29602698 PMCID: PMC6016550 DOI: 10.1016/j.ymgme.2018.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/02/2023]
Abstract
In this study, we report a novel perpective of metabolic consequences for the m.8993T>G variant using fibroblasts from a proband with clinical symptoms compatible with Maternally Inherited Leigh Syndrome (MILS). Definitive diagnosis was corroborated by mitochondrial DNA testing for the pathogenic variant m.8993T>G in MT-ATP6 subunit by Sanger sequencing. The long-range PCR followed by massively parallel sequencing method detected the near homoplasmic m.8993T>G variant at 83% in the proband's fibroblasts and at 0.4% in the mother's fibroblasts. Our results are compatible with very low levels of germline heteroplasmy or an apparent de novo mutation. Our mitochondrial morphometric analysis reveals severe defects in mitochondrial cristae structure in the proband's fibroblasts. Our live-cell mitochondrial respiratory analyses show impaired oxidative phosphorylation with decreased spare respiratory capacity in response to energy stress in the proband's fibroblasts. We detected a diminished glycolysis with a lessened glycolytic capacity and reserve, revealing a stunted ability to switch to glycolysis upon full inhibition of OXPHOS activities. This dysregulated energy reprogramming results in a defective interplay between OXPHOS and glycolysis during an energy crisis. Our study sheds light on the potential pathophysiologic mechanism leading to chronic energy crisis in this MILS patient harboring the m.8993T>G variant.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Christine A Brantner
- GW Nanofabrication and Imaging Center, Office of the Vice President for Research, George Washington University, Washington, DC 20052, USA
| | - ZiShui Fang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Gropman
- Children's National Medical Center, Division of Neurogenetics and Developmental Pediatrics, Washington, DC 20010, USA
| | - Anne Chiaramello
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
10
|
Rudan M, Bou Dib P, Musa M, Kanunnikau M, Sobočanec S, Rueda D, Warnecke T, Kriško A. Normal mitochondrial function in Saccharomyces cerevisiae has become dependent on inefficient splicing. eLife 2018; 7:35330. [PMID: 29570052 PMCID: PMC5898908 DOI: 10.7554/elife.35330] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022] Open
Abstract
Self-splicing introns are mobile elements that have invaded a number of highly conserved genes in prokaryotic and organellar genomes. Here, we show that deletion of these selfish elements from the Saccharomyces cerevisiae mitochondrial genome is stressful to the host. A strain without mitochondrial introns displays hallmarks of the retrograde response, with altered mitochondrial morphology, gene expression and metabolism impacting growth and lifespan. Deletion of the complete suite of mitochondrial introns is phenocopied by overexpression of the splicing factor Mss116. We show that, in both cases, abnormally efficient transcript maturation results in excess levels of mature cob and cox1 host mRNA. Thus, inefficient splicing has become an integral part of normal mitochondrial gene expression. We propose that the persistence of S. cerevisiae self-splicing introns has been facilitated by an evolutionary lock-in event, where the host genome adapted to primordial invasion in a way that incidentally rendered subsequent intron loss deleterious.
Collapse
Affiliation(s)
- Marina Rudan
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Peter Bou Dib
- Institut für Zellbiochemie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Marina Musa
- Mediterranean Institute for Life Sciences, Split, Croatia
| | | | - Sandra Sobočanec
- Division of Molecular Medicine, Rudjer Boškovic Institute, Bijenička, Zagreb, Croatia
| | - David Rueda
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.,Molecular Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tobias Warnecke
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anita Kriško
- Mediterranean Institute for Life Sciences, Split, Croatia
| |
Collapse
|
11
|
Solution NMR structure of yeast Rcf1, a protein involved in respiratory supercomplex formation. Proc Natl Acad Sci U S A 2018; 115:3048-3053. [PMID: 29507228 DOI: 10.1073/pnas.1712061115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Saccharomyces cerevisiae respiratory supercomplex factor 1 (Rcf1) protein is located in the mitochondrial inner membrane where it is involved in formation of supercomplexes composed of respiratory complexes III and IV. We report the solution structure of Rcf1, which forms a dimer in dodecylphosphocholine (DPC) micelles, where each monomer consists of a bundle of five transmembrane (TM) helices and a short flexible soluble helix (SH). Three TM helices are unusually charged and provide the dimerization interface consisting of 10 putative salt bridges, defining a "charge zipper" motif. The dimer structure is supported by molecular dynamics (MD) simulations in DPC, although the simulations show a more dynamic dimer interface than the NMR data. Furthermore, CD and NMR data indicate that Rcf1 undergoes a structural change when reconstituted in liposomes, which is supported by MD data, suggesting that the dimer structure is unstable in a planar membrane environment. Collectively, these data indicate a dynamic monomer-dimer equilibrium. Furthermore, the Rcf1 dimer interacts with cytochrome c, suggesting a role as an electron-transfer bridge between complexes III and IV. The Rcf1 structure will help in understanding its functional roles at a molecular level.
Collapse
|
12
|
Esparza-Perusquía M, Olvera-Sánchez S, Pardo JP, Mendoza-Hernández G, Martínez F, Flores-Herrera O. Structural and kinetics characterization of the F 1F 0-ATP synthase dimer. New repercussion of monomer-monomer contact. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:975-981. [PMID: 28919501 DOI: 10.1016/j.bbabio.2017.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/24/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022]
Abstract
Ustilago maydis is an aerobic basidiomycete that fully depends on oxidative phosphorylation for its supply of ATP, pointing to mitochondria as a key player in the energy metabolism of this organism. Mitochondrial F1F0-ATP synthase occurs in supramolecular structures. In this work, we isolated the monomer (640kDa) and the dimer (1280kDa) and characterized their subunit composition and kinetics of ATP hydrolysis. Mass spectrometry revealed that dimerizing subunits e and g were present in the dimer but not in the monomer. Analysis of the ATPase activity showed that both oligomers had Michaelis-Menten kinetics, but the dimer was 7 times more active than the monomer, while affinities were similar. The dimer was more sensitive to oligomycin inhibition, with a Ki of 24nM, while the monomer had a Ki of 169nM. The results suggest that the interphase between the monomers in the dimer state affects the catalytic efficiency of the enzyme and its sensitivity to inhibitors.
Collapse
Affiliation(s)
- Mercedes Esparza-Perusquía
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México City, México
| | - Sofía Olvera-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México City, México
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México City, México
| | - Guillermo Mendoza-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México City, México
| | - Federico Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México City, México
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México City, México.
| |
Collapse
|
13
|
Sawyer EM, Brunner EC, Hwang Y, Ivey LE, Brown O, Bannon M, Akrobetu D, Sheaffer KE, Morgan O, Field CO, Suresh N, Gordon MG, Gunnell ET, Regruto LA, Wood CG, Fuller MT, Hales KG. Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila. BMC Cell Biol 2017; 18:16. [PMID: 28335714 PMCID: PMC5364652 DOI: 10.1186/s12860-017-0132-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
Background In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure. Results The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits. Conclusions We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.
Collapse
Affiliation(s)
- Eric M Sawyer
- Department of Biology, Davidson College, Davidson, NC, USA
| | | | - Yihharn Hwang
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Lauren E Ivey
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Olivia Brown
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Megan Bannon
- Department of Biology, Davidson College, Davidson, NC, USA
| | | | | | - Oshauna Morgan
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Conroy O Field
- Department of Biology, Davidson College, Davidson, NC, USA
| | - Nishita Suresh
- Department of Biology, Davidson College, Davidson, NC, USA
| | - M Grace Gordon
- Department of Biology, Davidson College, Davidson, NC, USA
| | | | | | - Cricket G Wood
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Margaret T Fuller
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Karen G Hales
- Department of Biology, Davidson College, Davidson, NC, USA. .,Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Zhang L, Yang P, Bian X, Zhang Q, Ullah S, Waqas Y, Chen X, Liu Y, Chen W, Le Y, Chen B, Wang S, Chen Q. Modification of sperm morphology during long-term sperm storage in the reproductive tract of the Chinese soft-shelled turtle, Pelodiscus sinensis. Sci Rep 2015; 5:16096. [PMID: 26537569 PMCID: PMC4633597 DOI: 10.1038/srep16096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/09/2015] [Indexed: 12/28/2022] Open
Abstract
Sperm storage in vivo extends the time window for fertilisation in several animal species, from a few days to several years. The underlying storage mechanisms, however, are largely unknown. In this study, spermatozoa from the epididymis and oviduct of Chinese soft-shelled turtles were investigated to identify potentially relevant morphological features and transformations at different stages of sperm storage. Large cytoplasmic droplets (CDs) containing lipid droplets (LDs) were attached to the midpiece of most spermatozoa in the epididymis, without migrating down the sperm tail. However, they were absent from the oviductal spermatozoa, suggesting that CDs with LDs may be a source of endogenous energy for epididymal spermatozoa. The onion-like mitochondria recovered their double-membrane morphology, with typical cristae, within the oviduct at a later stage of storage, thus implying that mitochondrial metabolism undergoes alterations during storage. Furthermore, a well developed fibrous sheath on the long principal piece was the integrating ultrastructure for glycolytic enzymes and substrates. These novel morphological characteristics may allow turtle spermatozoa to use diverse energy metabolism pathways at different stages of storage.
Collapse
Affiliation(s)
- Linli Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xunguang Bian
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qian Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shakeeb Ullah
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaowu Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yuan Le
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Bing Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shuai Wang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
15
|
Martinez F, Olvera-Sanchez S, Esparza-Perusquia M, Gomez-Chang E, Flores-Herrera O. Multiple functions of syncytiotrophoblast mitochondria. Steroids 2015; 103:11-22. [PMID: 26435077 DOI: 10.1016/j.steroids.2015.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/16/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
The human placenta plays a central role in pregnancy, and the syncytiotrophoblast cells are the main components of the placenta that support the relationship between the mother and fetus, in apart through the production of progesterone. In this review, the metabolic processes performed by syncytiotrophoblast mitochondria associated with placental steroidogenesis are described. The metabolism of cholesterol, specifically how this steroid hormone precursor reaches the mitochondria, and its transformation into progesterone are reviewed. The role of nucleotides in steroidogenesis, as well as the mechanisms associated with signal transduction through protein phosphorylation and dephosphorylation of proteins is discussed. Finally, topics that require further research are identified, including the need for new techniques to study the syncytiotrophoblast in situ using non-invasive methods.
Collapse
Affiliation(s)
- Federico Martinez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico.
| | - Sofia Olvera-Sanchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Mercedes Esparza-Perusquia
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Erika Gomez-Chang
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| |
Collapse
|
16
|
Human Mitochondrial DNA-Protein Complexes Attach to a Cholesterol-Rich Membrane Structure. Sci Rep 2015; 5:15292. [PMID: 26478270 PMCID: PMC4609938 DOI: 10.1038/srep15292] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/22/2015] [Indexed: 01/05/2023] Open
Abstract
The helicase Twinkle is indispensable for mtDNA replication in nucleoids. Previously, we showed that Twinkle is tightly membrane-associated even in the absence of mtDNA, which suggests that Twinkle is part of a membrane-attached replication platform. Here we show that this platform is a cholesterol-rich membrane structure. We fractionated mitochondrial membrane preparations on flotation gradients and show that membrane-associated nucleoids accumulate at the top of the gradient. This fraction was shown to be highly enriched in cholesterol, a lipid that is otherwise low abundant in mitochondria. In contrast, more common mitochondrial lipids, and abundant inner-membrane associated proteins concentrated in the bottom-half of these gradients. Gene silencing of ATAD3, a protein with proposed functions related to nucleoid and mitochondrial cholesterol homeostasis, modified the distribution of cholesterol and nucleoids in the gradient in an identical fashion. Both cholesterol and ATAD3 were previously shown to be enriched in ER-mitochondrial junctions, and we detect nucleoid components in biochemical isolates of these structures. Our data suggest an uncommon membrane composition that accommodates platforms for replicating mtDNA, and reconcile apparently disparate functions of ATAD3. We suggest that mtDNA replication platforms are organized in connection with ER-mitochondrial junctions, facilitated by a specialized membrane architecture involving mitochondrial cholesterol.
Collapse
|
17
|
Sládková J, Spáčilová J, Čapek M, Tesařová M, Hansíková H, Honzík T, Martínek J, Zámečník J, Kostková O, Zeman J. Analysis of Mitochondrial Network Morphology in Cultured Myoblasts from Patients with Mitochondrial Disorders. Ultrastruct Pathol 2015. [DOI: 10.3109/01913123.2015.1054013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Hwang HI, Lee TH, Jang YJ. Cell proliferation-inducing protein 52/mitofilin is a surface antigen on undifferentiated human dental pulp stem cells. Stem Cells Dev 2015; 24:1309-19. [PMID: 25590652 DOI: 10.1089/scd.2014.0387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp is a soft tissue located inside the hard part of a tooth and it contains a stem cell population that can regenerate damaged dentin and/or pulp itself. Human dental pulp stem cells (hDPSCs) are multipotent adult stem cells that have the potential to be differentiated into a variety of cell types. Although cells cultured primarily from pulp tissue show heterogeneous phenotypes and variable efficiency in their dentinogenic differentiation, proper selection markers, which are specific to hDPSCs, are essential for the osteo/dentinogenic study of human dental pulp cells. We had previously screened a set of undifferentiation-specific cell surface antibodies of hDPSCs through decoy immunization. In this study, we show that one of these surface monoclonal antibodies, 3C4, is bound to intact pulp cells in a highly undifferentiation-specific manner. The surface antigen protein bound specifically to 3C4 antibody was identified through direct immunoprecipitation and liquid chromatography-tandem mass spectrometry as the cell proliferation-inducing protein 52/Mitofilin, which is a protein of the inner mitochondrial membrane and is a possible antagonist to maintaining mitochondrial activation during differentiation. The expression of mitofilin/3C4 antigen dramatically decreased during differentiation, and the depletion of mitofilin/3C4 antigen induced the expression of osteogenic/dentinogenic markers earlier than during normal differentiation. The 3C4-positive cells isolated by a magnetic-activated cell sorting system were differentiated with a higher efficiency than 3C4-negative cells. These results indicate that finding mitochondria-related stem cell markers is valuable to be able to identify and isolate primitive stem cells.
Collapse
Affiliation(s)
- Hyo-In Hwang
- Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Tae-Hyong Lee
- Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| |
Collapse
|
19
|
Jimenez L, Laporte D, Duvezin-Caubet S, Courtout F, Sagot I. Mitochondrial ATP synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation. J Cell Sci 2013; 127:719-26. [PMID: 24338369 DOI: 10.1242/jcs.137141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are double membrane-bounded organelles that form a dynamic tubular network. Mitochondria energetic functions depend on a complex internal architecture. Cristae, inner membrane invaginations that fold into the matrix space, are proposed to be the site of oxidative phosphorylation, reactions by which ATP synthase produces ATP. ATP synthase is also thought to have a role in crista morphogenesis. To date, the exploration of the processes regulating mitochondrial internal compartmentalization have been mostly limited to electron microscopy. Here, we describe ATP synthase localization in living yeast cells and show that it clusters as discrete inner membrane domains. These domains are dynamic within the mitochondrial network. They are impaired in mutants defective in crista morphology and partially overlap with the crista-associated MICOS-MINOS-MITOS complex. Finally, ATP synthase occupancy increases with the cellular demand for OXPHOS. Overall our data suggest that domains in which ATP synthases are clustered correspond to mitochondrial cristae. Being able to follow mitochondrial sub-compartments in living yeast cells opens new avenues to explore the mechanisms involved in inner membrane remodeling, an architectural feature crucial for mitochondrial activities.
Collapse
Affiliation(s)
- Laure Jimenez
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, Centre National de la Recherche Scientifique, Université Victor Segalen/Bordeaux II, F-33077 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
20
|
Habersetzer J, Larrieu I, Priault M, Salin B, Rossignol R, Brèthes D, Paumard P. Human F1F0 ATP synthase, mitochondrial ultrastructure and OXPHOS impairment: a (super-)complex matter? PLoS One 2013; 8:e75429. [PMID: 24098383 PMCID: PMC3788808 DOI: 10.1371/journal.pone.0075429] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/14/2013] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial morphogenesis is a key process of cell physiology. It is essential for the proper function of this double membrane-delimited organelle, as it ensures the packing of the inner membrane in a very ordered pattern called cristae. In yeast, the mitochondrial ATP synthase is able to form dimers that can assemble into oligomers. Two subunits (e and g) are involved in this supramolecular organization. Deletion of the genes encoding these subunits has no effect on the ATP synthase monomer assembly or activity and only affects its dimerization and oligomerization. Concomitantly, the absence of subunits e and g and thus, of ATP synthase supercomplexes, promotes the modification of mitochondrial ultrastructure suggesting that ATP synthase oligomerization is involved in cristae morphogenesis. We report here that in mammalian cells in culture, the shRNA-mediated down-regulation of subunits e and g affects the stability of ATP synthase and results in a 50% decrease of the available functional enzyme. Comparable to what was shown in yeast, when subunits e and g expression are repressed, ATP synthase dimers and oligomers are less abundant when assayed by native electrophoresis. Unexpectedly, mammalian ATP synthase dimerization/oligomerization impairment has functional consequences on the respiratory chain leading to a decrease in OXPHOS activity. Finally these structural and functional alterations of the ATP synthase have a strong impact on the organelle itself leading to the fission of the mitochondrial network and the disorganization of mitochondrial ultrastructure. Unlike what was shown in yeast, the impairment of the ATP synthase oligomerization process drastically affects mitochondrial ATP production. Thus we propose that mutations or deletions of genes encoding subunits e and g may have physiopathological implications.
Collapse
Affiliation(s)
- Johann Habersetzer
- Laboratoire des Systèmes Transducteurs d'Energie et Morphologie Mitochondriale, Université Bordeaux Segalen, IBGC, UMR 5095, Bordeaux, France ; CNRS, IBGC, UMR 5095, Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Dikov D, Bereiter-Hahn J. Inner membrane dynamics in mitochondria. J Struct Biol 2013; 183:455-466. [DOI: 10.1016/j.jsb.2013.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/28/2013] [Accepted: 06/07/2013] [Indexed: 01/04/2023]
|
22
|
Rafelski SM. Mitochondrial network morphology: building an integrative, geometrical view. BMC Biol 2013; 11:71. [PMID: 23800141 PMCID: PMC3691739 DOI: 10.1186/1741-7007-11-71] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/18/2013] [Indexed: 01/26/2023] Open
Abstract
The morphology of mitochondrial networks is complex and highly varied, yet vital to cell function. The first step toward an integrative understanding of how mitochondrial morphology is generated and regulated is to define the interdependent geometrical features and their dynamics that together generate the morphology of a mitochondrial network within a cell. Distinct aspects of the size, shape, position, and dynamics of mitochondrial networks are described and examples of how these features depend on one another discussed.
Collapse
Affiliation(s)
- Susanne M Rafelski
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
23
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
24
|
Bisetto E, Comelli M, Salzano AM, Picotti P, Scaloni A, Lippe G, Mavelli I. Proteomic analysis of F1F0-ATP synthase super-assembly in mitochondria of cardiomyoblasts undergoing differentiation to the cardiac lineage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:807-16. [PMID: 23587863 DOI: 10.1016/j.bbabio.2013.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/28/2013] [Accepted: 04/05/2013] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles with multiple functions, especially in energy metabolism. An increasing number of data highlighted their role for cellular differentiation processes. We investigated differences in ATP synthase supra-molecular organization occurring in H9c2 cardiomyoblasts in the course of cardiac-like differentiation, along with ATP synthase biogenesis and maturation of mitochondrial cristae morphology. Using BN-PAGE analysis combined with one-step mild detergent extraction from mitochondria, a significant increase in dimer/monomer ratio was observed, indicating a distinct rise in the stability of the enzyme super-assembly. Remarkably, sub-stoichiometric mean values for ATP synthase subunit e were determined in both parental and cardiac-like H9c2 by an MS-based quantitative proteomics approach. This indicates a similar high proportion of complex molecules lacking subunit e in both cell types, and suggests a minor contribution of this component in the observed changes. 2D BN-PAGE/immunoblotting analysis and MS/MS analysis on single BN-PAGE band showed that the amount of inhibitor protein IF1 bound within the ATP synthase complexes increased in cardiac-like H9c2 and appeared greater in the dimer. In concomitance, a consistent improvement of enzyme activity, measured as both ATP synthesis and ATP hydrolysis rate, was observed, despite the increase of bound IF1 evocative of a greater inhibitory effect on the enzyme ATPase activity. The results suggest i) a role for IF1 in promoting dimer stabilization and super-assembly in H9c2 with physiological IF1 expression levels, likely unveiled by the fact that the contacts through accessory subunit e appear to be partially destabilized, ii) a link between dimer stabilization and enzyme activation.
Collapse
Affiliation(s)
- Elena Bisetto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
ATP synthase oligomerization: From the enzyme models to the mitochondrial morphology. Int J Biochem Cell Biol 2013; 45:99-105. [DOI: 10.1016/j.biocel.2012.05.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 01/03/2023]
|
26
|
Macchi M, El Fissi N, Tufi R, Bentobji M, Liévens JC, Martins LM, Royet J, Rival T. The Drosophila inner-membrane protein PMI controls crista biogenesis and mitochondrial diameter. J Cell Sci 2012; 126:814-24. [PMID: 23264743 DOI: 10.1242/jcs.115675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cristae are mitochondrial inner-membrane structures that concentrate respiratory chain complexes and hence regulate ATP production. Mechanisms controlling crista morphogenesis are poorly understood and few crista determinants have been identified. Among them are the Mitofilins that are required to establish crista junctions and ATP-synthase subunits that bend the membrane at the tips of the cristae. We report here the phenotypic consequences associated with the in vivo inactivation of the inner-membrane protein Pantagruelian Mitochondrion I (PMI) both at the scale of the whole organism, and at the level of mitochondrial ultrastructure and function. We show that flies in which PMI is genetically inactivated experience synaptic defects and have a reduced life span. Electron microscopy analysis of the inner-membrane morphology demonstrates that loss of PMI function increases the average length of mitochondrial cristae in embryonic cells. This phenotype is exacerbated in adult neurons in which cristae form a dense tangle of elongated membranes. Conversely, we show that PMI overexpression is sufficient to reduce crista length in vivo. Finally, these crista defects are associated with impaired respiratory chain activity and increases in the level of reactive oxygen species. Since PMI and its human orthologue TMEM11 are regulators of mitochondrial morphology, our data suggest that, by controlling crista length, PMI influences mitochondrial diameter and tubular shape.
Collapse
Affiliation(s)
- Marc Macchi
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille-Luminy, UMR 7288, F-13288 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Perciavalle RM, Opferman JT. Delving deeper: MCL-1's contributions to normal and cancer biology. Trends Cell Biol 2012; 23:22-9. [PMID: 23026029 DOI: 10.1016/j.tcb.2012.08.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 12/18/2022]
Abstract
BCL-2 molecules are regulators of programmed cell death and defects in this pathway contribute to human diseases. One family member, MCL-1, is unique because its expression is tightly regulated and it is essential for promoting the survival of myriad cellular lineages. Additionally, MCL-1 promotes the maintenance of normal mitochondrial morphology and energy production. Dissection of these functions revealed recently that they depend on separate mitochondrial sublocalizations. MCL-1's antiapoptotic activity is restricted to the outer mitochondrial membrane (OMM), whereas its function in mitochondrial physiology requires localization to the matrix. These findings provide an attractive model for how MCL-1's diverse functions may contribute to normal cell homeostasis and function. MCL-1 is highly amplified in human cancer, suggesting that these functions may contribute to malignant cell growth and evasion of apoptosis.
Collapse
Affiliation(s)
- Rhonda M Perciavalle
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
28
|
Abstract
Mitochondria have been classically characterized as organelles with responsibility for cellular energy production in the form of ATP, but they are also the organelles through which apoptotic signaling occurs. Cell stress stimuli can result in outer membrane permeabilization, after which mitochondria release numerous proteins involved in apoptotic signaling, including cytochrome c, apoptosis-inducing factor, endonuclease G, Smac/DIABLO and Omi/HtrA2. Cell fate is determined by signaling through apoptotic proteins within the Bcl-2 (B-cell lymphoma 2) protein family, which converges on mitochondria. Many cancerous cells display abnormal levels of Bcl-2 protein family member expression that results in defective apoptotic signaling. Alterations in bioenergetic function also contribute to cancer as well as numerous other disorders. Recent evidence indicates that several pro-apoptotic proteins localized within mitochondria, as well as proteins within the Bcl-2 protein family, can influence mitochondrial bioenergetic function. This review focuses on the emerging roles of these proteins in the control of mitochondrial activity.
Collapse
Affiliation(s)
- S M Kilbride
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | |
Collapse
|
29
|
Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol 2012; 14:575-83. [PMID: 22544066 DOI: 10.1038/ncb2488] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 03/22/2012] [Indexed: 12/13/2022]
Abstract
MCL-1, an anti-apoptotic BCL-2 family member that is essential for the survival of multiple cell lineages, is also among the most highly amplified genes in cancer. Although MCL-1 is known to oppose cell death, precisely how it functions to promote survival of normal and malignant cells is poorly understood. Here, we report that different forms of MCL-1 reside in distinct mitochondrial locations and exhibit separable functions. On the outer mitochondrial membrane, an MCL-1 isoform acts like other anti-apoptotic BCL-2 molecules to antagonize apoptosis, whereas an amino-terminally truncated isoform of MCL-1 that is imported into the mitochondrial matrix is necessary to facilitate normal mitochondrial fusion, ATP production, membrane potential, respiration, cristae ultrastructure and maintenance of oligomeric ATP synthase. Our results provide insight into how the surprisingly diverse salutary functions of MCL-1 may control the survival of both normal and cancer cells.
Collapse
|
30
|
Domenis R, Bisetto E, Rossi D, Comelli M, Mavelli I. Glucose-modulated mitochondria adaptation in tumor cells: a focus on ATP synthase and inhibitor Factor 1. Int J Mol Sci 2012; 13:1933-1950. [PMID: 22408432 PMCID: PMC3292001 DOI: 10.3390/ijms13021933] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/06/2012] [Accepted: 01/30/2012] [Indexed: 11/16/2022] Open
Abstract
Warburg's hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking "positive" (activation/biogenesis) or "negative" (silencing) mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1). Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation.
Collapse
Affiliation(s)
- Rossana Domenis
- Department of Medical and Biological Sciences, University of Udine, p.le Kolbe 4, 33100 Udine, Italy; E-Mails: (R.D.); (E.B.); (D.R.); (M.C.)
- M.A.T.I. Centre of Excellence, University of Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Elena Bisetto
- Department of Medical and Biological Sciences, University of Udine, p.le Kolbe 4, 33100 Udine, Italy; E-Mails: (R.D.); (E.B.); (D.R.); (M.C.)
- M.A.T.I. Centre of Excellence, University of Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Davide Rossi
- Department of Medical and Biological Sciences, University of Udine, p.le Kolbe 4, 33100 Udine, Italy; E-Mails: (R.D.); (E.B.); (D.R.); (M.C.)
- M.A.T.I. Centre of Excellence, University of Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Marina Comelli
- Department of Medical and Biological Sciences, University of Udine, p.le Kolbe 4, 33100 Udine, Italy; E-Mails: (R.D.); (E.B.); (D.R.); (M.C.)
- M.A.T.I. Centre of Excellence, University of Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Irene Mavelli
- Department of Medical and Biological Sciences, University of Udine, p.le Kolbe 4, 33100 Udine, Italy; E-Mails: (R.D.); (E.B.); (D.R.); (M.C.)
- M.A.T.I. Centre of Excellence, University of Udine, p.le Kolbe 4, 33100 Udine, Italy
| |
Collapse
|
31
|
An J, Shi J, He Q, Lui K, Liu Y, Huang Y, Sheikh MS. CHCM1/CHCHD6, novel mitochondrial protein linked to regulation of mitofilin and mitochondrial cristae morphology. J Biol Chem 2012; 287:7411-26. [PMID: 22228767 DOI: 10.1074/jbc.m111.277103] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural integrity of mitochondrial cristae is crucial for mitochondrial functions; however, the molecular events controlling the structural integrity and biogenesis of mitochondrial cristae remain to be fully elucidated. Here, we report the functional characterization of a novel mitochondrial protein named CHCM1 (coiled coil helix cristae morphology 1)/CHCHD6. CHCM1/CHCHD6 harbors a coiled coil helix-coiled coil helix domain at its C-terminal end and predominantly localizes to mitochondrial inner membrane. CHCM1/CHCHD6 knockdown causes severe defects in mitochondrial cristae morphology. The mitochondrial cristae in CHCM1/CHCHD6-deficient cells become hollow with loss of structural definitions and reduction in electron-dense matrix. CHCM1/CHCHD6 depletion also leads to reductions in cell growth, ATP production, and oxygen consumption. CHCM1/CHCHD6 through its C-terminal end strongly and directly interacts with the mitochondrial inner membrane protein mitofilin, which is known to also control mitochondrial cristae morphology. CHCM1/CHCHD6 also interacts with other mitofilin-associated proteins, including DISC1 and CHCHD3. Knockdown of CHCM1/CHCHD6 reduces mitofilin protein levels; conversely, mitofilin knockdown leads to reduction in CHCM1 levels, suggesting coordinate regulation between these proteins. Our results further indicate that genotoxic anticancer drugs that induce DNA damage down-regulate CHCM1/CHCHD6 expression in multiple human cancer cells, whereas mitochondrial respiratory chain inhibitors do not affect CHCM1/CHCHD6 levels. CHCM1/CHCHD6 knockdown in human cancer cells enhances chemosensitivity to genotoxic anticancer drugs, whereas its overexpression increases resistance. Collectively, our results indicate that CHCM1/CHCHD6 is linked to regulation of mitochondrial cristae morphology, cell growth, ATP production, and oxygen consumption and highlight its potential as a possible target for cancer therapeutics.
Collapse
Affiliation(s)
- Jie An
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lenaz G, Genova ML. Supramolecular Organisation of the Mitochondrial Respiratory Chain: A New Challenge for the Mechanism and Control of Oxidative Phosphorylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:107-44. [DOI: 10.1007/978-1-4614-3573-0_5] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Wloga D, Frankel J. From Molecules to Morphology: Cellular Organization of Tetrahymena thermophila. Methods Cell Biol 2012; 109:83-140. [DOI: 10.1016/b978-0-12-385967-9.00005-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Alkhaja AK, Jans DC, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F, Schliebs W, Riedel D, Urlaub H, Jakobs S, Deckers M. MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol Biol Cell 2011; 23:247-57. [PMID: 22114354 PMCID: PMC3258170 DOI: 10.1091/mbc.e11-09-0774] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MINOS1/Mio10, a conserved mitochondrial protein, is required for mitochondrial inner membrane organization and cristae morphology. MINOS1/Mio10 is a novel constituent of the mitofilin/Fcj1 complex of the inner membrane, linking the morphology phenotype of the mutant to the activity of the mitochondrial inner membrane organizing complex. The inner membrane of mitochondria is especially protein rich and displays a unique morphology characterized by large invaginations, the mitochondrial cristae, and the inner boundary membrane, which is in proximity to the outer membrane. Mitochondrial inner membrane proteins appear to be not evenly distributed in the inner membrane, but instead organize into functionally distinct subcompartments. It is unknown how the organization of the inner membrane is achieved. We identified MINOS1/MIO10 (C1orf151/YCL057C-A), a conserved mitochondrial inner membrane protein. mio10-mutant yeast cells are affected in growth on nonfermentable carbon sources and exhibit altered mitochondrial morphology. At the ultrastructural level, mutant mitochondria display loss of inner membrane organization. Proteomic analyses reveal MINOS1/Mio10 as a novel constituent of Mitofilin/Fcj1 complexes in human and yeast mitochondria. Thus our analyses reveal new insight into the composition of the mitochondrial inner membrane organizing machinery.
Collapse
Affiliation(s)
- Alwaleed K Alkhaja
- Department of Biochemistry II, University of Göttingen Medical School, D-37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
ATP synthase superassemblies in animals and plants: Two or more are better. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1185-97. [PMID: 21679683 DOI: 10.1016/j.bbabio.2011.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 12/11/2022]
|
36
|
Head BP, Zulaika M, Ryazantsev S, van der Bliek AM. A novel mitochondrial outer membrane protein, MOMA-1, that affects cristae morphology in Caenorhabditis elegans. Mol Biol Cell 2011; 22:831-41. [PMID: 21248201 PMCID: PMC3057707 DOI: 10.1091/mbc.e10-07-0600] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Relatively constant diameters of Caenorhabditis elegans mitochondria and their cristae are disrupted by mutations in a novel mitochondrial outer membrane protein, MOMA-1, and by mutations in a mitofilin homologue, which is anchored in the inner membrane. Genetic data suggest that these proteins act in the same pathway but localize to different membranes. Three proteins with similar effects on mitochondrial morphology were identified in an RNA interference (RNAi) screen for mitochondrial abnormalities in Caenorhabditis elegans. One of these is the novel mitochondrial outer membrane protein MOMA-1. The second is the CHCHD3 homologue, CHCH-3, a small intermembrane space protein that may act as a chaperone. The third is a mitofilin homologue, IMMT-1. Mitofilins are inner membrane proteins that control the shapes of cristae. RNAi or mutations in each of these genes change the relatively constant diameters of mitochondria into highly variable diameters, ranging from thin tubes to localized swellings. Neither growth nor brood size of the moma-1, chch-3, or immt-1 single mutants is affected, suggesting that their metabolic functions are normal. However, growth of moma-1 or immt-1 mutants on chch-3(RNAi) leads to withered gonads, a lack of mitochondrial staining, and a dramatic reduction in fecundity, while moma-1; immt-1 double mutants are indistinguishable from single mutants. Mutations in moma-1 and immt-1 also have similar effects on cristae morphology. We conclude that MOMA-1 and IMMT-1 act in the same pathway. It is likely that the observed effects on mitochondrial diameter are an indirect effect of disrupting cristae morphology.
Collapse
Affiliation(s)
- Brian P Head
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
37
|
Coquerel D, Tamion F. Ischémie-reperfusion myocardique — Aspects physiopathologiques. MEDECINE INTENSIVE REANIMATION 2011. [DOI: 10.1007/s13546-010-0102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Couoh-Cardel SJ, Uribe-Carvajal S, Wilkens S, García-Trejo JJ. Structure of dimeric F1F0-ATP synthase. J Biol Chem 2010; 285:36447-55. [PMID: 20833715 DOI: 10.1074/jbc.m110.144907] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The structure of the dimeric ATP synthase from yeast mitochondria was analyzed by transmission electron microscopy and single particle image analysis. In addition to the previously reported side views of the dimer, top view and intermediate projections served to resolve the arrangement of the rotary c(10) ring and the other stator subunits at the F(0)-F(0) dimeric interface. A three-dimensional reconstruction of the complex was calculated from a data set of 9960 molecular images at a resolution of 27 Å. The structural model of the dimeric ATP synthase shows the two monomers arranged at an angle of ∼45°, consistent with our earlier analysis of the ATP synthase from bovine heart mitochondria (Minauro-Sanmiguel, F., Wilkens, S., and Garcia, J. J. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 12356-12358). In the ATP synthase dimer, the two peripheral stalks are located near the F(1)-F(1) interface but are turned away from each other so that they are not in contact. Based on the three-dimensional reconstruction, a model of how dimeric ATP synthase assembles to form the higher order oligomeric structures that are required for mitochondrial cristae biogenesis is discussed.
Collapse
Affiliation(s)
- Sergio J Couoh-Cardel
- Department of Biology, Chemistry Faculty, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | | |
Collapse
|
39
|
Loss of mitochondrial ATP synthase subunit beta (Atp2) alters mitochondrial and chloroplastic function and morphology in Chlamydomonas. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1533-9. [PMID: 20416275 DOI: 10.1016/j.bbabio.2010.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/12/2010] [Accepted: 04/14/2010] [Indexed: 01/22/2023]
Abstract
Mitochondrial F1FO ATP synthase (Complex V) catalyses ATP synthesis from ADP and inorganic phosphate using the proton-motive force generated by the substrate-driven electron transfer chain. In this work, we investigated the impact of the loss of activity of the mitochondrial enzyme in a photosynthetic organism. In this purpose, we inactivated by RNA interference the expression of the ATP2 gene, coding for the catalytic subunit beta, in the green alga Chlamydomonas reinhardtii. We demonstrate that in the absence of beta subunit, complex V is not assembled, respiratory rate is decreased by half and ATP synthesis coupled to the respiratory activity is fully impaired. Lack of ATP synthase also affects the morphology of mitochondria which are deprived of cristae. We also show that mutants are obligate phototrophs and that rearrangements of the photosynthetic apparatus occur in the chloroplast as a response to ATP synthase deficiency in mitochondria. Altogether, our results contribute to the understanding of the yet poorly studied bioenergetic interactions between organelles in photosynthetic organisms.
Collapse
|
40
|
Belogrudov GI. Coupling factor B affects the morphology of mitochondria. J Bioenerg Biomembr 2010; 42:29-35. [PMID: 20069349 DOI: 10.1007/s10863-009-9263-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 10/20/2009] [Indexed: 11/28/2022]
Abstract
Ectopic expression of coupling factor B in animal cells resulted in altered mitochondrial morphology. Cells expressing factor B fused to green fluorescent protein (GFP) contained fragmented, balloon-shaped or thinned, filamentous mitochondria, terminating at one end with balloon-like structures. Ultrastructural analysis using transmission electron microscopy revealed changes in the organization of mitochondrial cristae in cells expressing factor B-GFP fusion protein.
Collapse
Affiliation(s)
- Grigory I Belogrudov
- West Los Angeles Veterans Administration Medical Center, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA.
| |
Collapse
|
41
|
Bereiter-Hahn J, Jendrach M. Mitochondrial dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:1-65. [PMID: 20875628 DOI: 10.1016/s1937-6448(10)84001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dynamics is a key feature for the interaction of mitochondria with other organelles within a cell and also for the maintenance of their own integrity. Four types of mitochondrial dynamics are discussed: Movement within a cell and interactions with the cytoskeleton, fusion and fission events which establish coherence within the chondriome, the dynamic behavior of cristae and their components, and finally, formation and disintegration of mitochondria (mitophagy). Due to these essential functions, disturbed mitochondrial dynamics are inevitably connected to a variety of diseases. Localized ATP gradients, local control of calcium-based messaging, production of reactive oxygen species, and involvement of other metabolic chains, that is, lipid and steroid synthesis, underline that physiology not only results from biochemical reactions but, in addition, resides on the appropriate morphology and topography. These events and their molecular basis have been established recently and are the topic of this review.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Center of Excellence Macromolecular Complexes, Institute for Cell Biology and Neurosciences, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|