1
|
Hartmann EV, Reichert CF, Spitschan M. Effects of caffeine intake on pupillary parameters in humans: a systematic review and meta-analysis. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:19. [PMID: 39103929 DOI: 10.1186/s12993-024-00245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
Caffeine is a widely used drug that broadly affects human cognition and brain function. Caffeine acts as an antagonist to the adenosine receptors in the brain. Previous anecdotal reports have also linked caffeine intake with changes in pupil diameter. By modifying the retinal irradiance, pupil diameter modulates all ocular light exposure relevant for visual (i.e., perception, detection and discrimination of visual stimuli) and non-visual (i.e., circadian) functions. To date, the extent of the influence of caffeine on pupillary outcomes, including pupil diameter, has not been examined in a systematic review. We implemented a systematic review laid out in a pre-registered protocol following PRISMA-P guidelines. We only included original research articles written in English reporting studies with human participants, in which caffeine was administered, and pupil diameter was measured using objective methods. Using broad search strategies, we consulted various databases (PsycINFO, Medline, Embase, Cochrane Library, bioRxiv and medRxiv) and used the Covidence platform to screen, review and extract data from studies. After importing studies identified through database search (n = 517 imported, n = 46 duplicates), we screened the title and abstracts (n = 471), finding 14 studies meeting our eligibility criteria. After full-text review, we excluded seven studies, leaving only a very modest number of included studies (n = 7). Extraction of information revealed that the existing literature on the effect of caffeine on pupil parameters is very heterogeneous, differing in pupil assessment methods, time of day of caffeine administration, dose, and protocol timing and design. The evidence available in the literature does not provide consistent results but studies rated as valid by quality assessment suggest a small effect of caffeine on pupil parameters. We summarize the numeric results as both differences in absolute pupil diameter and in terms of effect sizes. More studies are needed using modern pupil assessment methods, robust study design, and caffeine dose-response methodology.
Collapse
Affiliation(s)
- Elias Vincent Hartmann
- Centre for Chronobiology, University Psychiatric Clinics Basel (UPK), Basel, Switzerland
| | - Carolin Franziska Reichert
- Centre for Chronobiology, University Psychiatric Clinics Basel (UPK), Basel, Switzerland.
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
| | - Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Translational Sensory & Circadian Neuroscience, Tübingen, Germany.
- TUM School of Medicine & Health, Technical University of Munich, Munich, Germany.
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany.
| |
Collapse
|
2
|
Dai HR, Guo HL, Hu YH, Xu J, Ding XS, Cheng R, Chen F. Precision caffeine therapy for apnea of prematurity and circadian rhythms: New possibilities open up. Front Pharmacol 2022; 13:1053210. [PMID: 36532766 PMCID: PMC9753576 DOI: 10.3389/fphar.2022.1053210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2024] Open
Abstract
Caffeine is the globally consumed psychoactive substance and the drug of choice for the treatment of apnea of prematurity (AOP), but its therapeutic effects are highly variable among preterm infants. Many of the molecular underpinnings of the marked individual response have remained elusive yet. Interestingly, the significant association between Clock gene polymorphisms and the response to caffeine therapy offers an opportunity to advance our understanding of potential mechanistic pathways. In this review, we delineate the functions and mechanisms of human circadian rhythms. An up-to-date advance of the formation and ontogeny of human circadian rhythms during the perinatal period are concisely discussed. Specially, we summarize and discuss the characteristics of circadian rhythms in preterm infants. Second, we discuss the role of caffeine consumption on the circadian rhythms in animal models and human, especially in neonates and preterm infants. Finally, we postulate how circadian-based therapeutic initiatives could open new possibilities to promote precision caffeine therapy for the AOP management in preterm infants.
Collapse
Affiliation(s)
- Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Cheng
- Neonatal Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
4
|
Checa-Ros A, D’Marco L. Role of Omega-3 Fatty Acids as Non-Photic Zeitgebers and Circadian Clock Synchronizers. Int J Mol Sci 2022; 23:12162. [PMID: 36293015 PMCID: PMC9603208 DOI: 10.3390/ijms232012162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 10/23/2024] Open
Abstract
Omega-3 fatty acids (ω-3 FAs) are well-known for their actions on immune/inflammatory and neurological pathways, functions that are also under circadian clock regulation. The daily photoperiod represents the primary circadian synchronizer ('zeitgeber'), although diverse studies have pointed towards an influence of dietary FAs on the biological clock. A comprehensive literature review was conducted following predefined selection criteria with the aim of updating the evidence on the molecular mechanisms behind circadian rhythm regulation by ω-3 FAs. We collected preclinical and clinical studies, systematic reviews, and metanalyses focused on the effect of ω-3 FAs on circadian rhythms. Twenty animal (conducted on rodents and piglets) and human trials and one observational study providing evidence on the regulation of neurological, inflammatory/immune, metabolic, reproductive, cardiovascular, and biochemical processes by ω-3 FAs via clock genes were discussed. The evidence suggests that ω-3 FAs may serve as non-photic zeitgebers and prove therapeutically beneficial for circadian disruption-related pathologies. Future work should focus on the role of clock genes as a target for the therapeutic use of ω-3 FAs in inflammatory and neurological disorders, as well as on the bidirectional association between the molecular clock and ω-3 FAs.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Aston Institute of Health and Neurosciences, School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Luis D’Marco
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Department of Nephrology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
| |
Collapse
|
5
|
Mousavi SA, Mirzababaei A, Shiraseb F, Clark CCT, Mirzaei K. The association between modified Nordic diet with sleep quality and circadian rhythm in overweight and obese woman: a cross-sectional study. Eat Weight Disord 2022; 27:1835-1845. [PMID: 34757589 DOI: 10.1007/s40519-021-01327-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Previous studies have shown an association between diet quality and sleep quality. The objective of this study was to investigate the association between modified Nordic diet with sleep quality and circadian rhythm in overweight and obese woman. METHODS We enrolled 399 overweight and obese women (body mass index (BMI): 25-40 kg/m2), aged 18-48 years, in this cross-sectional study. For each participant, anthropometric measurements, biochemical tests, and food intake were evaluated. Sleep quality and circadian rhythm was measured by Pittsburgh Sleep Quality Index (PSQI) and morning-evening questionnaire (MEQ) questionnaire. Modified Nordic diet score was measured using a validated 147-item food frequency questionnaire (FFQ). RESULTS Overall, 51.7% of the subjects were good sleepers (the Pittsburgh Sleep Quality Index (PSQI) < 5) while 48.3% were poor sleepers (PSQI ≥ 5). Moreover, participants were divided into five groups of MEQ, namely, completely morning 8 (2.4%), rarely morning 82 (24.8%), normal 196 (59.2%), rarely evening 43 (13%), and completely evening 2 (0.6%). After controlling for confounders, there was a significant association between poor sleep quality and the modified Nordic diet (OR = 0.80, %95 CI = 0.66-0.98, P = 0.01). Moreover, a significant positive association was observed between the completely morning and modified Nordic diet (OR = 1.80, %95 CI = 0.54-6.00, P = 0.03), in addition to a significant inverse association between the completely evening type and modified Nordic diet (OR = 0.16, %95 CI = 0.002-5.41, P = 0.02). CONCLUSIONS The present study indicated that higher adherence to a modified Nordic diet reduces poor sleep quality. Also, the completely morning type was associated with higher adherence to a modified Nordic diet, and completely evening type was associated with lower adherence to a modified Nordic diet. LEVELS OF EVIDENCE Level IV, evidence obtained from multiple time series analysis.
Collapse
Affiliation(s)
- Seyed Ahmad Mousavi
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Sciences and Technologies, Islamic Azad University, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran.
| |
Collapse
|
6
|
Sato T, Sassone-Corsi P. Nutrition, metabolism, and epigenetics: pathways of circadian reprogramming. EMBO Rep 2022; 23:e52412. [PMID: 35412705 PMCID: PMC9066069 DOI: 10.15252/embr.202152412] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Food intake profoundly affects systemic physiology. A large body of evidence has indicated a link between food intake and circadian rhythms, and ~24-h cycles are deemed essential for adapting internal homeostasis to the external environment. Circadian rhythms are controlled by the biological clock, a molecular system remarkably conserved throughout evolution. The circadian clock controls the cyclic expression of numerous genes, a regulatory program common to all mammalian cells, which may lead to various metabolic and physiological disturbances if hindered. Although the circadian clock regulates multiple metabolic pathways, metabolic states also provide feedback on the molecular clock. Therefore, a remarkable feature is reprogramming by nutritional challenges, such as a high-fat diet, fasting, ketogenic diet, and caloric restriction. In addition, various factors such as energy balance, histone modifications, and nuclear receptor activity are involved in the remodeling of the clock. Herein, we review the interaction of dietary components with the circadian system and illustrate the relationships linking the molecular clock to metabolism and critical roles in the remodeling process.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| |
Collapse
|
7
|
Huang JQ, Lu M, Ho CT. Health benefits of dietary chronobiotics: beyond resynchronizing internal clocks. Food Funct 2021; 12:6136-6156. [PMID: 34057166 DOI: 10.1039/d1fo00661d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The internal circadian clock in mammals drives whole-body biological activity rhythms. The clock reflects changes in external signals by controlling enzyme functions and the release of hormones involved in metabolic processes. Thus, misalignments between the circadian clock and an individual's daily schedule are recognized to be related to various metabolic diseases, such as obesity and diabetes. Although evidence has shown the existence of a complex relationship between circadian clock regulation and daily food intake, the regulatory effects of phytochemicals on the circadian clock remain unclarified. To better elucidate these relationships/effects, the circadian system components in mammals, circadian misalignment-related metabolic diseases, circadian rhythm-adjusting phytochemicals (including the heterocycles, acids, flavonoids and others) and the potential mechanisms (including the regulation of clock genes/proteins, metabolites of gut microbiota and secondary metabolites) are reviewed here. The bioactive components of functional foods discussed in this review could be considered potentially effective factors for the prevention and treatment of metabolic disorders related to circadian misalignment.
Collapse
Affiliation(s)
- Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | | | | |
Collapse
|
8
|
Al-Rawi N, Madkour M, Jahrami H, Salahat D, Alhasan F, BaHammam A, Al-Islam Faris M. Effect of diurnal intermittent fasting during Ramadan on ghrelin, leptin, melatonin, and cortisol levels among overweight and obese subjects: A prospective observational study. PLoS One 2020; 15:e0237922. [PMID: 32845924 PMCID: PMC7449475 DOI: 10.1371/journal.pone.0237922] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Levels of cortisol, melatonin, ghrelin, and leptin are highly correlated with circadian rhythmicity. The levels of these hormones are affected by sleep, feeding, and general behaviors, and fluctuate with light and dark cycles. During the fasting month of Ramadan, a shift to nighttime eating is expected to affect circadian rhythm hormones and, subsequently, the levels of melatonin, cortisol, ghrelin, and leptin. The present study aimed to examine the effect of diurnal intermittent fasting (DIF) during Ramadan on daytime levels of ghrelin, leptin, melatonin, and cortisol hormones in a group of overweight and obese subjects, and to determine how anthropometric, dietary, and lifestyle changes during the month of Ramadan correlate with these hormonal changes. METHODS Fifty-seven overweight and obese male (40) and female (17) subjects were enrolled in this study. Anthropometric measurements, dietary intake, sleep duration, and hormonal levels of serum ghrelin, leptin, melatonin, and salivary cortisol were assessed one week before the start of Ramadan fasting and after 28 days of fasting at fixed times of the day (11:00 am-1:00 pm). RESULTS At the end of Ramadan, serum levels of ghrelin, melatonin, and leptin significantly (P<0.001) decreased, while salivary cortisol did not change compared to the levels assessed in the pre-fasting state. CONCLUSIONS DIF during Ramadan significantly altered serum levels of ghrelin, melatonin, and serum leptin. Further, male sex and anthropometric variables were the most impacting factors on the tested four hormones. Further studies are needed to assess DIF's impact on the circadian rhythmicity of overweight and obese fasting people.
Collapse
Affiliation(s)
- Natheer Al-Rawi
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, UAE
| | - Mohamed Madkour
- Department of Medical Laboratory Sciences, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, UAE
| | - Haitham Jahrami
- Rehabilitation Services, Periphery Hospitals, Ministry of Health, Manama, Bahrain
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Dana Salahat
- Department of Medical Laboratory Sciences, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, UAE
| | - Fatima Alhasan
- Department of Medical Laboratory Sciences, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, UAE
| | - Ahmed BaHammam
- Department of Medicine, College of Medicine, University Sleep Disorders Center, King Saud University, Riyadh, Saudi Arabia
- The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| | - Mo'ez Al-Islam Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, UAE
| |
Collapse
|
9
|
Man AWC, Xia N, Daiber A, Li H. The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols. Br J Pharmacol 2019; 177:1278-1293. [PMID: 31465555 PMCID: PMC7056468 DOI: 10.1111/bph.14850] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are secondary metabolites of plants that have been widely studied for their health benefits as antioxidants. In the last decade, several clinical trials and epidemiological studies have shown that long‐term consumption of polyphenol‐rich diet protects against chronic diseases such as cancers and cardiovascular diseases. Current cardiovascular studies have also suggested an important role of gut microbiota and circadian rhythm in the pathogenesis metabolic and cardiovascular diseases. It is known that polyphenols can modulate the composition of core gut microbiota and interact with circadian clocks. In this article, we summarize recent findings, review the molecular mechanisms and the potential of polyphenols as dietary supplements for regulating gut microbiota and circadian rhythms, and discuss future research directions. Linked Articles This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
10
|
Yamakawa GR, Lengkeek C, Salberg S, Spanswick SC, Mychasiuk R. Behavioral and pathophysiological outcomes associated with caffeine consumption and repetitive mild traumatic brain injury (RmTBI) in adolescent rats. PLoS One 2017; 12:e0187218. [PMID: 29108016 PMCID: PMC5673214 DOI: 10.1371/journal.pone.0187218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022] Open
Abstract
Given that caffeine consumption is exponentially rising in adolescents and they are at increased risk for repetitive mild traumatic brain injury (RmTBI), we sought to examine the pathophysiological outcomes associated with early life caffeine consumption and RmTBI. Adolescent male and female Sprague Dawley rats received either caffeine in the drinking water or normal water and were then randomly assigned to 3 mild injuries using our lateral impact device or 3 sham procedures. Following injury induction, behavioral outcomes were measured with a test battery designed to examine symptoms consistent with clinical manifestation of PCS (balance and motor coordination, anxiety, short-term working memory, and depressive-like behaviours). In addition, pathophysiological outcomes were examined with histological measures of volume and cellular proliferation in the dentate gyrus, as well as microglia activation in the ventromedial hypothalamus. Finally, modifications to expression of 12 genes (Adora2a, App, Aqp4, Bdnf, Bmal1, Clock, Cry, Gfap, Orx1, Orx2, Per, Tau), in the prefrontal cortex, hippocampus, and/or the hypothalamus were assessed. We found that chronic caffeine consumption in adolescence altered normal developmental trajectories, as well as recovery from RmTBI. Of particular importance, many of the outcomes exhibited sex-dependent responses whereby the sex of the animal modified response to caffeine, RmTBI, and the combination of the two. These results suggest that caffeine consumption in adolescents at high risk for RmTBI should be monitored.
Collapse
Affiliation(s)
- Glenn R. Yamakawa
- University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Connor Lengkeek
- University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Sabrina Salberg
- University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Simon C. Spanswick
- University of Calgary, Department of Psychology, Calgary, Alberta, Canada
| | - Richelle Mychasiuk
- University of Calgary, Department of Psychology, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
11
|
Paston SV, Polyanichko AM, Shulenina OV. Study of DNA interactions with Cu2+ and Mg2+ ions in the presence of caffeine. J STRUCT CHEM+ 2017. [DOI: 10.1134/s0022476617020263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Almeneessier AS, Bahammam AS, Sharif MM, Bahammam SA, Nashwan SZ, Pandi Perumal SR, Cardinali DP, Alzoghaibi M. The influence of intermittent fasting on the circadian pattern of melatonin while controlling for caloric intake, energy expenditure, light exposure, and sleep schedules: A preliminary report. Ann Thorac Med 2017; 12:183-190. [PMID: 28808490 PMCID: PMC5541966 DOI: 10.4103/atm.atm_15_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIMS: We hypothesized that if we control for food composition, caloric intake, light exposure, sleep schedule, and exercise, intermittent fasting would not influence the circadian pattern of melatonin. Therefore, we designed this study to assess the effect of intermittent fasting on the circadian pattern of melatonin. METHODS: Eight healthy volunteers with a mean age of 26.6 ± 4.9 years and body mass index of 23.7 ± 3.5 kg/m2 reported to the Sleep Disorders Center (the laboratory) on four occasions: (1) adaptation, (2) 4 weeks before Ramadan while performing Islamic intermittent fasting for 1 week (fasting outside Ramadan [FOR]), (3) 1 week before Ramadan (nonfasting baseline [BL]), and (4) during the 2nd week of Ramadan while fasting (Ramadan). The plasma levels of melatonin were measured using enzyme-linked immunoassays at 22:00, 02:00, 04:00, 06:00, and 11:00 h. The light exposure, meal composition, energy expenditure, and sleep schedules remained the same while the participants stayed at the laboratory. RESULTS: The melatonin levels followed the same circadian pattern during the three monitoring periods (BL, FOR, and Ramadan). The peak melatonin level was at 02:00 h and the trough level was at 11:00 h in all studied periods. Lower melatonin levels at 22:00 h were found during fasting compared to BL. Cosinor analysis revealed no significant changes in the acrophase of melatonin levels. CONCLUSIONS: In this preliminary report, under controlled conditions of light exposure, meal composition, energy expenditure, and sleep-wake schedules, intermittent fasting has no significant influence on the circadian pattern of melatonin.
Collapse
Affiliation(s)
- Aljohara S Almeneessier
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S Bahammam
- University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Munir M Sharif
- University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Salman A Bahammam
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Samar Z Nashwan
- University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Daniel P Cardinali
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Catolica Argentina, 1107 Buenos Aires, Argentina
| | | |
Collapse
|
13
|
Abstract
The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation, and thereby contributes to adverse metabolic consequences and chronic disease development. 'High-fat diets' (HFD) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFD in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases.
Collapse
|
14
|
Rácz B, Dušková M, Jandíková H, Hill M, Vondra K, Stárka L. How Does Energy Intake Influence the Levels of Certain Steroids? Prague Med Rep 2015; 116:290-302. [DOI: 10.14712/23362936.2015.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The influence of steroid hormones on food intake is well described. However, there are only a few studies on the effect of food intake on steroid levels. The study involved eight non-smoker women (average age 29.48 ± 2.99 years; average BMI 21.3 ± 1.3 kg/m2); they did not use any kind of medication affecting steroidogenesis. We analysed the influence of four various stimuli on the levels of steroid hormones and melatonin. During their follicular phase of menstrual cycle, each woman had an oral glucose tolerance test (OGTT), intravenous glucose tolerance test (IVGTT), a standard breakfast and psyllium (a non-caloric fibre). Cortisol declined during each test, which is a physiological decline in the morning hours. In all tests (except of the application of the non-caloric fibre, psyllium), however, this decline was modified. After the standard breakfast there was an increase in cortisol at 40th minute. The OGTT and IVGTT tests led to a plateau in cortisol levels. Testosterone levels and those of other steroid hormones showed no relationships to tested stimulations. Oral and intravenous glucose have influenced physiological decline of melatonin levels. During the IVGTT test, melatonin levels started to increase at 20th minute, reaching a maximum at 40th minute. The OGTT test led to a delayed increase in melatonin levels, compared to IVGTT. Despite the fact that we performed the tests in the morning hours, when steroid hormone levels physiologically start to change due to their diurnal rhythm, we still found that food intake influences some of the hormone levels.
Collapse
|
15
|
Mossavar-Rahmani Y, Jung M, Patel SR, Sotres-Alvarez D, Arens R, Ramos A, Redline S, Rock CL, Van Horn L. Eating behavior by sleep duration in the Hispanic Community Health Study/Study of Latinos. Appetite 2015; 95:275-84. [PMID: 26189885 DOI: 10.1016/j.appet.2015.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/08/2015] [Accepted: 07/14/2015] [Indexed: 02/03/2023]
Abstract
UNLABELLED Sleep is an important pillar of health and a modifiable risk factor for diabetes, stroke and obesity. Little is known of diet and sleep patterns of Hispanics/Latinos in the US. Here we examine eating behavior as a function of sleep duration in a sub-sample of 11,888 participants from the Hispanic Community Health Study/Study of Latinos, a community-based cohort study of Hispanics aged 18-74 years in four US cities. Using a cross-sectional probability sample with self-report data on habitual sleep duration and up to two 24-h dietary recalls, we quantified the Alternative Healthy Eating Index (AHEI-2010) score, a measure of diet quality, and intake of selected nutrients related to cardiovascular health. Linear regression models were fit to estimate least-square means of usual nutrient intake of saturated fats, potassium density, fiber, calcium, caffeine and the AHEI-2010 score by sleep duration adjusting for age, sex, Hispanic/Latino background, income, employment status, education, depressive symptomology, and years lived in the US. Distribution of calories over the day and association with sleep duration and BMI were also examined. Short sleepers (≤6 h) had significantly lower intake of potassium, fiber and calcium and long sleepers (≥9 h) had significantly lower intake of caffeine compared to others sleepers after adjusting for covariates. However no difference in the AHEI-2010 score was seen by sleep duration. Significantly more long sleepers, compared to intermediate and short sleepers, reported having ≥30% total daily calories before bedtime. Not consuming a snack or meal within 3 h before bedtime was associated with higher AHEI-2010 scores. These findings identify novel differences in dietary patterns by sleep duration in a Hispanic/Latino cohort in the U.S. CLINICALTRIALS. GOV IDENTIFIER NCT02060344.
Collapse
Affiliation(s)
- Yasmin Mossavar-Rahmani
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Block Bldg. 339, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | - Molly Jung
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Sanjay R Patel
- Department of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Daniela Sotres-Alvarez
- Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.
| | - Raanan Arens
- Division of Respiratory & Sleep Medicine, Children's Hospital at Montefiore, Bronx, NY, USA.
| | - Alberto Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Susan Redline
- Department of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Cheryl L Rock
- Department of Family & Preventive Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Linda Van Horn
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
16
|
Spaeth AM, Goel N, Dinges DF. Cumulative neurobehavioral and physiological effects of chronic caffeine intake: individual differences and implications for the use of caffeinated energy products. Nutr Rev 2014; 72 Suppl 1:34-47. [PMID: 25293542 PMCID: PMC4404626 DOI: 10.1111/nure.12151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The use of caffeine-containing energy products has increased worldwide in recent years. All of the top-selling energy drinks contain caffeine, which is likely to be the primary psychoactive ingredient in these products. Research shows that caffeine-containing energy products can improve cognitive and physical performance. Presumably, individuals consume caffeine-containing energy products to counteract feelings of low energy in situations causing tiredness, fatigue, and/or reduced alertness. This review discusses the scientific evidence for sleep loss, circadian phase, sleep inertia, and the time-on-task effect as causes of low energy and summarizes research assessing the efficacy of caffeine to counteract decreased alertness and increased fatigue in such situations. The results of a placebo-controlled experiment in healthy adults who had 3 nights of total sleep deprivation (with or without 2-hour naps every 12 hours) are presented to illustrate the physiological and neurobehavioral effects of sustained low-dose caffeine. Individual differences, including genetic factors, in the response to caffeine and to sleep loss are discussed. The review concludes with future directions for research on this important and evolving topic.
Collapse
Affiliation(s)
- Andrea M Spaeth
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
17
|
Wen M, Cui J, Xu J, Xue Y, Wang J, Xue C, Wang Y. Effects of dietary sea cucumber saponin on the gene expression rhythm involved in circadian clock and lipid metabolism in mice during nighttime-feeding. J Physiol Biochem 2014; 70:801-8. [PMID: 25059722 DOI: 10.1007/s13105-014-0349-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
In mammals, clock rhythms exist not only in the suprachiasmatic nucleus, which is entrained by light/dark (LD) cycles, but also in most peripheral tissues. Recent studies have revealed that most physiology and behavior are subject to well-controlled daily oscillations; similarly, metabolic state influences the diurnal rhythm too. Previous studies have indicated that dietary sea cucumber saponin (SCS) could improve glucose and lipid metabolism of rodent. However, whether SCS could affect the expression of clock genes, which is involved in lipid metabolism, is unknown at present. The aim of this study is to investigate the effects of SCS on the clock and clock-controlled genes involved in lipid metabolism. ICR male mice were divided into a control and SCS group mice (add 0.03% sea cucumber saponin to regular chow) and were fed at night (2030-0830 hours). After 2 weeks, clock genes expression in brain and liver, blood glucose, hormones, and lipid metabolic markers were analyzed. The results showed that dietary SCS caused alteration in rhythms and/or amplitudes of clock genes was more significant in brain than in liver. In addition, peroxisome proliferator-activated receptor (PPARα), sterol regulatory element binding protein-1c (SREBP-1c), together with their target genes carnitine palmitoyl transferase (CPT), and fatty acid synthase (FAS) showed marked changes in rhythm and/or amplitude in SCS group mice. These results suggested that SCS could affect the daily expression patterns of clock genes in brain and liver tissues, and alter the clock-controlled genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Min Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong Province, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Kor Y, Geyikli I, Keskin M, Akan M. Preliminary study: Evaluation of melatonin secretion in children and adolescents with type 1 diabetes mellitus. Indian J Endocrinol Metab 2014; 18:565-568. [PMID: 25143918 PMCID: PMC4138917 DOI: 10.4103/2230-8210.137521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Melatonin is an indolamine hormone, synthesized from tryptophan in the pineal gland primarily. Melatonin exerts both antioxidative and immunoregulatory roles but little is known about melatonin secretion in patients with type 1 diabetes mellitus (T1DM). The aim of this study was to measure serum melatonin levels in patients with T1DM and investigates their relationship with type 1 diabetes mellitus. MATERIALS AND METHODS Forty children and adolescents with T1DM (18 boys and 22 girls) and 30 healthy control subjects (17 boys and 13 girls) participated in the study. All patients followed in Pediatric Endocrinology and Metabolism Unit of Gaziantep University Faculty of Medicine and also control subjects had no hypertension, obesity, hyperlipidemia, anemia, and infection. Blood samples were collected during routine analysis, after overnight fasting. Serum melatonin levels were analyzed with ELISA. RESULTS There were no statistically significant differences related with age, sex, BMI distribution between diabetic group and control group. Mean diabetic duration was 2.89 ± 2.69 years. The variables were in the equation. Mean melatonin level in diabetic group was 6.75 ± 3.52 pg/ml and mean melatonin level in control group was 11.51 ± 4.74 pg/ml. Melatonin levels were significantly lower in diabetic group compared to controls (P < 0.01). CONCLUSIONS Melatonin was associated with type 1 diabetes mellitus significantly. Because of the varied roles of melatonin in human metabolic rhythms, these results suggest a role of melatonin in maintaining normal rhythmicity. Melatonin may play role in preventing process of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yilmaz Kor
- Department of Pediatric Endocrinology and Metabolism, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| | - Iclal Geyikli
- Department of Biochemistry and Clinical Biochemistry, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| | - Mehmet Keskin
- Department of Pediatric Endocrinology and Metabolism, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| | - Muslum Akan
- Department of Biochemistry and Clinical Biochemistry, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| |
Collapse
|
19
|
Anthérieu S, Le Guillou D, Coulouarn C, Begriche K, Trak-Smayra V, Martinais S, Porceddu M, Robin MA, Fromenty B. Chronic exposure to low doses of pharmaceuticals disturbs the hepatic expression of circadian genes in lean and obese mice. Toxicol Appl Pharmacol 2014; 276:63-72. [PMID: 24525044 DOI: 10.1016/j.taap.2014.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/16/2014] [Accepted: 01/28/2014] [Indexed: 12/19/2022]
Abstract
Drinking water can be contaminated with pharmaceuticals. However, it is uncertain whether this contamination can be harmful for the liver, especially during obesity. Hence, the goal of our study was to determine whether chronic exposure to low doses of pharmaceuticals could have deleterious effects on livers of lean and obese mice. To this end, lean and ob/ob male mice were treated for 4 months with a mixture of 11 drugs provided in drinking water at concentrations ranging from 10 to 10⁶ ng/l. At the end of the treatment, some liver and plasma abnormalities were observed in ob/ob mice treated with the cocktail containing 10⁶ ng/l of each drug. For this dosage, a gene expression analysis by microarray showed altered expression of circadian genes (e.g. Bmal1, Dbp, Cry1) in lean and obese mice. RT-qPCR analyses carried out in all groups of animals confirmed that expression of 8 different circadian genes was modified in a dose-dependent manner. For some genes, a significant modification was observed for dosages as low as 10²-10³ ng/l. Drug mixture and obesity presented an additive effect on circadian gene expression. These data were validated in an independent study performed in female mice. Thus, our study showed that chronic exposure to trace pharmaceuticals disturbed hepatic expression of circadian genes, particularly in obese mice. Because some of the 11 drugs can be found in drinking water at such concentrations (e.g. acetaminophen, carbamazepine, ibuprofen) our data could be relevant in environmental toxicology, especially for obese individuals exposed to these contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mathieu Porceddu
- Mitologics SAS, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | | | | |
Collapse
|
20
|
Gabás-Rivera C, Martínez-Beamonte R, Ríos JL, Navarro MA, Surra JC, Arnal C, Rodríguez-Yoldi MJ, Osada J. Dietary oleanolic acid mediates circadian clock gene expression in liver independently of diet and animal model but requires apolipoprotein A1. J Nutr Biochem 2013; 24:2100-9. [PMID: 24231102 DOI: 10.1016/j.jnutbio.2013.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/22/2013] [Accepted: 07/31/2013] [Indexed: 12/13/2022]
Abstract
Oleanolic acid is a triterpene widely distributed throughout the plant kingdom and present in virgin olive oil at a concentration of 57 mg/kg. To test the hypotheses that its long-term administration could modify hepatic gene expression in several animal models and that this could be influenced by the presence of APOA1-containing high-density lipoproteins (HDLs), diets including 0.01% oleanolic acid were provided to Apoe- and Apoa1-deficient mice and F344 rats. Hepatic transcriptome was analyzed in Apoe-deficient mice fed long-term semipurified Western diets differing in the oleanolic acid content. Gene expression changes, confirmed by reverse transcriptase quantitative polymerase chain reaction, were sought for their implication in hepatic steatosis. To establish the effect of oleanolic acid independently of diet and animal model, male rats were fed chow diet with or without oleanolic acid, and to test the influence of HDL, Apoa1-deficient mice consuming the latter diet were used. In Apoe-deficient mice, oleanolic acid intake increased hepatic area occupied by lipid droplets with no change in oxidative stress. Bmal1 and the other core component of the circadian clock, Clock, together with Elovl3, Tubb2a and Cldn1 expressions, were significantly increased, while Amy2a5, Usp2, Per3 and Thrsp were significantly decreased in mice receiving the compound. Bmal1 and Cldn1 expressions were positively associated with lipid droplets. Increased Clock and Bmal1 expressions were also observed in rats, but not in Apoa1-deficient mice. The core liver clock components Clock-Bmal1 are a target of oleanolic acid in two animal models independently of the diets provided, and this compound requires APOA1-HDL for its hepatic action.
Collapse
Affiliation(s)
- Clara Gabás-Rivera
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Barnea M, Madar Z, Froy O. Dexamethasone induces high-amplitude rhythms in preadipocytes, but hinders circadian expression in differentiated adipocytes. Chronobiol Int 2013; 30:837-42. [PMID: 23738907 DOI: 10.3109/07420528.2013.767824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucocorticoids induce circadian gene expression in cultured cells and change the phase of circadian gene expression in vivo. In addition, glucocorticoids induce differentiation of preadipocyte to adipocytes. We set out to test the effect of dexamethasone, a glucocorticoid receptor agonist, on circadian rhythms in 3T3-L1 differentiated adipocytes. Our results show that differentiated adipocytes exhibit robust circadian rhythms without dexamethasone. Dexamethasone induces phase changes and increases the amplitude of circadian gene expression in nondifferentiated 3T3-L1 preadipocytes. However, dexamethasone had an opposite effect on differentiated adipocytes, leading to low-amplitude circadian expression. In conclusion, although glucocorticoids reset circadian rhythms, once rhythms are reset, glucocorticoid administration hinders circadian expression.
Collapse
Affiliation(s)
- Maayan Barnea
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | |
Collapse
|
22
|
Barnea M, Sherman H, Genzer Y, Froy O. Association Between Phase Shifts, Expression Levels, and Amplitudes in Peripheral Circadian Clocks. Chronobiol Int 2013; 30:618-27. [DOI: 10.3109/07420528.2012.754456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Maternal caffeine administration leads to adverse effects on adult mice offspring. Eur J Nutr 2013; 52:1891-900. [PMID: 23291721 DOI: 10.1007/s00394-012-0490-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/19/2012] [Indexed: 01/14/2023]
Abstract
PURPOSE This study aimed to evaluate the role of caffeine chronic administration during gestation of C57BL/6 mice on cardiac remodeling and the expression of components of the renin-angiotensin system (RAS) in male offspring as adults. METHODS Pregnant C57BL/6 female mice were divided into two groups (n = 10): Control group (C), dams were injected with the vehicle only (saline 0.9% NaCl); Caffeine group (CF), dams received daily a subcutaneous injection of 20 mg/kg of caffeine/day (1 mg/mL saline). Pups had free access to standard chow since weaning to 3 months of age, when they were killed. RESULTS CF group showed increased energy expenditure (+7%) with consequent reduction in body mass (BM) gain (-18%), increased blood pressure (+48%), and higher heart rate (+10%) than C group. The ratio between LV mass/BM was greater (+10%), with bigger cardiomyocytes (+40%), and reduced vascularization (-25%) in CF group than in C group. In the LV, the expression of angiotensin-converting enzyme (+30%), Angiotensin II (AngII) (+60%), AngII receptor (ATR)-1 (+77%) were higher, and the expression of ATR-2 was lower (-46%; P < 0.05) in CF group than in C group. In the kidney, the expressions of renin (+128%) and ATR-1 (+88%) were higher in CF group than in C group. CONCLUSIONS Chronic administration of caffeine to pregnant dams led to persistent activation of local RAS in the kidney and heart of the offspring, which, in turn, leads to high BP and adverse cardiac remodeling. These findings highlight the urge to encourage pregnant women to avoid food or medicines containing caffeine.
Collapse
|
24
|
Peuhkuri K, Sihvola N, Korpela R. Dietary factors and fluctuating levels of melatonin. Food Nutr Res 2012; 56:17252. [PMID: 22826693 PMCID: PMC3402070 DOI: 10.3402/fnr.v56i0.17252] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/03/2012] [Accepted: 06/12/2012] [Indexed: 11/14/2022] Open
Abstract
Melatonin is secreted principally by the pineal gland and mainly at nighttime. The primary physiological function is to convey information of the daily cycle of light and darkness to the body. In addition, it may have other health-related functions. Melatonin is synthesized from tryptophan, an essential dietary amino acid. It has been demonstrated that some nutritional factors, such as intake of vegetables, caffeine, and some vitamins and minerals, could modify melatonin production but with less intensity than light, the most dominant synchronizer of melatonin production. This review will focus on the nutritional factors apart from the intake of tryptophan that affect melatonin levels in humans. Overall, foods containing melatonin or promoting the synthesis of it by impacting the availability of tryptophan, as well those containing vitamins and minerals which are needed as co-factors and activators in the synthesis of melatonin, may modulate the levels of melatonin. Even so, the influence of daytime diet on the synthesis of nocturnal melatonin is limited, however, the influence of the diet seems to be more obvious on the daytime levels.
Collapse
Affiliation(s)
- Katri Peuhkuri
- Institute of Biomedicine, Pharmacology, Medical Nutrition Physiology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|