1
|
Zhang F, Xiong Q, Wang M, Cao X, Zhou C. FUBP1 in human cancer: Characteristics, functions, and potential applications. Transl Oncol 2024; 48:102066. [PMID: 39067088 PMCID: PMC11338137 DOI: 10.1016/j.tranon.2024.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Far upstream element-binding protein 1 (FUBP1) is a single-stranded nucleic acid-binding protein that binds to the Far Upstream Element (FUSE) sequence and is involved in important biological processes, including DNA transcription, RNA biogenesis, and translation. Recent studies have highlighted the significance of aberrant expression or mutations in FUBP1 in the development of various tumors, with FUBP1 overexpression often indicating oncogenic roles in different tumor types. However, it is worth noting that recent research has discovered its tumor-suppressive role in cancer, which is not yet fully understood and appears to be tissue- or context-dependent. This review summarizes the association between FUBP1 and diverse cancers and discusses the functions of FUBP1 in cancer. In addition, this review proposes potential clinical implications and outlines future research directions to pave the way for the development of targeted therapeutic strategies focusing on FUBP1.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, No 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Min Wang
- Department of Science and Education, Xi'an Children's Hospital Affiliated of Xi'an Jiaotong University, No 69 Xijuyuan lane, Xi'an, 710002, Shaanxi, China
| | - Ximing Cao
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Congya Zhou
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
2
|
Olguin SL, Patel P, Buchanan CN, Dell'Orco M, Gardiner AS, Cole R, Vaughn LS, Sundararajan A, Mudge J, Allan AM, Ortinski P, Brigman JL, Twiss JL, Perrone-Bizzozero NI. KHSRP loss increases neuronal growth and synaptic transmission and alters memory consolidation through RNA stabilization. Commun Biol 2022; 5:672. [PMID: 35798971 PMCID: PMC9262970 DOI: 10.1038/s42003-022-03594-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
The KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein linked to decay of mRNAs with AU-rich elements. KHSRP was previously shown to destabilize Gap43 mRNA and decrease neurite growth in cultured embryonic neurons. Here, we have tested functions of KHSRP in vivo. We find upregulation of 1460 mRNAs in neocortex of adult Khsrp-/- mice, of which 527 bind to KHSRP with high specificity. These KHSRP targets are involved in pathways for neuronal morphology, axon guidance, neurotransmission and long-term memory. Khsrp-/- mice show increased axon growth and dendritic spine density in vivo. Neuronal cultures from Khsrp-/- mice show increased axon and dendrite growth and elevated KHSRP-target mRNAs, including subcellularly localized mRNAs. Furthermore, neuron-specific knockout of Khsrp confirms these are from neuron-intrinsic roles of KHSRP. Consistent with this, neurons in the hippocampus and infralimbic cortex of Khsrp-/- mice show elevations in frequency of miniature excitatory postsynaptic currents. The Khsrp-/- mice have deficits in trace conditioning and attention set-shifting tasks compared Khsrp+/+ mice, indicating impaired prefrontal- and hippocampal-dependent memory consolidation with loss of KHSRP. Overall, these results indicate that deletion of KHSRP impairs neuronal development resulting in alterations in neuronal morphology and function by changing post-transcriptional control of neuronal gene expression.
Collapse
Affiliation(s)
- Sarah L Olguin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Michela Dell'Orco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Amy S Gardiner
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Robert Cole
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Pavel Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
- Carolina Autism and Neurodevelopment Center, University of South Carolina, Columbia, SC, 29208, USA.
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| |
Collapse
|
3
|
Ma Y, Wang X, Qiu C, Qin J, Wang K, Sun G, Jiang D, Li J, Wang L, Shi J, Wang P, Ye H, Dai L, Jiang BH, Zhang J. Using protein microarray to identify and evaluate autoantibodies to tumor-associated antigens in ovarian cancer. Cancer Sci 2020; 112:537-549. [PMID: 33185955 PMCID: PMC7894002 DOI: 10.1111/cas.14732] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to develop a noninvasive serological diagnostic approach in identifying and evaluating a panel of candidate autoantibodies to tumor‐associated antigens (TAAs) based on protein microarray technology for early detection of ovarian cancer (OC). Protein microarray based on 154 proteins encoded by 138 cancer driver genes was used to screen candidate anti‐TAA autoantibodies in a discovery cohort containing 17 OC and 27 normal controls (NC). Indirect enzyme‐linked immunosorbent assay (ELISA) was used to detect the content of candidate anti‐TAA autoantibodies in sera from 140 subjects in the training cohort. Differential anti‐TAA autoantibodies were further validated in the validation cohort with 328 subjects. Subsequently, 112 sera from the patients with ovarian benign diseases with 104 OC sera and 104 NC sera together were recruited to identify the specificity of representative autoantibodies to OC among ovarian diseases. Five TAAs (GNAS, NPM1, FUBP1, p53, and KRAS) were screened out in the discovery phase, in which four of them presented higher levels in OC than controls (P < .05) in the training cohort, which was consistent with the result in the subsequent validation cohort. An optimized panel of three anti‐TAA (GNAS, p53, and NPM1) autoantibodies was identified to have relatively high sensitivity (51.2%), specificity (86.0%), and accuracy (68.6%), respectively. This panel can identify 51% of OC patients with CA125 negative. This study supports our assumption that anti‐TAA autoantibodies can be considered as potential diagnostic biomarkers for detection of OC; especially a panel of three anti‐TAA autoantibodies could be a good tool in immunodiagnosis of OC.
Collapse
Affiliation(s)
- Yan Ma
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China.,Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital & Henan Provincial Orthopedic Institute, Zhengzhou, China
| | - Xiao Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Pathology, The University of Iowa, Iowa City, IA, USA
| | - Cuipeng Qiu
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jiejie Qin
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Keyan Wang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guiying Sun
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Di Jiang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital & Henan Provincial Orthopedic Institute, Zhengzhou, China
| | - Lin Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Pathology, The University of Iowa, Iowa City, IA, USA
| | - Jianxiang Shi
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peng Wang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hua Ye
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bing-Hua Jiang
- Department of Pathology, The University of Iowa, Iowa City, IA, USA
| | - Jianying Zhang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Roilo M, Kullmann MK, Hengst L. Cold-inducible RNA-binding protein (CIRP) induces translation of the cell-cycle inhibitor p27Kip1. Nucleic Acids Res 2019; 46:3198-3210. [PMID: 29361038 PMCID: PMC5888589 DOI: 10.1093/nar/gkx1317] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/11/2018] [Indexed: 01/10/2023] Open
Abstract
The CDK inhibitor p27Kip1 plays a central role in controlling cell proliferation and cell-cycle exit. p27Kip1 protein levels oscillate during cell-cycle progression and are regulated by mitogen or anti-proliferative signaling. The abundance of the protein is frequently determined by post-transcriptional mechanisms including ubiquitin-mediated proteolysis and translational control. Here, we report that the cold-inducible RNA-binding protein (CIRP) selectively binds to the 5′ untranslated region of the p27Kip1 mRNA. CIRP is induced, modified and relocalized in response to various stress stimuli and can regulate cell survival and cell proliferation particularly during stress. Binding of CIRP to the 5′UTR of the p27Kip1 mRNA significantly enhanced reporter translation. In cells exposed to mild hypothermia, the induction of CIRP correlated with increased translation of a p27Kip1 5′UTR reporter and with the accumulation of p27Kip1 protein. shRNA-mediated CIRP knockdown could prevent the induction of translation. We found that p27Kip1 is central for the decreased proliferation at lower temperature, since p27Kip1 KO mouse embryonic fibroblasts (MEFs) hardly increased their doubling time in hypothermic conditions, whereas wild-type MEFs significantly delayed proliferation in response to cold stress. This suggests that the CIRP-dependent p27Kip1 upregulation during mild hypothermia contributes to the cold shock-induced inhibition of cell proliferation.
Collapse
Affiliation(s)
- Martina Roilo
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Michael K Kullmann
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Ludger Hengst
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
5
|
Steiner M, Schneider L, Yillah J, Gerlach K, Kuvardina ON, Meyer A, Maring A, Bonig H, Seifried E, Zörnig M, Lausen J. FUSE binding protein 1 (FUBP1) expression is upregulated by T-cell acute lymphocytic leukemia protein 1 (TAL1) and required for efficient erythroid differentiation. PLoS One 2019; 14:e0210515. [PMID: 30653565 PMCID: PMC6336336 DOI: 10.1371/journal.pone.0210515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/23/2018] [Indexed: 11/18/2022] Open
Abstract
During erythropoiesis, haematopoietic stem cells (HSCs) differentiate in successive steps of commitment and specification to mature erythrocytes. This differentiation process is controlled by transcription factors that establish stage- and cell type-specific gene expression. In this study, we demonstrate that FUSE binding protein 1 (FUBP1), a transcriptional regulator important for HSC self-renewal and survival, is regulated by T-cell acute lymphocytic leukaemia 1 (TAL1) in erythroid progenitor cells. TAL1 directly activates the FUBP1 promoter, leading to increased FUBP1 expression during erythroid differentiation. The binding of TAL1 to the FUBP1 promoter is highly dependent on an intact GATA sequence in a combined E-box/GATA motif. We found that FUBP1 expression is required for efficient erythropoiesis, as FUBP1-deficient progenitor cells were limited in their potential of erythroid differentiation. Thus, the finding of an interconnection between GATA1/TAL1 and FUBP1 reveals a molecular mechanism that is part of the switch from progenitor- to erythrocyte-specific gene expression. In summary, we identified a TAL1/FUBP1 transcriptional relationship, whose physiological function in haematopoiesis is connected to proper erythropoiesis.
Collapse
Affiliation(s)
- Marlene Steiner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Jasmin Yillah
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Katharina Gerlach
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
| | - Olga N. Kuvardina
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Alisa Maring
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main, Germany
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
- * E-mail: (MZ); (JL)
| | - Jörn Lausen
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main, Germany
- * E-mail: (MZ); (JL)
| |
Collapse
|
6
|
Debaize L, Troadec MB. The master regulator FUBP1: its emerging role in normal cell function and malignant development. Cell Mol Life Sci 2019; 76:259-281. [PMID: 30343319 PMCID: PMC11105487 DOI: 10.1007/s00018-018-2933-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
The human Far Upstream Element (FUSE) Binding Protein 1 (FUBP1) is a multifunctional DNA- and RNA-binding protein involved in diverse cellular processes. FUBP1 is a master regulator of transcription, translation, and RNA splicing. FUBP1 has been identified as a potent pro-proliferative and anti-apoptotic factor by modulation of complex networks. FUBP1 is also described either as an oncoprotein or a tumor suppressor. Especially, FUBP1 overexpression is observed in a growing number of cancer and leads to a deregulation of targets that includes the fine-tuned MYC oncogene. Moreover, recent loss-of-function analyses of FUBP1 establish its essential functions in hematopoietic stem cell maintenance and survival. Therefore, FUBP1 appears as an emerging suspect in hematologic disorders in addition to solid tumors. The scope of the present review is to describe the advances in our understanding of the molecular basis of FUBP1 functions in normal cells and carcinogenesis. We also delineate the recent progresses in the understanding of the master role of FUBP1 in normal and pathological hematopoiesis. We conclude that FUBP1 is not only worth studying biologically but is also of clinical relevance through its pivotal role in regulating multiple cellular processes and its involvement in oncogenesis.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France.
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France.
- CHRU de Brest, laboratoire de cytogénétique, F-29200, Brest, France.
| |
Collapse
|
7
|
Debaize L, Jakobczyk H, Avner S, Gaudichon J, Rio AG, Sérandour AA, Dorsheimer L, Chalmel F, Carroll JS, Zörnig M, Rieger MA, Delalande O, Salbert G, Galibert MD, Gandemer V, Troadec MB. Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation. Nucleic Acids Res 2018; 46:11214-11228. [PMID: 30500954 PMCID: PMC6265458 DOI: 10.1093/nar/gky756] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is a well-known master regulator of hematopoietic lineages but its mechanisms of action are still not fully understood. Here, we found that RUNX1 localizes on active chromatin together with Far Upstream Binding Protein 1 (FUBP1) in human B-cell precursor lymphoblasts, and that both factors interact in the same transcriptional regulatory complex. RUNX1 and FUBP1 chromatin localization identified c-KIT as a common target gene. We characterized two regulatory regions, at +700 bp and +30 kb within the first intron of c-KIT, bound by both RUNX1 and FUBP1, and that present active histone marks. Based on these regions, we proposed a novel FUBP1 FUSE-like DNA-binding sequence on the +30 kb enhancer. We demonstrated that FUBP1 and RUNX1 cooperate for the regulation of the expression of the oncogene c-KIT. Notably, upregulation of c-KIT expression by FUBP1 and RUNX1 promotes cell proliferation and renders cells more resistant to the c-KIT inhibitor imatinib mesylate, a common therapeutic drug. These results reveal a new mechanism of action of RUNX1 that implicates FUBP1, as a facilitator, to trigger transcriptional regulation of c-KIT and to regulate cell proliferation. Deregulation of this regulatory mechanism may explain some oncogenic function of RUNX1 and FUBP1.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Hélène Jakobczyk
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Stéphane Avner
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Jérémie Gaudichon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Anne-Gaëlle Rio
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Aurélien A Sérandour
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, 44035 Nantes, France
- Ecole Centrale de Nantes, Nantes, France
| | - Lena Dorsheimer
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, F-35000 Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, D-60528 Frankfurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Olivier Delalande
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Gilles Salbert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Génétique Somatique des Cancers, Centre Hospitalier Universitaire, 35033 Rennes, France
| | - Virginie Gandemer
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Department of pediatric oncohematology, Centre Hospitalier Universitaire, 35203 Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| |
Collapse
|
8
|
Zhao P, Huang J, Zhang D, Zhang D, Wang F, Qu Y, Guo T, Qin Y, Wei J, Niu T, Zheng Y. SLC2A5
overexpression in childhood philadelphia chromosome-positive acute lymphoblastic leukaemia. Br J Haematol 2018; 183:242-250. [PMID: 30272826 DOI: 10.1111/bjh.15580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/29/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Pan Zhao
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
- Department of Haematology; Affiliated Hospital of North Sichuan Medical College; Chengdu China
- State Key Laboratory of Biotherapy and Cancer Centre; West China Hospital; Sichuan University; Chengdu China
| | - Jingcao Huang
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Dan Zhang
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Danfeng Zhang
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Fangfang Wang
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Ying Qu
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Tingting Guo
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Yu Qin
- Department of Endocrinology; Baylor College of Medicine; Houston TX USA
| | - Jin Wei
- Department of Haematology; Affiliated Hospital of North Sichuan Medical College; Chengdu China
| | - Ting Niu
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Yuhuan Zheng
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
- State Key Laboratory of Biotherapy and Cancer Centre; West China Hospital; Sichuan University; Chengdu China
| |
Collapse
|
9
|
Zaytseva O, Quinn LM. DNA Conformation Regulates Gene Expression: The MYC Promoter and Beyond. Bioessays 2018; 40:e1700235. [PMID: 29504137 DOI: 10.1002/bies.201700235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/29/2018] [Indexed: 01/07/2023]
Abstract
Emerging evidence suggests that DNA topology plays an instructive role in cell fate control through regulation of gene expression. Transcription produces torsional stress, and the resultant supercoiling of the DNA molecule generates an array of secondary structures. In turn, local DNA architecture is harnessed by the cell, acting within sensory feedback mechanisms to mediate transcriptional output. MYC is a potent oncogene, which is upregulated in the majority of cancers; thus numerous studies have focused on detailed understanding of its regulation. Dissection of regulatory regions within the MYC promoter provided the first hint that intimate feedback between DNA topology and associated DNA remodeling proteins is critical for moderating transcription. As evidence of such regulation is also found in the context of many other genes, here we expand on the prototypical example of the MYC promoter, and also explore DNA architecture in a genome-wide context as a global mechanism of transcriptional control.
Collapse
Affiliation(s)
- Olga Zaytseva
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT 2600, Canberra City, Australia.,School of Biomedical Sciences, University of Melbourne, 3010, Parkville, Australia
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, ACT 2600, Canberra City, Australia.,School of Biomedical Sciences, University of Melbourne, 3010, Parkville, Australia
| |
Collapse
|
10
|
Lacerda R, Menezes J, Romão L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 2017; 74:1659-1680. [PMID: 27913822 PMCID: PMC11107732 DOI: 10.1007/s00018-016-2428-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
The scanning model for eukaryotic mRNA translation initiation states that the small ribosomal subunit, along with initiation factors, binds at the cap structure at the 5' end of the mRNA and scans the 5' untranslated region (5'UTR) until an initiation codon is found. However, under conditions that impair canonical cap-dependent translation, the synthesis of some proteins is kept by alternative mechanisms that are required for cell survival and stress recovery. Alternative modes of translation initiation include cap- and/or scanning-independent mechanisms of ribosomal recruitment. In most cap-independent translation initiation events there is a direct recruitment of the 40S ribosome into a position upstream, or directly at, the initiation codon via a specific internal ribosome entry site (IRES) element in the 5'UTR. Yet, in some cellular mRNAs, a different translation initiation mechanism that is neither cap- nor IRES-dependent seems to occur through a special RNA structure called cap-independent translational enhancer (CITE). Recent evidence uncovered a distinct mechanism through which mRNAs containing N 6-methyladenosine (m6A) residues in their 5'UTR directly bind eukaryotic initiation factor 3 (eIF3) and the 40S ribosomal subunit in order to initiate translation in the absence of the cap-binding proteins. This review focuses on the important role of cap-independent translation mechanisms in human cells and how these alternative mechanisms can either act individually or cooperate with other cis-acting RNA regulons to orchestrate specific translational responses triggered upon several cellular stress states, and diseases such as cancer. Elucidation of these non-canonical mechanisms reveals the complexity of translational control and points out their potential as prospective novel therapeutic targets.
Collapse
Affiliation(s)
- Rafaela Lacerda
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Juliane Menezes
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
11
|
Duan J, Bao X, Ma X, Zhang Y, Ni D, Wang H, Zhang F, Du Q, Fan Y, Chen J, Wu S, Li X, Gao Y, Zhang X. Upregulation of Far Upstream Element-Binding Protein 1 (FUBP1) Promotes Tumor Proliferation and Tumorigenesis of Clear Cell Renal Cell Carcinoma. PLoS One 2017; 12:e0169852. [PMID: 28076379 PMCID: PMC5226774 DOI: 10.1371/journal.pone.0169852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/22/2016] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE The far upstream element (FUSE)-binding protein 1 (FUBP1) is a transactivator of human c-myc proto-oncogene transcription, with important roles in carcinogenesis. However, the expression pattern and potential biological function of FUBP1 in clear cell renal cell carcinoma (ccRCC) is yet to be established. METHODS FUBP1 expression was detected in ccRCC tissues and cell lines by real-time RT-PCR, Western blot analysis, and immunohistochemistry. The correlations of FUBP1 mRNA expression levels with clinicopathological factors were evaluated. The biological function of FUBP1 during tumor cell proliferation was studied by MTS, colony formation, and soft-agar colony formation. The effects of FUBP1 on cell cycle distribution and apoptosis were analyzed by flow cytometry. Western blot analysis was used to identify the potential mechanism of FUBP1 regulating cell cycle and apoptosis. RESULTS The levels of FUBP1 mRNA and protein expression were upregulated in human ccRCC tissues compared with adjacent noncancerous tissues. High levels of FUBP1 mRNA expression were associated with higher tumor stage and tumor size. FUBP1 knockdown inhibited cell proliferation and induced cell cycle arrest and apoptosis. Meanwhile, the expression levels of c-myc and p21 mRNA were correlated with that of FUBP1 mRNA. CONCLUSIONS FUBP1 acts as a potential oncogene in ccRCC and may be considered as a novel biomarker or an attractive treatment target of ccRCC.
Collapse
Affiliation(s)
- Junyao Duan
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Bao
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Ma
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Yu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Dong Ni
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Hanfeng Wang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Fan Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Qingshan Du
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Yang Fan
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Jianwen Chen
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Shengpan Wu
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Xintao Li
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Yu Gao
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
| | - Xu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People’s Liberation Army General Hospital, PLA Medical School, Beijing, China
- * E-mail:
| |
Collapse
|
12
|
Hung CT, Kung YA, Li ML, Brewer G, Lee KM, Liu ST, Shih SR. Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product. PLoS Pathog 2016; 12:e1005959. [PMID: 27780225 PMCID: PMC5079569 DOI: 10.1371/journal.ppat.1005959] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
The 5' untranslated region (5' UTR) of the enterovirus 71 (EV71) RNA genome contains an internal ribosome entry site (IRES) that is indispensable for viral protein translation. Due to the limited coding capacity of their RNA genomes, EV71 and other picornaviruses typically recruit host factors, known as IRES trans-acting factors (ITAFs), to mediate IRES-dependent translation. Here, we show that EV71 viral proteinase 2A is capable of cleaving far upstream element-binding protein 1 (FBP1), a positive ITAF that directly binds to the EV71 5' UTR linker region to promote viral IRES-driven translation. The cleavage occurs at the Gly-371 residue of FBP1 during the EV71 infection process, and this generates a functional cleavage product, FBP11-371. Interestingly, the cleavage product acts to promote viral IRES activity. Footprinting analysis and gel mobility shift assay results showed that FBP11-371 similarly binds to the EV71 5' UTR linker region, but at a different site from full-length FBP1; moreover, FBP1 and FBP11-371 were found to act additively to promote IRES-mediated translation and virus yield. Our findings expand the current understanding of virus-host interactions with regard to viral recruitment and modulation of ITAFs, and provide new insights into translational control during viral infection. Many RNA viruses utilize internal ribosome entry sites (IRES) located in the 5’ untranslated region of genomic RNA to translate viral proteins in a cap-independent manner. Host proteins that are recruited to assist in viral IRES-driven translation are known as ITAFs (IRES trans-acting factors), of which far upstream element-binding protein 1 (FBP1) is an example. In this study, we describe a novel regulatory mechanism involving ITAF cleavage, in which FBP1 is cleaved by EV71 viral proteinase 2A to yield a cleavage product, FBP11-371, which in turn acts additively with full-length FBP1 to enhance viral IRES-mediated translation and virus yield. Footprinting and gel mobility shift analyses reveal that both full-length FBP1 and its cleavage product bind to the linker region of EV71 5′ UTR, but at different sites. To the best of our understanding, these results shed light on a novel interaction between host ITAFs and picornaviruses, and provide important implications for other virus-host interactions.
Collapse
Affiliation(s)
- Chuan-Tien Hung
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yu-An Kung
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Jersey, United States Of America
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Jersey, United States Of America
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Shih-Tung Liu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- * E-mail: (STL); (SRS)
| | - Shin-Ru Shih
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Clinical Virology Laboratory, Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- * E-mail: (STL); (SRS)
| |
Collapse
|
13
|
Vaklavas C, Grizzle WE, Choi H, Meng Z, Zinn KR, Shrestha K, Blume SW. IRES inhibition induces terminal differentiation and synchronized death in triple-negative breast cancer and glioblastoma cells. Tumour Biol 2016; 37:13247-13264. [PMID: 27460074 PMCID: PMC5097113 DOI: 10.1007/s13277-016-5161-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/12/2016] [Indexed: 01/07/2023] Open
Abstract
Internal ribosome entry site (IRES)-mediated translation is a specialized mode of protein synthesis which malignant cells depend on to survive adverse microenvironmental conditions. Our lab recently reported the identification of a group of compounds which selectively interfere with IRES-mediated translation, completely blocking de novo IGF1R synthesis, and differentially modulating synthesis of the two c-Myc isoforms. Here, we examine the phenotypic consequences of sustained IRES inhibition in human triple-negative breast carcinoma and glioblastoma cells. A sudden loss of viability affects the entire tumor cell population after ∼72-h continuous exposure to the lead compound. The extraordinarily steep dose-response relationship (Hill-Slope coefficients −15 to −35) and extensive physical connections established between the cells indicate that the cells respond to IRES inhibition collectively as a population rather than as individual cells. Prior to death, the treated cells exhibit prominent features of terminal differentiation, with marked gains in cytoskeletal organization, planar polarity, and formation of tight junctions or neuronal processes. In addition to IGF1R and Myc, specific changes in connexin 43, BiP, CHOP, p21, and p27 also correlate with phenotypic outcome. This unusual mode of tumor cell death is absolutely dependent on exceeding a critical threshold in cell density, suggesting that a quorum-sensing mechanism may be operative. Death of putative tumor stem cells visualized in situ helps to explain the inability of tumor cells to recover and repopulate once the compound is removed. Together, these findings support the concept that IRES-mediated translation is of fundamental importance to maintenance of the undifferentiated phenotype and survival of undifferentiated malignant cells.
Collapse
Affiliation(s)
- Christos Vaklavas
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - William E Grizzle
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hyoungsoo Choi
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Pediatrics, Seoul National University Bundang Hospital, Gyeonggi-do, 463-707, South Korea
| | - Zheng Meng
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Bevill Biomedical Research Bldg Room 765, 845 19th Street S, Birmingham, AL, 35294, USA.,Analytical Development Division, Novavax Inc., Rockville, MD, 20850, USA
| | - Kurt R Zinn
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kedar Shrestha
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Scott W Blume
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Bevill Biomedical Research Bldg Room 765, 845 19th Street S, Birmingham, AL, 35294, USA.
| |
Collapse
|
14
|
Far upstream element-binding protein 1 (FUBP1) is a potential c-Myc regulator in esophageal squamous cell carcinoma (ESCC) and its expression promotes ESCC progression. Tumour Biol 2015; 37:4115-26. [PMID: 26490982 DOI: 10.1007/s13277-015-4263-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/15/2015] [Indexed: 01/12/2023] Open
Abstract
The human far upstream element (FUSE) binding protein 1 (FUBP1) belongs to an ancient family which is required for proper regulation of the c-Myc proto-oncogene. Although c-Myc plays an important role in development of various carcinomas, the relevance of FUBP1 and their contribution to esophageal squamous cell carcinoma (ESCC) development remain unclear. In this study, we aimed to investigate the relationship between FUBP1 and c-Myc as well as their contribution to ESCC development. Western blot and immunohistochemical analyses were performed to evaluate FUBP1 expression. Coimmunoprecipitation analysis was performed to explore the correlation between FUBP1 and c-Myc in ESCC. In addition, the role of FUBP1 in ESCC proliferation was studied in ESCC cells through knocking FUBP1 down. The regulation of FUBP1 on proliferation was confirmed by Cell Counting Kit-8 (CCK-8) assay, flow cytometric assays, and clone formation assays. The expressions of FUBP1 and c-Myc were both upregulated in ESCC tissues. In addition to correlation between expression of FUBP1 and tumor grade, we also confirmed the correlation of FUBP1, c-Myc, and Ki-67 expression by twos. Moreover, upregulation of FUBP1 and c-Myc in ESCC was associated with poor survival. FUBP1 was confirmed to activate c-Myc in ESCC tissues and cells. FUBP1 was demonstrated to promote proliferation of ESCC cells. Moreover, downregulation of both FUBP1 and c-Myc was confirmed to inhibit proliferation of ESCC cells. Our results indicated that FUBP1 may potentially stimulate c-Myc expression in ESCC and its expression may promote ESCC progression.
Collapse
|
15
|
Liu ZH, Hu JL, Liang JZ, Zhou AJ, Li MZ, Yan SM, Zhang X, Gao S, Chen L, Zhong Q, Zeng MS. Far upstream element-binding protein 1 is a prognostic biomarker and promotes nasopharyngeal carcinoma progression. Cell Death Dis 2015; 6:e1920. [PMID: 26469968 PMCID: PMC4632288 DOI: 10.1038/cddis.2015.258] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor with tremendous invasion and metastasis capacities, and it has a high incidence in southeast Asia and southern China. Previous studies identified that far upstream element-binding protein 1 (FBP1), a transcriptional regulator of c-Myc that is one of the most frequently aberrantly expressed oncogenes in various human cancers, including NPC, is an important biomarker for many cancers. Our study aimed to investigate the expression and function of FBP1 in human NPC. Quantitative real-time RT-PCR (qRT-PCR), western blot and immunohistochemical staining (IHC) were performed in NPC cells and biopsies. Furthermore, the effect of FBP1 knockdown on cell proliferation, colony formation, side population tests and tumorigenesis in nude mice were measured by MTT, clonogenicity analysis, flow cytometry and a xenograft model, respectively. The results showed that the mRNA and protein levels of FBP1, which are positively correlated with c-Myc expression, were substantially higher in NPC than that in nasopharyngeal epithelial cells. IHC revealed that the patients with high FBP1 expression had a significantly poorer prognosis compared with the patients with low expression (P=0.020). In univariate analysis, high FBP1 and c-Myc expression predicted poorer overall survival (OS) and poorer progression-free survival. Multivariate analysis indicated that high FBP1 and c-Myc expression were independent prognostic markers. Knockdown of FBP1 reduced cell proliferation, clonogenicity and the ratio of side populations, as well as tumorigenesis in nude mice. These data indicate that FBP1 expression, which is closely correlated with c-Myc expression, is an independent prognostic factor and promotes NPC progression. Our results suggest that FBP1 can not only serve as a useful prognostic biomarker for NPC but also as a potential therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Z-H Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, National Institute of Biological Sciences, Beijing, China
| | - J-L Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - J-Z Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - A-J Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - M-Z Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - S-M Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - X Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - S Gao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - L Chen
- Collaborative Innovation Center of Cancer Medicine, National Institute of Biological Sciences, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Q Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - M-S Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Vaklavas C, Meng Z, Choi H, Grizzle WE, Zinn KR, Blume SW. Small molecule inhibitors of IRES-mediated translation. Cancer Biol Ther 2015; 16:1471-85. [PMID: 26177060 PMCID: PMC4846101 DOI: 10.1080/15384047.2015.1071729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many genes controlling cell proliferation and survival (those most important to cancer biology) are now known to be regulated specifically at the translational (RNA to protein) level. The internal ribosome entry site (IRES) provides a mechanism by which the translational efficiency of an individual or group of mRNAs can be regulated independently of the global controls on general protein synthesis. IRES-mediated translation has been implicated as a significant contributor to the malignant phenotype and chemoresistance, however there has been no effective means by which to interfere with this specialized mode of protein synthesis. A cell-based empirical high-throughput screen was performed in attempt to identify compounds capable of selectively inhibiting translation mediated through the IGF1R IRES. Results obtained using the bicistronic reporter system demonstrate selective inhibition of second cistron translation (IRES-dependent). The lead compound and its structural analogs completely block de novo IGF1R protein synthesis in genetically-unmodified cells, confirming activity against the endogenous IRES. Spectrum of activity extends beyond IGF1R to include the c-myc IRES. The small molecule IRES inhibitor differentially modulates synthesis of the oncogenic (p64) and growth-inhibitory (p67) isoforms of Myc, suggesting that the IRES controls not only translational efficiency, but also choice of initiation codon. Sustained IRES inhibition has profound, detrimental effects on human tumor cells, inducing massive (>99%) cell death and complete loss of clonogenic survival in models of triple-negative breast cancer. The results begin to reveal new insights into the inherent complexity of gene-specific translational regulation, and the importance of IRES-mediated translation to tumor cell biology.
Collapse
Affiliation(s)
- Christos Vaklavas
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA
| | - Zheng Meng
- c Department of Biochemistry and Molecular Genetics; University of Alabama at Birmingham ; Birmingham , AL USA.,d Current address: Analytical Development Department; Novavax Inc. ; Gaithersburg , MD USA
| | - Hyoungsoo Choi
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA.,e Current address: Department of Pediatrics; Seoul National University Bundang Hospital; Gyeonggi-do , Korea
| | - William E Grizzle
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,f Department of Pathology; University of Alabama at Birmingham ; Birmingham , AL USA
| | - Kurt R Zinn
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA.,f Department of Pathology; University of Alabama at Birmingham ; Birmingham , AL USA
| | - Scott W Blume
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA.,c Department of Biochemistry and Molecular Genetics; University of Alabama at Birmingham ; Birmingham , AL USA
| |
Collapse
|
17
|
Yao L, Cao J, Sun H, Guo A, Li A, Ben Z, Zhang H, Wang X, Ding Z, Yang X, Huang X, Ji Y, Zhou Z. FBP1 and p27kip1 expression after sciatic nerve injury: implications for Schwann cells proliferation and differentiation. J Cell Biochem 2014; 115:130-40. [PMID: 23939805 DOI: 10.1002/jcb.24640] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/30/2013] [Indexed: 11/09/2022]
Abstract
Far Upstream Element (FUSE) Binding Protein 1 (FBP1), first identified as a single-stranded DNA (ssDNA) binding protein that binds to the FUSE, could modulate c-myc mRNA levels and also has been shown to regulate tumor cell proliferation and replication of virus. Typically, FBP1 could active the translation of p27kip1 (p27) and participate in tumor growth. However, the expression and roles of FBP1 in peripheral system lesions and repair are still unknown. In our study, we found that FBP1 protein levels was relatively higher in the normal sciatic nerves, significantly decreased and reached a minimal level at Day 3, and then returned to the normal level at 4 weeks. Spatially, we observed that FBP1 had a major colocation in Schwann cells and FBP1 was connected with Ki-67 and Oct-6. In vitro, we detected the decreased level of FBP1 and p27 in the TNF-α-induced Schwann cells proliferation model, while increased expression in cAMP-induced Schwann cells differentiation system. Specially, FBP1-specific siRNA-transfected SCs did not show fine and longer morphological change after cAMP treatment and had a decreased motility compared with normal. At 3 days after cAMP treatment and SC/neuron co-cultures, p27 was transported to cytoplasm to form CDK4/6-p27 to participate in SCs differentiation. In conclusion, we speculated that FBP1 and p27 were involved in SCs proliferation and the following differentiation in the sciatic nerve after crush by transporting p27 from nucleus to cytoplasm.
Collapse
Affiliation(s)
- Li Yao
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jacob AG, Singh RK, Mohammad F, Bebee TW, Chandler DS. The splicing factor FUBP1 is required for the efficient splicing of oncogene MDM2 pre-mRNA. J Biol Chem 2014; 289:17350-64. [PMID: 24798327 DOI: 10.1074/jbc.m114.554717] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing of the oncogene MDM2 is a phenomenon that occurs in cells in response to genotoxic stress and is also a hallmark of several cancer types with important implications in carcinogenesis. However, the mechanisms regulating this splicing event remain unclear. Previously, we uncovered the importance of intron 11 in MDM2 that affects the splicing of a damage-responsive MDM2 minigene. Here, we have identified discrete cis regulatory elements within intron 11 and report the binding of FUBP1 (Far Upstream element-Binding Protein 1) to these elements and the role it plays in MDM2 splicing. Best known for its oncogenic role as a transcription factor in the context of c-MYC, FUBP1 was recently described as a splicing regulator with splicing repressive functions. In the case of MDM2, we describe FUBP1 as a positive splicing regulatory factor. We observed that blocking the function of FUBP1 in in vitro splicing reactions caused a decrease in splicing efficiency of the introns of the MDM2 minigene. Moreover, knockdown of FUBP1 in cells induced the formation of MDM2-ALT1, a stress-induced splice variant of MDM2, even under normal conditions. These results indicate that FUBP1 is also a strong positive splicing regulator that facilitates efficient splicing of the MDM2 pre-mRNA by binding its introns. These findings are the first report describing the regulation of alternative splicing of MDM2 mediated by the oncogenic factor FUBP1.
Collapse
Affiliation(s)
- Aishwarya G Jacob
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Ravi K Singh
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and
| | - Fuad Mohammad
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Thomas W Bebee
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and
| | - Dawn S Chandler
- From the Center for Childhood Cancer, Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205 and the Department of Pediatrics, Molecular, Cellular and Developmental Biology Program, and Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
19
|
Tang Q, Xia W, Ji Q, Ni R, Bai J, Li L, Qin Y. Role of far upstream element binding protein 1 in colonic epithelial disruption during dextran sulphate sodium-induced murine colitis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2019-2031. [PMID: 24966911 PMCID: PMC4069948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/26/2014] [Indexed: 06/03/2023]
Abstract
AIM Intestinal epithelial barrier is essential for maintaining normal intestinal homeostasis; its breakdown leads to chronic inflammatory pathologies, such as inflammatory bowel diseases. Far upstream element binding protein 1 (FBP1) has been reported to play an important role in cell apoptosis and proliferation. We aimed to investigate the expression and the role of FBP1 in dextran sodium sulphate (DSS)-induced experimental colitis. METHODS Mice experimental colitis model was established by administration of DSS, and the expression and localization of FBP1 was examined using Western blot and immunohistochemistry. Colon epithelial cell line HT-29 was used to determine the role of FBP1. In vitro study, the expression of FBP1 was determined in HT-29 cells stimulated with tumor necrosis factor α (TNF-α). HT-29 cells were transfected with FBP1 siRNA and then measured for viability. RESULTS Significant decreasing of FBP1 expression was found in mice colitis. In addition, FBP1 was cleaved and translocated from nucleus to cytoplasm during apoptosis. Downregulated expression of FBP1 induced cell cycle arrest. CONCLUSIONS We demonstrate that apoptosis-mediated cleavage of FBP1 and its decreased expression in epithelial cells induces cell cycle arrest, which may play an important role in colonic epithelial disruption.
Collapse
Affiliation(s)
- Qiyun Tang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210000, Jiangsu Province, People’s Republic of China
| | - Weiwei Xia
- Department of Gastroenterology, Affiliated Hospital of Nantong University20 Xisi Road, Nantong 226001, Jiangsu Province, People’s Republic of China
| | - Qianqian Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University20 Xisi Road, Nantong 226001, Jiangsu Province, People’s Republic of China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University20 Xisi Road, Nantong 226001, Jiangsu Province, People’s Republic of China
| | - Jian’an Bai
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University300 Guangzhou Road, Nanjing 210000, Jiangsu Province, People’s Republic of China
| | - Liren Li
- Department of Gastroenterology, Affiliated Hospital of Nantong University20 Xisi Road, Nantong 226001, Jiangsu Province, People’s Republic of China
| | - Yongwei Qin
- Department of Pathogen Biology, Nantong University Medical College19 Qixiu Road, Nantong 226001, Jiangsu Province, People’s Republic of China
| |
Collapse
|
20
|
Zhu X, Yao L, Yang X, Sun H, Guo A, Li A, Yang H. Spatiotemporal expression of KHSRP modulates Schwann cells and neuronal differentiation after sciatic nerve injury. Int J Biochem Cell Biol 2013; 48:1-10. [PMID: 24368152 DOI: 10.1016/j.biocel.2013.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/01/2013] [Accepted: 12/14/2013] [Indexed: 01/02/2023]
Abstract
K-homology splicing regulator protein (KHSRP), a multifunctional RNA-binding protein, was originally thought to primarily control mRNA decay. KHSRP was shown to be involved in p38MAPK, NF-κB and the JAK2-STAT-1a pathways. Besides, KHSRP regulated neuronal localization of beta-actin and microtubule-associated protein 2 (MAP2) mRNAs, respectively. However, the expression and roles of KHSRP in peripheral system lesions and repair are still unknown. In our study, we found that KHSRP levels were relatively higher in the crushed sciatic nerves, significantly reached a highest level at day 5. Spatially, we observed that KHSRP had a major colocalization with Schwann cells (SCs) and neurons. KHSRP was connected with promyelinating SCs marker. KHSRP promoted the decay of beta-catenin (β-catenin) mRNA which was inactivated by PI3K-AKT signaling. We doubted that KHSRP might participate in Schwann cells differentiation by regulation of β-catenin mRNA decay. In vitro, in cyclic adenosine monophosphate (cAMP)-induced Schwann cells differentiation system, we detected the increased KHSRP in cytoplasm and decreased β-catenin at protein and mRNA level. In differentiation model of rat pheochromocytoma cells (PC12) induced by nerve growth factor (NGF) and primary dorsal root ganglion (DRG) cell culture, KHSRP also acted on neuronal differentiation. Specially, KHSRP-specific siRNA-transfected cells did not show morphological change, which was similar to β-catenin overexpressed SCs. During SC/neuron co-cultures, KHSRP was transported to cytoplasm and involved in SCs myelination. In conclusion, we speculated that KHSRP was involved in SCs and neuronal differentiation by inducing β-catenin mRNA decay.
Collapse
Affiliation(s)
- Xiaojian Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China; Department of Orthopaedics, Affiliated Mental Health Center of Nantong University, Nantong 226001, People's Republic of China
| | - Li Yao
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Xiaojing Yang
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Huiqing Sun
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Aisong Guo
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Aihong Li
- Department of Immunology, Medical College, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Ding Z, Liu X, Liu Y, Zhang J, Huang X, Yang X, Yao L, Cui G, Wang D. Expression of far upstream element (FUSE) binding protein 1 in human glioma is correlated with c-Myc and cell proliferation. Mol Carcinog 2013; 54:405-15. [PMID: 24347226 DOI: 10.1002/mc.22114] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 01/21/2023]
Abstract
Glioma is one of the most common type of primary intracranial tumor. Although great advances have been achieved in treatment of glioma, the underlying molecular mechanisms remain largely unknown. Previous studies demonstrated that FBP1 is a transcriptional regulator of c-Myc and acts as an important prognostic indicator in many cancers. Our study aimed to assess the expression and function of FBP1 in human glioma. Immunohistochemical and Western blot analysis were performed in human glioma and normal brain tissues. High FBP1 expression (located in cell nuclei) was observed in 70 samples and its level was correlated with the grade of malignancy. A strongly positive correlation was observed between FBP1 and c-Myc (P = 0.005) and Ki-67 expression (P = 0.009). In a multivariate analysis, high FBP1 and c-Myc expressions were showed to be associated with poor prognosis in glioma. While in vitro, following serum stimulation of starved U87MG cells, the expression of FBP1 was upregulated, as well as c-Myc and PCNA. Moreover, knockdown of FBP1 by siRNA transfection diminished the expression of c-Myc and arrested cell growth at G1 phase. Collectively, our results shows that the expression of FBP1 is in close correlation with c-Myc level and cell proliferation in glioma and provides a potential strategy to develop FBP1 inhibitors as novel anti-tumor agents.
Collapse
Affiliation(s)
- Zongmei Ding
- Department of Pathology, Medical College, Nantong University, Nantong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kotoshiba S, Gopinathan L, Pfeiffenberger E, Rahim A, Vardy LA, Nakayama K, Nakayama KI, Kaldis P. p27 is regulated independently of Skp2 in the absence of Cdk2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:436-45. [PMID: 24269842 DOI: 10.1016/j.bbamcr.2013.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/25/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
Cyclin-dependent kinase 2 (Cdk2) is dispensable for mitotic cell cycle progression and Cdk2 knockout mice are viable due to the compensatory functions of other Cdks. In order to assess the role of Cdk2 under limiting conditions, we used Skp2 knockout mice that exhibit increased levels of Cdk inhibitor, p27(Kip1), which is able to inhibit Cdk2 and Cdk1. Knockdown of Cdk2 abrogated proliferation of Skp2(-/-) mouse embryonic fibroblasts, encouraging us to generate Cdk2(-/-)Skp2(-/-) double knockout mice. Cdk2(-/-)Skp2(-/-) double knockout mice are viable and display similar phenotypes as Cdk2(-/-) and Skp2(-/-) mice. Unexpectedly, fibroblasts generated from Cdk2(-/-)Skp2(-/-) double knockout mice proliferated at normal rates. The increased stability of p27 observed in Skp2(-/-) MEFs was not observed in Cdk2(-/-)Skp2(-/-) double knockout fibroblasts indicating that in the absence of Cdk2, p27 is regulated by Skp2-independent mechanisms. Ablation of other ubiquitin ligases for p27 such as KPC1, DDB1, and Pirh2 did not restore stability of p27 in Cdk2(-/-)Skp2(-/-) MEFs. Our findings point towards novel and alternate pathways for p27 regulation.
Collapse
Affiliation(s)
- Shuhei Kotoshiba
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673, Republic of Singapore; Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Bldg. 560, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| | - Lakshmi Gopinathan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673, Republic of Singapore
| | - Elisabeth Pfeiffenberger
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673, Republic of Singapore
| | - Anisa Rahim
- Institute of Medical Biology (IMB), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
| | - Leah A Vardy
- Institute of Medical Biology (IMB), A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Keiko Nakayama
- Tohoku University, Department of Developmental Genetics, Center for Translational and Advanced Animal Research, Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Keiichi I Nakayama
- Kyushu University, Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore 117597, Republic of Singapore; Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Bldg. 560, 1050 Boyles Street, Frederick, MD 21702-1201, USA.
| |
Collapse
|
23
|
Far upstream element-binding protein 1 and RNA secondary structure both mediate second-step splicing repression. Proc Natl Acad Sci U S A 2013; 110:E2687-95. [PMID: 23818605 DOI: 10.1073/pnas.1310607110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Splicing of mRNA precursors consists of two steps that are almost invariably tightly coupled to facilitate efficient generation of spliced mRNA. However, we described previously a splicing substrate that is completely blocked after the first step. We have now investigated the basis for this unusual second-step inhibition and unexpectedly elucidated two independent mechanisms. One involves a stem-loop structure located downstream of the 3'splice site, and the other involves an exonic splicing silencer (ESS) situated 3' to the structure. Both elements contribute to the second-step block in vitro and also cause exon skipping in vivo. Importantly, we identified far upstream element-binding protein 1 (FUBP1), a single-stranded DNA- and RNA-binding protein not previously implicated in splicing, as a strong ESS binding protein, and several assays implicate it in ESS function. We demonstrate using depletion/add-back experiments that FUBP1 acts as a second-step repressor in vitro and show by siRNA-mediated knockdown and overexpression assays that it modulates exon inclusion in vivo. Together, our results provide additional insights into splicing control, and identify FUBP1 as a splicing regulator.
Collapse
|
24
|
The expression of FBP1 after traumatic brain injury and its role in astrocyte proliferation. J Mol Neurosci 2013; 51:687-94. [PMID: 23797733 DOI: 10.1007/s12031-013-0049-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/11/2013] [Indexed: 01/07/2023]
Abstract
Far upstream element binding protein 1 (FBP1) has been identified as an upstream gene of p27kip1 (p27), which is a key regulator of mammalian cell cycle regulation and neurogenesis. To elucidate the expression and function of FBP1 in central nervous system lesion and repair, we performed a traumatic brain injury (TBI) model in adult rats. We observed that FBP1 protein level significantly reduced at day 3 after injury, and the downregulation of FBP1 was predominant in astrocytes, which were largely proliferated after injury. Furthermore, in vitro, overexpression of FBP1 was concomitant with the up-regulation of p27 and reduction of PCNA in LPS-induced astrocyte proliferation. These results suggest that a decreased level of FBP1 in brain is involved in the proliferation of glial cells after TBI.
Collapse
|
25
|
Chen HL, Chew LJ, Packer RJ, Gallo V. Modulation of the Wnt/beta-catenin pathway in human oligodendroglioma cells by Sox17 regulates proliferation and differentiation. Cancer Lett 2013; 335:361-71. [PMID: 23474492 DOI: 10.1016/j.canlet.2013.02.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 02/07/2023]
Abstract
Oligodendrogliomas originate from oligodendrocyte progenitor cells (OPCs), whose development is regulated by the Sonic hedgehog and Wnt/beta-catenin pathways. We investigated the contribution of these pathways in the proliferation and differentiation of human oligodendroglioma cells (HOG). Inhibition of Hedgehog signaling with cyclopamine decreased cell survival and increased phosphorylated beta-catenin without altering myelin protein levels. Conversely, treatment of HOG with the Wnt antagonist secreted frizzled related protein (SFRP1), led to increased myelin protein levels and reduced cell proliferation, suggesting cell cycle arrest and differentiation. Unlike normal primary human OPCs, beta-catenin in HOG cells is not associated with endogenous Sox17 protein despite high levels of both proteins. Retroviral overexpression of recombinant Sox17 increased HOG cell cycle exit and apoptosis, and raised myelin protein levels and the percentage of O4(+) cells, indicating increased differentiation. Recombinant Sox17 also increased beta-catenin-TCF4-Sox17 complex formation and decreased total cellular levels of beta-catenin. These changes were associated with increased SFRP1, and reduced expression of Wnt-1 and Frizzled-1, -3 and -7 RNA, indicating that Sox17 induced a Hedgehog target, and regulated Wnt signaling at multiple levels. Our studies indicate that Wnt signaling regulates HOG cell cycle arrest and differentiation, and that recombinant Sox17 mediates modulation of the Wnt pathway through changes in beta-catenin, SFRP1 and Wnt/Frizzled expression. Our results thus identify Sox17 as a potential molecular target to include in HOG therapeutic strategies.
Collapse
Affiliation(s)
- Hui-Ling Chen
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
26
|
Zhang J, Chen QM. Far upstream element binding protein 1: a commander of transcription, translation and beyond. Oncogene 2012; 32:2907-16. [PMID: 22926519 DOI: 10.1038/onc.2012.350] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The far upstream binding protein 1 (FBP1) was first identified as a DNA-binding protein that regulates c-Myc gene transcription through binding to the far upstream element (FUSE) in the promoter region 1.5 kb upstream of the transcription start site. FBP1 collaborates with TFIIH and additional transcription factors for optimal transcription of the c-Myc gene. In recent years, mounting evidence suggests that FBP1 acts as an RNA-binding protein and regulates mRNA translation or stability of genes, such as GAP43, p27(Kip) and nucleophosmin. During retroviral infection, FBP1 binds to and mediates replication of RNA from Hepatitis C and Enterovirus 71. As a nuclear protein, FBP1 may translocate to the cytoplasm in apoptotic cells. The interaction of FBP1 with p38/JTV-1 results in FBP1 ubiquitination and degradation by the proteasomes. Transcriptional and post-transcriptional regulations by FBP1 contribute to cell proliferation, migration or cell death. FBP1 association with carcinogenesis has been reported in c-Myc dependent or independent manner. This review summarizes biochemical features of FBP1, its mechanism of action, FBP family members and the involvement of FBP1 in carcinogenesis.
Collapse
Affiliation(s)
- J Zhang
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|