1
|
Chen S, Qian H, Dai F, Fan G, Lu H, Deng C, Shi Y, He Y, Zhang X, Shi G, Liu Y. Detection of anti-calreticulin antibody in the sera of Chinese patients with primary Sjögren syndrome. Semin Arthritis Rheum 2024; 68:152488. [PMID: 38896912 DOI: 10.1016/j.semarthrit.2024.152488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Primary Sjögren syndrome (pSjS) is one of the most prevalent systemic autoimmune diseases and characterized with hyperactivation of B cell and the abundant presence of autoantibodies in sera. The salivary gland epithelial cells (SGECs) release autoantigens to evoke autoimmunity through releasing elevated apoptosis or secreting autoantigen-containing exosomes, thus identifying autoantibodies directly to SGECs might provide insights into disease related biomarkers as well as further elucidating pathogenesis mechanisms. The present study was undertaken to identify autoantibodies to SGECs and to evaluate its clinical values in Chinese pSjS. METHODS Cell-based indirect immunofluorescence and immunostaining, two-dimensional electrophoresis and liquid chromatograph-tandem mass spectrometry were conducted to identify the autoantibodies to human salivary gland cell line A253 in pSjS sera. Enzyme-linked immunosorbent assay (ELISA) was applied to identify autoantibody titer in pSjS cohort and healthy controls. The prevalence and clinical significance of the identified autoantibodies was further assessed in pSjS population. RESULTS Anti-calreticulin (CALR) antibody was identified as a new autoantibody directly to SGECs in sera from pSjS patients. Anti-CALR antibody were detected in 37 of 120 pSjS patients (30.83 %) and 1 of 54 healthy controls (1.85 %). It was found in 40.85 % pSjS with anti-SSA positive, 53.85 % with anti-SSB positive, and 14.7 % in sero-negative pSjS. Anti-CALR antibody was associated with clinical manifestations including weight loss(p = 0.045), vasculitis (p = 0.031), and laboratory parameters including erythrocyte sedimentation rate (ESR) (r = 0.056, p = 0.021), Krebs von den Lungen-6 (KL-6) (r = 0.121, p = 0.035), IgG (r = 0.097, p < 0.001), IgG2 (r = 0.142, p = 0.022), IgG3 (r = 0.287, p < 0.001), fibrinogen (r = 0.084, p = 0.016), D-Dimer (r = 0.086, p = 0.012) and fibrinogen degradation production (r = 0.150, p = 0.002). The expression of CALR in salivary glands was related to lymphocytes infiltration into salivary glands in pSjS patients (r = 0.7076, p = 0.0034). CONCLUSION To our knowledge, this was the first study to investigate the prevalence and clinical significance of anti-CALR antibody in Chinses pSjS patients. The present study identified an autoimmune antibody, anti-CALR antibody, as a good autoimmune biomarker for sero-negative pSjS.
Collapse
Affiliation(s)
- Shiju Chen
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Hongyan Qian
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Fan Dai
- School of Medicine, Xiamen University, Xiamen, XM, 361000, China
| | - Guihua Fan
- School of Medicine, Xiamen University, Xiamen, XM, 361000, China
| | - Huiqin Lu
- School of Medicine, Xiamen University, Xiamen, XM, 361000, China
| | - Chaoqiong Deng
- School of Medicine, Xiamen University, Xiamen, XM, 361000, China
| | - Yingying Shi
- School of Medicine, Xiamen University, Xiamen, XM, 361000, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China.
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, XM, 361000, China; Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China.
| |
Collapse
|
2
|
van Rosmalen L, Deota S, Maier G, Le HD, Lin T, Ramasamy RK, Hut RA, Panda S. Energy balance drives diurnal and nocturnal brain transcriptome rhythms. Cell Rep 2024; 43:113951. [PMID: 38508192 PMCID: PMC11330649 DOI: 10.1016/j.celrep.2024.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Plasticity in daily timing of activity has been observed in many species, yet the underlying mechanisms driving nocturnality and diurnality are unknown. By regulating how much wheel-running activity will be rewarded with a food pellet, we can manipulate energy balance and switch mice to be nocturnal or diurnal. Here, we present the rhythmic transcriptome of 21 tissues, including 17 brain regions, sampled every 4 h over a 24-h period from nocturnal and diurnal male CBA/CaJ mice. Rhythmic gene expression across tissues comprised different sets of genes with minimal overlap between nocturnal and diurnal mice. We show that non-clock genes in the suprachiasmatic nucleus (SCN) change, and the habenula was most affected. Our results indicate that adaptive flexibility in daily timing of behavior is supported by gene expression dynamics in many tissues and brain regions, especially in the habenula, which suggests a crucial role for the observed nocturnal-diurnal switch.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shaunak Deota
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geraldine Maier
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hiep D Le
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Terry Lin
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh K Ramasamy
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, the Netherlands.
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Melnikova A, Ishii H, Tamatani T, Hattori T, Takarada-Iemata M, Hori O. Neuroprotective role of calreticulin after spinal cord injury in mice. Neurosci Res 2023; 195:29-36. [PMID: 37295503 DOI: 10.1016/j.neures.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Accumulating evidence suggests that endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are involved in the pathology of spinal cord injury (SCI). To determine the role of the UPR-target molecule in the pathophysiology of SCI, we analyzed the expression and the possible function of calreticulin (CRT), a molecular chaperone in the ER with high Ca2+ binding capacity, in a mouse SCI model. Spinal cord contusion was induced in T9 by using the Infinite Horizon impactor. Quantitative real-time polymerase chain reaction confirmed increase of Calr mRNA after SCI. Immunohistochemistry revealed that CRT expression was observed mainly in neurons in the control (sham operated) condition, while it was strongly observed in microglia/macrophages after SCI. Comparative analysis between wild-type (WT) and Calr+/- mice revealed that the recovery of hindlimb locomotion was reduced in Calr+/- mice, based on the evaluation using the Basso Mouse Scale and inclined-plane test. Immunohistochemistry also revealed more accumulation of immune cells in Calr+/- mice than in WT mice, at the epicenter 3 days and at the caudal region 7 days after SCI. Consistently, the number of damaged neuron was higher in Calr+/- mice at the caudal region 7 days after SCI. These results suggest a regulatory role of CRT in the neuroinflammation and neurodegeneration after SCI.
Collapse
Affiliation(s)
- Anastasiia Melnikova
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
4
|
Maor-Landaw K, Avidor I, Rostowsky N, Salti B, Smirnov M, Ofek-Lalzar M, Levin L, Brekhman V, Lotan T. The Molecular Mechanisms Employed by the Parasite Myxobolus bejeranoi (Cnidaria: Myxozoa) from Invasion through Sporulation for Successful Proliferation in Its Fish Host. Int J Mol Sci 2023; 24:12824. [PMID: 37629003 PMCID: PMC10454682 DOI: 10.3390/ijms241612824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Myxozoa is a unique group of obligate endoparasites in the phylum Cnidaria that can cause emerging diseases in wild and cultured fish populations. Recently, we identified a new myxozoan species, Myxobolus bejeranoi, which infects the gills of cultured tilapia while suppressing host immunity. To uncover the molecular mechanisms underlying this successful parasitic strategy, we conducted transcriptomics analysis of M. bejeranoi throughout the infection. Our results show that histones, which are essential for accelerated cell division, are highly expressed even one day after invasion. As the infection progressed, conserved parasitic genes that are known to modulate the host immune reaction in different parasitic taxa were upregulated. These genes included energy-related glycolytic enzymes, as well as calreticulin, proteases, and miRNA biogenesis proteins. Interestingly, myxozoan calreticulin formed a distinct phylogenetic clade apart from other cnidarians, suggesting a possible function in parasite pathogenesis. Sporogenesis was in its final stages 20 days post-exposure, as spore-specific markers were highly expressed. Lastly, we provide the first catalog of transcription factors in a Myxozoa species, which is minimized compared to free-living cnidarians and is dominated by homeodomain types. Overall, these molecular insights into myxozoan infection support the concept that parasitic strategies are a result of convergent evolution.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Itamar Avidor
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Nadav Rostowsky
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Barbara Salti
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 1080300, Israel;
| | - Maya Ofek-Lalzar
- Bioinformatic Unit, University of Haifa, Mt. Carmel, Haifa 3498838, Israel;
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3103301, Israel; (K.M.-L.); (I.A.); (N.R.); (B.S.); (V.B.)
| |
Collapse
|
5
|
Guijarro-Hernández A, Eder-Azanza L, Hurtado C, Navarro-Herrera D, Ezcurra B, Novo FJ, Cabello J, Vizmanos JL. Transcriptomic Analysis Reveals JAK2/MPL-Independent Effects of Calreticulin Mutations in a C. elegans Model. Cells 2023; 12:186. [PMID: 36611979 PMCID: PMC9818371 DOI: 10.3390/cells12010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
There is growing evidence that Ph-negative myeloproliferative neoplasms (MPNs) are disorders in which multiple molecular mechanisms are significantly disturbed. Since their discovery, CALR driver mutations have been demonstrated to trigger pathogenic mechanisms apart from the well-documented activation of JAK2/MPL-related pathways, but the lack of experimental models harboring CALR mutations in a JAK2/MPL knockout background has hindered the research on these non-canonical mechanisms. In this study, CRISPR/Cas9 was performed to introduce homozygous patient-like calreticulin mutations in a C. elegans model that naturally lacks JAK2 and MPL orthologs. Whole-genome transcriptomic analysis of these worms was conducted, and some of the genes identified to be associated with processes involved in the pathogenesis of MPNs were further validated by qPCR. Some of the transcriptomic alterations corresponded to typically altered genes and processes in cancer and Ph-negative MPN patients that are known to be triggered by mutant calreticulin without the intervention of JAK2/MPL. However, interestingly, we have also found altered other processes described in these diseases that had not been directly attributed to calreticulin mutations without the intervention of JAK2 or MPL. Thus, these results point to a new experimental model for the study of the JAK2/MPL-independent mechanisms of mutant calreticulin that induce these biological alterations, which could be useful to study unknown non-canonical effects of the mutant protein. The comparison with a calreticulin null strain revealed that the alteration of all of these processes seems to be a consequence of a loss of function of mutant calreticulin in the worm, except for the dysregulation of Hedgehog signaling and flh-3. Further analysis of this model could help to delineate these mechanisms, and the verification of these results in mammalian models may unravel new potential therapeutic targets in MPNs. As far as we know, this is the first time that a C. elegans strain with patient-like mutations is proposed as a potential model for leukemia research.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Laura Eder-Azanza
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Cristina Hurtado
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - David Navarro-Herrera
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Begoña Ezcurra
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Francisco Javier Novo
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
6
|
La Spina E, Giallongo S, Giallongo C, Vicario N, Duminuco A, Parenti R, Giuffrida R, Longhitano L, Li Volti G, Cambria D, Di Raimondo F, Musumeci G, Romano A, Palumbo GA, Tibullo D. Mesenchymal stromal cells in tumor microenvironment remodeling of BCR-ABL negative myeloproliferative diseases. Front Oncol 2023; 13:1141610. [PMID: 36910610 PMCID: PMC9996158 DOI: 10.3389/fonc.2023.1141610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic myeloproliferative neoplasms encompass the BCR-ABL1-negative neoplasms polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These are characterized by calreticulin (CALR), myeloproliferative leukemia virus proto-oncogene (MPL) and the tyrosine kinase Janus kinase 2 (JAK2) mutations, eventually establishing a hyperinflammatory tumor microenvironment (TME). Several reports have come to describe how constitutive activation of JAK-STAT and NFκB signaling pathways lead to uncontrolled myeloproliferation and pro-inflammatory cytokines secretion. In such a highly oxidative TME, the balance between Hematopoietic Stem Cells (HSCs) and Mesenchymal Stromal Cells (MSCs) has a crucial role in MPN development. For this reason, we sought to review the current literature concerning the interplay between HSCs and MSCs. The latter have been reported to play an outstanding role in establishing of the typical bone marrow (BM) fibrotic TME as a consequence of the upregulation of different fibrosis-associated genes including PDGF- β upon their exposure to the hyperoxidative TME characterizing MPNs. Therefore, MSCs might turn to be valuable candidates for niche-targeted targeting the synthesis of cytokines and oxidative stress in association with drugs eradicating the hematopoietic clone.
Collapse
Affiliation(s)
- Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical-Surgical Science and Advanced Technologies "Ingrassia", University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Andrea Duminuco
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical-Surgical Science and Advanced Technologies "Ingrassia", University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Guijarro-Hernández A, Hurtado C, Vizmanos JL. Optimizing simple calreticulin upregulation strategies in Caenorhabditis elegans. Biol Methods Protoc 2022; 8:bpac036. [PMID: 36686858 PMCID: PMC9846421 DOI: 10.1093/biomethods/bpac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Calreticulin (CALR) is a multifunctional calcium-binding protein whose expression levels have been correlated with detection, clinical phase of disease, metastasis, and survival of various types of cancer. Therefore, the study of the regulation of the cellular levels of CALR may be important to understand the neoplastic process. Caenorhabditis elegans, which has a CALR ortholog (CRT-1), has been used as a model organism for the characterization of CALR, and several conditions promoting the upregulation of crt-1 have been studied and established to understand the molecular control of crt-1 transcription and assess the function of the protein. Here, we propose several modifications of previously published crt-1 upregulation strategies that improve the reproducibility of the assay and allow to achieve higher levels of overexpression. First, the manipulation of synchronized populations of worms instead of mixed-stage animals and the use of solid culture medium in all experimental conditions are proposed. Likewise, we evaluate four new experimental approaches that attempt to promote a higher crt-1 upregulation [short-term exposure to 30 µg/ml tunicamycin at 25°C, short-term exposure to 7% ethanol (EtOH) at 25°C, short-term exposure to 30°C of worms grown at 25°C, and a long-term exposure to 7% EtOH]. Our results not only validate previously published methods, but also point to a new experimental approach that increases previously achieved levels of crt-1 upregulation. More specifically, a 6-h exposure of synchronized worms grown at 25°C to 7% EtOH on solid medium promotes almost a 7-fold upregulation of crt-1.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona E-31008, Spain
| | - Cristina Hurtado
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona E-31008, Spain
| | - José Luis Vizmanos
- Correspondence address. Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain. E-mail:
| |
Collapse
|
8
|
Xie D, Wang Q, Wu G. Research progress in inducing immunogenic cell death of tumor cells. Front Immunol 2022; 13:1017400. [PMID: 36466838 PMCID: PMC9712455 DOI: 10.3389/fimmu.2022.1017400] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
Immunogenic cell death (ICD) is a regulated cell death (RCD) pathway. In response to physical and chemical signals, tumor cells activate specific signaling pathways that stimulate stress responses in the endoplasmic reticulum (ER) and expose damage-associated molecular patterns (DAMPs), which promote antitumor immune responses. As a result, the tumor microenvironment is altered, and many tumor cells are killed. The ICD response in tumor cells requires inducers. These inducers can be from different sources and contribute to the development of the ICD either indirectly or directly. The combination of ICD inducers with other tumor treatments further enhances the immune response in tumor cells, and more tumor cells are killed; however, it also produces side effects of varying severity. New induction methods based on nanotechnology improve the antitumor ability and significantly reduces side effects because they can target tumor cells precisely. In this review, we introduce the characteristics and mechanisms of ICD responses in tumor cells and the DAMPs associated with ICD responses, summarize the current methods of inducing ICD response in tumor cells in five distinct categories: chemical sources, physical sources, pathogenic sources, combination therapies, and innovative therapies. At the same time, we introduce the limitations of current ICD inducers and make a summary of the use of ICD responses in clinical trials. Finally, we provide an outlook on the future of ICD inducer development and provide some constructive suggestions.
Collapse
Affiliation(s)
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
9
|
Li L, Liu Z, Liu C, Elnesr S, Guo S, Ding B, Zou X. Research Note: Disturbance of intracellular calcium signal in salpingitis simulation of laying hens. Poult Sci 2022; 102:102226. [PMID: 36402046 PMCID: PMC9673096 DOI: 10.1016/j.psj.2022.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022] Open
Abstract
This study investigated whether there is disturbance of calcium signal in the simulated salpingitis of laying hens. A total of 90 Roman Pink layers (81 wk; 1.916 ± 0.17 kg) were divided into 3 groups (Control treated with PBS, 1.85 mg lipopolysaccharide (LPS)/layer as LPS group, 1.85 mg LPS/layer as LPS+organic chemical reagent (OCR) group) with 6 replicates of 5 layers. Compared with the Control, the mRNA expression of calcium/calmodulin dependent protein kinase IV (CaMK IV), sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), and plasma membrane calcium-transporting ATPase (PMCA) were not only decreased (P < 0.05) in magnum of laying hens from LPS and LPS+OCR groups, but also in isthmus and uterus of hens from LPS+OCR group. Moreover, the mRNA expression of calcium sensing receptor (CaSR) and Orai1 in uterus from LPS+OCR group were higher (P < 0.05) than that from Control. The relative fluorescence intensity of Ca2+ in uterus from LPS and LPS+OCR groups were significantly higher than that from Control (P < 0.05). In conclusion, it existed that the linkage of simulated salpingitis treated with LPS+OCR and altered intracellular calcium signals in layers, which provided a new insight for alleviating salpingitis and uterine dysfunction of laying hens.
Collapse
Affiliation(s)
- L.L. Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Z.P. Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - C.A. Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - S.S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - S.S. Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - B.Y. Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - X.T. Zou
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China,Corresponding author:
| |
Collapse
|
10
|
Benske TM, Mu TW, Wang YJ. Protein quality control of N-methyl-D-aspartate receptors. Front Cell Neurosci 2022; 16:907560. [PMID: 35936491 PMCID: PMC9352929 DOI: 10.3389/fncel.2022.907560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated cation channels that mediate excitatory neurotransmission and are critical for synaptic development and plasticity in the mammalian central nervous system (CNS). Functional NMDARs typically form via the heterotetrameric assembly of GluN1 and GluN2 subunits. Variants within GRIN genes are implicated in various neurodevelopmental and neuropsychiatric disorders. Due to the significance of NMDAR subunit composition for regional and developmental signaling at synapses, properly folded receptors must reach the plasma membrane for their function. This review focuses on the protein quality control of NMDARs. Specifically, we review the quality control mechanisms that ensure receptors are correctly folded and assembled within the endoplasmic reticulum (ER) and trafficked to the plasma membrane. Further, we discuss disease-associated variants that have shown disrupted NMDAR surface expression and function. Finally, we discuss potential targeted pharmacological and therapeutic approaches to ameliorate disease phenotypes by enhancing the expression and surface trafficking of subunits harboring disease-associated variants, thereby increasing their incorporation into functional receptors.
Collapse
Affiliation(s)
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
11
|
Chang NC, Wu YJ, Wang LF, Chan LP, Chai CY, Chen Ms WT, Tsai SM, Chien CY, Ho KY. Downregulation of Calreticulin and Annexin A2 Expression in Acquired Middle Ear Cholesteatoma by 2-DE Analysis. Ann Otol Rhinol Laryngol 2022; 132:684-691. [PMID: 35833235 DOI: 10.1177/00034894221111255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Many factors are thought to be associated with the development of cholesteatoma, while the mechanisms of its formation remain unclear. This study aimed to identify the potential mechanisms of the proliferation and growth of cholesteatoma by analysis of the differential expressions of proteins in cholesteatoma and retroauricular skin tissue collected from the same patients. METHODS The present study is a retrospective study performed in an academic medical center. Comparative proteomics analyses using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), in addition to immunohistochemical analysis, were conducted to identify differentially-expressed proteins in cholesteatoma tissue as compared with retroauricular skin tissue. Western blotting was also employed to verify the expression patterns of the specific proteins identified by 2-DE and to measure the changes in potential modulators related to cholesteatoma proliferation and growth. RESULTS Calreticulin (CRT) and annexin A2 (AnxA2) were identified as being differentially-expressed in cholesteatoma by 2-DE and LC-MS/MS, the results of which were in agreement with the results of immunohistochemical analysis and western blotting. Downregulation of CRT and AnxA2 were observed in cholesteatoma. CONCLUSION Our data suggests that CRT and AnxA2 downregulation are seen in cholesteatoma compared to retroauricular skin. We speculate that the reduced expression of CRT and the persistent inflammatory response play important roles in the epithelial proliferation of cholesteatoma.
Collapse
Affiliation(s)
- Ning-Chia Chang
- Department of Otolaryngology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Jen Wu
- Department of Biological Technology, Meiho University, Pingtung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Ling-Feng Wang
- Department of Otolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Leong-Perng Chan
- Department of Otolaryngology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Tzu Chen Ms
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Meng Tsai
- Department of Public Health, School of Medicine, College of Medicine, Kaohsiung, Medical University, Kaohsiung, Taiwan
| | - Chen-Yu Chien
- Department of Otolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuen-Yao Ho
- Department of Otolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Abdelghani M, Hammami H, Zidi W, Amouri H, Othmen HBH, Farrah A, Menif S. Hematological relevance of JAK2 V617F and calreticulin mutations in Tunisian patients with essential thrombocythemia. J Clin Lab Anal 2022; 36:e24522. [PMID: 35754115 PMCID: PMC9396186 DOI: 10.1002/jcla.24522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/14/2022] Open
Abstract
Background The genetic investigation of essential thrombocythemia(ET) has highlighted the presence of driver mutations in ET. Janus kinase JAK2V617F and calreticulin(CALR) mutations are the most frequent driver mutations and have significantly improved the molecular diagnosis of ET. The impact of genetic heterogeneity on clinical features has not been fully elucidated. This is the first study which aimed to determine the frequency of JAK2V617F and CALR exon9 mutations in Tunisian ET patients and to establish the correlation between hematological characteristics and mutational status. Methods This study included Tunisian patients suspected with ET and was conducted between September 2017 and March 2021. Genomic DNA of patients was isolated from peripheral blood samples. JAK2V617F was detected by AS‐PCR and CALR mutations were detected by PCR/direct sequencing. Clinical and hematological characteristics were also analyzed. Results Two hundred and fifty ET patients were enrolled in this study. JAK2V617F mutation was found in 166/250 (66.4%) of patients, whereas CALR mutations were detected in 27/84 (32.1%) patients without JAK2V617F. Compared with JAK2V617F‐positive patients, those with CALR mutations showed lower hemoglobin level and lower leucocytes count (p = 0.007 and p = 0.004,respectively). CALR type 2 was the most frequent mutation of CALR detected in 55.55% of CALR mutated. Six of seven patients with thrombotic events harbored JAK2V617F mutation. Conclusion The prevalence of driver mutations JAK2V617F or CALR mutations was 77.2% in Tunisian ET patients. Moreover, patients with JAK2 V617F mutation had a higher risk of thrombosis. The mutational status is necessary to improve the diagnosis and contribute to the therapeutic decisions.
Collapse
Affiliation(s)
- Maroua Abdelghani
- LR16IPT07, Molecular and Cellular Hematology Laboratory, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Faculty of Mathematics, Physics and Natural Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Haifa Hammami
- LR16IPT07, Molecular and Cellular Hematology Laboratory, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Faculty of Mathematics, Physics and Natural Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wiem Zidi
- Laboratory of Biochemistry, Rabta Hospital, Tunis, Tunisia
| | - Hassiba Amouri
- LR16IPT07, Molecular and Cellular Hematology Laboratory, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hind Ben Hadj Othmen
- LR16IPT07, Molecular and Cellular Hematology Laboratory, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ahlem Farrah
- LR16IPT07, Molecular and Cellular Hematology Laboratory, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Samia Menif
- LR16IPT07, Molecular and Cellular Hematology Laboratory, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
13
|
Immunoreactivity of Brugia malayi Calreticulin and Its Domains with Sera of Different Categories of Bancroftian Filarial Patients. Acta Parasitol 2022; 67:784-793. [PMID: 35083711 DOI: 10.1007/s11686-021-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/29/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE We identified calreticulin in human filaria Brugia malayi (BmCRT) that shares 97% homology with Wuchereria bancrofti calreticulin (WbCRT), but only 56% with human calreticulin. We found that BmCRT binds C1q and prevents complement-mediated parasite death; immunization with BmCRT leads to parasite death in a rodent model of the infection. BmCRT could, therefore, be a potential vaccine candidate. In the present study, we determined the levels of BmCRT-reactive IgG and its isotype in bancroftian filarial subjects. METHODS Recombinant BmCRT (rBmCRT) was prepared, and the sera of endemic normal subjects (EN), microfilaraemics (Mf+) and chronic amicrofilaraemics (ChMf-) from a bancroftian filaria-endemic area and normal subjects from filaria-non-endemic area (NEN) were probed for IgG and its isotypes reacting with rBmCRT and its domains rN, rP and rC. RESULTS rBmCRT and its rN domain-reactive IgG levels were high in EN and Mf+ groups; rC domain and rP domain showed moderate and very little reactivity, respectively. NEN sera were non-reactive. Moderate levels of rBmCRT-reactive IgG1, IgG3 and IgG4 in EN and Mf+ groups and low levels of IgG2 in Mf+ were found; IgG1 and IgG3 reactivity was found for rBmCRT and its rN domain only, while IgG4 reactivity was moderate for rN domain and low for rP and rC domains. While IgG reactivity was seen in all the endemic subjects, IgG isotype reactivity was found mostly in EN and Mf+ subjects. CONCLUSIONS Moderate levels of rBmCRT (and its rN domain)-reactive IgG and its isotypes are present in bancroftian subjects. Preponderance of IgG1 and IgG3 isotypes which bind and activate complement has relevance to vaccine potential of BmCRT.
Collapse
|
14
|
Tuschl K, White RJ, Trivedi C, Valdivia LE, Niklaus S, Bianco IH, Dadswell C, González-Méndez R, Sealy IM, Neuhauss SCF, Houart C, Rihel J, Wilson SW, Busch-Nentwich EM. Loss of slc39a14 causes simultaneous manganese hypersensitivity and deficiency in zebrafish. Dis Model Mech 2022; 15:dmm044594. [PMID: 35514229 PMCID: PMC9227717 DOI: 10.1242/dmm.044594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
Manganese neurotoxicity is a hallmark of hypermanganesemia with dystonia 2, an inherited manganese transporter defect caused by mutations in SLC39A14. To identify novel potential targets of manganese neurotoxicity, we performed transcriptome analysis of slc39a14-/- mutant zebrafish that were exposed to MnCl2. Differentially expressed genes mapped to the central nervous system and eye, and pathway analysis suggested that Ca2+ dyshomeostasis and activation of the unfolded protein response are key features of manganese neurotoxicity. Consistent with this interpretation, MnCl2 exposure led to decreased whole-animal Ca2+ levels, locomotor defects and changes in neuronal activity within the telencephalon and optic tectum. In accordance with reduced tectal activity, slc39a14-/- zebrafish showed changes in visual phototransduction gene expression, absence of visual background adaptation and a diminished optokinetic reflex. Finally, numerous differentially expressed genes in mutant larvae normalised upon MnCl2 treatment indicating that, in addition to neurotoxicity, manganese deficiency is present either subcellularly or in specific cells or tissues. Overall, we assembled a comprehensive set of genes that mediate manganese-systemic responses and found a highly correlated and modulated network associated with Ca2+ dyshomeostasis and cellular stress. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Karin Tuschl
- UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, Kings College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Richard J. White
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Chintan Trivedi
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Leonardo E. Valdivia
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile
| | - Stephanie Niklaus
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Isaac H. Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Chris Dadswell
- School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | | | - Ian M. Sealy
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Stephan C. F. Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Corinne Houart
- Department of Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, Kings College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elisabeth M. Busch-Nentwich
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
15
|
Papini N, Giallanza C, Brioschi L, Ranieri FR, Giussani P, Mauri L, Ciampa MG, Viani P, Tringali C. Galactocerebrosidase deficiency induces an increase in lactosylceramide content: A new hallmark of Krabbe disease? Int J Biochem Cell Biol 2022; 145:106184. [PMID: 35217188 DOI: 10.1016/j.biocel.2022.106184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 12/11/2022]
Abstract
Galactocerebrosidase (GALC) hydrolyses galactose residues from various substrates, including galactosylceramide, psychosine (galactosylsphingosine), and lactosylceramide. Its severe deficiency has been associated with the accumulation of psychosine, a toxic molecule with detergent-like features, which alters membrane structures and signalling pathways, inducing the death of oligodendrocytes and a sequence of events in the nervous system that explain the appearance of many clinical signs typical of Krabbe disease. Nevertheless, new evidence suggests the existence of other possible links among GALC action, myelination, and myelin stability, apart from psychosine release. In this study, we demonstrated that lactosylceramide metabolism is impaired in fibroblasts isolated from patients with Krabbe disease in the absence of psychosine accumulation. This event is responsible for the aberrant and constitutive activation of the AKT/prolin-rich AKT substrate of 40 kDa (PRAS40) signalling axis, inducing B cell lymphoma 2 (BCL2) overexpression and glycogen synthase kinase 3 beta (GSK-3β) inhibition. In addition, nuclear factor E2-related factor 2 (NRF2) showed increased nuclear translocation. Due to the relevance of these molecular alterations in neurodegeneration, lactosylceramide increase should be evaluated as a novel marker of Krabbe disease, and because of its significant connections with signalling pathways.
Collapse
Affiliation(s)
- Nadia Papini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Chiara Giallanza
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Loredana Brioschi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Francesca Romana Ranieri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Via Fratelli Cervi, 93, 20090 Segrate, MI, Italy.
| |
Collapse
|
16
|
Bergmann AC, Kyllesbech C, Slibinskas R, Ciplys E, Højrup P, Trier NH, Houen G. Epitope Mapping of Monoclonal Antibodies to Calreticulin Reveals That Charged Amino Acids Are Essential for Antibody Binding. Antibodies (Basel) 2021; 10:antib10030031. [PMID: 34449535 PMCID: PMC8395503 DOI: 10.3390/antib10030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 02/01/2023] Open
Abstract
Calreticulin is a chaperone protein, which is associated with myeloproliferative diseases. In this study, we used resin-bound peptides to characterize two monoclonal antibodies (mAbs) directed to calreticulin, mAb FMC 75 and mAb 16, which both have significantly contributed to understanding the biological function of calreticulin. The antigenicity of the resin-bound peptides was determined by modified enzyme-linked immunosorbent assay. Specific binding was determined to an 8-mer epitope located in the N-terminal (amino acids 34–41) and to a 12-mer peptide located in the C-terminal (amino acids 362–373). Using truncated peptides, the epitopes were identified as TSRWIESK and DEEQRLKEEED for mAb FMC 75 and mAb 16, respectively, where, especially the charged amino acids, were found to have a central role for a stable binding. Further studies indicated that the epitope of mAb FMC 75 is assessable in the oligomeric structure of calreticulin, making this epitope a potential therapeutic target.
Collapse
Affiliation(s)
| | - Cecilie Kyllesbech
- Department of Neurology, Rigshospitalet Glostrup, 2600 Glostrup, Denmark;
| | - Rimantas Slibinskas
- Institute of Biotechnology, University of Vilnius, 01513 Vilnius, Lithuania; (R.S.); (E.C.)
| | - Evaldas Ciplys
- Institute of Biotechnology, University of Vilnius, 01513 Vilnius, Lithuania; (R.S.); (E.C.)
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, 2600 Glostrup, Denmark;
- Correspondence: (N.H.T.); (G.H.)
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, 2600 Glostrup, Denmark;
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
- Correspondence: (N.H.T.); (G.H.)
| |
Collapse
|
17
|
Madec AM, Perrier J, Panthu B, Dingreville F. Role of mitochondria-associated endoplasmic reticulum membrane (MAMs) interactions and calcium exchange in the development of type 2 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:169-202. [PMID: 34392929 DOI: 10.1016/bs.ircmb.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glucotoxicity-induced β-cell dysfunction in type 2 diabetes is associated with alterations of mitochondria and the endoplasmic reticulum (ER). Mitochondria and ER form a network in cells that controls cell function and fate. Mitochondria of the pancreatic β cell play a central role in the secretion of insulin in response to glucose through their ability to produce ATP. Both organelles interact at contact sites, defined as mitochondria-associated membranes (MAMs), which were recently implicated in the regulation of glucose homeostasis. Here, we review MAM functions in the cell and we focus on the crosstalk between the ER and Mitochondria in the context of T2D, highlighting the pivotal role played by MAMs especially in β cells through inter-organelle calcium exchange and glucotoxicity-associated β cell dysfunction.
Collapse
Affiliation(s)
| | - Johan Perrier
- CarMeN Laboratory, INSERM U1060, INRA U1397, Lyon, France
| | | | | |
Collapse
|
18
|
Nguyen DT, Le TM, Hattori T, Takarada-Iemata M, Ishii H, Roboon J, Tamatani T, Kannon T, Hosomichi K, Tajima A, Taniuchi S, Miyake M, Oyadomari S, Tanaka T, Kato N, Saito S, Mori K, Hori O. The ATF6β-calreticulin axis promotes neuronal survival under endoplasmic reticulum stress and excitotoxicity. Sci Rep 2021; 11:13086. [PMID: 34158584 PMCID: PMC8219835 DOI: 10.1038/s41598-021-92529-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
While ATF6α plays a central role in the endoplasmic reticulum (ER) stress response, the function of its paralogue ATF6β remains elusive, especially in the central nervous system (CNS). Here, we demonstrate that ATF6β is highly expressed in the hippocampus of the brain, and specifically regulates the expression of calreticulin (CRT), a molecular chaperone in the ER with a high Ca2+-binding capacity. CRT expression was reduced to ~ 50% in the CNS of Atf6b−/− mice under both normal and ER stress conditions. Analysis using cultured hippocampal neurons revealed that ATF6β deficiency reduced Ca2+ stores in the ER and enhanced ER stress-induced death. The higher levels of death in Atf6b−/− neurons were recovered by ATF6β and CRT overexpressions, or by treatment with Ca2+-modulating reagents such as BAPTA-AM and 2-APB, and with an ER stress inhibitor salubrinal. In vivo, kainate-induced neuronal death was enhanced in the hippocampi of Atf6b−/− and Calr+/− mice, and restored by administration of 2-APB and salubrinal. These results suggest that the ATF6β-CRT axis promotes neuronal survival under ER stress and excitotoxity by improving intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Dinh Thi Nguyen
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Thuong Manh Le
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan.,Department of Human Anatomy, Hanoi Medical University, Hanoi, Vietnam
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shusuke Taniuchi
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masato Miyake
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Tanaka
- Department of Anatomy II, Kanazawa Medical University, Kahoku, Japan
| | - Nobuo Kato
- Department of Physiology I, Kanazawa Medical University, Kahoku, Japan
| | - Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan.
| |
Collapse
|
19
|
Reprogramming of microRNA expression via E2F1 downregulation promotes Salmonella infection both in infected and bystander cells. Nat Commun 2021; 12:3392. [PMID: 34099666 PMCID: PMC8184997 DOI: 10.1038/s41467-021-23593-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cells infected with pathogens can contribute to clearing infections by releasing signals that instruct neighbouring cells to mount a pro-inflammatory cytokine response, or by other mechanisms that reduce bystander cells’ susceptibility to infection. Here, we show the opposite effect: epithelial cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells. We find that the endoplasmic reticulum stress response is activated in both infected and bystander cells, and this leads to activation of JNK pathway, downregulation of transcription factor E2F1, and consequent reprogramming of microRNA expression in a time-dependent manner. These changes are not elicited by infection with other bacterial pathogens, such as Shigella flexneri or Listeria monocytogenes. Remarkably, the protein HMGB1 present in the secretome of Salmonella-infected cells is responsible for the activation of the IRE1 branch of the endoplasmic reticulum stress response in non-infected, neighbouring cells. Furthermore, E2F1 downregulation and the associated microRNA alterations promote Salmonella replication within infected cells and prime bystander cells for more efficient infection. Cells infected with pathogens can release signals that instruct neighbouring cells to mount an immune response or that reduce these cells’ susceptibility to infection. Here, Aguilar et al. show the opposite effect: cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells by activating their ER-stress response.
Collapse
|
20
|
Extracellularly Released Calreticulin Induced by Endoplasmic Reticulum Stress Impairs Syncytialization of Cytotrophoblast Model BeWo Cells. Cells 2021; 10:cells10061305. [PMID: 34073978 PMCID: PMC8225044 DOI: 10.3390/cells10061305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The pregnancy-specific syndrome preeclampsia is a major cause of maternal mortality throughout the world. The initial insult resulting in the development of preeclampsia is inadequate trophoblast invasion, which may lead to reduced maternal perfusion of the placenta and placental dysfunction, such as insufficient trophoblast syncytialization. Endoplasmic reticulum (ER) stress has been implicated in the pathology of preeclampsia and serves as the major risk factor. Our previous studies suggested critical roles of calreticulin (CRT), which is an ER-resident stress response protein, in extravillous trophoblast invasion and cytotrophoblast syncytialization. Here, we studied the mechanism by which ER stress exposes the placenta to the risk of preeclampsia. We found that CRT was upregulated in the serum samples, but not in the placental specimens, from preeclamptic women. By using BeWo cells, an established model of cytotrophoblasts that syncytialize in the presence of forskolin, we demonstrated that thapsigargin-induced ER stress caused extracellular release of CRT from BeWo cells and that the extracellular CRT suppressed forskolin-induced release of β-human chorionic gonadotropin and altered subcellular localization of E-cadherin, which is a key adhesion molecule associated with syncytialization. Our results together provide evidence that induction of ER stress leads to extracellular CRT release, which may contribute to placental dysfunction by suppressing cytotrophoblast syncytialization.
Collapse
|
21
|
Lamberti MJ, Nigro A, Casolaro V, Rumie Vittar NB, Dal Col J. Damage-Associated Molecular Patterns Modulation by microRNA: Relevance on Immunogenic Cell Death and Cancer Treatment Outcome. Cancers (Basel) 2021; 13:cancers13112566. [PMID: 34073766 PMCID: PMC8197279 DOI: 10.3390/cancers13112566] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Inside the cell, damage-associated molecular pattern molecules (DAMPs) play several physiological functions, but when they are released or translocated to the extracellular space, they gain additional immunogenic roles. Thus, DAMPs are considered key hallmarks of immunogenic cell death (ICD) in cancer, a functionally unique regulated form of stress-mediated cell death that activates the immune system response against tumor cells. Several epigenetic modulators of DAMPs have been reported. In this review, we aimed to provide an overview of the effects of microRNAs (miRNAs) on the expression of DAMPs and the putative link between miRNA, DAMPs, and cell death, focused on ICD. Overall, we propose that miRNAs, by targeting DAMPs, play critical roles in the regulation of both cell death and immune-associated mechanisms in cancer, while evidence of their potential involvement in ICD is limited. Finally, we discuss emerging data regarding the impact of miRNAs’ modulation on cancer treatment outcome. Abstract Immunogenic cell death (ICD) in cancer is a functionally unique regulated form of stress-mediated cell death that activates both the innate and adaptive immune response against tumor cells. ICD makes dying cancer cells immunogenic by improving both antigenicity and adjuvanticity. The latter relies on the spatiotemporally coordinated release or exposure of danger signals (DAMPs) that drive robust antigen-presenting cell activation. The expression of DAMPs is often constitutive in tumor cells, but it is the initiating stressor, called ICD-inducer, which finally triggers the intracellular response that determines the kinetics and intensity of their release. However, the contribution of cell-autonomous features, such as the epigenetic background, to the development of ICD has not been addressed in sufficient depth. In this context, it has been revealed that several microRNAs (miRNAs), besides acting as tumor promoters or suppressors, can control the ICD-associated exposure of some DAMPs and their basal expression in cancer. Here, we provide a general overview of the dysregulation of cancer-associated miRNAs whose targets are DAMPs, through which new molecular mediators that underlie the immunogenicity of ICD were identified. The current status of miRNA-targeted therapeutics combined with ICD inducers is discussed. A solid comprehension of these processes will provide a framework to evaluate miRNA targets for cancer immunotherapy.
Collapse
Affiliation(s)
- María Julia Lamberti
- INBIAS, CONICET-UNRC, Río Cuarto, Córdoba 5800, Argentina;
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Baronissi, 84081 Salerno, Italy; (A.N.); (V.C.)
- Correspondence: (M.J.L.); (J.D.C.)
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Baronissi, 84081 Salerno, Italy; (A.N.); (V.C.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Baronissi, 84081 Salerno, Italy; (A.N.); (V.C.)
| | | | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Baronissi, 84081 Salerno, Italy; (A.N.); (V.C.)
- Correspondence: (M.J.L.); (J.D.C.)
| |
Collapse
|
22
|
Ali EA, Elmalik H, Omar NE, Yassin MA. Invasive ductal breast carcinoma preceded by CALR-positive essential thrombocythemia. Clin Case Rep 2021; 9:1732-1736. [PMID: 33768925 PMCID: PMC7981762 DOI: 10.1002/ccr3.3892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/01/2020] [Accepted: 01/18/2021] [Indexed: 11/07/2022] Open
Abstract
Persistent thrombocytosis in patients with cancer needs workup because it can be linked to essential thrombocytosis. The management should be individualized to start treatment for low-risk essential thrombocytosis due to the combined risk of thrombosis.
Collapse
Affiliation(s)
- Elrazi A. Ali
- Internal Medicine DepartmentHamad Medical CorporationDohaQatar
| | - Hind Elmalik
- Medical Oncology and Hematology DepartmentHamad Medical CorporationDohaQatar
| | - Nabil E. Omar
- Medical Oncology and Hematology DepartmentHamad Medical CorporationDohaQatar
- Pharmacy DepartmentNational Center for Cancer Care and ResearchHamad Medical CorporationDohaQatar
| | - Mohamed A. Yassin
- Medical Oncology and Hematology DepartmentHamad Medical CorporationDohaQatar
| |
Collapse
|
23
|
Guijarro-Hernández A, Vizmanos JL. A Broad Overview of Signaling in Ph-Negative Classic Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13050984. [PMID: 33652860 PMCID: PMC7956519 DOI: 10.3390/cancers13050984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary There is growing evidence that Ph-negative myeloproliferative neoplasms are disorders in which multiple signaling pathways are significantly disturbed. The heterogeneous phenotypes observed among patients have highlighted the importance of having a comprehensive knowledge of the molecular mechanisms behind these diseases. This review aims to show a broad overview of the signaling involved in myeloproliferative neoplasms (MPNs) and other processes that can modify them, which could be helpful to better understand these diseases and develop more effective targeted treatments. Abstract Ph-negative myeloproliferative neoplasms (polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF)) are infrequent blood cancers characterized by signaling aberrations. Shortly after the discovery of the somatic mutations in JAK2, MPL, and CALR that cause these diseases, researchers extensively studied the aberrant functions of their mutant products. In all three cases, the main pathogenic mechanism appears to be the constitutive activation of JAK2/STAT signaling and JAK2-related pathways (MAPK/ERK, PI3K/AKT). However, some other non-canonical aberrant mechanisms derived from mutant JAK2 and CALR have also been described. Moreover, additional somatic mutations have been identified in other genes that affect epigenetic regulation, tumor suppression, transcription regulation, splicing and other signaling pathways, leading to the modification of some disease features and adding a layer of complexity to their molecular pathogenesis. All of these factors have highlighted the wide variety of cellular processes and pathways involved in the pathogenesis of MPNs. This review presents an overview of the complex signaling behind these diseases which could explain, at least in part, their phenotypic heterogeneity.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Correspondence:
| |
Collapse
|
24
|
Zheng Y, Li C, Xin P, Peng Q, Zhang W, Liu S, Zhu X. Calreticulin increases growth and progression of natural killer/T-cell lymphoma. Aging (Albany NY) 2020; 12:23822-23835. [PMID: 33221760 PMCID: PMC7762466 DOI: 10.18632/aging.104030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/25/2020] [Indexed: 04/11/2023]
Abstract
In this study, we investigated the role of calreticulin (CALR) in the pathogenesis of natural killer/T-cell lymphoma (NKTCL). CALR expression was significantly higher in the NKTCL tissues than normal control tissues in the GSE80632 dataset. High CALR expression correlated with poorer overall survival of NKTCL patients (P = 0.0248). CALR mRNA and protein levels were significantly higher in NKTCL cell lines (NK92, SNK6, and SNT8) than normal NK cells. CALR-silenced SNK6 cells generated significantly smaller xenograft tumors in immunodeficient NCG mice than control SNK6 cells. CALR-knockdown NKTCL cells showed significantly less in vitro proliferation and Transwell migration than the controls. CALR knockdown inhibited G1-to-S phase cell cycle progression by increasing the levels of p27 cell cycle inhibitor and reducing the levels of cyclin E2 and cyclin-dependent kinase 2 (CDK2). CALR knockdown inhibited epithelial-to-mesenchymal transition (EMT) by decreasing the levels of β-catenin and TCF/ZEB1 and upregulating E-cadherin. These data demonstrate that CALR regulates the growth and progression of NKTCL cells by modulating G1-to-S cell cycle progression and EMT.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Chuntuan Li
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Pengliang Xin
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Qunyi Peng
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Weiyu Zhang
- Department of Pathology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Shengquan Liu
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Xiongpeng Zhu
- Department of Hematology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
25
|
Intermittent fasting from dawn to sunset for four consecutive weeks induces anticancer serum proteome response and improves metabolic syndrome. Sci Rep 2020; 10:18341. [PMID: 33110154 PMCID: PMC7592042 DOI: 10.1038/s41598-020-73767-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome is characterized by central obesity, insulin resistance, elevated blood pressure, and dyslipidemia. Metabolic syndrome is a significant risk factor for several common cancers (e.g., liver, colorectal, breast, pancreas). Pharmacologic treatments used for the components of the metabolic syndrome appear to be insufficient to control cancer development in subjects with metabolic syndrome. Murine models showed that cancer has the slowest progression when there is no food consumption during the daily activity phase. Intermittent fasting from dawn to sunset is a form of fasting practiced during human activity hours. To test the anticancer effect of intermittent fasting from dawn to sunset in metabolic syndrome, we conducted a pilot study in 14 subjects with metabolic syndrome who fasted (no eating or drinking) from dawn to sunset for more than 14 h daily for four consecutive weeks. We collected serum samples before 4-week intermittent fasting, at the end of 4th week during 4-week intermittent fasting and 1 week after 4-week intermittent fasting. We performed serum proteomic analysis using nano ultra-high performance liquid chromatography-tandem mass spectrometry. We found a significant fold increase in the levels of several tumor suppressor and DNA repair gene protein products (GP)s at the end of 4th week during 4-week intermittent fasting (CALU, INTS6, KIT, CROCC, PIGR), and 1 week after 4-week intermittent fasting (CALU, CALR, IGFBP4, SEMA4B) compared with the levels before 4-week intermittent fasting. We also found a significant reduction in the levels of tumor promoter GPs at the end of 4th week during 4-week intermittent fasting (POLK, CD109, CAMP, NIFK, SRGN), and 1 week after 4-week intermittent fasting (CAMP, PLAC1) compared with the levels before 4-week intermittent fasting. Fasting from dawn to sunset for four weeks also induced an anti-diabetes proteome response by upregulating the key regulatory proteins of insulin signaling at the end of 4th week during 4-week intermittent fasting (VPS8, POLRMT, IGFBP-5) and 1 week after 4-week intermittent fasting (PRKCSH), and an anti-aging proteome response by upregulating H2B histone proteins 1 week after 4-week intermittent fasting. Subjects had a significant reduction in body mass index, waist circumference, and improvement in blood pressure that co-occurred with the anticancer, anti-diabetes, and anti-aging serum proteome response. These findings suggest that intermittent fasting from dawn to sunset actively modulates the respective genes and can be an adjunct treatment in metabolic syndrome. Further studies are needed to test the intermittent fasting from dawn to sunset in the prevention and treatment of metabolic syndrome-induced cancers.
Collapse
|
26
|
Synergic Crosstalk between Inflammation, Oxidative Stress, and Genomic Alterations in BCR-ABL-Negative Myeloproliferative Neoplasm. Antioxidants (Basel) 2020; 9:antiox9111037. [PMID: 33114087 PMCID: PMC7690801 DOI: 10.3390/antiox9111037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR-ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.
Collapse
|
27
|
Li J, Snyder EY, Tang FHF, Pasqualini R, Arap W, Sidman RL. Nna1 gene deficiency triggers Purkinje neuron death by tubulin hyperglutamylation and ER dysfunction. JCI Insight 2020; 5:136078. [PMID: 33004692 PMCID: PMC7566705 DOI: 10.1172/jci.insight.136078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Posttranslational glutamylation/deglutamylation balance in tubulins influences dendritic maturation and neuronal survival of cerebellar Purkinje neurons (PNs). PNs and some additional neuronal types degenerate in several spontaneous, independently occurring Purkinje cell degeneration (pcd) mice featuring mutant neuronal nuclear protein induced by axotomy (Nna1), a deglutamylase gene. This defective deglutamylase allows glutamylases to form hyperglutamylated tubulins. In pcd, all PNs die during postnatal “adolescence.” Neurons in some additional brain regions also die, mostly later than PNs. We show in laser capture microdissected single PNs, in cerebellar granule cell neuronal clusters, and in dissected hippocampus and substantia nigra that deglutamase mRNA and protein were virtually absent before pcd PNs degenerated, whereas glutaminase mRNA and protein remained normal. Hyperglutamylated microtubules and dimeric tubulins accumulated in pcd PNs and were involved in pcd PN death by glutamylase/deglutamylase imbalance. Importantly, treatment with a microtubule depolymerizer corrected the glutamylation/deglutamylation ratio, increasing PN survival. Further, before onset of neuronal death, pcd PNs displayed prominent basal polylisosomal masses rich in ER. We propose a “seesaw” metamorphic model summarizing mutant Nna1-induced tubulin hyperglutamylation, the pcd’s PN phenotype, and report that the neuronal disorder involved ER stress, unfolded protein response, and protein synthesis inhibition preceding PN death by apoptosis/necroptosis. Purkinje cell degeneration is due to ER stress, unfolded protein response, and protein synthesis inhibition preceding Purkinje neuron death by apoptosis/necroptosis.
Collapse
Affiliation(s)
- Jianxue Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fenny HF Tang
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey and Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Richard L Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Homaei Hadad E, Pezeshki SMS, Shahrabi S, Saki Malehi A, Saki N. Co-existence of mutations in myeloproliferative neoplasms and their clinical significance: a prognostic approach. Expert Rev Hematol 2020; 13:1289-1301. [PMID: 32886563 DOI: 10.1080/17474086.2020.1819232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Myeloproliferative neoplasms (MPNs) are a group of clonal hematopoietic stem cell disorders that may occur after one or more mutations in hematopoietic progenitor cells. In this study, we will review the co-existence of mutations (especially dual mutations) in MPNs and its effect on the prognosis of patients. METHODS To find relevant published papers, we systematically searched six major international indexing databases, namely PubMed/Medline, EmBase, Cochrane central, ISI web of science, and Scopus from Feb. 2000 until Jan. 2020. We included the following keywords in the analyzes: Myeloproliferative Disorders, Mutation, Co-existence of Mutations, Acute myeloid leukemia. RESULTS Co-existence of several mutations in MPNs is mainly associated with a poor prognosis compared with the unimutated MPN disorders. There are several effective factors such as sequence of mutations, incidence of mutations in one cell or different cells, mutation, and MPN type. CONCLUSION AND EXPERT COMMENTARY It seems that monitoring the status of mutations in MPNs and recognizing the co-existence of mutations (especially dual mutations) in order to determine prognosis and possibility of progression to acute form of leukemia can lead to the prediction of prognosis in MPN patients as well as establishment of better and more reliable therapeutic strategies for patients.
Collapse
Affiliation(s)
- Elham Homaei Hadad
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran.,Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences , Semnan, Iran
| | - Amal Saki Malehi
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| |
Collapse
|
29
|
Shergalis A, Xue D, Gharbia FZ, Driks H, Shrestha B, Tanweer A, Cromer K, Ljungman M, Neamati N. Characterization of Aminobenzylphenols as Protein Disulfide Isomerase Inhibitors in Glioblastoma Cell Lines. J Med Chem 2020; 63:10263-10286. [PMID: 32830969 PMCID: PMC8103808 DOI: 10.1021/acs.jmedchem.0c00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Disulfide bond formation is a critical post-translational modification of newly synthesized polypeptides in the oxidizing environment of the endoplasmic reticulum and is mediated by protein disulfide isomerase (PDIA1). In this study, we report a series of α-aminobenzylphenol analogues as potent PDI inhibitors. The lead compound, AS15, is a covalent nanomolar inhibitor of PDI, and the combination of AS15 analogues with glutathione synthesis inhibitor buthionine sulfoximine (BSO) leads to synergistic cell growth inhibition. Using nascent RNA sequencing, we show that an AS15 analogue triggers the unfolded protein response in glioblastoma cells. A BODIPY-labeled analogue binds proteins including PDIA1, suggesting that the compounds are cell-permeable and reach the intended target. Taken together, these findings demonstrate an extensive biochemical characterization of a novel series of highly potent reactive small molecules that covalently bind to PDI.
Collapse
Affiliation(s)
- Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Xue
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fatma Z. Gharbia
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hannah Driks
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Binita Shrestha
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amina Tanweer
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kirin Cromer
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Gao Y, Chen B, Zhang X, Yang R, Hua Q, Li B. The anesthetic bupivacaine induces cardiotoxicity by targeting L-type voltage-dependent calcium channels. J Int Med Res 2020; 48:300060520942619. [PMID: 32812463 PMCID: PMC7441289 DOI: 10.1177/0300060520942619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective Bupivacaine is an amide local anesthetic with possible side effects that include an
irregular heart rate. However, the mechanism of bupivacaine-induced cardiotoxicity has
not been fully elucidated, thus we aimed to examine this mechanism. Methods We performed electrocardiogram recordings to detect action potential waveforms in
Sprague Dawley rats after application of bupivacaine, while calcium (Ca2+)
currents in neonatal rat ventricular cells were examined by patch clamp recording.
Western blot and quantitative real-time polymerase chain reaction assays were used to
detect the expression levels of targets of interest. Results In the present study, after application of bupivacaine, abnormal action potential
waveforms were detected in Sprague Dawley rats by electrocardiogram recordings, while
decreased Ca2+ currents were confirmed in neonatal rat ventricular cells by
patch clamp recording. These alterations may be attributed to a deficiency of
CaV1.3 (L-type) Ca2+ channels, which may be regulated by the
multifunctional protein calreticulin. Conclusions The present study identifies a possible role of the calreticulin–CaV1.3 axis
in bupivacaine-induced abnormal action potentials and Ca2+ currents, which
may lead to a better understanding anesthetic drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- YaNan Gao
- Anesthesiology Department, Daqing Longnan Hospital, Daqing, People's Republic of China
| | - Bo Chen
- ICU, Daqing Longnan Hospital, Daqing, People's Republic of China
| | - Xue Zhang
- ICU, Daqing Longnan Hospital, Daqing, People's Republic of China
| | - Rui Yang
- Cardiothoracic Surgery Department, Daqing Longnan Hospital, Daqing, People's Republic of China
| | - QingLi Hua
- Anesthesiology Department, Daqing Longnan Hospital, Daqing, People's Republic of China
| | - BaiDong Li
- Cardiothoracic Surgery Department, Daqing Longnan Hospital, Daqing, People's Republic of China
| |
Collapse
|
31
|
Luo Y, Guo Q, Zhang L, Zhuan Q, Meng L, Fu X, Hou Y. Dihydroartemisinin exposure impairs porcine ovarian granulosa cells by activating PERK-eIF2α-ATF4 through endoplasmic reticulum stress. Toxicol Appl Pharmacol 2020; 403:115159. [PMID: 32721431 DOI: 10.1016/j.taap.2020.115159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Dihydroartemisinin (DHA) is an artemisinin derivative commonly used in malaria therapy, and a growing number of studies have focused on the potent anticancer activity of DHA. However, the reproductive toxicity of anticancer drugs is a major concern for young female cancer patients. Previous studies have suggested that DHA can cause embryonic damage and affect oocyte maturation. Here, we explored the side effects of DHA exposure on ovarian somatic cells. We exposed porcine granulosa cells to 5 μM and 40 μM DHA for 24 h or 48 h in vitro. DHA inhibited granulosa cell viability in a dose-dependent manner and, in the 48 h treatment group, DHA enhanced the apoptotic rate. We observed that the levels of intracellular calcium, mitochondrial calcium, and ATP concentration were elevated with DHA treatment. In granulosa cells exposed to DHA, the mRNA levels of endoplasmic reticulum stress-related genes GRP78 and ATF4 were increased. Furthermore, analysis of the unfolded protein response signaling pathway showed that the protein levels of P-PERK, P-eIF2α, and ATF4 were upregulated by DHA exposure. These results demonstrate that in granulosa cells, DHA exposure induces endoplasmic reticulum stress that then activates the PERK/eIF2α/ATF4 signaling pathway, thus providing insight into the mechanism underlying DHA-induced reproductive toxicity, and giving reference to DHA use in females.
Collapse
Affiliation(s)
- Yan Luo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Guo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Luyao Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lin Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
32
|
Ramírez-Toloza G, Aguilar-Guzmán L, Valck C, Ferreira VP, Ferreira A. The Interactions of Parasite Calreticulin With Initial Complement Components: Consequences in Immunity and Virulence. Front Immunol 2020; 11:1561. [PMID: 32793217 PMCID: PMC7391170 DOI: 10.3389/fimmu.2020.01561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
Because of its capacity to increase a physiologic inflammatory response, to stimulate phagocytosis, to promote cell lysis and to enhance pathogen immunogenicity, the complement system is a crucial component of both the innate and adaptive immune responses. However, many infectious agents resist the activation of this system by expressing or secreting proteins with a role as complement regulatory, mainly inhibitory, proteins. Trypanosoma cruzi, the causal agent of Chagas disease, a reemerging microbial ailment, possesses several virulence factors with capacity to inhibit complement at different stages of activation. T. cruzi calreticulin (TcCalr) is a highly-conserved, endoplasmic reticulum-resident chaperone that the parasite translocates to the extracellular environment, where it exerts a variety of functions. Among these functions, TcCalr binds C1, MBL and ficolins, thus inhibiting the classical and lectin pathways of complement at their earliest stages of activation. Moreover, the TcCalr/C1 interaction also mediates infectivity by mimicking a strategy used by apoptotic cells for their removal. More recently, it has been determined that these Calr strategies are also used by a variety of other parasites. In addition, as reviewed elsewhere, TcCalr inhibits angiogenesis, promotes wound healing and reduces tumor growth. Complement C1 is also involved in some of these properties. Knowledge on the role of virulence factors, such as TcCalr, and their interactions with complement components in host-parasite interactions, may lead toward the description of new anti-parasite therapies and prophylaxis.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Lorena Aguilar-Guzmán
- Department of Pathology, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Carolina Valck
- Department of Immunology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Arturo Ferreira
- Department of Immunology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
33
|
Wang X, Liu X, Chen Y, Wang H, Zhang R, Zhang Q, Wei Y, Shi S, Li X. Calreticulin regulated intrinsic apoptosis through mitochondria-dependent and independent pathways mediated by ER stress in arsenite exposed HT-22 cells. CHEMOSPHERE 2020; 251:126466. [PMID: 32443253 DOI: 10.1016/j.chemosphere.2020.126466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a naturally occurring environmental toxicant. Chronic exposure to arsenic is linked with neurological damage. Although the mechanisms remain to be elucidated, it is currently believed that neural cell apoptosis is one of the underlying mechanisms of arsenic-induced neurotoxicity. Calreticulin (CRT) is a quality control chaperone located in the lumen of the endoplasmic reticulum (ER), which participates in many signaling pathways including apoptosis. However, the role of CRT in apoptosis is controversial. Whether CRT plays a role in arsenite-induced apoptosis and the relationship between CRT and ER stress-mediated apoptosis have not been mentioned before. In this study, we found that CRT expression as well as the cell apoptosis levels increased in a dose dependent manner upon arsenite exposure in HT-22 cells, a mouse hippocampal neural cell line. In addition, arsenite exposure resulted in the up-regulation of ER stress indicator GRP78 and ER stress-related proteins including p-PERK, ATF4, CHOP, calpain2 and cleaved caspases-12, accompanied by the down-regulation of Bcl-2 and up-regulation of Bax and cleaved caspase-3. Silence of CRT remarkably alleviated arsenite-induced apoptosis and reversed the expression of the proteins above. Our findings confirmed the role of CRT in the induction of apoptosis upon arsenite exposure and suggested that CRT mediated the intrinsic apoptotic cell death including both mitochondria-dependent (PERK/ATF4/CHOP/Bcl-2) and independent (calpain2/caspases-12) pathways initiated by ER stress, which we believed to be a previously undocumented property of arsenite-induced apoptosis.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xudan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yao Chen
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Huanhuan Wang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Ruo Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Qianhui Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yuting Wei
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Sainan Shi
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xin Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
34
|
Endoplasmic Reticulum Stress Regulates Scleral Remodeling in a Guinea Pig Model of Form-Deprivation Myopia. J Ophthalmol 2020; 2020:3264525. [PMID: 32587758 PMCID: PMC7303736 DOI: 10.1155/2020/3264525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose This study aimed to investigate the role of endoplasmic reticulum (ER) stress in scleral remodeling in a guinea pig model of form-deprivation myopia (FDM). Methods Guinea pigs were form deprived to induce myopia. ER ultrastructural changes in the sclera were examined by transmission electron microscopy (TEM). The protein levels of ER stress chaperones, including GRP78, CHOP, and calreticulin (CRT), were analyzed by western blotting at 24 hours, 1 week, and 4 weeks of FD. Scleral fibroblasts from guinea pigs were cultured and exposed to the ER stress inducer tunicamycin (TM) or the ER stress inhibitor 4-phenylbutyric acid (4-PBA). CRT was knocked down by lentivirus-mediated CRT shRNA transfection. The expression levels of GRP78, CHOP, TGF-β1, and COL1A1 were analyzed by qRT-PCR or western blotting. Results The sclera of FDM eyes exhibited swollen and distended ER at 4 weeks, as well as significantly increased protein expression of GRP78 and CRT at 1 week and 4 weeks, compared to the sclera of the control eyes. In vitro, TM induced ER stress in scleral fibroblasts, which was suppressed by 4-PBA. The mRNA expression of TGF-β1 and COL1A1 was upregulated after TM stimulation for 24 hours, but downregulated for 48 hours. Additionally, change of TGF-β1 and COL1A1 transcription induced by TM was suppressed by CRT knockdown. Conclusions ER stress was an important modulator which could influence the expression of the scleral collagen. CRT might be a new target for the intervention of the FDM scleral remodeling process.
Collapse
|
35
|
C. Diaconu C, Gurban P, Mambet C, Chivu-Economescu M, G. Necula L, Matei L, Dragu D, Nedeianu S, I. Neagu A, Tatic A, Cristodor D, Bleotu C. Programmed Cell Death Deregulation in BCR-ABL1-Negative Myeloproliferative Neoplasms. PROGRAMMED CELL DEATH 2020. [DOI: 10.5772/intechopen.86062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
|
36
|
Ye D, Zhu J, Zhao Q, Ma W, Xiao Y, Xu G, Zhang Z. LMP1 Up-regulates Calreticulin to Induce Epithelial-mesenchymal Transition via TGF-β/Smad3/NRP1 Pathway in Nasopharyngeal Carcinoma Cells. J Cancer 2020; 11:1257-1269. [PMID: 31956372 PMCID: PMC6959064 DOI: 10.7150/jca.37415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Latent membrane protein 1 (LMP1) is known as an oncogenic protein encoded by the EBV genome. The purpose of this study was to investigate the mechanism of LMP1-induced cell epithelial-mesenchymal transition (EMT). Methods: The NP69 cell line of nasopharyngeal epithelial cells with high expression of LMP1 was established to observe the effect of high expression of LMP1 on cell growth, proliferation, cycle, apoptosis, migration and invasion. We used proteomics to screen and identify differentially expressed proteins related to LMP1-mediated epithelial cell transformation. Then, we analyzed the expression and significance of differentially expressed calreticulin (CRT) in nasopharyngeal carcinoma (NPC), and observed the effect of CRT expression on EMT in CNE2 cells of NPC. Finally, the expression of neuropilin-1 (NRP1), which is a protein downstream of the EMT-related signaling pathway TGF-β (transforming growth factor β), was detected. Results: LMP1 promoted NP69 cells proliferation, inhibited apoptosis and induced EMT. We identified 22 differentially expressed proteins associated with LMP1-induced EMT. Among them, CRT expression level was significantly increased in NPC compared with adjacent tissues, and was interrelated with TNM staging and lymph node metastasis of NPC. After knockdown of CRT expression, the phenomenon of cell EMT was reduced and the ability of cell migration and invasion was weakened. CRT regulated NRP1 expression by affecting SMAD3 phosphorylation. Conclusion: LMP1 induced cell EMT via TGF-β/Smad3/NRP1 pathway, which promoted migration and invasion of NPC cells.
Collapse
Affiliation(s)
- Dongmei Ye
- Cancer Research Institute of Hengyang Medical College, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan Hengyang 421001, China
| | - Junhui Zhu
- Cancer Research Institute of Hengyang Medical College, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan Hengyang 421001, China
| | - Qiang Zhao
- Department of Pathology, The First Affiliated Hospital of University of South China, Hunan Hengyang 421001, Hunan Province China
| | - Wei Ma
- Department of Surgery, Innovative Practice Base for Postgraduate Training of Basic Medicine and Clinical Collaboration, University of South China and Yueyang Maternal and Child Health Hospital, Yueyang 414000, Hunan Province, China
| | - Yiyang Xiao
- Clinical Medicine of Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Gaosheng Xu
- Department of Surgery, Innovative Practice Base for Postgraduate Training of Basic Medicine and Clinical Collaboration, University of South China and Yueyang Maternal and Child Health Hospital, Yueyang 414000, Hunan Province, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hunan Hengyang 421001, China
| |
Collapse
|
37
|
Ocadlikova D, Lecciso M, Isidori A, Loscocco F, Visani G, Amadori S, Cavo M, Curti A. Chemotherapy-Induced Tumor Cell Death at the Crossroads Between Immunogenicity and Immunotolerance: Focus on Acute Myeloid Leukemia. Front Oncol 2019; 9:1004. [PMID: 31649875 PMCID: PMC6794495 DOI: 10.3389/fonc.2019.01004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/18/2019] [Indexed: 01/25/2023] Open
Abstract
In solid tumors and hematological malignancies, including acute myeloid leukemia, some chemotherapeutic agents, such as anthracyclines, have proven to activate an immune response via dendritic cell-based cross-priming of anti-tumor T lymphocytes. This process, known as immunogenic cell death, is characterized by a variety of tumor cell modifications, i.e., cell surface translocation of calreticulin, extracellular release of adenosine triphosphate and pro-inflammatory factors, such as high mobility group box 1 proteins. However, in addition to with immunogenic cell death, chemotherapy is known to induce inflammatory modifications within the tumor microenvironment, which may also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire tolerogenic features, such as the overexpression of indoleamine 2,3-dioxygensase 1, which may ultimately hamper anti-tumor T-cells via the induction of T regulatory cells. The aim of this review is to summarize the current knowledge about the mechanisms and effects by which chemotherapy results in both activation and suppression of anti-tumor immune response. Indeed, a better understanding of the whole process underlying chemotherapy-induced alterations of the immunological tumor microenvironment has important clinical implications to fully exploit the immunogenic potential of anti-leukemia agents and tune their application.
Collapse
Affiliation(s)
- Darina Ocadlikova
- Department of Hematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Hematology "L. and A. Seràgnoli", Bologna, Italy
| | - Mariangela Lecciso
- Department of Hematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Hematology "L. and A. Seràgnoli", Bologna, Italy
| | - Alessandro Isidori
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Federica Loscocco
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Sergio Amadori
- Department of Medicine, Institute of Hematology, University Hospital Tor Vergata, Rome, Italy
| | - Michele Cavo
- Department of Hematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Hematology "L. and A. Seràgnoli", Bologna, Italy
| | - Antonio Curti
- Department of Hematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Hematology "L. and A. Seràgnoli", Bologna, Italy
| |
Collapse
|
38
|
Role of Plasma Calreticulin in the Prediction of Severity in Septic Patients. DISEASE MARKERS 2019; 2019:8792640. [PMID: 31612071 PMCID: PMC6757249 DOI: 10.1155/2019/8792640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/29/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
Background Calreticulin has been identified to play a critical role in innate and adaptive immune responses. However, little is known about the role of calreticulin in sepsis with a characteristic of immune disorder. This study was aimed at investigating whether plasma calreticulin level increases in sepsis and its association with sepsis severity. Methods This retrospective analysis evaluated sepsis patients who were admitted to the intensive care unit (ICU). Healthy subjects were also included as controls. Plasma samples were collected from the patients within 48 h after ICU admission as well as the healthy subjects. Plasma calreticulin levels were measured via the enzyme-linked immunosorbent assay. Results In total, 127 sepsis patients and 40 healthy controls were included. Calreticulin was significantly increased in sepsis patients than in healthy controls. Furthermore, the level of plasma calreticulin was significantly higher in nonsurvivors than in survivors. Patients with calreticulin levels > 343.5 pg/ml showed lower cumulative survival than those with levels < 343.5 pg/ml. Conclusion Calreticulin level was positively correlated with the severity of sepsis. High calreticulin level indicated poor prognosis of sepsis patients.
Collapse
|
39
|
Salati S, Genovese E, Carretta C, Zini R, Bartalucci N, Prudente Z, Pennucci V, Ruberti S, Rossi C, Rontauroli S, Enzo E, Calabresi L, Balliu M, Mannarelli C, Bianchi E, Guglielmelli P, Tagliafico E, Vannucchi AM, Manfredini R. Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants. Sci Rep 2019; 9:10558. [PMID: 31332222 PMCID: PMC6646313 DOI: 10.1038/s41598-019-46843-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 07/03/2019] [Indexed: 12/26/2022] Open
Abstract
Somatic mutations of calreticulin (CALR) have been described in approximately 60–80% of JAK2 and MPL unmutated Essential Thrombocythemia and Primary Myelofibrosis patients. CALR is an endoplasmic reticulum (ER) chaperone responsible for proper protein folding and calcium retention. Recent data demonstrated that the TPO receptor (MPL) is essential for the development of CALR mutant-driven Myeloproliferative Neoplasms (MPNs). However, the precise mechanism of action of CALR mutants haven’t been fully unraveled. In this study, we showed that CALR mutants impair the ability to respond to the ER stress and reduce the activation of the pro-apoptotic pathway of the unfolded protein response (UPR). Moreover, our data demonstrated that CALR mutations induce increased sensitivity to oxidative stress, leading to increase oxidative DNA damage. We finally demonstrated that the downmodulation of OXR1 in CALR-mutated cells could be one of the molecular mechanisms responsible for the increased sensitivity to oxidative stress mediated by mutant CALR. Altogether, our data identify novel mechanisms collaborating with MPL activation in CALR-mediated cellular transformation. CALR mutants negatively impact on the capability of cells to respond to oxidative stress leading to genomic instability and on the ability to react to ER stress, causing resistance to UPR-induced apoptosis.
Collapse
Affiliation(s)
- Simona Salati
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Genovese
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Carretta
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Zini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Niccolò Bartalucci
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Zelia Prudente
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Pennucci
- Institute for Cell and Gene Therapy & Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany
| | - Samantha Ruberti
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Rossi
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Calabresi
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Manjola Balliu
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Carmela Mannarelli
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Elisa Bianchi
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Guglielmelli
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy.,Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro M Vannucchi
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
40
|
Kotian V, Sarmah D, Kaur H, Kesharwani R, Verma G, Mounica L, Veeresh P, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chem Neurosci 2019; 10:2629-2646. [PMID: 31017385 DOI: 10.1021/acschemneuro.9b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), a lectin-like ER chaperone, was initially known only for its housekeeping function, but today it is recognized for many versatile roles in different compartments of a cell. Apart from canonical roles in protein folding and calcium homeostasis, it performs a variety of noncanonical roles, mostly in CNS development. In the past, studies have linked Calreticulin with various other biological components which are detrimental in deciding the fate of neurons. Many neurological disorders that differ in their etiology are commonly associated with aberrant levels of Calreticulin, that lead to modulation of apoptosis and phagocytosis, and impact on transcriptional pathways, impairment in proteostatis, and calcium imbalances. Such multifaceted properties of Calreticulin are the reason why it has been implicated in vital roles of the nervous system in recent years. Hence, understanding its role in the physiology of neurons would help to unearth its involvement in the spectrum of neurological disorders. This Review aims toward exploring the interplay of Calreticulin in neurological disorders which would aid in targeting Calreticulin for developing novel neurotherapeutics.
Collapse
Affiliation(s)
- Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
41
|
Wu L, Wang T, He D, Li X, Jiang Y. EVI‑1 acts as an oncogene and positively regulates calreticulin in breast cancer. Mol Med Rep 2019; 19:1645-1653. [PMID: 30592274 PMCID: PMC6390023 DOI: 10.3892/mmr.2018.9796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/09/2018] [Indexed: 12/24/2022] Open
Abstract
Ecotropic viral integration site‑1 (EVI‑1) is an important transcription factor involved in oncogenesis. Aberrant EVI‑1 expression has been reported to be a characteristic of multiple types of malignancies; however, very little is known about how EVI‑1 regulates breast cancer. Current knowledge of how target genes mediate the biological function of EVI‑1 remains limited. In the present study, overexpression of EVI‑1 promoted cell proliferation, migration, and invasion, and inhibited apoptosis in breast cancer. By contrast, silencing of EVI‑1 inhibited cell proliferation, migration and invasion, and enhanced apoptosis in breast cancer. In addition, the results also revealed that the aberrant expression of EVI‑1 regulates genes associated with the apoptotic pathway in breast cancer. Furthermore, EVI‑1 was also likely to target the promoter region of calreticulin (CRT) in vitro. It was concluded that EVI‑1 can affect epithelial mesenchymal transition‑associated genes by regulating the expression of CRT in breast cancer. The results revealed that EVI‑1 may be a potential effective therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Lei Wu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tianyi Wang
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dongning He
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xiaoxi Li
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Youhong Jiang
- Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
42
|
Wang Z, Liu F, Ye S, Jiang P, Yu X, Xu J, Du X, Ma L, Cao H, Yuan C, Shen Y, Lin F, Zhang R, Li C. Plasma proteome profiling of high-altitude polycythemia using TMT-based quantitative proteomics approach. J Proteomics 2019; 194:60-69. [DOI: 10.1016/j.jprot.2018.12.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/03/2018] [Accepted: 12/30/2018] [Indexed: 01/09/2023]
|
43
|
Affiliation(s)
- Gunnar Houen
- Department of Autoimmunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
44
|
Pollak AJ, Liu C, Gudlur A, Mayfield JE, Dalton ND, Gu Y, Chen J, Heller Brown J, Hogan PG, Wiley SE, Peterson KL, Dixon JE. A secretory pathway kinase regulates sarcoplasmic reticulum Ca 2+ homeostasis and protects against heart failure. eLife 2018; 7:41378. [PMID: 30520731 PMCID: PMC6298778 DOI: 10.7554/elife.41378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
Ca2+ signaling is important for many cellular and physiological processes, including cardiac function. Although sarcoplasmic reticulum (SR) proteins involved in Ca2+ signaling have been shown to be phosphorylated, the biochemical and physiological roles of protein phosphorylation within the lumen of the SR remain essentially uncharacterized. Our laboratory recently identified an atypical protein kinase, Fam20C, which is uniquely localized to the secretory pathway lumen. Here, we show that Fam20C phosphorylates several SR proteins involved in Ca2+ signaling, including calsequestrin2 and Stim1, whose biochemical activities are dramatically regulated by Fam20C mediated phosphorylation. Notably, phosphorylation of Stim1 by Fam20C enhances Stim1 activation and store-operated Ca2+ entry. Physiologically, mice with Fam20c ablated in cardiomyocytes develop heart failure following either aging or induced pressure overload. We extended these observations to show that non-muscle cells lacking Fam20C display altered ER Ca2+ signaling. Overall, we show that Fam20C plays an overarching role in ER/SR Ca2+ homeostasis and cardiac pathophysiology.
Collapse
Affiliation(s)
- Adam J Pollak
- Department of Pharmacology, University of California, San Diego, San Diego, United States
| | - Canzhao Liu
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Aparna Gudlur
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, San Diego, United States
| | - Joshua E Mayfield
- Department of Pharmacology, University of California, San Diego, San Diego, United States
| | - Nancy D Dalton
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Yusu Gu
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ju Chen
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, San Diego, United States
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, San Diego, United States.,Program in Immunology, University of California, San Diego, San Diego, United States.,Moores Cancer Center, University of California, San Diego, San Diego, United States
| | - Sandra E Wiley
- Department of Pharmacology, University of California, San Diego, San Diego, United States
| | - Kirk L Peterson
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Jack E Dixon
- Department of Pharmacology, University of California, San Diego, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, United States
| |
Collapse
|
45
|
Comba A, Bonnet LV, Goitea VE, Hallak ME, Galiano MR. Arginylated Calreticulin Increases Apoptotic Response Induced by Bortezomib in Glioma Cells. Mol Neurobiol 2018; 56:1653-1664. [PMID: 29916141 DOI: 10.1007/s12035-018-1182-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
After retrotranslocation from the endoplasmic reticulum to the cytoplasm, calreticulin is modified by the enzyme arginyltransferase-1 (ATE1). Cellular levels of arginylated calreticulin (R-CRT) are regulated in part by the proteasomal system. Under various stress conditions, R-CRT becomes associated with stress granules (SGs) or reaches the plasma membrane (PM), where it participates in pro-apoptotic signaling. The mechanisms underlying the resistance of tumor cells to apoptosis induced by specific drugs remain unclear. We evaluated the regulatory role of R-CRT in apoptosis of human glioma cell lines treated with the proteasome inhibitor bortezomib (BT). Two cell lines (HOG, MO59K) displaying distinctive susceptibility to apoptosis induction were studied further. BT efficiency was found to be correlated with a subcellular distribution of R-CRT. In MO59K (apoptosis-resistant), R-CRT was confined to SGs formed following BT treatment. In contrast, HOG (apoptosis-susceptible) treated with BT showed lower SG formation and higher levels of cytosolic and PM R-CRT. Increased R-CRT level was associated with enhanced mobilization of intracellular Ca2+ and with sustained apoptosis activation via upregulation of cell death receptor DR5. R-CRT overexpression in the cytoplasm of MO59K rendered the cells susceptible to BT-induced, DR5-mediated cell death. Our findings suggest that R-CRT plays an essential role in the effect of BT treatment on tumor cells and that ATE1 is a strong candidate target for future studies of cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Andrea Comba
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Laura V Bonnet
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Victor E Goitea
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Marta E Hallak
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Mauricio R Galiano
- Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| |
Collapse
|
46
|
Elevated expression of the EZH2 gene in CALR-mutated patients with primary myelofibrosis. Ann Hematol 2018; 97:1193-1208. [PMID: 29560522 DOI: 10.1007/s00277-018-3287-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/25/2018] [Indexed: 01/07/2023]
Abstract
Primary myelofibrosis (PMF) is one of the BCR/ABL-negative myeloproliferative neoplasms (MPNs), characterized by the diffuse fibrous hyperproliferation, bone marrow osteosclerosis, extramedullary hematopoiesis, and marked splenomegaly. The patients with PMF have an insidious onset, a long duration of clinical course, and the deteriorated quality of life. It has been reported that the CALR gene 9 exon mutations were detected in 25-30% PMF patients, particularly as high as 80% in the JAK2/MPL-negative ones. As the second most common mutation in BCR/ABL-negative MPNs, CALR mutation has been included in the latest World Health Organization (WHO) classification criteria as one of the main diagnostic criteria for both essential thrombocythemia (ET) and PMF. Moreover, the CALR mutations indicated a favorable prognosis, which the mechanism is still under investigation. It was demonstrated that a characterized high expression of EZH2 and SUZ12 in CALR-mutated patients. Taking EZH2 as the research entry point, we initially discussed the mechanism that the CALR-positive patients with PMF exhibited a better prognosis in the current study.
Collapse
|
47
|
Wang L, Murphy-Ullrich JE, Song Y. Multiscale simulation of the interaction of calreticulin-thrombospondin-1 complex with a model membrane microdomain. J Biomol Struct Dyn 2018; 37:811-822. [PMID: 29380675 DOI: 10.1080/07391102.2018.1433065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell surface calreticulin (CRT) binding to thrombospondin-1 (TSP1), regulates cell adhesion, migration, anoikis resistance, and collagen production. Due to the essential role of membrane microdomains in CRT-mediated focal adhesion disassembly, we previously studied the effect of raft-like bilayers on TSP1-CRT interactions with all-atom molecular dynamics (AAMD) simulations. However, the simulated systems of protein on the surface of the bilayer(s) in the explicit solvent are too large for long timescale AAMD simulations due to computational expense. In this study, we adopted a multiscale modeling approach of combining AAMD, coarse-grained molecule dynamics (CGMD), and reversed AAMD (REV AAMD) simulations to investigate the interactions of single CRT or of the TSP1-CRT complex with a membrane microdomain at microsecond timescale. Results showed that CRT conformational stabilization by binding of TSP1 in AAMD simulation was undetectable in CGMD simulation, but it was recovered in REV AAMD simulation. Similarly, interactions of the CRT N-domain and TSP1 with the membrane microdomain were lost in CGMD simulations but they were re-gained in the REV AAMD simulations. There was the higher coordination of the CRT P-domain in the TSP1-CRT complex with the lipid components of membrane microdomain compared to that of single CRT, which could directly affect the conformation of CRT and further mediate CRT recruitment of LDL receptor-related protein for signaling events. This study provides structural and molecular insights into TSP1-CRT interactions in a membrane microdomain environment and demonstrates the feasibility of using multiscale simulations to investigate the interactions between protein and membrane microdomains at a long timescale.
Collapse
Affiliation(s)
- Lingyun Wang
- a Department of Biomedical Engineering , The University of Alabama at Birmingham , Birmingham 35294 , AL , USA
| | - Joanne E Murphy-Ullrich
- b Department of Pathology , The University of Alabama at Birmingham , Birmingham 35294 , AL , USA
| | - Yuhua Song
- a Department of Biomedical Engineering , The University of Alabama at Birmingham , Birmingham 35294 , AL , USA
| |
Collapse
|
48
|
Vahdati Hassani F, Abnous K, Mehri S, Jafarian A, Birner-Gruenberger R, Yazdian Robati R, Hosseinzadeh H. Proteomics and phosphoproteomics analysis of liver in male rats exposed to bisphenol A: Mechanism of hepatotoxicity and biomarker discovery. Food Chem Toxicol 2017; 112:26-38. [PMID: 29269058 DOI: 10.1016/j.fct.2017.12.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 01/14/2023]
Abstract
Bisphenol A (BPA), discovered to be an artificial estrogen, has been shown to leach from some containers and mediate oxidative damage to cells and tissues and to be involved in reproductive disorders, obesity, diabetes, and liver dysfunction. In the current study, we investigated the effects of oral chronic exposure to low dose of BPA (0.5 mg kg-1) on the protein and phosphoprotein expression profiles in male Wistar rat liver using a gel-based proteomics approach based on two-dimensional gel electrophoresis followed by matrix-assisted laser desorption/ionization mass spectrometry identification. Our results showed that BPA exposure affected the levels of proteins and phosphoproteins involved in diverse biological processes associated with hepatotoxicity, fatty liver, and carcinoma. Moreover, we analyzed the effects of BPA on oxidative stress by assessing levels of malondialdehyde (MDA), a marker of lipid peroxidation, and reduced glutathione (GSH), a non-enzymatic antioxidant agent, in the liver. As expected BPA induced oxidative stress indicated by increased levels of MDA and decreased GSH content in the liver. In conclusion, chronic oral exposure of rats to BPA leads to increased oxidative stress in the liver and major alterations in the liver proteome and phosphoproteome, which may contribute to the pathophysiology of liver diseases.
Collapse
Affiliation(s)
- Faezeh Vahdati Hassani
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Soghra Mehri
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical, Sciences, Mashhad, Iran.
| | - Amirhossein Jafarian
- Department of Pathology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ruth Birner-Gruenberger
- Medical University of Graz, Institute of Pathology, Research Unit Functional Proteomics and Metabolic Pathways, Stiftingtalstrasse 24, 8010 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria.
| | - Rezvan Yazdian Robati
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical, Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Varricchio L, Falchi M, Dall'Ora M, De Benedittis C, Ruggeri A, Uversky VN, Migliaccio AR. Calreticulin: Challenges Posed by the Intrinsically Disordered Nature of Calreticulin to the Study of Its Function. Front Cell Dev Biol 2017; 5:96. [PMID: 29218307 PMCID: PMC5703715 DOI: 10.3389/fcell.2017.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Calreticulin is a Ca2+-binding chaperone protein, which resides mainly in the endoplasmic reticulum but also found in other cellular compartments including the plasma membrane. In addition to Ca2+, calreticulin binds and regulates almost all proteins and most of the mRNAs deciding their intracellular fate. The potential functions of calreticulin are so numerous that identification of all of them is becoming a nightmare. Still the recent discovery that patients affected by the Philadelphia-negative myeloproliferative disorders essential thrombocytemia or primary myelofibrosis not harboring JAK2 mutations carry instead calreticulin mutations disrupting its C-terminal domain has highlighted the clinical need to gain a deeper understanding of the biological activity of this protein. However, by contrast with other proteins, such as enzymes or transcription factors, the biological functions of which are strictly defined by a stable spatial structure imprinted by their amino acid sequence, calreticulin contains intrinsically disordered regions, the structure of which represents a highly dynamic conformational ensemble characterized by constant changes between several metastable conformations in response to a variety of environmental cues. This article will illustrate the Theory of calreticulin as an intrinsically disordered protein and discuss the Hypothesis that the dynamic conformational changes to which calreticulin may be subjected by environmental cues, by promoting or restricting the exposure of its active sites, may affect its function under normal and pathological conditions.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario Falchi
- National HIV/AIDS Center, Istituto Superiore Sanità, Rome, Italy
| | - Massimiliano Dall'Ora
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Caterina De Benedittis
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Alessandra Ruggeri
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| |
Collapse
|
50
|
Fucikova J, Kasikova L, Truxova I, Laco J, Skapa P, Ryska A, Spisek R. Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett 2017; 193:25-34. [PMID: 29175313 DOI: 10.1016/j.imlet.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/26/2022]
Abstract
The death of cancer cells can be categorized as either immunogenic (ICD) or nonimmunogenic, depending on the initiating stimulus. The immunogenic processes of immunogenic cell death are mainly mediated by damage-associated molecular patterns (DAMPs), which include surface exposure of calreticulin (CRT), secretion of adenosine triphosphate (ATP), release of non-histone chromatin protein high-mobility group box 1 (HMGB1) and the production of type I interferons (IFNs). DAMPs are recognized by various receptors that are expressed by antigen-presenting cells (APCs) and potentiate the presentation of tumor antigens to T lymphocytes. Accumulating evidence indicates that CRT exposure constitutes one of the major checkpoints, that determines the immunogenicity of cell death both in vitro and in vivo in mouse models. Moreover, recent studies have identified CRT expression on tumor cells not only as a marker of ICD and active anti-tumor immune reactions but also as a major predictor of a better prognosis in various cancers. Here, we discuss the recent information on the CRT capacity to activate anticancer immune response as well as its prognostic and predictive role for the clinical outcome in cancer patients.
Collapse
Affiliation(s)
- Jitka Fucikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Lenka Kasikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Iva Truxova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Jan Laco
- Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital, Hradec Kralove, Czech Republic
| | - Petr Skapa
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Ales Ryska
- Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital, Hradec Kralove, Czech Republic
| | - Radek Spisek
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic.
| |
Collapse
|