1
|
Damiano G, Rinaldi R, Raucci A, Molinari C, Sforza A, Pirola S, Paneni F, Genovese S, Pompilio G, Vinci MC. Epigenetic mechanisms in cardiovascular complications of diabetes: towards future therapies. Mol Med 2024; 30:161. [PMID: 39333854 PMCID: PMC11428340 DOI: 10.1186/s10020-024-00939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The pathophysiological mechanisms of cardiovascular disease and microvascular complications in diabetes have been extensively studied, but effective methods of prevention and treatment are still lacking. In recent years, DNA methylation, histone modifications, and non-coding RNAs have arisen as possible mechanisms involved in the development, maintenance, and progression of micro- and macro-vascular complications of diabetes. Epigenetic changes have the characteristic of being heritable or deletable. For this reason, they are now being studied as a therapeutic target for the treatment of diabetes and the prevention or for slowing down its complications, aiming to alleviate the personal and social burden of the disease.This review addresses current knowledge of the pathophysiological links between diabetes and cardiovascular complications, focusing on the role of epigenetic modifications, including DNA methylation and histone modifications. In addition, although the treatment of complications of diabetes with "epidrugs" is still far from being a reality and faces several challenges, we present the most promising molecules and approaches in this field.
Collapse
Affiliation(s)
- Giulia Damiano
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Raffaella Rinaldi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Angela Raucci
- Unit of Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Chiara Molinari
- Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Annalisa Sforza
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Sergio Pirola
- Department of Cardiac Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich and University of Zürich, Zürich, Switzerland
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Stefano Genovese
- Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milano, 20100, Italy
| | - Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy.
| |
Collapse
|
2
|
Title: Bioinformatic Identification of Genes Involved in Diabetic Nephropathy Fibrosis and their Clinical Relevance. Biochem Genet 2023:10.1007/s10528-023-10336-6. [PMID: 36715962 DOI: 10.1007/s10528-023-10336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Tubulointerstitial fibrosis is an important pathological feature of diabetic nephropathy that is associated with impaired renal function. However, the mechanism by which fibrosis occurs in diabetic nephropathy is unclear. Differentially expressed genes were identified from transcriptome profiles of renal tissue from diabetic patients and unilateral ureteral obstruction mice and intersected to obtain genes that may be involved in diabetic fibrosis. Biological function analysis and protein-protein interaction network analysis were performed. ROC curve and Pearson correlation analysis between hub genes were performed and glomerular filtration rate estimated. Finally, the RNA levels of hub genes were measured using real-time PCR. A total of 283 genes were identified as potentially involved in diabetic nephropathy fibrosis. TYROBP, CTSS, LCP2, LUM and TLR7 were identified as aberrantly expressed hub genes. Immune cell infiltration analysis demonstrated higher numbers of cytotoxic lymphocytes, B lineage cells, monocyte lineage cells, myeloid dendritic cells, neutrophils, and fibroblasts in the diabetic nephropathy group. The areas under ROC curves for TYROBP, CTSS, LCP2, LUM and TLR7 were 0.9167, 0.9583, 0.9917, 0.93333, and 0.9583, respectively (P < 0.001), and their correlation coefficients with estimated glomerular filtration rate were - 0.8332, - 0.752, - 0.7875, - 0.7567, and - 0.7136, respectively (P < 0.001). The RNA levels of TYROBP, CTSS, LUM and TLR7 were upregulated in high-glucose-treated human renal tubular epithelial cells (P < 0.005). Our study identified TYROBP, CTSS, LCP2, LUM and TLR7 as potentially involved in diabetic nephropathy fibrosis. Furthermore, TYROBP, CTSS, LUM and TLR7 may be associated with epithelial-mesenchymal transition of tubular epithelial cells.
Collapse
|
3
|
Dnmt1/Tet2-mediated changes in Cmip methylation regulate the development of nonalcoholic fatty liver disease by controlling the Gbp2-Pparγ-CD36 axis. Exp Mol Med 2023; 55:143-157. [PMID: 36609599 PMCID: PMC9898513 DOI: 10.1038/s12276-022-00919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 01/07/2023] Open
Abstract
Dynamic alteration of DNA methylation leads to various human diseases, including nonalcoholic fatty liver disease (NAFLD). Although C-Maf-inducing protein (Cmip) has been reported to be associated with NAFLD, its exact underlying mechanism remains unclear. Here, we aimed to elucidate this mechanism in NAFLD in vitro and in vivo. We first identified alterations in the methylation status of the Cmip intron 1 region in mouse liver tissues with high-fat high-sucrose diet-induced NAFLD. Knockdown of DNA methyltransferase (Dnmt) 1 significantly increased Cmip expression. Chromatin immunoprecipitation assays of AML12 cells treated with oleic and palmitic acid (OPA) revealed that Dnmt1 was dissociated and that methylation of H3K27me3 was significantly decreased in the Cmip intron 1 region. Conversely, the knockdown of Tet methylcytosine dioxygenase 2 (Tet2) decreased Cmip expression. Following OPA treatment, the CCCTC-binding factor (Ctcf) was recruited, and H3K4me3 was significantly hypermethylated. Intravenous Cmip siRNA injection ameliorated NAFLD pathogenic features in ob/ob mice. Additionally, Pparγ and Cd36 expression levels were dramatically decreased in the livers of ob/ob mice administered siCmip, and RNA sequencing revealed that Gbp2 was involved. Gbp2 knockdown also induced a decrease in Pparγ and Cd36 expression, resulting in the abrogation of fatty acid uptake into cells. Our data demonstrate that Cmip and Gbp2 expression levels are enhanced in human liver tissues bearing NAFLD features. We also show that Dnmt1-Trt2/Ctcf-mediated reversible modulation of Cmip methylation regulates the Gbp2-Pparγ-Cd36 signaling pathway, indicating the potential of Cmip as a novel therapeutic target for NAFLD.
Collapse
|
4
|
Sonthalia M, Roy BS, Chandrawanshi D, Ganesh GV, Jayasuriya R, Mohandas S, Rajagopal S, Ramkumar KM. Histone deacetylase inhibitors as antidiabetic agents: Advances and opportunities. Eur J Pharmacol 2022; 935:175328. [DOI: 10.1016/j.ejphar.2022.175328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022]
|
5
|
Mastrogiacomo M, Nardini M, Collina MC, Di Campli C, Filaci G, Cancedda R, Odorisio T. Innovative Cell and Platelet Rich Plasma Therapies for Diabetic Foot Ulcer Treatment: The Allogeneic Approach. Front Bioeng Biotechnol 2022; 10:869408. [PMID: 35586557 PMCID: PMC9108368 DOI: 10.3389/fbioe.2022.869408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Cutaneous chronic wounds are a major global health burden in continuous growth, because of population aging and the higher incidence of chronic diseases, such as diabetes. Different treatments have been proposed: biological, surgical, and physical. However, most of these treatments are palliative and none of them can be considered fully satisfactory. During a spontaneous wound healing, endogenous regeneration mechanisms and resident cell activity are triggered by the released platelet content. Activated stem and progenitor cells are key factors for ulcer healing, and they can be either recruited to the wound site from the tissue itself (resident cells) or from elsewhere. Transplant of skin substitutes, and of stem cells derived from tissues such as bone marrow or adipose tissue, together with platelet-rich plasma (PRP) treatments have been proposed as therapeutic options, and they represent the today most promising tools to promote ulcer healing in diabetes. Although stem cells can directly participate to skin repair, they primarily contribute to the tissue remodeling by releasing biomolecules and microvesicles able to stimulate the endogenous regeneration mechanisms. Stem cells and PRP can be obtained from patients as autologous preparations. However, in the diabetic condition, poor cell number, reduced cell activity or impaired PRP efficacy may limit their use. Administration of allogeneic preparations from healthy and/or younger donors is regarded with increasing interest to overcome such limitation. This review summarizes the results obtained when these innovative treatments were adopted in preclinical animal models of diabetes and in diabetic patients, with a focus on allogeneic preparations.
Collapse
Affiliation(s)
- Maddalena Mastrogiacomo
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
- *Correspondence: Maddalena Mastrogiacomo,
| | - Marta Nardini
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
| | - Maria Chiara Collina
- Unità Operativa Semplice Piede Diabetico e Ulcere Cutanee, IDI-IRCCS, Roma, Italy
| | - Cristiana Di Campli
- Unità Operativa Semplice Piede Diabetico e Ulcere Cutanee, IDI-IRCCS, Roma, Italy
| | - Gilberto Filaci
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università degli Studi di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Ranieri Cancedda
- Emeritus Professor, Università degli Studi di Genova, Genova, Italy
| | - Teresa Odorisio
- Laboratorio di Biologia Molecolare e Cellulare, IDI-IRCCS, Roma, Italy
| |
Collapse
|
6
|
Old and New Biomarkers Associated with Endothelial Dysfunction in Chronic Hyperglycemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:7887426. [PMID: 34987703 PMCID: PMC8723873 DOI: 10.1155/2021/7887426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
Chronic hyperglycemia and vascular damage are strictly related. Biomarkers of vascular damage have been intensively studied in the recent years in the quest of reliable cardiovascular risk assessment tools able to facilitate risk stratification and early detection of vascular impairment. The present study is a narrative review with the aim of revising the available evidence on current and novel markers of hyperglycemia-induced vascular damage. After a discussion of classic tools used to investigate endothelial dysfunction, we provide an in-depth description of novel circulating biomarkers (chemokines, extracellular vesicles, and epigenetic and metabolomic biomarkers). Appropriate use of a single as well as a cluster of the discussed biomarkers might enable in a near future (a) the prompt identification of targeted and customized treatment strategies and (b) the follow-up of cardiovascular treatment efficacy over time in clinical research and/or in clinical practice.
Collapse
|
7
|
Liu C, Liu Y, Yu Y, Zhao Y, Zhang D, Yu A. Identification of Up-Regulated ANXA3 Resulting in Fracture Non-Union in Patients With T2DM. Front Endocrinol (Lausanne) 2022; 13:890941. [PMID: 35813617 PMCID: PMC9263855 DOI: 10.3389/fendo.2022.890941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder that increases fracture risk and interferes with bone formation and impairs fracture healing. Genomic studies on diabetes and fracture healing are lacking. We used a weighted co-expression network analysis (WGCNA) method to identify susceptibility modules and hub genes associated with T2DM and fracture healing. First, we downloaded the GSE95849, GSE93213, GSE93215, and GSE142786 data from the Gene Expression Omnibus (GEO) website, analyzed differential expression genes and constructed a WGCNA network. Second, we screened out 30 hub genes, which were found to be enriched in neutrophil activation, translational initiation, RAGE receptor binding, propanoate metabolism, and other pathways through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) analyses. Third, we searched for genes related to bone metabolism and fracture healing in the published genome-wide single nucleotide polymorphism (SNP) data, built a protein-protein interaction (PPI) network with hub genes, and found that they were associated with metabolic process, blood vessel development, and extracellular matrix organization. ANXA3 was identified as the biomarker based on gene expression and correlation analysis. And the AUC value of it was 0.947. Fourth, we explored that ANXA3 was associated with neutrophils in fracture healing process by single-cell RNA sequencing analysis. Finally, we collected clinical patient samples and verified the expression of ANXA3 by qRT-PCR in patents with T2DM and fracture non-union. In conclusion, this is the first genomics study on the effect of T2DM on fracture healing. Our study identified some characteristic modules and hub genes in the etiology of T2DM-associated fracture non-union, which may help to further investigate the molecular mechanisms. Up-regulated ANXA3 potentially contributed to fracture non-union in T2DM by mediating neutrophils. It can be a prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Aixi Yu
- *Correspondence: Dong Zhang, ; Aixi Yu,
| |
Collapse
|
8
|
Zhan J, Chen C, Wang DW, Li H. Hyperglycemic memory in diabetic cardiomyopathy. Front Med 2021; 16:25-38. [PMID: 34921674 DOI: 10.1007/s11684-021-0881-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases account for approximately 80% of deaths among individuals with diabetes mellitus, with diabetic cardiomyopathy as the major diabetic cardiovascular complication. Hyperglycemia is a symptom that abnormally activates multiple downstream pathways and contributes to cardiac hypertrophy, fibrosis, apoptosis, and other pathophysiological changes. Although glycemic control has long been at the center of diabetes therapy, multicenter randomized clinical studies have revealed that intensive glycemic control fails to reduce heart failure-associated hospitalization and mortality in patients with diabetes. This finding indicates that hyperglycemic stress persists in the cardiovascular system of patients with diabetes even if blood glucose level is tightly controlled to the normal level. This process is now referred to as hyperglycemic memory (HGM) phenomenon. We briefly reviewed herein the current advances that have been achieved in research on the underlying mechanisms of HGM in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
9
|
Recent Advances in Diabetic Kidney Diseases: From Kidney Injury to Kidney Fibrosis. Int J Mol Sci 2021; 22:ijms222111857. [PMID: 34769288 PMCID: PMC8584225 DOI: 10.3390/ijms222111857] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end-stage renal disease. The natural history of DKD includes glomerular hyperfiltration, progressive albuminuria, declining estimated glomerular filtration rate, and, ultimately, kidney failure. It is known that DKD is associated with metabolic changes caused by hyperglycemia, resulting in glomerular hypertrophy, glomerulosclerosis, and tubulointerstitial inflammation and fibrosis. Hyperglycemia is also known to cause programmed epigenetic modification. However, the detailed mechanisms involved in the onset and progression of DKD remain elusive. In this review, we discuss recent advances regarding the pathogenic mechanisms involved in DKD.
Collapse
|
10
|
Ciechanowska A, Gora I, Sabalinska S, Foltynski P, Ladyzynski P. Effect of glucose concentration and culture substrate on HUVECs viability in in vitro cultures: A literature review and own results. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Triggiani V. Hyperglycemia-induced Immune System Disorders in Diabetes Mellitus and the Concept of Hyperglycemic Memory of Innate Immune Cells: A perspective. Endocr Metab Immune Disord Drug Targets 2021; 22:367-370. [PMID: 34561995 DOI: 10.2174/1871530321666210924124336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Apulia. Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Apulia. Italy
| | - Giovanni De Pergola
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Apulia. Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Apulia. Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Apulia. Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Apulia. Italy
| |
Collapse
|
12
|
Hong T, Qin N, Zhao X, Wang C, Jiang Y, Ma H, Dai J. Investigation of Causal Effect of Type 2 Diabetes Mellitus on Lung Cancer: A Mendelian Randomization Study. Front Genet 2021; 12:673687. [PMID: 34531893 PMCID: PMC8439278 DOI: 10.3389/fgene.2021.673687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background Although several observational studies have attempted to investigate the association between type 2 diabetes mellitus (T2DM) and lung cancer risk, the results are controversial. Here, we intend to examine whether there is a causal association between T2DM and lung cancer risk. Materials and Methods We conducted a Mendelian randomization (MR) study to systematically investigate the effect of T2DM on lung cancer among 13,327 cases and 13,328 controls. A weighted genetic risk score (wGRS) was constructed as a proxy instrument by using 82 previously reported T2DM-related single nucleotide polymorphisms (SNPs). The logistic regression model was utilized to estimate associations of T2DM-related SNPs and wGRS with lung cancer risk. Sensitivity analyses were also performed to assess the robustness of the observed associations. Results We found no evidence for a causal relationship between T2DM and lung cancer risk (odds ratio, OR = 0.96, 95% confidence interval: 0.91–1.01, p = 0.96), and the association did not vary among populations of different age, sex, smoking status, and histological type. Sensitivity analyses (e.g., MR-Egger test) suggest that pleiotropic effects did not bias the result. Conclusion In this MR study with a large number of lung cancer cases, we found no evidence to support the causal role of T2DM in lung cancer risk. Further large-scale prospective studies are warranted to replicate our findings.
Collapse
Affiliation(s)
- Tongtong Hong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Zhao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Kapelouzou A, Katsimpoulas M, Kontogiannis C, Lidoriki I, Georgiopoulos G, Kourek C, Papageorgiou C, Mylonas KS, Dritsas S, Charalabopoulos A, Cokkinos DV. A High-Cholesterol Diet Increases Toll-like Receptors and Other Harmful Factors in the Rabbit Myocardium: The Beneficial Effect of Statins. Curr Issues Mol Biol 2021; 43:818-830. [PMID: 34449561 PMCID: PMC8928938 DOI: 10.3390/cimb43020059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background: A high-cholesterol diet (HCD) induces vascular atherosclerosis through vascular inflammatory and immunological processes via TLRs. The aim of this study is to investigate the mRNA expression of TLRs and other noxious biomarkers expressing inflammation, fibrosis, apoptosis, and cardiac dysfunction in the rabbit myocardium during (a) high-cholesterol diet (HCD), (b) normal diet resumption and (c) fluvastatin or rosuvastatin treatment. Methods: Forty-eight male rabbits were randomly divided into eight groups (n = 6/group). In the first experiment, three groups were fed with HCD for 1, 2 and 3 months. In the second experiment, three groups were fed with HCD for 3 months, followed by normal chow for 1 month and administration of fluvastatin or rosuvastatin for 1 month. Control groups were fed with normal chow for 90 and 120 days. The whole myocardium was removed; total RNA was isolated from acquired samples, and polymerase chain reaction, reverse transcription PCR and quantitative real-time PCR were performed. Results: mRNA of TLRs 2, 3, 4 and 8; interleukin-6; TNF-a; metalloproteinase-2; tissue inhibitor of metalloproteinase-1; tumor protein 53; cysteinyl aspartate specific proteinase-3; and brain natriuretic peptide (BNP) increased in HCD. Statins but not resumption of a normal diet decreased levels of these biomarkers and increased levels of antifibrotic factors. Conclusions: HCD increases the levels of TLRs; inflammatory, fibrotic and apoptotic factors; and BNP in the rabbit myocardium. Atherogenic diets adversely affect the myocardium at a molecular level and are reversed by statins.
Collapse
Affiliation(s)
- Alkistis Kapelouzou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
| | - Michalis Katsimpoulas
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
- Attiko Hospital Animal, 19002 Athens, Greece
| | - Christos Kontogiannis
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Irene Lidoriki
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Georgios Georgiopoulos
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Christos Kourek
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Christos Papageorgiou
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Konstantinos S. Mylonas
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Spyridon Dritsas
- Second Department of Surgery, Aretaieio Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Alexandros Charalabopoulos
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Dennis V. Cokkinos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
- Correspondence: ; Tel./Fax: +30-210-6597376
| |
Collapse
|
14
|
Lejeune S, Roy C, Slimani A, Pasquet A, Vancraeynest D, Vanoverschelde JL, Gerber BL, Beauloye C, Pouleur AC. Diabetic phenotype and prognosis of patients with heart failure and preserved ejection fraction in a real life cohort. Cardiovasc Diabetol 2021; 20:48. [PMID: 33608002 PMCID: PMC7893869 DOI: 10.1186/s12933-021-01242-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome, with several underlying etiologic and pathophysiologic factors. The presence of diabetes might identify an important phenotype, with implications for therapeutic strategies. While diabetes is associated with worse prognosis in HFpEF, the prognostic impact of glycemic control is yet unknown. Hence, we investigated phenotypic differences between diabetic and non-diabetic HFpEF patients (pts), and the prognostic impact of glycated hemoglobin (HbA1C). Methods We prospectively enrolled 183 pts with HFpEF (78 ± 9 years, 38% men), including 70 (38%) diabetics (type 2 diabetes only). They underwent 2D echocardiography (n = 183), cardiac magnetic resonance (CMR) (n = 150), and were followed for a combined outcome of all-cause mortality and first HF hospitalization. The prognostic impact of diabetes and glycemic control were determined with Cox proportional hazard models, and illustrated by adjusted Kaplan Meier curves. Results Diabetic HFpEF pts were younger (76 ± 9 vs 80 ± 8 years, p = 0.002), more obese (BMI 31 ± 6 vs 27 ± 6 kg/m2, p = 0.001) and suffered more frequently from sleep apnea (18% vs 7%, p = 0.032). Atrial fibrillation, however, was more frequent in non-diabetic pts (69% vs 53%, p = 0.028). Although no echocardiographic difference could be detected, CMR analysis revealed a trend towards higher LV mass (66 ± 18 vs 71 ± 14 g/m2, p = 0.07) and higher levels of fibrosis (53% vs 36% of patients had ECV by T1 mapping > 33%, p = 0.05) in diabetic patients. Over 25 ± 12 months, 111 HFpEF pts (63%) reached the combined outcome (24 deaths and 87 HF hospitalizations). Diabetes was a significant predictor of mortality and hospitalization for heart failure (HR: 1.72 [1.1–2.6], p = 0.011, adjusted for age, BMI, NYHA class and renal function). In diabetic patients, lower levels of glycated hemoglobin (HbA1C < 7%) were associated with worse prognosis (HR: 2.07 [1.1–4.0], p = 0.028 adjusted for age, BMI, hemoglobin and NT-proBNP levels). Conclusion Our study highlights phenotypic features characterizing diabetic patients with HFpEF. Notably, they are younger and more obese than their non-diabetic counterpart, but suffer less from atrial fibrillation. Although diabetes is a predictor of poor outcome in HFpEF, intensive glycemic control (HbA1C < 7%) in diabetic patients is associated with worse prognosis.
Collapse
Affiliation(s)
- Sibille Lejeune
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Clotilde Roy
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Alisson Slimani
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Agnès Pasquet
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - David Vancraeynest
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Jean-Louis Vanoverschelde
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Bernhard L Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Christophe Beauloye
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Anne-Catherine Pouleur
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium.
| |
Collapse
|
15
|
Battault S, Renguet E, Van Steenbergen A, Horman S, Beauloye C, Bertrand L. Myocardial glucotoxicity: Mechanisms and potential therapeutic targets. Arch Cardiovasc Dis 2020; 113:736-748. [PMID: 33189592 DOI: 10.1016/j.acvd.2020.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Besides coronary artery disease, which remains the main cause of heart failure in patients with diabetes, factors independent of coronary artery disease are involved in the development of heart failure in the onset of what is called diabetic cardiomyopathy. Among them, hyperglycaemia - a hallmark of type 2 diabetes - has both acute and chronic deleterious effects on myocardial function, and clearly participates in the establishment of diabetic cardiomyopathy. In the present review, we summarize the cellular and tissular events that occur in a heart exposed to hyperglycaemia, and depict the complex molecular mechanisms proposed to be involved in glucotoxicity. Finally, from a more translational perspective, different therapeutic strategies targeting hyperglycaemia-mediated molecular mechanisms will be detailed.
Collapse
Affiliation(s)
- Sylvain Battault
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Edith Renguet
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Anne Van Steenbergen
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Sandrine Horman
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Christophe Beauloye
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium; Division of cardiology, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium.
| | - Luc Bertrand
- Pole of cardiovascular research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium; WELBIO, B-1300 Wavre, Belgium.
| |
Collapse
|
16
|
Costa ACC, de Lima Benzi JR, Yamamoto PA, de Freitas MCF, de Paula FJA, Zanelli CF, Lauretti GR, de Moraes NV. Population pharmacokinetics of gabapentin in patients with neuropathic pain: Lack of effect of diabetes or glycaemic control. Br J Clin Pharmacol 2020; 87:1981-1989. [PMID: 33118231 DOI: 10.1111/bcp.14594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Gabapentin (GBP) is widely used to treat neuropathic pain, including diabetic neuropathic pain. Our objective was to evaluate the role of diabetes and glycaemic control on GBP population pharmacokinetics. METHODS A clinical trial was conducted in patients with neuropathic pain (n = 29) due to type 2 diabetes (n = 19) or lumbar/cervical disc herniation (n = 10). All participants were treated with a single oral dose GBP. Blood was sampled up to 24 hours after GBP administration. Data were analysed with a population approach using the stochastic approximation expectation maximization algorithm. Weight, body mass index, sex, biomarkers of renal function and diabetes, and genotypes for the main genetic polymorphisms of SLC22A2 (rs316019) and SLC22A4 (rs1050152), the genes encoding the transporters for organic cations OCT2 and OCTN1, were tested as potential covariates. RESULTS GBP drug disposition was described by a 1-compartment model with lag-time, first-order absorption and linear elimination. The total clearance was dependent on estimated glomerular filtration rate. Population estimates (between-subject variability in percentage) for lag time, first-order absorption rate, apparent volume of distribution and total clearance were 0.316 h (10.6%), 1.12 h-1 (10.7%), 140 L (7.7%) and 14.7 L/h (6.97%), respectively. No significant association was observed with hyperglycaemia, glycated haemoglobin, diabetes diagnosis, age, sex, weight, body mass index, SLC22A2 or SLC22A4 genotypes. CONCLUSION This population pharmacokinetics model accurately estimated GBP concentrations in patients with neuropathic pain, using estimated glomerular filtrationrate as a covariate for total clearance. The distribution and excretion processes of GBP were not affected by hyperglycaemia or diabetes.
Collapse
Affiliation(s)
- Ana Carolina Conchon Costa
- School of Pharmaceutical Sciences of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Priscila Akemi Yamamoto
- School of Pharmaceutical Sciences of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, SP, Brazil.,School of Pharmaceutical Sciences, UNESP - São Paulo State University, Araraquara, SP, Brazil
| | | | | | | | - Gabriela Rocha Lauretti
- School of Medicine of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
17
|
Vigorelli V, Resta J, Bianchessi V, Lauri A, Bassetti B, Agrifoglio M, Pesce M, Polvani G, Bonalumi G, Cavallotti L, Alamanni F, Genovese S, Pompilio G, Vinci MC. Abnormal DNA Methylation Induced by Hyperglycemia Reduces CXCR 4 Gene Expression in CD 34 + Stem Cells. J Am Heart Assoc 2020; 8:e010012. [PMID: 31018749 PMCID: PMC6512087 DOI: 10.1161/jaha.118.010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background CD 34+ stem/progenitor cells are involved in vascular homeostasis and in neovascularization of ischemic tissues. The number of circulating CD 34+ stem cells is a predictive biomarker of adverse cardiovascular outcomes in diabetic patients. Here, we provide evidence that hyperglycemia can be "memorized" by the stem cells through epigenetic changes that contribute to onset and maintenance of their dysfunction in diabetes mellitus. Methods and Results Cord-blood-derived CD 34+ stem cells exposed to high glucose displayed increased reactive oxygen species production, overexpression of p66shc gene, and downregulation of antioxidant genes catalase and manganese superoxide dismutase when compared with normoglycemic cells. This altered oxidative state was associated with impaired migration ability toward stromal-cell-derived factor 1 alpha and reduced protein and mRNA expression of the C-X-C chemokine receptor type 4 ( CXCR 4) receptor. The methylation analysis by bisulfite Sanger sequencing of the CXCR 4 promoter revealed a significant increase in DNA methylation density in high-glucose CD 34+ stem cells that negatively correlated with mRNA expression (Pearson r=-0.76; P=0.004). Consistently, we found, by chromatin immunoprecipitation assay, a more transcriptionally inactive chromatin conformation and reduced RNA polymerase II engagement on the CXCR 4 promoter. Notably, alteration of CXCR 4 DNA methylation, as well as transcriptional and functional defects, persisted in high-glucose CD 34+ stem cells despite recovery in normoglycemic conditions. Importantly, such an epigenetic modification was thoroughly confirmed in bone marrow CD 34+ stem cells isolated from sternal biopsies of diabetic patients undergoing coronary bypass surgery. Conclusions CD 34+ stem cells "memorize" the hyperglycemic environment in the form of epigenetic modifications that collude to alter CXCR 4 receptor expression and migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesco Alamanni
- 1 IRCCS Centro Cardiologico Monzino Milan Italy.,3 Department of Clinical Sciences and Community Health Università degli Studi di Milano Milan Italy
| | | | - Giulio Pompilio
- 1 IRCCS Centro Cardiologico Monzino Milan Italy.,3 Department of Clinical Sciences and Community Health Università degli Studi di Milano Milan Italy
| | | |
Collapse
|
18
|
Murray CE, Coleman CM. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci 2019; 20:ijms20194873. [PMID: 31575077 PMCID: PMC6801685 DOI: 10.3390/ijms20194873] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Long-term exposure to a diabetic environment leads to changes in bone metabolism and impaired bone micro-architecture through a variety of mechanisms on molecular and structural levels. These changes predispose the bone to an increased fracture risk and impaired osseus healing. In a clinical practice, adequate control of diabetes mellitus is essential for preventing detrimental effects on bone health. Alternative fracture risk assessment tools may be needed to accurately determine fracture risk in patients living with diabetes mellitus. Currently, there is no conclusive model explaining the mechanism of action of diabetes mellitus on bone health, particularly in view of progenitor cells. In this review, the best available literature on the impact of diabetes mellitus on bone health in vitro and in vivo is summarised with an emphasis on future translational research opportunities in this field.
Collapse
Affiliation(s)
- Cliodhna E Murray
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| | - Cynthia M Coleman
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| |
Collapse
|
19
|
Willemsen L, Neele AE, van der Velden S, Prange KHM, den Toom M, van Roomen CPAA, Reiche ME, Griffith GR, Gijbels MJJ, Lutgens E, de Winther MPJ. Peritoneal macrophages have an impaired immune response in obesity which can be reversed by subsequent weight loss. BMJ Open Diabetes Res Care 2019; 7:e000751. [PMID: 31798899 PMCID: PMC6861071 DOI: 10.1136/bmjdrc-2019-000751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Obesity is recognized as a risk factor for various microbial infections. The immune system, which is affected by obesity, plays an important role in the pathophysiology of these infections and other obesity-related comorbidities. Weight loss is considered the most obvious treatment for obesity. However, multiple studies suggest that the comorbidities of obesity may persist after weight loss. Deregulation of immune cells including adipose tissue macrophages of obese individuals has been extensively studied, but how obesity and subsequent weight loss affect immune cell function outside adipose tissue is not well defined. RESEARCH DESIGN AND METHODS Here we investigated the phenotype of non-adipose tissue macrophages by transcriptional characterization of thioglycollate-elicited peritoneal macrophages (PM) from mice with diet-induced obesity and type 2 diabetes (T2D). Subsequently, we defined the characteristics of PMs after weight loss and mimicked a bacterial infection by exposing PMs to lipopolysaccharide. RESULTS AND CONCLUSIONS In contrast to the proinflammatory phenotype of adipose tissue macrophages in obesity and T2D, we found a deactivated state of PMs in obesity and T2D. Weight loss could reverse this deactivated macrophage phenotype. Anti-inflammatory characteristics of these non-adipose macrophages may explain why patients with obesity and T2D have an impaired immune response against pathogens. Our data also suggest that losing weight restores macrophage function and thus contributes to the reduction of immune-related comorbidities in patients.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/therapy
- Diet, High-Fat
- Dietary Fats/pharmacology
- Immunity, Cellular/drug effects
- Immunity, Cellular/physiology
- Insulin Resistance/physiology
- Macrophage Activation/drug effects
- Macrophage Activation/physiology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Obesity/complications
- Obesity/immunology
- Obesity/pathology
- Obesity/therapy
- Weight Loss/immunology
- Weight Loss/physiology
Collapse
Affiliation(s)
- Lisa Willemsen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annette E Neele
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Saskia van der Velden
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Koen H M Prange
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Myrthe den Toom
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Cindy P A A van Roomen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Myrthe E Reiche
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Guillermo R Griffith
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marion J J Gijbels
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Departments of Pathology and Molecular Genetics, CARIM School for Cardiovascular Diseases and GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Munich, Germany
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Munich, Germany
| |
Collapse
|
20
|
Wang Z, Long H, Chang C, Zhao M, Lu Q. Crosstalk between metabolism and epigenetic modifications in autoimmune diseases: a comprehensive overview. Cell Mol Life Sci 2018; 75:3353-3369. [PMID: 29974127 PMCID: PMC11105184 DOI: 10.1007/s00018-018-2864-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Little information is available regarding mechanistic links between epigenetic modifications and autoimmune diseases. It seems plausible to surmise that aberrant gene expression and energy metabolism would disrupt immune tolerance, which could ultimately result in autoimmune responses. Metaboloepigenetics is an emerging paradigm that defines the interrelationships between metabolism and epigenetics. Epigenetic modifications, such as the methylation/demethylation of DNA and histone proteins and histone acetylation/deacetylation can be dynamically produced and eliminated by a group of enzymes that consume several metabolites derived from various physiological pathways. Recent insights into cellular metabolism have demonstrated that environmental stimuli such as dietary exposure and nutritional status act through the variation in concentration of metabolites to affect epigenetic regulation and breakdown biochemical homeostasis. Metabolites, including S-adenosylmethionine, acetyl-CoA, nicotinamide adenine dinucleotide, α-ketoglutarate, and ATP serve as cofactors for chromatin-modifying enzymes, such as methyltransferases, deacetylases and kinases, which are responsible for chromatin remodelling. The concentration of crucial nutrients, such as glucose, glutamine, and oxygen, spatially and temporally modulate epigenetic modifications to regulate gene expression and the reaction to stressful microenvironments in disease pathology. In this review, we focus on the interaction between metabolic intermediates and epigenetic modifications, integrating environmental signals with programmes through modification of the epigenome-metabolome to speculate as to how this may influence autoimmune diseases.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China
| | - Hai Long
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Suite 6510, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, No. 139 Renmin Middle Rd, Changsha, 410011, Hunan, China.
| |
Collapse
|
21
|
Anastasi E, Filardi T, Tartaglione S, Lenzi A, Angeloni A, Morano S. Linking type 2 diabetes and gynecological cancer: an introductory overview. Clin Chem Lab Med 2018; 56:1413-1425. [PMID: 29427549 DOI: 10.1515/cclm-2017-0982] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/03/2018] [Indexed: 01/03/2025]
Abstract
Type 2 diabetes (T2D) is a chronic disease with a growing prevalence and a leading cause of death in many countries. Several epidemiological studies observed an association between T2D and increased risk of many types of cancer, such as gynecologic neoplasms (endometrial, cervical, ovarian and vulvar cancer). Insulin resistance, chronic inflammation and high free ovarian steroid hormones are considered the possible mechanisms behind this complex relationship. A higher risk of endometrial cancer was observed in T2D, even though this association largely attenuated after adjusting for obesity. A clear relationship between the incidence of cervical cancer (CC) and T2D has still not be determined; however T2D might have an impact on prognosis in patients with CC. To date, studies on the association between T2D and ovarian cancer (OC) are limited. The effect of pre-existing diabetes on cancer-specific mortality has been evaluated in several studies, with less clear results. Other epidemiological and experimental studies focused on the potential role of diabetes medications, mainly metformin, in cancer development in women. The correct understanding of the link between T2D and gynecologic cancer risk and mortality is currently imperative to possibly modify screening and diagnostic-therapeutic protocols in the future.
Collapse
Affiliation(s)
- Emanuela Anastasi
- Department of Molecular Medicine, University "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy, Phone: +39 064472347, Fax: +39 064478381
| | - Tiziana Filardi
- Department of Experimental Medicine, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| | - Sara Tartaglione
- Department of Molecular Medicine, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| | - Susanna Morano
- Department of Experimental Medicine, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| |
Collapse
|
22
|
Shahzad K, Gadi I, Nazir S, Al-Dabet MM, Kohli S, Bock F, Breitenstein L, Ranjan S, Fuchs T, Halloul Z, Nawroth PP, Pelicci PG, Braun-Dullaeus RC, Camerer E, Esmon CT, Isermann B. Activated protein C reverses epigenetically sustained p66 Shc expression in plaque-associated macrophages in diabetes. Commun Biol 2018; 1:104. [PMID: 30271984 PMCID: PMC6123684 DOI: 10.1038/s42003-018-0108-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022] Open
Abstract
Impaired activated protein C (aPC) generation is associated with atherosclerosis and diabetes mellitus. Diabetes-associated atherosclerosis is characterized by the hyperglycaemic memory, e.g., failure of disease improvement despite attenuation of hyperglycaemia. Therapies reversing the hyperglycaemic memory are lacking. Here we demonstrate that hyperglycaemia, but not hyperlipidaemia, induces the redox-regulator p66Shc and reactive oxygen species (ROS) in macrophages. p66Shc expression, ROS generation, and a pro-atherogenic phenotype are sustained despite restoring normoglycemic conditions. Inhibition of p66Shc abolishes this sustained pro-atherogenic phenotype, identifying p66Shc-dependent ROS in macrophages as a key mechanism conveying the hyperglycaemic memory. The p66Shc-associated hyperglycaemic memory can be reversed by aPC via protease-activated receptor-1 signalling. aPC reverses glucose-induced CpG hypomethylation within the p66Shc promoter by induction of the DNA methyltransferase-1 (DNMT1). Thus, epigenetically sustained p66Shc expression in plaque macrophages drives the hyperglycaemic memory, which-however-can be reversed by aPC. This establishes that reversal of the hyperglycaemic memory in diabetic atherosclerosis is feasible.
Collapse
Affiliation(s)
- Khurrum Shahzad
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany.
- Department of Biotechnology, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Ihsan Gadi
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Sumra Nazir
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Shrey Kohli
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Fabian Bock
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
- Department of Medicine, Vanderbilt University Medical Center, 37232, Nashville, TN, USA
| | - Lukas Breitenstein
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Satish Ranjan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Tina Fuchs
- Institute for Clinical Chemistry, University of Heidelberg Medical Faculty Mannheim, 68167, Mannheim, Germany
| | - Zuhir Halloul
- Division of Vascular Surgery, Department of General, Abdominal and Vascular Surgery Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, 69120, Heidelberg, Germany
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti, 435, 20141, Milan, Italy
| | - Ruediger C Braun-Dullaeus
- Department of Internal Medicine, Division of Cardiology and Angiology, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, 75015, Paris, France
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, and Department of Pathology and Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, OK, USA
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Leipziger Straße 44, 39120, Magdeburg, Germany.
| |
Collapse
|
23
|
Gerhard GS, Malenica I, Llaci L, Chu X, Petrick AT, Still CD, DiStefano JK. Differentially methylated loci in NAFLD cirrhosis are associated with key signaling pathways. Clin Epigenetics 2018; 10:93. [PMID: 30005700 PMCID: PMC6044005 DOI: 10.1186/s13148-018-0525-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
Altered DNA methylation events contribute to the pathogenesis and progression of metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). Investigations of global DNA methylation patterns in liver biopsies representing severe NAFLD fibrosis have been limited. We used the HumanMethylation 450K BeadChip to analyze genome-wide methylation in patients with biopsy-proven grade 3/4 NAFLD fibrosis/cirrhosis (N = 14) and age- and sex-matched controls with normal histology (N = 15). We identified 208 CpG islands (CGIs), including 99 hypomethylated and 109 hypermethylated CGIs, showing statistically significant evidence (adjusted P value < 0.05) for differential methylation between cirrhotic and normal samples. Comparison of β values for each CGI to the read count of its corresponding gene obtained from RNA-sequencing analysis revealed negative correlation (adjusted P value < 0.05) for 34 transcripts. These findings provide supporting evidence for a role for CpG methylation in the pathogenesis of NAFLD-related cirrhosis, including confirmation of previously reported differentially methylated CGIs, and contribute new insight into the molecular mechanisms underlying the initiation and progression of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Glenn S Gerhard
- Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Ivana Malenica
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Lorida Llaci
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Xin Chu
- Geisinger Obesity Institute, Danville, PA, 17822, USA
| | | | | | - Johanna K DiStefano
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA.
| |
Collapse
|
24
|
Liao Y, Gou L, Chen L, Zhong X, Zhang D, Zhu H, Lu X, Zeng T, Deng X, Li Y. NADPH oxidase 4 and endothelial nitric oxide synthase contribute to endothelial dysfunction mediated by histone methylations in metabolic memory. Free Radic Biol Med 2018; 115:383-394. [PMID: 29269309 DOI: 10.1016/j.freeradbiomed.2017.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 01/17/2023]
Abstract
"Metabolic memory" is identified as a phenomenon that transient hyperglycemia can be remembered by vasculature for quite a long term even after reestablishment of normoglycemia. NADPH oxidases (Noxs) and endothelial nitric oxide synthase (eNOS) are important enzymatic sources of reactive oxygen species (ROS) in diabetic vasculature. The aim of this study is to explore the roles of epigenetics and ROS derived from Noxs and eNOS in the metabolic memory. In this study, we demonstrated that vascular ROS was continuously activated in endothelium induced by transient high glucose, as well as sustained vascular endothelial dysfunction. The Nox4 and uncoupled eNOS are the major sources of ROS, while inhibition of Nox4 and eNOS significantly attenuated oxidative stress and almost recovered the endothelial function in metabolic memory. Furthermore, the aberrant histone methylation (H3K4me1, H3K9me2, and H3K9me3) at promoters of Nox4 and eNOS are the main causes for the persistent up-regulation of these two genes. Modifying the histone methylation could reduce the expression levels of Nox4 and eNOS, thus obviously attenuating endothelial dysfunction. These results indicate that histone methylation of Nox4 and eNOS play a key role in metabolic memory and may be the potential intervention targets for metabolic memory.
Collapse
Affiliation(s)
- Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Luoning Gou
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xueyu Zhong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dongxue Zhang
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Hangang Zhu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodan Lu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiuling Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuming Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
25
|
Spallotta F, Cencioni C, Atlante S, Garella D, Cocco M, Mori M, Mastrocola R, Kuenne C, Guenther S, Nanni S, Azzimato V, Zukunft S, Kornberger A, Sürün D, Schnütgen F, von Melchner H, Di Stilo A, Aragno M, Braspenning M, van Criekinge W, De Blasio MJ, Ritchie RH, Zaccagnini G, Martelli F, Farsetti A, Fleming I, Braun T, Beiras-Fernandez A, Botta B, Collino M, Bertinaria M, Zeiher AM, Gaetano C. Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients. Circ Res 2018; 122:31-46. [DOI: 10.1161/circresaha.117.311300] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022]
Abstract
Rationale:
Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes.
Objective:
To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs.
Methods and Results:
Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten–eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response.
Conclusions:
Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.
Collapse
Affiliation(s)
- Francesco Spallotta
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Chiara Cencioni
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Sandra Atlante
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Davide Garella
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Mattia Cocco
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Mattia Mori
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Raffaella Mastrocola
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Carsten Kuenne
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Stefan Guenther
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Simona Nanni
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Valerio Azzimato
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Sven Zukunft
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Angela Kornberger
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Duran Sürün
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Frank Schnütgen
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Harald von Melchner
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Antonella Di Stilo
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Manuela Aragno
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Maarten Braspenning
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Wim van Criekinge
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Miles J. De Blasio
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Rebecca H. Ritchie
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Germana Zaccagnini
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Fabio Martelli
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Antonella Farsetti
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Ingrid Fleming
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Thomas Braun
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Andres Beiras-Fernandez
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Bruno Botta
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Massimo Collino
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Massimo Bertinaria
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Andreas M. Zeiher
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Carlo Gaetano
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| |
Collapse
|
26
|
Twarock S, Reichert C, Peters U, Gorski DJ, Röck K, Fischer JW. Hyperglycaemia and aberrated insulin signalling stimulate tumour progression via induction of the extracellular matrix component hyaluronan. Int J Cancer 2017; 141:791-804. [DOI: 10.1002/ijc.30776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Sören Twarock
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität; Düsseldorf Germany
| | - Christina Reichert
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität; Düsseldorf Germany
| | - Ulrike Peters
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität; Düsseldorf Germany
| | - Daniel J. Gorski
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität; Düsseldorf Germany
| | - Katharina Röck
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität; Düsseldorf Germany
| | - Jens W. Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität; Düsseldorf Germany
| |
Collapse
|
27
|
Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway. Oncogenesis 2017; 6:e306. [PMID: 28319096 PMCID: PMC5533945 DOI: 10.1038/oncsis.2017.2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/07/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
Hyperglycemia is a common feature of diabetes mellitus, considered as a risk factor for cancer. However, its direct effects in cancer cell behavior are relatively unexplored. Herein we show that high glucose concentration induces aberrant glycosylation, increased cell proliferation, invasion and tumor progression of colon cancer. By modulating the activity of the rate-limiting enzyme, glutamine-fructose-6-phosphate amidotransferase (GFAT), we demonstrate that hexosamine biosynthetic pathway (HBP) is involved in those processes. Biopsies from patients with colon carcinoma show increased levels of GFAT and consequently aberrant glycans’ expression suggesting an increase of HBP flow in human colon cancer. All together, our results open the possibility that HBP links hyperglycemia, aberrant glycosylation and tumor malignancy, and suggest this pathway as a potential therapeutic target for colorectal cancer.
Collapse
|
28
|
Paula PC, Sousa DOB, Oliveira JTA, Carvalho AFU, Alves BGT, Pereira ML, Farias DF, Viana MP, Santos FA, Morais TC, Vasconcelos IM. A Protein Isolate from Moringa oleifera Leaves Has Hypoglycemic and Antioxidant Effects in Alloxan-Induced Diabetic Mice. Molecules 2017; 22:E271. [PMID: 28208654 PMCID: PMC6155657 DOI: 10.3390/molecules22020271] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 01/24/2023] Open
Abstract
Moringa oleifera has been used in traditional medicine to treat diabetes. However, few studies have been conducted to relate its antidiabetic properties to proteins. In this study, a leaf protein isolate was obtained from M. oleifera leaves, named Mo-LPI, and the hypoglycemic and antioxidant effects on alloxan-induced diabetic mice were assessed. Mo-LPI was obtained by aqueous extraction, ammonium sulphate precipitation and dialysis. The electrophoresis profile and proteolytic hydrolysis confirmed its protein nature. Mo-LPI showed hemagglutinating activity, cross-reaction with anti-insulin antibodies and precipitation after zinc addition. Single-dose intraperitoneal (i.p.) administration of Mo-LPI (500 mg/kg·bw) reduced the blood glucose level (reductions of 34.3%, 60.9% and 66.4% after 1, 3 and 5 h, respectively). The effect of Mo-LPI was also evidenced in the repeated dose test with a 56.2% reduction in the blood glucose level on the 7th day after i.p. administration. Mo-LPI did not stimulate insulin secretion in diabetic mice. Mo-LPI was also effective in reducing the oxidative stress in diabetic mice by a decrease in malondialdehyde level and increase in catalase activity. Mo-LPI (2500 mg/kg·bw) did not cause acute toxicity to mice. Mo-LPI is a promising alternative or complementary agent to treat diabetes.
Collapse
Affiliation(s)
- Paulo C Paula
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil.
| | - Daniele O B Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil.
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil.
| | - Ana F U Carvalho
- Department of Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil.
| | - Bella G T Alves
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil.
| | - Mirella L Pereira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil.
| | - Davi F Farias
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil.
- Department of Molecular Biology, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil.
| | - Martonio P Viana
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil.
| | - Flavia A Santos
- Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza 60430-160, Brazil.
| | - Talita C Morais
- Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza 60430-160, Brazil.
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-900, Brazil.
| |
Collapse
|
29
|
Lizotte F, Denhez B, Guay A, Gévry N, Côté AM, Geraldes P. Persistent Insulin Resistance in Podocytes Caused by Epigenetic Changes of SHP-1 in Diabetes. Diabetes 2016; 65:3705-3717. [PMID: 27585521 DOI: 10.2337/db16-0254] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022]
Abstract
Poor glycemic control profoundly affects protein expression and the cell signaling action that contributes to glycemic memory and irreversible progression of diabetic nephropathy (DN). We demonstrate that SHP-1 is elevated in podocytes of diabetic mice, causing insulin unresponsiveness and DN. Thus, sustained SHP-1 expression caused by hyperglycemia despite systemic glucose normalization could contribute to the glycemic memory effect in DN. Microalbuminuria, glomerular filtration rate, mesangial cell expansion, and collagen type IV and transforming growth factor-β expression were significantly increased in diabetic Ins2+/C96Y mice compared with nondiabetic Ins2+/+ mice and remained elevated despite glucose normalization with insulin implants. A persistent increase of SHP-1 expression in podocytes despite normalization of systemic glucose levels was associated with sustained inhibition of the insulin signaling pathways. In cultured podocytes, high glucose levels increased mRNA, protein expression, and phosphatase activity of SHP-1, which remained elevated despite glucose concentration returning to normal, causing persistent insulin receptor-β inhibition. Histone posttranslational modification analysis showed that the promoter region of SHP-1 was enriched with H3K4me1 and H3K9/14ac in diabetic glomeruli and podocytes, which remained elevated despite glucose level normalization. Hyperglycemia induces SHP-1 promoter epigenetic modifications, causing its persistent expression and activity and leading to insulin resistance, podocyte dysfunction, and DN.
Collapse
MESH Headings
- Animals
- Cell Line
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Epigenesis, Genetic/genetics
- Glomerular Filtration Rate/physiology
- Hyperglycemia/genetics
- Hyperglycemia/metabolism
- Immunohistochemistry
- Insulin Resistance/genetics
- Insulin Resistance/physiology
- Kidney Glomerulus/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Podocytes/metabolism
- Promoter Regions, Genetic/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Farah Lizotte
- Research Center of CHU de Sherbrooke and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Denhez
- Research Center of CHU de Sherbrooke and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Andréanne Guay
- Research Center of CHU de Sherbrooke and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anne Marie Côté
- Research Center of CHU de Sherbrooke and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Nephrology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Geraldes
- Research Center of CHU de Sherbrooke and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
30
|
Pradhan P, Upadhyay N, Tiwari A, Singh LP. Genetic and epigenetic modifications in the pathogenesis of diabetic retinopathy: a molecular link to regulate gene expression. ACTA ACUST UNITED AC 2016; 2:192-204. [PMID: 28691104 DOI: 10.15761/nfo.1000145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intensification in the frequency of diabetes and the associated vascular complications has been a root cause of blindness and visual impairment worldwide. One such vascular complication which has been the prominent cause of blindness; retinal vasculature, neuronal and glial abnormalities is diabetic retinopathy (DR), a chronic complicated outcome of Type 1 and Type 2 diabetes. It has also become clear that "genetic" variations in population alone can't explain the development and progression of diabetes and its complications including DR. DR experiences engagement of foremost mediators of diabetes such as hyperglycemia, oxidant stress, and inflammatory factors that lead to the dysregulation of "epigenetic" mechanisms involving histone acetylation and histone and DNA methylation, chromatin remodeling and expression of a complex set of stress-regulated and disease-associated genes. In addition, both elevated glucose concentration and insulin resistance leave a robust effect on epigenetic reprogramming of the endothelial cells too, since endothelium associated with the eye aids in maintaining the vascular homeostasis. Furthermore, several studies conducted on the disease suggest that the modifications of the epigenome might be the fundamental mechanism(s) for the proposed metabolic memory' resulting into prolonged gene expression for inflammation and cellular dysfunction even after attaining the glycemic control in diabetics. Henceforth, the present review focuses on the aspects of genetic and epigenetic alterations in genes such as vascular endothelial growth factor and aldose reductase considered being associated with DR. In addition, we discuss briefly the role of the thioredoxin-interacting protein TXNIP, which is strongly induced by high glucose and diabetes, in cellular oxidative stress and mitochondrial dysfunction potentially leading to chromatin remodeling and ocular complications of diabetes. The identification of disease-associated genes and their epigenetic regulations will lead to potential new drugs and gene therapies as well as personalized medicine to prevent or slow down the progression of DR.
Collapse
Affiliation(s)
- Priya Pradhan
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Nisha Upadhyay
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Technical University, Bhopal, Madhya Pradesh, India
| | - Lalit P Singh
- Departments of Anatomy/Cell Biology and Ophthalmology, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
31
|
Cencioni C, Atlante S, Savoia M, Martelli F, Farsetti A, Capogrossi MC, Zeiher AM, Gaetano C, Spallotta F. The double life of cardiac mesenchymal cells: Epimetabolic sensors and therapeutic assets for heart regeneration. Pharmacol Ther 2016; 171:43-55. [PMID: 27742569 DOI: 10.1016/j.pharmthera.2016.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organ-specific mesenchymal cells naturally reside in the stroma, where they are exposed to some environmental variables affecting their biology and functions. Risk factors such as diabetes or aging influence their adaptive response. In these cases, permanent epigenetic modifications may be introduced in the cells with important consequences on their local homeostatic activity and therapeutic potential. Numerous results suggest that mesenchymal cells, virtually present in every organ, may contribute to tissue regeneration mostly by paracrine mechanisms. Intriguingly, the heart is emerging as a source of different cells, including pericytes, cardiac progenitors, and cardiac fibroblasts. According to phenotypic, functional, and molecular criteria, these should be classified as mesenchymal cells. Not surprisingly, in recent years, the attention on these cells as therapeutic tools has grown exponentially, although only very preliminary data have been obtained in clinical trials to date. In this review, we summarized the state of the art about the phenotypic features, functions, regenerative properties, and clinical applicability of mesenchymal cells, with a particular focus on those of cardiac origin.
Collapse
Affiliation(s)
- Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Sandra Atlante
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Matteo Savoia
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Universitá Cattolica, Institute of Medical Pathology, 00138 Rome, Italy; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan 20097, Italy.
| | - Antonella Farsetti
- Consiglio Nazionale delle Ricerche, Istituto di Biologia Cellulare e Neurobiologia, Roma, Italy; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Maurizio C Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Roma, Italy.
| | - Andreas M Zeiher
- Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany; Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| |
Collapse
|
32
|
Marandel L, Lepais O, Arbenoits E, Véron V, Dias K, Zion M, Panserat S. Remodelling of the hepatic epigenetic landscape of glucose-intolerant rainbow trout (Oncorhynchus mykiss) by nutritional status and dietary carbohydrates. Sci Rep 2016; 6:32187. [PMID: 27561320 PMCID: PMC4999891 DOI: 10.1038/srep32187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022] Open
Abstract
The rainbow trout, a carnivorous fish, displays a 'glucose-intolerant' phenotype revealed by persistent hyperglycaemia when fed a high carbohydrate diet (HighCHO). Epigenetics refers to heritable changes in gene activity and is closely related to environmental changes and thus to metabolism adjustments governed by nutrition. In this study we first assessed in the trout liver whether and how nutritional status affects global epigenome modifications by targeting DNA methylation and histone marks previously reported to be affected in metabolic diseases. We then examined whether dietary carbohydrates could affect the epigenetic landscape of duplicated gluconeogenic genes previously reported to display changes in mRNA levels in trout fed a high carbohydrate diet. We specifically highlighted global hypomethylation of DNA and hypoacetylation of H3K9 in trout fed a HighCHO diet, a well-described phenotype in diabetes. g6pcb2 ohnologs were also hypomethylated at specific CpG sites in these animals according to their up-regulation. Our findings demonstrated that the hepatic epigenetic landscape can be affected by both nutritional status and dietary carbohydrates in trout. The mechanism underlying the setting up of these epigenetic modifications has now to be explored in order to improve understanding of its impact on the glucose intolerant phenotype in carnivorous teleosts.
Collapse
Affiliation(s)
- Lucie Marandel
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Olivier Lepais
- INRA, UMR 1224, Ecologie Comportementale et Biologie des Populations de Poissons, Saint Pée sur Nivelle, F-64310, France.,Univ Pau &Pays Adour, UMR 1224, Ecologie Comportementale et Biologie des Populations de Poissons, UFR Sciences et Techniques de la Côte Basque, Anglet, F-64600, France, Anglet, F-64600, France
| | - Eva Arbenoits
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Vincent Véron
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Karine Dias
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Marie Zion
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Stéphane Panserat
- INRA, Univ Pau &Pays Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, Saint Pée sur Nivelle, F-64310, France
| |
Collapse
|
33
|
Garufi A, Trisciuoglio D, Cirone M, D'Orazi G. ZnCl2 sustains the adriamycin-induced cell death inhibited by high glucose. Cell Death Dis 2016; 7:e2280. [PMID: 27362798 PMCID: PMC5108333 DOI: 10.1038/cddis.2016.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/14/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022]
Abstract
Hyperglycemia, the condition of high blood glucose, is typical of diabetes and obesity and represents a significant clinical problem. The relationship between hyperglycemia and cancer risk has been established by several studies. Moreover, hyperglycemia has been shown to reduce cancer cell response to therapies, conferring resistance to drug-induced cell death. Therefore, counteracting the negative effects of hyperglycemia may positively improve the cancer cell death induced by chemotherapies. Recent studies showed that zinc supplementation may have beneficial effects on glycemic control. Here we aimed at evaluating whether ZnCl2 could counteract the high-glucose (HG) effects and consequently restore the drug-induced cancer cell death. At the molecular level we found that the HG-induced expression of genes known to be involved in chemoresistance (such as HIF-1α, GLUT1, and HK2 glycolytic genes, as well as NF-κB activity) was reduced by ZnCl2 treatment. In agreement, the adryamicin (ADR)-induced apoptotic cancer cell death was significantly impaired by HG and efficiently re-established by ZnCl2 cotreatment. Mechanistically, the ADR-induced c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) phosphorylation, inhibited by HG, was efficiently restored by ZnCl2. The JNK involvement in apoptotic cell death was assessed by the use of JNK dominant-negative expression vector that indeed impaired the ZnCl2 ability to restore drug-induced cell death in HG condition. Altogether, these findings indicate that ZnCl2 supplementation efficiently restored the drug-induced cancer cell death, inhibited by HG, by both sustaining JNK activation and counteracting the glycolytic pathway.
Collapse
Affiliation(s)
- A Garufi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy.,Department of Medical, Oral and Biotechnological Sciences, Tumor Biology Section, University 'G. d'Annunzio', Chieti, Italy
| | - D Trisciuoglio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - M Cirone
- Department of Experimental Medicine, Pasteur-Fondazione Cenci Bolognetti Institute, Sapienza University, Rome, Italy
| | - G D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy.,Department of Medical, Oral and Biotechnological Sciences, Tumor Biology Section, University 'G. d'Annunzio', Chieti, Italy
| |
Collapse
|
34
|
Stegen S, Sigal RJ, Kenny GP, Khandwala F, Yard B, De Heer E, Baelde H, Peersman W, Derave W. Aerobic and resistance training do not influence plasma carnosinase content or activity in type 2 diabetes. Am J Physiol Endocrinol Metab 2015; 309:E663-9. [PMID: 26389600 DOI: 10.1152/ajpendo.00142.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/04/2015] [Indexed: 01/03/2023]
Abstract
A particular allele of the carnosinase gene (CNDP1) is associated with reduced plasma carnosinase activity and reduced risk for nephropathy in diabetic patients. On the one hand, animal and human data suggest that hyperglycemia increases plasma carnosinase activity. On the other hand, we recently reported lower carnosinase activity levels in elite athletes involved in high-intensity exercise compared with untrained controls. Therefore, this study investigates whether exercise training and the consequent reduction in hyperglycemia can suppress carnosinase activity and content in adults with type 2 diabetes. Plasma samples were taken from 243 males and females with type 2 diabetes (mean age = 54.3 yr, SD = 7.1) without major microvascular complications before and after a 6-mo exercise training program [4 groups: sedentary control (n = 61), aerobic exercise (n = 59), resistance exercise (n = 63), and combined exercise training (n = 60)]. Plasma carnosinase content and activity, hemoglobin (Hb) A1c, lipid profile, and blood pressure were measured. A 6-mo exercise training intervention, irrespective of training modality, did not decrease plasma carnosinase content or activity in type 2 diabetic patients. Plasma carnosinase content and activity showed a high interindividual but very low intraindividual variability over the 6-mo period. Age and sex, but not Hb A1c, were significantly related to the activity or content of this enzyme. It can be concluded that the beneficial effects of exercise training on the incidence of diabetic complications are probably not related to a lowering effect on plasma carnosinase content or activity.
Collapse
Affiliation(s)
- Sanne Stegen
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Ronald J Sigal
- Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Cumming School of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada; School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Glen P Kenny
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Benito Yard
- 5th Medical Department, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Emile De Heer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Wim Peersman
- Department of Family Medicine and Primary Health Care, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium;
| |
Collapse
|
35
|
Abstract
Epigenetic regulation of gene expression allows the organism to respond/adapt to environmental conditions without changing the gene coding sequence. Epigenetic modifications have also been found to control gene expression in various diseases, including diabetes. Epigenetic changes induced by hyperglycemia in multiple target organs contribute to metabolic memory of diabetic complications. The long-lasting development of diabetic complications even after achieving glucose control has been partly attributed to epigenetic changes in target cells. Specific epigenetic drugs might rescue chromatin conformation associated to hyperglycemia possibly slowing down the onset of diabetes-related complications. The current review will describe the updated epigenetics in diabetes that can be used to personalize a more focused treatment.
Collapse
Affiliation(s)
- Adriana Fodor
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| | - Angela Cozma
- University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| | - Eddy Karnieli
- Institute of Endocrinology, Diabetes & Metabolism, Rambam Medical Center, Haifa, Israel
- Galil Center for Personalized Medicine & Medical Informatics, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
36
|
Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O'Neal DN, Januszewski AS. Biomarkers in Diabetic Retinopathy. Rev Diabet Stud 2015; 12:159-95. [PMID: 26676667 DOI: 10.1900/rds.2015.12.159] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat diabetic retinopathy, there is need to reliably identify and triage people with diabetes. Biomarkers may facilitate a better understanding of diabetic retinopathy, and contribute to the development of novel treatments and new clinical strategies to prevent vision loss in people with diabetes. This article reviews key aspects related to biomarker research, and focuses on some specific biomarkers relevant to diabetic retinopathy.
Collapse
Affiliation(s)
- Alicia J Jenkins
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | | | - Anthony C Keech
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | - David N O'Neal
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | | |
Collapse
|
37
|
Cencioni C, Spallotta F, Mai A, Martelli F, Farsetti A, Zeiher AM, Gaetano C. Sirtuin function in aging heart and vessels. J Mol Cell Cardiol 2015; 83:55-61. [PMID: 25579854 DOI: 10.1016/j.yjmcc.2014.12.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/04/2014] [Accepted: 12/30/2014] [Indexed: 12/22/2022]
Abstract
Age is the most important risk factor for metabolic alterations and cardiovascular accidents. Although class III histone deacetylases, alias Sirtuins, have been appealed as "the fountain of youth" their role in longevity control and prevention of aging-associated disease is still under debate. Indeed, several lines of evidence indicate that sirtuin activity is strictly linked to metabolism and dependent on NAD(+) synthesis both often altered as aging progresses. During aging the cardiovascular system is attacked by a variety of environmental stresses, including those determined by high blood glucose and lipid levels, or by the presence of oxidized lipoproteins which, among others, determine important oxidative stress signals. In such a milieu, heart and vessels develop a functional impairment leading to atherosclerosis, ischemia, heart insufficiency and failure. Sirtuins, which are believed to have a positive impact on cardiovascular physiology and physiopathology, are distributed in different subcellular compartments including the nucleus, the cytoplasm and the mitochondria, where they regulate expression and function of a large variety of target genes and proteins. Remarkably, experimental animal models indicate resveratrol, the first natural compound described to positively regulate the activity of sirtuins, as able to protect the endothelium and the heart exposed to a variety of stress agents. This review will focus on the regulation and function of mammalian sirtuins with special attention paid to their role as cardiovascular "defenders" giving indication of their targets of potential relevance for the development of future therapeutics. This article is part of a Special Issue entitled CV Aging.
Collapse
Affiliation(s)
- Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| | - Antonello Mai
- Pasteur Institute - Cenci-Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan 20,097, Italy.
| | - Antonella Farsetti
- Consiglio Nazionale delle Ricerche, Istituto di Biologia Cellulare e Neurobiologia, Roma, Italy.
| | - Andreas M Zeiher
- Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main 60,596, Germany.
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main 60596, Germany.
| |
Collapse
|
38
|
Dedov II, Shestakova MV. [The metabolic memory phenomenon in predicting a risk for vascular complications in diabetes mellitus]. TERAPEVT ARKH 2015; 87:4-10. [PMID: 26978167 DOI: 10.17116/terarkh201587104-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper presents data on positive and negative metabolic memory phenomena in patients with type 1 and type 2 diabetes mellitus (DM) as exemplified by the long-term randomized trials DCCT, UKPDS, ACCORD, VADT, and ADVANCE. It discusses the role of metabolic memory in predicting a risk for vascular complications in DM. Ideas on the mechanisms of this phenomenon, which are based on the activation of oxidative stress, the production of irreversible glycation products, and epigenetic disorders, are given.
Collapse
Affiliation(s)
- I I Dedov
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - M V Shestakova
- Endocrinology Research Center, Ministry of Health of Russia, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
39
|
Abstract
As the prevalence of diabetes mellitus is substantially increasing worldwide, associated diseases such as renal failure, cardiovascular diseases, fatty liver, and cancers have also increased. A number of cancers such as pancreatic, liver, breast, and female reproductive cancers have shown an increased prevalence and a higher mortality rate in diabetic patients compared to healthy subjects. Thus, this suggests an association between diabetes, especially type 2 diabetes and cancer incidence and progression. Recent studies have suggested that hyperinsulinemia, chronic inflammation and hyperglycemia, all frequently seen in diabetics, may lead to increased tumor growth; the underlying molecular mechanisms of this association are not fully understood. In particular, chronic hyperglycemic episodes could serve as a direct or indirect mediator of the increase in tumor cell growth. Here, we will discuss our current understanding how hyperglycemia and cancer risk may be linked, and what the implications are for the treatment of diabetic cancer patients.
Collapse
Affiliation(s)
- Tae Young Ryu
- Department of Biological Sciences, Ulsan National Institute of Science and Technology School of Life Sciences, Ulsan, Korea
| | - Jiyoung Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology School of Life Sciences, Ulsan, Korea
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, Cell Biology and Simmons Cancer, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|