1
|
Hansen DT, Tu J, Bouck AW, Mathis CL, Barrios AM. Multipartite Fluorogenic Sensors for Monitoring Tyrosine Phosphatase Activity. Chembiochem 2024; 25:e202400607. [PMID: 39406683 DOI: 10.1002/cbic.202400607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Fluorogenic substrates are essential tools for studying the activity of many enzymes including the protein tyrosine phosphatases (PTPs). Here, we have taken the first step toward the development of genetically encodable sensors for PTP activity using fluorescent and fluorogen-activating proteins. The Fluorescence-Activating and absorption Shifting Tag (FAST) is a small protein that becomes fluorescent upon binding to a small molecule dye. We demonstrate that FAST protein can be used as a sensor for PTP-mediated dephosphorylation of phosphorylated dye molecules. Phosphorylated 4-hydroxybenzylidene rhodanine (pHBR) is not able to bind to the FAST protein and induce fluorescence, but provides a sensitive assay for PTP activity, readily detecting 100 pM concentrations of PTP1B in the presence of FAST with a kcat value of 19±1 s-1 and a KM value of 93±3 μM. In addition, while phosphorylation of the C-terminal peptide of split GFP does not result in appreciable change in fluorescence of the reconstituted protein, phosphorylation of the C-terminal peptide of the split FAST protein abrogates fluorescence. Upon PTP-mediated dephosphorylation of the C-terminal peptide, the ability of the N- and C-terminal components to form a fluorescent complex with the small molecule dye is restored, leading to fluorescence.
Collapse
Affiliation(s)
- Daniel T Hansen
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Alison W Bouck
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Cheryl L Mathis
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
- Department of Biochemistry, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
2
|
Momeny M, Tienhaara M, Sharma M, Chakroborty D, Varjus R, Takala I, Merisaari J, Padzik A, Vogt A, Paatero I, Elenius K, Laajala TD, Kurppa KJ, Westermarck J. DUSP6 inhibition overcomes neuregulin/HER3-driven therapy tolerance in HER2+ breast cancer. EMBO Mol Med 2024; 16:1603-1629. [PMID: 38886591 PMCID: PMC11251193 DOI: 10.1038/s44321-024-00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Despite clinical benefits of tyrosine kinase inhibitors (TKIs) in cancer, most tumors can reactivate proliferation under TKI therapy. Here we present transcriptional profiling of HER2+ breast cancer cells transitioning from dormant drug tolerant cells to re-proliferating cells under continuous HER2 inhibitor (HER2i) therapy. Focusing on phosphatases, expression of dual-specificity phosphatase DUSP6 was found inhibited in dormant cells, but strongly induced upon regrowth. DUSP6 expression also selectively associated with poor patient survival in HER2+ breast cancers. DUSP6 overexpression conferred apoptosis resistance, whereas its pharmacological blockade prevented therapy tolerance development under HER2i therapy. DUSP6 targeting also synergized with clinically used HER2i combination therapies. Mechanistically DUSP6 is a positive regulator of HER3 expression, and its impact on HER2i tolerance was mediated by neuregulin-HER3 axis. In vivo, genetic targeting of DUSP6 reduced tumor growth in brain metastasis model, whereas its pharmacological targeting induced synthetic lethal therapeutic effect in combination with HER2i. Collectively this work demonstrates that DUSP6 drives escape from HER2i-induced dormancy, and that DUSP6 is a druggable target to overcome HER3-driven TKI resistance.
Collapse
Affiliation(s)
- Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Mari Tienhaara
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mukund Sharma
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Deepankar Chakroborty
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Roosa Varjus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Iina Takala
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Joni Merisaari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Artur Padzik
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Andreas Vogt
- University of Pittsburgh Drug Discovery Institute, Department of Computational and Systems Biology, Pittsburgh Technology Center, Pittsburgh, PA, USA
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Klaus Elenius
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Kari J Kurppa
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
3
|
Maccari R, Ottanà R. Can Allostery Be a Key Strategy for Targeting PTP1B in Drug Discovery? A Lesson from Trodusquemine. Int J Mol Sci 2023; 24:ijms24119621. [PMID: 37298571 DOI: 10.3390/ijms24119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme crucially implicated in aberrations of various signaling pathways that underlie the development of different human pathologies, such as obesity, diabetes, cancer, and neurodegenerative disorders. Its inhibition can prevent these pathogenetic events, thus providing a useful tool for the discovery of novel therapeutic agents. The search for allosteric PTP1B inhibitors can represent a successful strategy to identify drug-like candidates by offering the opportunity to overcome some issues related to catalytic site-directed inhibitors, which have so far hampered the development of drugs targeting this enzyme. In this context, trodusquemine (MSI-1436), a natural aminosterol that acts as a non-competitive PTP1B inhibitor, appears to be a milestone. Initially discovered as a broad-spectrum antimicrobial agent, trodusquemine exhibited a variety of unexpected properties, ranging from antidiabetic and anti-obesity activities to effects useful to counteract cancer and neurodegeneration, which prompted its evaluation in several preclinical and clinical studies. In this review article, we provide an overview of the main findings regarding the activities and therapeutic potential of trodusquemine and their correlation with PTP1B inhibition. We also included some aminosterol analogues and related structure-activity relationships that could be useful for further studies aimed at the discovery of new allosteric PTP1B inhibitors.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
|
5
|
Benito-León M, Gil-Redondo JC, Perez-Sen R, Delicado EG, Ortega F, Gomez-Villafuertes R. BCI, an inhibitor of the DUSP1 and DUSP6 dual specificity phosphatases, enhances P2X7 receptor expression in neuroblastoma cells. Front Cell Dev Biol 2022; 10:1049566. [PMID: 36589747 PMCID: PMC9797830 DOI: 10.3389/fcell.2022.1049566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
P2X7 receptor (P2RX7) is expressed strongly by most human cancers, including neuroblastoma, where high levels of P2RX7 are correlated with a poor prognosis for patients. Tonic activation of P2X7 receptor favors cell metabolism and angiogenesis, thereby promoting cancer cell proliferation, immunosuppression, and metastasis. Although understanding the mechanisms that control P2X7 receptor levels in neuroblastoma cells could be biologically and clinically relevant, the intracellular signaling pathways involved in this regulation remain poorly understood. Here we show that (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), an allosteric inhibitor of dual specificity phosphatases (DUSP) 1 and 6, enhances the expression of P2X7 receptor in N2a neuroblastoma cells. We found that exposure to BCI induces the phosphorylation of mitogen-activated protein kinases p38 and JNK, while it prevents the phosphorylation of ERK1/2. BCI enhanced dual specificity phosphatase 1 expression, whereas it induced a decrease in the dual specificity phosphatase 6 transcripts, suggesting that BCI-dependent inhibition of dual specificity phosphatase 1 may be responsible for the increase in p38 and JNK phosphorylation. The weaker ERK phosphorylation induced by BCI was reversed by p38 inhibition, indicating that this MAPK is involved in the regulatory loop that dampens ERK activity. The PP2A phosphatase appears to be implicated in the p38-dependent dephosphorylation of ERK1/2. In addition, the PTEN phosphatase inhibition also prevented ERK1/2 dephosphorylation, probably through p38 downregulation. By contrast, inhibition of the p53 nuclear factor decreased ERK phosphorylation, probably enhancing the activity of p38. Finally, the inhibition of either p38 or Sp1-dependent transcription halved the increase in P2X7 receptor expression induced by BCI. Moreover, the combined inhibition of both p38 and Sp1 completely prevented the effect exerted by BCI. Together, our results indicate that dual specificity phosphatase 1 acts as a novel negative regulator of P2X7 receptor expression in neuroblastoma cells due to the downregulation of the p38 pathway.
Collapse
Affiliation(s)
- María Benito-León
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,Department of Nanobiotechnology, Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Vienna, Austria
| | - Raquel Perez-Sen
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Esmerilda G. Delicado
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Felipe Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| | - Rosa Gomez-Villafuertes
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, University Complutense of Madrid, Madrid, Spain,Instituto Universitario de Investigación en Neuroquímica (IUIN), Madrid, Spain,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain,*Correspondence: Felipe Ortega, ; Rosa Gomez-Villafuertes,
| |
Collapse
|
6
|
Ryan A, Janosko CP, Courtney TM, Deiters A. Engineering SHP2 Phosphatase for Optical Control. Biochemistry 2022; 61:2687-2697. [DOI: 10.1021/acs.biochem.2c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chasity P. Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Taylor M. Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Yan H, Jiang M, Yang F, Tang X, Lin M, Zhou C, Tan Y, Liu D. Ajuforrestin A, an Abietane Diterpenoid from Ajuga ovalifolia var. calanthe, Induces A549 Cell Apoptosis by Targeting SHP2. Molecules 2022; 27:molecules27175469. [PMID: 36080236 PMCID: PMC9457730 DOI: 10.3390/molecules27175469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The Src-homology 2 domain-containing phosphatase 2 (SHP2), which is encoded by PTPN11, participates in many cellular signaling pathways and is closely related to various tumorigenesis. Inhibition of the abnormal activity of SHP2 by small molecules is an important part of cancer treatment. Here, three abietane diterpenoids, named compounds 1–3, were isolated from Ajuga ovalifolia var. calantha. Spectroscopic analysis was used to identify the exact structure of the compounds. The enzymatic kinetic experiment and the cellular thermal shift assay showed compound 2 selectively inhibited SHP2 activity in vitro. Molecular docking indicated compound 2 targeted the SHP2 catalytic domain. The predicted pharmacokinetic properties by SwissADME revealed that compound 2 passed the majority of the parameters of common drug discovery rules. Compound 2 restrained A549 proliferation (IC50 = 8.68 ± 0.96 μM), invasion and caused A549 cell apoptosis by inhibiting the SHP2–ERK/AKT signaling pathway. Finally, compound 2 (Ajuforrestin A) is a potent and efficacious SHP2 inhibitor and may be a promising compound for human lung epithelial cancer treatment.
Collapse
Affiliation(s)
- Hongling Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Miao Jiang
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fujin Yang
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Xueyong Tang
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Mao Lin
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Chunyan Zhou
- General Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| | - Deming Liu
- Chongqing Clinical Research Center for Dermatology, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
- Correspondence: (C.Z.); (Y.T.); (D.L.)
| |
Collapse
|
8
|
Nunes-Xavier CE, Zaldumbide L, Mosteiro L, López-Almaraz R, García de Andoin N, Aguirre P, Emaldi M, Torices L, López JI, Pulido R. Protein Tyrosine Phosphatases in Neuroblastoma: Emerging Roles as Biomarkers and Therapeutic Targets. Front Cell Dev Biol 2021; 9:811297. [PMID: 34957126 PMCID: PMC8692838 DOI: 10.3389/fcell.2021.811297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma is a type of cancer intimately related with early development and differentiation of neuroendocrine cells, and constitutes one of the pediatric cancers with higher incidence and mortality. Protein tyrosine phosphatases (PTPs) are key regulators of cell growth and differentiation by their direct effect on tyrosine dephosphorylation of specific protein substrates, exerting major functions in the modulation of intracellular signaling during neuron development in response to external cues driving cell proliferation, survival, and differentiation. We review here the current knowledge on the role of PTPs in neuroblastoma cell growth, survival, and differentiation. The potential of PTPs as biomarkers and molecular targets for inhibition in neuroblastoma therapies is discussed.
Collapse
Affiliation(s)
- Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Lorena Mosteiro
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | | | | | - Pablo Aguirre
- Department of Pathology, Donostia University Hospital, San Sebastian, Spain
| | - Maite Emaldi
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Torices
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - José I. López
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| |
Collapse
|
9
|
Gehring K, Kozlov G, Yang M, Fakih R. The double lives of phosphatases of regenerating liver: A structural view of their catalytic and noncatalytic activities. J Biol Chem 2021; 298:101471. [PMID: 34890645 PMCID: PMC8728433 DOI: 10.1016/j.jbc.2021.101471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphatases of regenerating liver (PRLs) are protein phosphatases involved in the control of cell growth and migration. They are known to promote cancer metastasis but, despite over 20 years of study, there is still no consensus about their mechanism of action. Recent work has revealed that PRLs lead double lives, acting both as catalytically active enzymes and as pseudophosphatases. The three known PRLs belong to the large family of cysteine phosphatases that form a phosphocysteine intermediate during catalysis. Uniquely to PRLs, this intermediate is stable, with a lifetime measured in hours. As a consequence, PRLs have very little phosphatase activity. Independently, PRLs also act as pseudophosphatases by binding CNNM membrane proteins to regulate magnesium homeostasis. In this function, an aspartic acid from CNNM inserts into the phosphatase catalytic site of PRLs, mimicking a substrate–enzyme interaction. The delineation of PRL pseudophosphatase and phosphatase activities in vivo was impossible until the recent identification of PRL mutants defective in one activity or the other. These mutants showed that CNNM binding was sufficient for PRL oncogenicity in one model of metastasis, but left unresolved its role in other contexts. As the presence of phosphocysteine prevents CNNM binding and CNNM-binding blocks catalytic activity, these two activities are inherently linked. Additional studies are needed to untangle the intertwined catalytic and noncatalytic functions of PRLs. Here, we review the current understanding of the structure and biophysical properties of PRL phosphatases.
Collapse
Affiliation(s)
- Kalle Gehring
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| | - Guennadi Kozlov
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Meng Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Rayan Fakih
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Huang L, Huang J, Nie H, Li Y, Song L, Wu F. Design, synthesis and biological evaluation of combretastatin A-4 sulfamate derivatives as potential anti-cancer agents. RSC Med Chem 2021; 12:1374-1380. [PMID: 34458740 PMCID: PMC8372205 DOI: 10.1039/d0md00372g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/17/2021] [Indexed: 01/20/2023] Open
Abstract
A series of combretastatin A-4 (CA-4) sulfamate derivatives were synthesized and their structure-activity relationship on tubulin, arylsulfatase and tumor cell antiproliferation inhibition was studied. Among them, compound 16a showed excellent potency as well as CA-4 under the same conditions against six tumor cells including HTC-116, HeLa, HepG2, MGC803, MKN45 and MCF-7 cells, respectively. Molecular docking revealed that several important hydrogen bond interactions were formed between the sulfamate group of 16a and the colchicine binding site of tubulin and steroid sulfatase respectively. Although compound 16a was less active than CA-4 in regard to its in vitro activity as an inhibitor of tubulin polymerization, it was effective as an inhibitor of arylsulfatase. This novel combretastatin A-4 sulfamate derivative has the potential to be developed as a dual inhibitor of tubulin polymerization and arylsulfatase for cancer therapy.
Collapse
Affiliation(s)
- Leilei Huang
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
| | - Jinwen Huang
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry CAS China
| | - Hui Nie
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
| | - Yingzi Li
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
| | - Lixing Song
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
| | - Fanhong Wu
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai China
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology China
| |
Collapse
|
12
|
Cancer stem cell phosphatases. Biochem J 2021; 478:2899-2920. [PMID: 34319405 DOI: 10.1042/bcj20210254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant phosphatases have recently become druggable, indicating that further understanding of the CSC phosphatases might provide novel therapeutic opportunities. This review summarizes the current knowledge about fundamental, but yet poorly understood involvement of phosphatases in the regulation of major CSC signaling pathways. We also review the functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy resistance; focusing particularly on hematological cancers and glioblastoma. We further discuss the small molecule targeting of CSC phosphatases and their therapeutic potential in cancer combination therapies.
Collapse
|
13
|
Lesnikova A, Casarotto P, Moliner R, Fred SM, Biojone C, Castrén E. Perineuronal Net Receptor PTPσ Regulates Retention of Memories. Front Synaptic Neurosci 2021; 13:672475. [PMID: 34366821 PMCID: PMC8339997 DOI: 10.3389/fnsyn.2021.672475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022] Open
Abstract
Perineuronal nets (PNNs) have an important physiological role in the retention of learning by restricting cognitive flexibility. Their deposition peaks after developmental periods of intensive learning, usually in late childhood, and they help in long-term preservation of newly acquired skills and information. Modulation of PNN function by various techniques enhances plasticity and regulates the retention of memories, which may be beneficial when memory persistence entails negative symptoms such as post-traumatic stress disorder (PTSD). In this study, we investigated the role of PTPσ [receptor-type tyrosine-protein phosphatase S, a phosphatase that is activated by binding of chondroitin sulfate proteoglycans (CSPGs) from PNNs] in retention of memories using Novel Object Recognition and Fear Conditioning models. We observed that mice haploinsufficient for PTPRS gene (PTPσ+/–), although having improved short-term object recognition memory, display impaired long-term memory in both Novel Object Recognition and Fear Conditioning paradigm, as compared to WT littermates. However, PTPσ+/– mice did not show any differences in behavioral tests that do not heavily rely on cognitive flexibility, such as Elevated Plus Maze, Open Field, Marble Burying, and Forced Swimming Test. Since PTPσ has been shown to interact with and dephosphorylate TRKB, we investigated activation of this receptor and its downstream pathways in limbic areas known to be associated with memory. We found that phosphorylation of TRKB and PLCγ are increased in the hippocampus, prefrontal cortex, and amygdaloid complex of PTPσ+/– mice, but other TRKB-mediated signaling pathways are not affected. Our data suggest that PTPσ downregulation promotes TRKB phosphorylation in different brain areas, improves short-term memory performance but disrupts long-term memory retention in the tested animal models. Inhibition of PTPσ or disruption of PNN-PTPσ-TRKB complex might be a potential target for disorders where negative modulation of the acquired memories can be beneficial.
Collapse
Affiliation(s)
| | - Plinio Casarotto
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Rafael Moliner
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Senem Merve Fred
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Synthesis and evaluation of bifunctional PTP4A3 phosphatase inhibitors activating the ER stress pathway. Bioorg Med Chem Lett 2021; 46:128167. [PMID: 34089839 DOI: 10.1016/j.bmcl.2021.128167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
We developed JMS-053, a potent inhibitor of the dual specificity phosphatase PTP4A3 that is potentially suitable for cancer therapy. Due to the emerging role of the unfolded protein response (UPR) in cancer pathology, we sought to identify derivatives that combine PTP4A3 inhibition with induction of endoplasmatic reticulum (ER) stress, with the goal to generate more potent anticancer agents. We have now generated bifunctional analogs that link the JMS-053 pharmacophore to an adamantyl moiety and act in concert with the phosphatase inhibitor to induce ER stress and cell death. The most potent compound in this series, 7a, demonstrated a ca. 5-fold increase in cytotoxicity in a breast cancer cell line and strong activation of UPR and ER stress response genes in spite of a ca. 13-fold decrease in PTP4A3 inhibition. These results demonstrate that the combination of phosphatase inhibition with UPR/ER-stress upregulation potentiates efficacy.
Collapse
|
15
|
The dual inhibition against the activity and expression of tyrosine phosphatase PRL-3 from a rhodanine derivative. Bioorg Med Chem Lett 2021; 41:127981. [PMID: 33766767 DOI: 10.1016/j.bmcl.2021.127981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/14/2021] [Indexed: 11/22/2022]
Abstract
Increasing evidences demonstrated that PRL-3 was associated with metastatic potential in a variety of cancers including CRC, gastric cancer, ovarian cancer and so on. PRL-3 knock down inhibited the development of metastasis by reducing the size of primary tumors and inhibiting the invasion and growth of cancer cells. Therefore, PRL-3 is a promising diagnostic marker and therapeutic target in tumors. So far, only several PRL-3 inhibitors have been reported. In this study, six rhodanine derivatives were synthesized and characterized. The compounds were evaluated against tyrosine phosphatase PRL-3. Among these compounds, 5-(5-chloro-2-(trifluoromethyl)benzylidene)-2-thioxothiazolidin-4-one (4) could effectively inhibit PRL-3 with IC50 value of 15.22 μM. Fluorescent assays suggested compound 4 tightly bound to tyrosine phosphatase PRL-3 with the molar ratio of 1:1, and the binding constant of 1.74 × 106 M-1. Compound 4 entered into SW-480 cells, selectively inhibited the expression of PRL-3 and increased the phosphorylation of PRL-3 substrates, and decreased the survival rate of SW-480 cells with IC50 of 6.64 μM and induced apoptosis. The results revealed that compound 4 is a dual functional inhibitor against the activity and expression of PRL-3 and a promising anti-cancer candidate targeting PRL-3.
Collapse
|
16
|
Zhu ZP, Lin LR, Lv TD, Xu CR, Cai TY, Lin J. High expression levels of DEF6 predicts a poor prognosis for patients with clear cell renal cell carcinoma. Oncol Rep 2020; 44:2056-2066. [PMID: 33000227 PMCID: PMC7551049 DOI: 10.3892/or.2020.7736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignant tumors and early detection contributes to a better prognosis. Finding new biomarkers for the diagnosis or treatment remains meaningful. DEF6 guanine nucleotide exchange factor (DEF6) is upregulated in ccRCC compared to normal controls, but the relationship between DEF6 expression and prognosis in ccRCC is unclear. Moreover, the potential biological functions of DEF6 in ccRCC remains unclear. In the present study, the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), TISIDB and the clinical database of the Peking University First Hospital were used to analyze DEF6 expression in ccRCC. Immunohistochemistry (IHC), western blotting and reverse transcription-quantitative PCR were used to examine the DEF6 protein and mRNA expression levels in cell lines and clinical samples. Subsequently, the Kaplan-Meier method and Cox regression analyses were used to determine the impact of DEF6 expression on the overall survival of patients alongside other clinical variables in both the TCGA database and the present clinical database. The results showed that both DEF6 mRNA and protein expression levels were upregulated in ccRCC compared to normal controls. The Kaplan-Meier survival analysis showed that patients with high DEF6 expression had poor prognoses from both the TCGA database and the present clinical database. Univariate survival analysis and multivariate survival analysis revealed that DEF6 could be an independent prognostic factor for ccRCC. Additionally, bioinformatics analysis indicated that differentially expressed genes related to DEF6 expression influenced ccRCC by regulating the tumor immune microenvironment. In conclusion, overexpression of DEF6 is significantly correlated with a poor prognosis for patients with ccRCC and DEF6 may influence the biological processes involved with ccRCC by regulating the immune microenvironment.
Collapse
Affiliation(s)
- Zhen-Peng Zhu
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lan-Ruo Lin
- College of Basic Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Tong-De Lv
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Chun-Ru Xu
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Tian-Yu Cai
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
17
|
Hegde RS, Roychoudhury K, Pandey RN. The multi-functional eyes absent proteins. Crit Rev Biochem Mol Biol 2020; 55:372-385. [PMID: 32727223 PMCID: PMC7727457 DOI: 10.1080/10409238.2020.1796922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
The Eyes Absent (EYA) proteins are the only known instance of a single polypeptide housing the following three separable biochemical activities: tyrosine phosphatase, threonine phosphatase, and transactivation. This uniquely positions the EYAs to participate in both transcriptional regulation and signal transduction pathways. But it also complicates the assignment of biological roles to individual biochemical activities through standard loss-of-function experiments. Nevertheless, there is an emerging literature linking developmental and pathological functions with the various EYA activities, and a growing list of disease states that might benefit from EYA-targeted therapeutics. There also remain multiple unresolved issues with significant implications for our understanding of how the EYAs might impact such ubiquitous signaling cascades as the MYC and Notch pathways. This review will describe the unique juxtaposition of biochemical activities in the EYAs, their interaction with signaling pathways and cellular processes, emerging evidence of roles in disease states, and the feasibility of therapeutic targeting of individual EYA activities. We will focus on the phosphatase activities of the vertebrate EYA proteins and will examine the current state of knowledge regarding: • substrates and signaling pathways affected by the EYA tyrosine phosphatase activity; • modes of regulation of the EYA tyrosine phosphatase activity; • signaling pathways that implicate the threonine phosphatase activity of the EYAs including a potential interaction with PP2A-B55α; • the interplay between the two phosphatase activities and the transactivation function of the EYAs; • disease states associated with the EYAs and the current state of development of EYA-targeted therapeutics.
Collapse
Affiliation(s)
- Rashmi S. Hegde
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| | - Kaushik Roychoudhury
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| | - Ram Naresh Pandey
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| |
Collapse
|
18
|
de Souza AC, Mori M, Sens L, Rocha RF, Tizziani T, de Souza LF, Domeneghini Chiaradia-Delatorre L, Botta M, Nunes RJ, Terenzi H, Menegatti AC. A chalcone derivative binds a putative allosteric site of YopH: Inhibition of a virulence factor of Yersinia. Bioorg Med Chem Lett 2020; 30:127350. [DOI: 10.1016/j.bmcl.2020.127350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
|
19
|
McCullough BS, Barrios AM. Fluorogenic probes for imaging cellular phosphatase activity. Curr Opin Chem Biol 2020; 57:34-40. [PMID: 32470893 PMCID: PMC7483602 DOI: 10.1016/j.cbpa.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/26/2020] [Accepted: 04/08/2020] [Indexed: 11/23/2022]
Abstract
The ability to visualize enzyme activity in a cell, tissue, or living organism can greatly enhance our understanding of the biological roles of that enzyme. While many aspects of cellular signaling are controlled by reversible protein phosphorylation, our understanding of the biological roles of the protein phosphatases involved is limited. Here, we provide an overview of progress toward the development of fluorescent probes that can be used to visualize the activity of protein phosphatases. Significant advances include the development of probes with visible and near-infrared (near-IR) excitation and emission profiles, which provides greater tissue and whole-animal imaging capabilities. In addition, the development of peptide-based probes has provided some selectivity for a phosphatase of interest. Key challenges involve the difficulty of achieving sufficient selectivity for an individual member of a phosphatase enzyme family and the necessity of fully validating the best probes before they can be adopted widely.
Collapse
Affiliation(s)
- Brandon S McCullough
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112-0581, USA
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112-0581, USA.
| |
Collapse
|
20
|
Bokhari Y, Alhareeri A, Arodz T. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency. BMC Bioinformatics 2020; 21:122. [PMID: 32293263 PMCID: PMC7092414 DOI: 10.1186/s12859-020-3449-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/10/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Cancer is caused by genetic mutations, but not all somatic mutations in human DNA drive the emergence or growth of cancers. While many frequently-mutated cancer driver genes have already been identified and are being utilized for diagnostic, prognostic, or therapeutic purposes, identifying driver genes that harbor mutations occurring with low frequency in human cancers is an ongoing endeavor. Typically, mutations that do not confer growth advantage to tumors - passenger mutations - dominate the mutation landscape of tumor cell genome, making identification of low-frequency driver mutations a challenge. The leading approach for discovering new putative driver genes involves analyzing patterns of mutations in large cohorts of patients and using statistical methods to discriminate driver from passenger mutations. RESULTS We propose a novel cancer driver gene detection method, QuaDMutNetEx. QuaDMutNetEx discovers cancer drivers with low mutation frequency by giving preference to genes encoding proteins that are connected in human protein-protein interaction networks, and that at the same time show low deviation from the mutual exclusivity pattern that characterizes driver mutations occurring in the same pathway or functional gene group across a cohort of cancer samples. CONCLUSIONS Evaluation of QuaDMutNetEx on four different tumor sample datasets show that the proposed method finds biologically-connected sets of low-frequency driver genes, including many genes that are not found if the network connectivity information is not considered. Improved quality and interpretability of the discovered putative driver gene sets compared to existing methods shows that QuaDMutNetEx is a valuable new tool for detecting driver genes. QuaDMutNetEx is available for download from https://github.com/bokhariy/QuaDMutNetExunder the GNU GPLv3 license.
Collapse
Affiliation(s)
- Yahya Bokhari
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA 23284, USA
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Areej Alhareeri
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Tomasz Arodz
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA 23284, USA.
| |
Collapse
|
21
|
Qin J, Shen X, Zhang J, Jia D. Allosteric inhibitors of the STAT3 signaling pathway. Eur J Med Chem 2020; 190:112122. [DOI: 10.1016/j.ejmech.2020.112122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 01/13/2023]
|
22
|
Yuan C, Wang W, Wang J, Li X, Wu YB, Li S, Lu L, Zhu M, Xing S, Fu X. Potent and selective PTP1B inhibition by a platinum(ii) complex: possible implications for a new antitumor strategy. Chem Commun (Camb) 2019; 56:102-105. [PMID: 31793564 DOI: 10.1039/c9cc06972k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Showing anti-proliferation activity against MCF7 cells better than cisplatin, a platinum(ii) complex, [PtL(DMSO)Cl], was found to potently and selectively inhibit protein tyrosine phosphatase 1B (PTP1B), a putative target for anticancer agents, suggesting a new possible anticancer strategy based on platinum drugs.
Collapse
Affiliation(s)
- Caixia Yuan
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ma ES, Barrios AM. Rational design of a SHP-2 targeted, fluorogenic peptide substrate. Bioorg Med Chem Lett 2019; 29:2452-2454. [PMID: 31351693 DOI: 10.1016/j.bmcl.2019.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 10/26/2022]
Abstract
Protein tyrosine phosphatase (PTP) targeted, peptide based chemical probes are valuable tools for studying this important family of enzymes, despite the inherent difficulty of developing peptides targeted towards an individual PTP. Here, we have taken a rational approach to designing a SHP-2 targeted, fluorogenic peptide substrate based on information about the potential biological substrates of SHP-2. The fluorogenic, phosphotyrosine mimetic phosphocoumaryl aminopropionic acid (pCAP) provides a facile readout for monitoring PTP activity. By optimizing the amino acids surrounding the pCAP residue, we obtained a substrate with the sequence Ac-DDPI-pCAP-DVLD-NH2 and optimized kinetic parameters (kcat = 0.059 ± 0.008 s-1, Km = 220 ± 50 µM, kcat/Km of 270 M-1s-1). In comparison, the phosphorylated coumarin moiety alone is an exceedingly poor substrate for SHP-2, with a kcat value of 0.0038 ± 0.0003 s-1, a Km value of 1100 ± 100 µM and a kcat/Km of 3 M-1s-1. Furthermore, this optimized peptide has selectivity for SHP-2 over HePTP, MEG1 and PTPµ. The data presented here demonstrate that PTP-targeted peptide substrates can be obtained by optimizing the sequence of a pCAP containing peptide.
Collapse
Affiliation(s)
- Elena S Ma
- University of Utah College of Pharmacy, Department of Medicinal Chemistry, Salt Lake City, UT 84112, United States
| | - Amy M Barrios
- University of Utah College of Pharmacy, Department of Medicinal Chemistry, Salt Lake City, UT 84112, United States.
| |
Collapse
|
24
|
Tasker NR, Rastelli EJ, Burnett JC, Sharlow ER, Lazo JS, Wipf P. Tapping the therapeutic potential of protein tyrosine phosphatase 4A with small molecule inhibitors. Bioorg Med Chem Lett 2019; 29:2008-2015. [PMID: 31307888 DOI: 10.1016/j.bmcl.2019.06.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are emerging new targets for drug discovery. PTPs and protein tyrosine kinases (PTKs) maintain cellular homeostasis through opposing roles: tyrosine O-dephosphorylation and -phosphorylation, respectively. An imbalance in the phosphorylation equilibrium results in aberrant protein signaling and pathophysiological conditions. PTPs have historically been considered 'undruggable', in part due to a lack of evidence defining their relationship to disease causality and a focus on purely competitive inhibitors. However, a better understanding of protein-protein interfaces and shallow active sites has recently renewed interest in the pursuit of allosteric and orthosteric modulators of targets outside the major druggable protein families. While their biological mechanism of action still remains to be clarified, PTP4A1-3 (also referred to as PRL1-3) are validated oncology targets and play an important role in cell proliferation, metastasis, and tumor angiogenesis. In this Digest, recent syntheses and structure-activity relationships (SAR) of small molecule inhibitors (SMIs) of PTP4A1-3 are summarized, and enzyme docking studies of the most potent chemotype are highlighted. In particular, the thienopyridone scaffold has emerged as a potent lead structure to interrogate the function and druggability of this dual-specificity PTP.
Collapse
Affiliation(s)
- Nikhil R Tasker
- University of Pittsburgh, Department of Chemistry, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Ettore J Rastelli
- University of Pittsburgh, Department of Chemistry, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - James C Burnett
- University of Pittsburgh, Department of Chemistry, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Elizabeth R Sharlow
- University of Virginia, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - John S Lazo
- University of Virginia, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Peter Wipf
- University of Pittsburgh, Department of Chemistry, 219 Parkman Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
25
|
Tasker NR, Rastelli EJ, Blanco IK, Burnett JC, Sharlow ER, Lazo JS, Wipf P. In-flow photooxygenation of aminothienopyridinones generates iminopyridinedione PTP4A3 phosphatase inhibitors. Org Biomol Chem 2019; 17:2448-2466. [PMID: 30746541 DOI: 10.1039/c9ob00025a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A continuous flow photooxygenation of 7-aminothieno[3,2-c]pyridin-4(5H)-ones to produce 7-iminothieno[3,2-c]pyridine-4,6(5H,7H)-diones has been developed, utilizing ambient air as the sole reactant. N-H Imines are formed as the major products, and excellent functional group tolerance and conversion on gram-scale without the need for chromatographic purification allow for facile late-stage diversification of the aminothienopyridinone scaffold. Several analogs exhibit potent in vitro inhibition of the cancer-associated protein tyrosine phosphatase PTP4A3, and the SAR supports an exploratory docking model.
Collapse
Affiliation(s)
- Nikhil R Tasker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Nunes-Xavier CE, Zaldumbide L, Aurtenetxe O, López-Almaraz R, López JI, Pulido R. Dual-Specificity Phosphatases in Neuroblastoma Cell Growth and Differentiation. Int J Mol Sci 2019; 20:ijms20051170. [PMID: 30866462 PMCID: PMC6429076 DOI: 10.3390/ijms20051170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) are important regulators of neuronal cell growth and differentiation by targeting proteins essential to neuronal survival in signaling pathways, among which the MAP kinases (MAPKs) stand out. DUSPs include the MAPK phosphatases (MKPs), a family of enzymes that directly dephosphorylate MAPKs, as well as the small-size atypical DUSPs, a group of low molecular-weight enzymes which display more heterogeneous substrate specificity. Neuroblastoma (NB) is a malignancy intimately associated with the course of neuronal and neuroendocrine cell differentiation, and constitutes the source of more common extracranial solid pediatric tumors. Here, we review the current knowledge on the involvement of MKPs and small-size atypical DUSPs in NB cell growth and differentiation, and discuss the potential of DUSPs as predictive biomarkers and therapeutic targets in human NB.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital HF Radiumhospitalet, Oslo 0424, Norway.
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia 48903, Spain.
| | - Olaia Aurtenetxe
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
| | - Ricardo López-Almaraz
- Pediatric Oncology and Hematology, Cruces University Hospital, Barakaldo, Bizkaia 48903, Spain.
| | - José I López
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia 48903, Spain.
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain.
| |
Collapse
|
27
|
Wei-Ya L, Yu-Qing D, Yang-Chun M, Xin-Hua L, Ying M, Wang RL. Exploring the cause of the inhibitor 4AX attaching to binding site disrupting protein tyrosine phosphatase 4A1 trimerization by molecular dynamic simulation. J Biomol Struct Dyn 2019; 37:4840-4851. [PMID: 30661451 DOI: 10.1080/07391102.2019.1567392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ectopic overexpression of protein tyrosine phosphatase of liver regeneration-1 (PTP4A1, also called PRL-1) markedly enhanced hepatocellular carcinoma (HCC) cells migration and invasion. The PTP4A1 trimerization played a vital role in mediating cell proliferation and motility. Biochemical and structural studies have proved that the compound 4AX, a well-known inhibitor for PRL1, directly binds to the PTP4A1 trimer interface and obstructs trimer formation of PTP4A1. However, the molecular basis of the ligand-4AX inhibition on PTP4A1 trimer conformations remains unclear. In this study, the docking analysis and the molecular dynamics simulation (MD simulation) study were performed to investigate how the molecule binding at each interface disrupted the trimer formation. The results suggested that the ligand-4AX attaching to the binding site changed the conformation of A:Q131, A:Q135 in the AC interface, C:R18, C:P96 in the CA interface and B:Q131 in the BA interface, leading to the weak interactions between subunits and thus resulting in the disruption of the PTP4A1 trimerization.
Collapse
Affiliation(s)
- Li Wei-Ya
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University , Tianjin , China
| | - Duan Yu-Qing
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin , China
| | - Ma Yang-Chun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University , Tianjin , China
| | - Lu Xin-Hua
- National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, New Drug Research & Development Center of North China Pharmaceutical Group Corporation , Shijiazhuang , China
| | - Ma Ying
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University , Tianjin , China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University , Tianjin , China
| |
Collapse
|
28
|
Pike KA, Tremblay ML. Protein Tyrosine Phosphatases: Regulators of CD4 T Cells in Inflammatory Bowel Disease. Front Immunol 2018; 9:2504. [PMID: 30429852 PMCID: PMC6220082 DOI: 10.3389/fimmu.2018.02504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) play a critical role in co-ordinating the signaling networks that maintain lymphocyte homeostasis and direct lymphocyte activation. By dephosphorylating tyrosine residues, PTPs have been shown to modulate enzyme activity and both mediate and disrupt protein-protein interactions. Through these molecular mechanisms, PTPs ultimately impact lymphocyte responses to environmental cues such as inflammatory cytokines and chemokines, as well as antigenic stimulation. Mouse models of acute and chronic intestinal inflammation have been shown to be exacerbated in the absence of PTPs such as PTPN2 and PTPN22. This increase in disease severity is due in part to hyper-activation of lymphocytes in the absence of PTP activity. In accordance, human PTPs have been linked to intestinal inflammation. Genome wide association studies (GWAS) identified several PTPs within risk loci for inflammatory bowel disease (IBD). Therapeutically targeting PTP substrates and their associated signaling pathways, such as those implicated in CD4+ T cell responses, has demonstrated clinical efficacy. The current review focuses on the role of PTPs in controlling CD4+ T cell activity in the intestinal mucosa and how disruption of PTP activity in CD4+ T cells can contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Inception Sciences Canada, Montréal, QC, Canada
| | - Michel L Tremblay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
29
|
PTPN6 regulates the cell-surface expression of TRPM4 channels in HEK293 cells. Pflugers Arch 2018; 470:1449-1458. [PMID: 29931651 DOI: 10.1007/s00424-018-2161-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/11/2018] [Accepted: 05/30/2018] [Indexed: 10/28/2022]
Abstract
Transient receptor-potential, cation channel, subfamily M, member 4 (TRPM4) channels regulate a variety of physiological and pathological processes; however, their roles as functional channels under diverse conditions remain unclear. In this study, cytosolic protein tyrosine phosphatase non-receptor type 6 (PTPN6) interacted with TRPM4 channels. We confirmed their interaction by performing co-immunoprecipitation (Co-IP) assays following heterologous PTPN6 and TRPM4 channel expression in HEK293 cells. Furthermore, biomolecular fluorescence complementation (BiFC) image analysis confirmed TRPM4-PTPN6 binding. In addition, immunoblotting and Co-IP analyses revealed that TRPM4 expression significantly decreased in the membrane fraction of cells after PTPN6 was silenced with a specific short-hairpin RNA (shRNA-PTPN6). In agreement, TRPM4-induced changes in whole-cell currents were not detected in PTPN6-silenced HEK cells, in contrast to cells transfected with a scrambled RNA (scRNA) or in naïve HEK cells. These data suggest that PTPN6 inhibits TRPM4 channel activity by disrupting TRPM4 expression. Furthermore, TRPM4 channels were expressed in the membrane of naïve cells and scRNA transfectants, but not in those of PTPN6-silenced cells. These results indicated that PTPN6 is critically associated with TRPM4 trafficking. This role of PTPN6 in TRPM4 membrane localization was also demonstrated in HeLa cells. TRPM4 overexpression significantly enhanced cell proliferation in untreated HeLa cells, but not in HeLa cells with silenced PTPN6 expression. These findings indicate that PTPN6-dependent TRPM4 expression and trafficking to the plasma membrane is critical for cell proliferation in both HEK293 and HeLa cells. Therefore, PTPN6 is a novel therapeutic target for treating pathologic diseases involving TRPM4.
Collapse
|
30
|
Watters DJ. Ascidian Toxins with Potential for Drug Development. Mar Drugs 2018; 16:E162. [PMID: 29757250 PMCID: PMC5983293 DOI: 10.3390/md16050162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/05/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Ascidians (tunicates) are invertebrate chordates, and prolific producers of a wide variety of biologically active secondary metabolites from cyclic peptides to aromatic alkaloids. Several of these compounds have properties which make them candidates for potential new drugs to treat diseases such as cancer. Many of these natural products are not produced by the ascidians themselves, rather by their associated symbionts. This review will focus mainly on the mechanism of action of important classes of cytotoxic molecules isolated from ascidians. These toxins affect DNA transcription, protein translation, drug efflux pumps, signaling pathways and the cytoskeleton. Two ascidian compounds have already found applications in the treatment of cancer and others are being investigated for their potential in cancer, neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Dianne J Watters
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia.
| |
Collapse
|
31
|
Hjort MA, Hov H, Abdollahi P, Vandsemb EN, Fagerli UM, Lund B, Slørdahl TS, Børset M, Rø TB. Phosphatase of regenerating liver-3 (PRL-3) is overexpressed in classical Hodgkin lymphoma and promotes survival and migration. Exp Hematol Oncol 2018; 7:8. [PMID: 29651360 PMCID: PMC5894150 DOI: 10.1186/s40164-018-0100-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 11/25/2022] Open
Abstract
Background Phosphatase of regenerating liver-3 (PRL-3) is implicated in oncogenesis of hematological and solid cancers. PRL-3 expression increases metastatic potential, invasiveness and is associated with poor prognosis. With this study, we aimed to show a possible oncogenic role of PRL-3 in classical Hodgkin lymphoma (cHL). Methods PRL-3 expression was measured in 25 cHL patients by immunohistochemistry and gene expression was analyzed from microdissected malignant cells. We knocked down PRL-3 in the cHL cell lines L1236 and HDLM2 and used small molecular inhibitors against PRL-3 to investigate proliferation, migration and cytokine production. Results PRL-3 protein was expressed in 16% of patient samples. In three different gene expression datasets, PRL-3 was significantly overexpressed compared to normal controls. PRL-3 knockdown reduced proliferation, viability and Mcl-1 expression in L1236, but not in HDLM2 cells. Thienopyridone, a small molecule inhibitor of PRL-3, reduced proliferation of both L1236 and HDLM2. PRL-3 affected IL-13 secretion and enhanced STAT6 signaling. IL-13 stimulation partially rescued proliferation in L1236 cells after knockdown of PRL-3. PRL-3 knockdown reduced migration in both L1236 and HDLM2 cells. Conclusion PRL-3 was overexpressed in a subset of cHL patients. Inhibition of PRL-3 increased IL-13 cytokine production and reduced migration, proliferation and viability. The effects could be mediated through regulation of the anti-apoptotic molecule Mcl-1 and a feedback loop of IL-13 mediated activation of STAT6. This point to a role for PRL-3 in the pathogenesis of Hodgkin lymphoma, and PRL-3 could be a possible new drug target. Electronic supplementary material The online version of this article (10.1186/s40164-018-0100-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magnus Aassved Hjort
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Håkon Hov
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,3Department of Pathology, Trondheim University Hospital, Trondheim, Norway
| | - Pegah Abdollahi
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Esten Nymoen Vandsemb
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Unn-Merete Fagerli
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,4Cancer Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Bendik Lund
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| | - Tobias Schmidt Slørdahl
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,5Department of Hematology, Trondheim University Hospital, Trondheim, Norway
| | - Magne Børset
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,6Department of Immunology and Transfusion Medicine St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torstein Baade Rø
- 1Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, (NTNU), P.O. Box 8905, 7491 Trondheim, Norway.,2Children's Clinic, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
32
|
Schiavone S, Trabace L. Small Molecules: Therapeutic Application in Neuropsychiatric and Neurodegenerative Disorders. Molecules 2018; 23:molecules23020411. [PMID: 29438357 PMCID: PMC6017408 DOI: 10.3390/molecules23020411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
In recent years, an increasing number of studies have been published, focusing on the potential therapeutic use of small catalytic agents with strong biological properties. So far, most of these works have only regarded specific clinical fields, such as oncology, infectivology and general pathology, in particular with respect to the treatment of significant inflammatory processes. However, interesting data on possible therapeutic applications of small molecules for the treatment of neuropsychiatric and neurodegenerative illnesses are emerging, especially with respect to the possibility to modulate the cellular redox state. Indeed, a crucial role of redox dysregulation in the pathogenesis of these disorders has been widely demonstrated by both pre-clinical and clinical studies, being the reduction of the total amount of free radicals a promising novel therapeutic approach for these diseases. In this review, we focused our interest on studies published during the last ten years reporting therapeutic potential of small molecules for the treatment of neuropsychiatric and neurodegenerative disorders, also based on the biological efficiency of these compounds in detecting intracellular disturbances induced by increased production of reactive oxygen species.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy.
| |
Collapse
|